
JFP 16 (1): 35–74, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005745 Printed in the United Kingdom

35

Efficient manipulation of binary data
using pattern matching�

PER GUSTAFSSON and KONSTANTINOS SAGONAS

Department of Information Technology, Uppsala University, Sweden

(e-mail: {pergu,kostis}@it.uu.se)

Abstract

Pattern matching is an important operation in functional programs. So far, pattern matching

has been investigated in the context of structured terms. This article presents an approach

to extend pattern matching to terms without (much of a) structure such as binaries which

is the kind of data format that network applications typically manipulate. After introducing

the binary datatype and a notation for matching binary data against patterns, we present

an algorithm that constructs a decision tree automaton from a set of binary patterns. We

then show how the pattern matching using this tree automaton can be made adaptive,

how redundant tests can be avoided, and how we can further reduce the size of the

resulting automaton by taking interferences between patterns into account. Since the size

of the tree automaton is exponential in the worst case, we also present an alternative new

approach to compiling binary pattern matching which is conservative in space and analyze its

complexity properties. The effectiveness of our techniques is evaluated using standard packet

filter benchmarks and on implementations of network protocols taken from actual telecom

applications.

1 Introduction

Binary data are omnipresent in telecommunication and computer network applic-

ations. Many formats for data exchange between nodes in distributed computer

systems (MPEG, ELF, PGP keys, yEnc, JPEG, MP3, GIF, etc.) as well as most

network protocols use binary representations. The main reason for using binaries

is size: a binary is a much more compact format than the symbolic or textual

representation of the same information. As a consequence, less resources are required

for binaries to be transmitted over the network.

When binaries are received, they typically need to be processed. Their processing

can either be performed in a low-level language such as C (which can directly

manipulate these objects), or they need to be converted to some term representation

and then manipulated in a high-level language such as a functional programming

language. The main problem with the second approach is that most high-level

languages do not provide adequate support for common operations on binary data.

� Research supported in part by grant #621-2003-3442 from the Swedish Research Council
(Vetenskapsr̊adet) and by the Vinnova ASTEC (Advanced Software Technology) competence center
with matching funds by Ericsson AB and T-Mobile, U.K.

36 P. Gustafsson and K. Sagonas

As a result, programming tends to become pretty low level anyway, e.g. littered

with bit-shifting operations. Also, the necessary conversion to a structured term

representation takes time and results in a format which requires more storage space.

So, both for convenience and out of performance considerations, it is more often

than not the case that the low-level approach is followed; despite the fact that this

practice is possibly error-prone and opens up possibilities for security holes.

Our aim is to make programming of telecom and packet filter applications using

high-level languages both convenient and natural and at the same time as efficient

as its counterpart in low-level languages such as C. More specifically, given a

functional programming language which has been enriched with a binary data type

and a convenient notation to perform pattern matching on binaries, we propose

methods to extend a key feature of functional programs, pattern matching, to binary

terms.

Doing so is not straightforward for the following two reasons. First, unlike pattern

matching on structured terms where arities and argument positions of constructors

are statically known, binary pattern matching needs to deal with the fact that

binaries have a totally amorphous structure. Second, typical uses of binaries (e.g. in

network protocols) are such that certain parts of the binary (typically its headers)

encode information about how many parts the remaining binary contains and how

these parts are to be interpreted, i.e. the patterns often contain repeated occurrences

of variables not all of which can be translated away using explicit equality tests. An

effective binary pattern matching scheme has to cater for these uses.

On the other hand, the potential performance advantages of our aim should be

clear, at least to functional programmers. Indeed once the number and sizes of

the patterns become significant, hand-coded pattern matchers, even when written in

low-level languages such as C, can hardly compete with those derived automatically

using systematic algorithms like those presented in this article.

The main part of this article presents an adaptive binary pattern matching scheme,

based on decision trees, that is tailored to the characteristics of binaries in typical

applications. The reason we use decision trees is that they result in faster code

(since each constraint on the matching is tested at most once), and fast execution

is one of the main goals in our application domain. However, since the size of the

decision tree can be in the worst case exponential in the number of patterns, we also

present an alternative approach whose worst case space requirement is linear in the

total number of matching tests. Our implementation vehicle is Erlang/OTP (Open

Telecom Platform), a system which is used to develop large telecom applications

where binary pattern matching allows implementation of network protocols using

high-level specifications.

The structure of the rest of this article is as follows: the next section overviews

a notation for creating binaries and for matching binary data against patterns.

Although the notation and syntax is that which is used in the Erlang language,

the ideas behind it are generic. Examples of how binary pattern matching can be

used for common programming tasks in network protocol processing are presented

in section 3. After introducing a definition of binary pattern matching in section 4,

we present an algorithm that constructs a decision tree automaton from a set

Efficient manipulation of binary data using pattern matching 37

of binary patterns (section 5). In particular, we show how to perform effective

pruning, how pattern matching can be made adaptive, how redundant tests can be

avoided, and how the size of the resulting automaton can be further reduced by

taking interferences between patterns into account. An approach to compiling binary

pattern matching which is conservative in space, and its complexity properties, are

presented in section 6. After evaluating the effectiveness of our techniques on packet

filter benchmarks and on implementations of network protocols from actual telecom

applications (section 7), we review related work (section 8), and conclude in section 9.

2 Binaries

The binary datatype represents a finite sequence of 8-bit bytes. Two basic operations

can be performed on a binary: creation of a new binary and matching against an

existing binary.

2.1 Creation of binaries using the bit syntax

Erlang’s bit syntax (described in Nyblom (2000) but see also Wikström & Rogvall

(1999)) allows the user to conveniently construct binaries and match these against

binary patterns. A bit syntax expression (called a Bin in Nyblom (2000)) is the

building block used to both construct binaries and match against binary patterns.

A Bin is written with the following syntax:

<<Segment1, Segment2, . . ., Segmentn>>

The Bin represents a sequence of bytes. Each of the Segmenti’s specifies a segment

of the binary. A segment represents an arbitrary number of contiguous bits in the

Bin. The segments are placed next to each other in the same order as they appear

in the bit syntax expression.

2.1.1 Segments

Each segment expression has the general syntax:

Value:Size/SpecifierList

where both the Size and the SpecifierList are optional. When they are omitted,

default values are used for these specifiers. The Value field must however always

be specified. In a binary match, the Value can either be an Erlang term, a bound

variable, an unbound variable, or the don’t care variable ’ ’. The Size field can either

be an integer constant or a variable that is bound to an integer. The SpecifierList

is a dash-separated list of up to four specifiers that specify type, signedness, endianess,

and unit. The different forms of type specifiers are shown in Table 1 together with a

brief description of their use; they are explained in detail below. If all of these type

specifiers are used, the syntax of the segment expression is:

Value:Size/Type-Signedness-Endianess-unit:Unit

The Size specifier gives the size of the segment measured in units. Thus the size of

the segment in bits (hereafter called its effective size) will be Size ∗ Unit.

38 P. Gustafsson and K. Sagonas

Table 1. Binary segment specifiers: short description

integer The segment’s bit sequence will be interpreted as an integer. (default)

float The segment’s bit sequence will be interpreted as a float.

The segment’s size can then only be 32 or 64.

binary The segment’s bit sequence will not be interpreted.

The default unit size of a binary is 8.

The following three specifiers apply to integers and floats only.

big The segment’s bytes are in big-endian order. (default)

little The segment’s bytes are in little-endian order.

native The segment’s bytes are in the byte ordering of the machine

on which the program runs.

The following two specifiers apply to integer segments only.

signed The segment’s bit sequence will be interpreted as an integer

in 2’s complement representation.

unsigned The segment’s bit sequence will be interpreted as an unsigned integer.

(default)

unit Always followed by ‘:’ and an integer between 1 and 256 which denotes

the unit size. The unit size is used to determine the segment’s effective

size which is the product of the unit size and the Size field.

The unit is typically used to ensure either byte-alignment in a binary

match or that a new binary has a size that is divisible by 8 regardless

of the value of the Size field. The default unit size is 1 for integers

and floats and 8 for binaries.

2.1.2 Types

The bit syntax allows three different types to be specified for segments of binaries:

integers, floats, and binaries:

• The integer type specifier is the default and the segment can then be of

any size. For integers, the user can also specify endianess and signedness (see

Table 1). If unspecified, the default specifiers for an integer segment are a size

of 8 bits, unsigned, big-endian, and a unit of 1.

• The float type specifier only allows effective sizes of 32 or 64 bits. The user

can also specify endianess. The default specifiers for a float segment are a size

of 64 bits, a big-endian format, and a unit of 1.

• The binary type specifier allows effective sizes that are evenly divisible by 8.

Specifying endianess or signedness does not modify how a binary is matched.

The default specifiers for a binary segment is the size all which means the

binary is being matched out completely. If the size of the segment is specified,

the default unit used is 8 bits.

Efficient manipulation of binary data using pattern matching 39

Table 2. Some binary segments and their default expansions

Segment Default expansion

X X:8/integer-unsigned-big-unit:1

X/float X:64/float-big-unit:1

X/binary X:all/binary

X:Size/binary X:Size/binary-unit:8

2.1.3 Endianess

An endianess specifier determines the order in which bytes form an integer or a float

are stored. The specifier big means that the bytes are in big-endian order, while the

specifier little signifies that the bytes are in little-endian order. For example, the

bit syntax expression <<298:16/integer-big>> is equivalent to <<1,42>>, whereas

the expression <<298:16/integer-little>> is equivalent to <<42,1>>.

2.1.4 Signedness

A signedness specifier allows matching of either signed or unsigned integers. The

default value is unsigned. This means that the segment will be interpreted as an

unsigned integer. The signed specifier makes sure that the segment is interpreted

as an integer in two’s complement representation. We note that the signed and

unsigned specifiers are actually allowed in all expressions, but they only have a

meaning when used in binary segments whose type is integer.

2.1.5 Tail of a binary

As mentioned, if the binary type specifier is used without an explicit size specifier,

its size gets expanded to the size all by default. In the last, when this is not also

the first, segment of a binary this use is similar to the familiar list cdr operator

since a size of all means that the binary is matched against the complete remaining

binary. (We further discuss the cdr similarity in Example 1 in the following section.)

A segment of binary type however, must be a sequence of 8-bit bytes (i.e. have a

size which is evenly divisible by eight). This also applies when a don’t care variable

is used as Value.

2.1.6 Default expansions

All specifiers have default values and sometimes the defaults depend on the values of

other specifiers. To summarize the rules which apply, we show how some segments

are expanded in Table 2.

2.2 Binary matching

The syntax for matching if Binary is a variable bound to a binary is as follows:

<<Segment1, Segment2, . . ., Segmentn>> = Binary

40 P. Gustafsson and K. Sagonas

The Valuei fields of the Segmenti expressions that describe each segment will be

matched to the corresponding segment in Binary. For example, if the Value1 field

in Segment1 contains an unbound variable and the effective size of this segment

is 16, this variable will be bound to the first 16 bits of Binary. How these bits will

be interpreted is determined by the SpecifierList of Segment1.

Example 1

As shown below, binaries are generally written (and also printed) as a sequence of

comma-separated unsigned 8 bit integers inside <<>>’s. The Erlang code:

Binary = <<10,11,12>>, <<A:8,B/binary>> = Binary

results in the binding A = 10, B = <<11,12>>.1

Here A matches the first 8 bits of Binary. Because of the default values (cf.

Table 2), these eight bits are interpreted as an unsigned, big-endian integer. B is

matched to the rest of the bits of Binary. These bits are interpreted as a binary

since that type specifier has been chosen. Because of that, B matches to the complete

remaining part of Binary, as this is the default size for the binary type specifier.

The correspondence of the tail of a binary with the cdr operator of lists can be

seen by comparing the code given above with the Erlang code shown below.

List = [10,11,12], [A|B] = List

The similarity of binaries with lists is even more apparent in Example 7 below.

Size fields of segments are not always statically known. This is actually quite a

common case and complicates the pattern matching operation in our context. It is

also possible that the value of the size field is decided by the matching of a variable

in some other, earlier segment. In other words, the patterns are often non-linear in

the sense that they contain repeated occurrences of variables. This is illustrated with

the following example.

Example 2

The Erlang code:

<<Sz:8/integer, Vsn:Sz/integer, Msg/binary>> = <<16,2,154,11,12>>

is legal and results in the binding Sz = 16, Vsn = 666, Msg = <<11,12>>.

Note that in the above binary pattern the repeated occurrences of the Sz variable

cannot be translated away by using explicit equality tests in the form of guards. For

example, the above binary pattern cannot be translated to:

<<Sz:8/integer, Vsn:Sz1/integer, Msg/binary>> when Sz == Sz1

because this would effectively require a binary pattern matching automaton that is

non-deterministic. To see this, note that in the original pattern, the value of the Sz

variable determines the size of the second segment, which in turn determines the

1 In Erlang, variables begin with a capital letter or an underscore, and are possibly followed by a
sequence of letters, underscores and digits. A leading underscore in a variable name is typically used
to indicate that the variable has only a single use.

Efficient manipulation of binary data using pattern matching 41

Table 3. Values for Binary and matchings for variable X in Example 3

Binary Matching of X

<<42,14,15>> <<14,15>>

<<24,1,2,3,10,20>> <<10,20>>

<<12,1,2,20>> 258

<<0,255>> failure

start of the third and last segment. The only way to avoid this form of non-linearity

is to “flatten” the binary pattern as in the code shown below:

<<Sz:8/integer, Rest/binary>> = <<16,2,154,11,12>>,

<<Vsn:Sz/integer, Msg/binary>> = Rest

It is a general requirement that binary pattern matching is deterministic. This in

turn implies that sizes of segments can be determined by a left-to-right traversal,

as in the pattern of Example 2. For example, the following code (where Sz is a

variable) is not legal:

<<Vsn:Sz/integer, Sz:8/integer, Msg/binary>> = <<2,16,154,11,12>>

Naturally, pattern matching against a binary can occur in a function head or in

an Erlang case statement just like any other matching operation. This is illustrated

with the following example.

Example 3
Consider the case statement

case Binary of

<<42:8/integer, X/binary>> -> handle1(X);

<<Sz:8, V:Sz/integer, X/binary>> when Sz > 16 -> handle2(V,X);

<< :8, X:16/integer, Y:8/integer>> -> handle3(X,Y)

end.

Here Binary will match the pattern in the first branch of the case statement if its

first 8 bits represented as an unsigned integer have the value 42. In this branch of

the case statement, X will be bound to a binary consisting of the rest of the bits

of Binary. If this is not the case, then Binary will match the second pattern if

the first 8 bits of Binary interpreted as an unsigned integer have a value greater

than 16. Notice that this is both a non-linear and a guarded binary pattern. Finally,

if Binary is exactly 32 bits long, X will be bound to an integer consisting of the

second and third bytes of the Binary (taken in big-endian order). If neither of the

patterns match, the whole match expression will fail. Three examples of matchings

and a failure to match using this code are shown in Table 3.

The following two examples show how endianess and signedness specifiers impact

binary pattern matching.

42 P. Gustafsson and K. Sagonas

Example 4

If X and Y are unbound variables, the matching:

<<X:16/integer-big>> = <<0, 42>>

results in the binding X = 42 as the eight low bits of X are 42, while the matching:

<<Y:16/integer-little>> = <<0, 42>>

results in the binding Y = 10752 (i.e., 42 * 256) since 42 now appears in the eight

high bits.

Example 5
If X and Y are unbound variables, the code:

<<X:8/integer-unsigned>> = <<255>>,

<<Y:8/integer-signed>> = <<255>>

results in the binding X = 255, Y = -1.

Specifiers in the rest of the article. For simplicity of presentation, only integer and

binary specifiers will be used in the rest of this article. Moreover, when a binary

type specifier is used, we will never specify a size and binary segments will be

matched against the complete remaining part of the binary. We will not specify

the signedness or the endianess of integer segments either; such segments will be

considered with their bytes in big-endian order and as unsigned. We also assume

that the programs are type-correct.

3 Using binaries for network protocols: some examples

The bit syntax was introduced into Erlang to simplify network protocol implement-

ation. To show that the syntax for manipulating binaries through pattern matching

is indeed well-suited for common network protocol programming tasks, we give

some examples of how the bit syntax is used in this domain.

Example 6

The function in Fig. 1 accepts IPv6 packets and IPv4 packets without options. It

calls the function that is applicable depending on the value of the protocol field. It

also acts as a packet filter, making sure that only packets with a certain source and

destination IP address are processed and ignoring all the rest.

The binary patterns in the case statement could have been written more succinctly,

for example the first pattern could have been written as

<<69:8, :64, ?TCP:8, Checksum:16, SrcIP:32, DstIP:32, Payload/binary>>

but we show each field in the IP packet header explicitly to highlight how easy and

natural it is to specify the structure of IP packets and filter them using the binary

syntax.

For example, the first four bits of the IP packet header indicate which version

of the protocol is used. In this example, the first two patterns can match version 4

Efficient manipulation of binary data using pattern matching 43

-define(TCP,6).

-define(UDP,17).

-define(IP VER4,4).

-define(IP VER6,6).

filter(Bin, SrcIP, DstIP) ->

case Bin of

<<?IP VER4:4, 5:4, ToS:8, ToL:16,

Id:16, Flags:3, FlagOffset:13,

TTL:8, ?TCP:8, Checksum:16,

SrcIP:32, DstIP:32, Payload/binary>> -> tcp(Payload);

<<?IP VER4:4, 5:4, ToS:8, ToL:16,

Id:16, Flags:3, FlagOffset:13,

TTL:8, ?UDP:8, Checksum:16,

SrcIP:32, DstIP:32, Payload/binary>> -> udp(Payload);

<<?IP VER6:4, TrafficClass:8, FlowLabel:20,

PayloadLength:16, ?TCP:8, HopLimit:8,

SrcIP:128, DstIP:128, Payload/binary>> -> tcp(Payload);

<<?IP VER6:4, TrafficClass:8, FlowLabel:20,

PayloadLength:16, ?UDP:8, HopLimit:8,

SrcIP:128, DstIP:128, Payload/binary>> -> udp(Payload);

OtherBin -> ok %% ignore everything else

end.

Fig. 1. Filtering IPv4 and IPv6 packets using the bit syntax.

packets with a header length of 5 words (i.e. a header which contains no optional

fields). The first pattern matches the packet if the protocol field contains the value

of the TCP macro (defined as 6). This indicates that the payload contains TCP data.

The second pattern matches the packet if the protocol field contains the value of

the UDP macro (defined as 17) which indicates that UDP is used.

The third and fourth patterns match IPv6 packets. The third pattern matches

packets with TCP payloads while the fourth matches packets with UDP payloads.

The filtering done in this example can easily be extended to implement a packet

filter which for example considers the port fields in the UDP header if the payload

contains UDP data or the TCP options if the payload contains TCP data.

The next example is also related to IP processing. It is a function which can be

used to check that the checksum of an IP packet header is correct. It illustrates how

the bit syntax can be used to write functions which operate on binaries in the same

way that functional programmers typically write functions which operate on lists.

Example 7

The is correct checksum/1 function (Fig. 2) calculates the checksum of an IP

packet header and compares it with the value in the checksum field. If the checksums

are equal it will return true, otherwise it will return false. (In Erlang, == is the

built-in term equality operator, band is the bitwise and operator, and bsr is the

operator which shifts bits right a number of positions.)

44 P. Gustafsson and K. Sagonas

is correct checksum(<<InitHeader:80,ChkSum:16,RestHeader/binary>>) ->

ChkSum == calculate checksum(<<InitHeader:80,RestHeader/binary>>, 0).

calculate checksum(<<N:16,Rest/binary>>, Acc) ->

calculate checksum(Rest, Acc+N);

calculate checksum(<<>>, Acc) ->

two byte checksum(Acc).

two byte checksum(Acc) when Acc > 16#ffff ->

two byte checksum((Acc band 16#ffff) + (Acc bsr 16));

two byte checksum(Acc) ->

Acc.

Fig. 2. IP packet header checksum check.

extract tlb(Bin) ->

case Bin of

<<4:8, Length1:8, 0:8, Tag1:16, B1/binary>> -> {Tag1, Length1, B1};
<<4:8, Length2:8, Tag2:8, B2/binary>> -> {Tag2, Length2, B2};
<<5:8, 0:8, Tag3:16, Length3:8, B3/binary>> -> {Tag3, Length3, B3};
<<5:8, Tag4:8, Length4:8, B4/binary>> -> {Tag4, Length4, B4}

end.

Fig. 3. Function used as a running example.

The last example in this section is adapted from a program which checks

configuration options for the Point-to-Point Protocol (PPP). It has been simplified

in order to be used as a running example in the rest of this article and is shown in

Fig. 3.

4 Binary pattern matching definitions

Assuming the usual definition of when two non-binary terms (integers, compound

terms, . . .) match, we now turn our attention on how binary pattern matching

expressions can be efficiently compiled. A binary pattern matching is defined by a

binary term to be matched and a set of binary patterns, which is ordered according

to their (usually textual) priority.

In a binary pattern matching compiler, each binary pattern bi consist of a list of

segments [seg1, . . . , segn] and is associated with a success label (denoted by SL(bi))

which specifies the success continuation.2

2 For simplicity, we keep the fail labels implicit; they are determined by the priority of the binary
patterns {b1, . . . , bk} as follows:

FL(bi) = bi+1, 1 � i � k − 1 and FL(bk) = failure.

Efficient manipulation of binary data using pattern matching 45

Each segment is represented by a tuple segi = 〈vi, ti, pi, si〉, i ∈ {1, . . . , n} consisting

of a value, a type, a position, and a size field. The value and type fields contain

the term in the Value field and the type Specifier of the corresponding segment,

respectively. The size field si represents the Size of the segment in bits. When the

size is statically known, si is a positive integer constant. Otherwise, si is either a

variable which will be bound to an integer at runtime, or the special don’t care

variable (written as) which is used when the last segment, segn, is of binary type

without any constraint on its size (cf. the first two binary patterns of Example 3).

The pi field denotes the position where segment segi starts in the binary. If the size

values of all preceding segments are statically known, then pi is just a positive integer

constant and is defined as pi =
∑i−1

j=1 sj . The presence, however, of variable-sized

segments complicates the calculation of a segment’s position. In such cases, we will

denote pi’s as c+ V where c is the sum of all sizes of preceding segments which are

statically known and V is a multiset of size specifiers in preceding segments whose

values are not static constants. When V contains just one element (i.e., V = {S}), we

slightly abuse notation and write V simply as S.

Example 8

The binary pattern of Example 2 is represented as

[〈Sz, integer, 0, 8〉, 〈Vsn, integer, 8, Sz〉, 〈Msg, binary, 8 + Sz, 〉].

Each binary pattern corresponds to a sequence of actions obtained by concat-

enating the actions of its segments. The actions of each segment generally consist

of a size test and a match test. Each match test includes an associated read action

which is to be performed before the actual match test. These notions are defined

below.

Definition 1 (Size test)

For each segment segi = 〈vi, ti, pi, si〉 of a binary pattern [seg1, . . . , segn], if si �= , we

associate a size test st defined as

st =

{
size(=, pi + si) if i = n

size(�, pi + si) otherwise

The size test, given a binary b, succeeds if the size of b in bits is equal to (resp. at

least) pi + si.

Note that no size test is associated with a tail binary segment (a segment where

si =). Also, note that although positions and sizes might not be static constants, in

type-correct programs, they are always positive integers at runtime. Thus the second

argument of a size test will always be a positive integer constant at runtime.

Definition 2 (Read action)

For a segment 〈v, t, p, s〉, the corresponding read action (denoted by read(p, s, t)) is

as follows: given a binary b, the action reads s bits starting at position p of b,

constructs a term of type t out of them, and returns the constructed term.

46 P. Gustafsson and K. Sagonas

b1 = {size(�,40), match(4,read(0,8,int)), match(Length1,read(8,8,int)),

match(0,read(16,8,int)), match(Tag1,read(24,16,int)),

match(B1,read(40, ,bin))}
b2 = {size(�,24), match(4,read(0,8,int)), match(Length2,read(8,8,int)),

match(Tag2,read(16,8,int)), match(B2,read(24, ,bin))}
b3 = {size(�,40), match(5,read(0,8,int)), match(0,read(8,8,int)),

match(Tag3,read(16,16,int)),

match(Length3,read(32,8,int)), match(B3,read(40, ,bin))}
b4 = {size(�,24), match(5,read(0,8,int)), match(Tag4,read(8,8,int)),

match(Length4,read(16,8,int)), match(B4,read(24, ,bin))}

Fig. 4. Optimized action sequences for the binary patterns of Fig. 3.

Definition 3 (Match test)

For a segment 〈v, t, p, s〉, a match test match(v, ra), where ra is the corresponding

read action, succeeds if the term r returned by ra matches v. If the match test is

successful, the variables of v get bound to the corresponding sub-terms of r.

Example 9

The action sequence for the third binary pattern in the case statement of our running

example (Fig. 3) is shown below. (For succinctness, we have abbreviated the integer

and binary type specifiers in read actions as int and bin, respectively.)

b3 = {size(�, 8), match(5,read(0,8,int)),

size(�, 16), match(0,read(8,8,int)),

size(�, 32), match(Tag3,read(16,16,int)),

size(�, 40), match(Length3,read(32,8,int)),

match(B3,read(40, ,bin))}

Note that this action sequence is sub-optimal. Size tests which are implied by

other ones can be removed. When this is done, both for b3 and for the other

binary patterns of our running example, we get the four action sequences shown

in Fig. 4.

Since there is a tight correspondence between segments and action sequences,

representing a binary pattern using its segments is equivalent to representing it

using the actions to which these segments are translated. Since actions are what

is guiding the binary pattern matching compilation, we will henceforth represent

binary patterns using action sequences and use the terms binary patterns and action

sequences to mean the same thing.

The following definitions will also come in handy.

Definition 4 (Static size equality)

Two sizes s1 and s2 are statically equal (s1 = s2) if they are either the same integer

or the same variable.

Efficient manipulation of binary data using pattern matching 47

Definition 5 (Static position equality)

Two positions p1 and p2 are statically equal (p1 = p2) if their representations are

identical (i.e., if they are either the same constant, or they are of the form c1 + V1

and c2 + V2 where c1 = c2 and V1 is the same multiset of variables as V2).

Definition 6 (Statically equal read actions)

Two read actions ra1 = read(p1, s1, t1) and ra2 = read(p2, s2, t1) are statically equal

(ra1 = ra2) if s1 = s2, p1 = p2, and t1 = t2.

Definition 7 (Size test compatibility)

Let |b| denote the size of a binary b. A size test st = size(op, p+ s), where op is one

of {=,�}, is compatible with a binary b (denoted by st � b) if (p + s) op |b|.
If the condition does not hold, we say that the size test is incompatible with the

binary (st �� b).

Definition 8 (Match test compatibility)

Let ra = read(p, s, t) be a read action. A match test mt = match(v, ra) is compatible

with a binary b (denoted by mt � b) if the sub-binary of size s starting at position p

of b when read as a term of type t by ra (or more generally by a read action which

is statically equal to ra) matches with the term v.

If the term v does not match, we say that the match test is incompatible with the

binary (mt �� b).

We can now formally define what binary pattern matching is. In the following

definitions, let B denote a set of binary patterns ordered by their textual appearance.

Definition 9 (Instance of binary pattern)

A binary b is an instance of a binary pattern bi ∈ B if b is compatible with all the

tests of bi.

Definition 10 (Pattern priority)

A pattern bj ∈ B has higher priority than a pattern bi ∈ B if bj precedes bi in B.

Definition 11 (Binary pattern matching)

A binary pattern bi ∈ B matches a binary b if b is an instance of bi and b is not an

instance of any pattern bj ∈ B, j < i of higher priority.

5 Adaptive pattern matching on binaries using a tree automaton

5.1 The basic algorithm

The construction of the decision tree automaton (tree automaton for short) begins

with a set of k binary patterns ordered by their (usually textual) priority which have

been transformed to corresponding action sequences B = {b1, . . . , bk}. The basic

construction algorithm, shown in Fig. 5, builds the tree automaton for B and returns

its start node. Each node of the tree automaton consists of an action and two

branches (a success and a failure branch) to its children nodes. In interior nodes,

48 P. Gustafsson and K. Sagonas

Procedure BuildTreeAutomaton(B)

1. u := new tree node() // all fields of u are initialized to NULL

2. if B = ∅ then

3. u.action := failure

4. else

5. bi := the action sequence of the highest priority pattern in B

6. if current actions(bi) = ∅ then

7. u.action := goto(SL(bi)) // the success label of bi
8. else

9. a := select action(B)

10. u.action := a

11. Bs := prune compatible(a, B)

12. u.success := BuildTreeAutomaton(Bs)

13. Bf := prune incompatible(a, B)

14. u.fail := BuildTreeAutomaton(Bf)

15. return u

Fig. 5. Construction of the tree automaton.

the action is a test. In leaf nodes, the action is a jump (goto) to a success label, or a

failure action.

Given an action a and a set of action sequences B, the action implicitly creates

two sets, Bs and Bf . Action sequences in Bs are sequences from B that either do

not contain a, or sequences which are created by removing a from them. The set

Bf consists of action sequences from B that do not contain a. These two sets

determine how the tree automaton is constructed. More specifically, the success and

failure branches of an interior node point to subtrees that are created by calling the

construction algorithm with Bs and Bf , respectively.

The tree automaton operates on an incoming binary b. The algorithm that

constructs the tree automaton is quite straightforward. Each node u corresponds to

a set of patterns that could still match b when u has been reached. If this set is

empty, then no match is possible and a failure leaf is created (lines 2–3 of Fig. 5).

When there are still patterns which can match, the action sequence of the highest

priority pattern (bi ∈ B, 1 � i � k such that bj �∈ B, j < i) is examined. If it is

now empty, then a match has been found (lines 5–7). Otherwise, the select action

procedure chooses one of the remaining actions a (a size or match test) from an

action sequence in B. This is the action associated with the current node. Based on

a, procedures prune compatible and prune incompatible construct the Bs and

Bf sets described in the previous paragraph. The success and failure branches of

the node are then obtained by recursively calling the construction algorithm with Bs

and Bf , respectively (lines 9–14).

The select action procedure controls the traversal order of patterns, making

the pattern matching adaptive. It is discussed in section 5.4. The prune * procedures

can be more effective in the amount of pruning that they perform than näıvely

constructing the Bs and Bf sets as described above. This issue is discussed in

section 5.3.

Efficient manipulation of binary data using pattern matching 49

Notice that the match tests naturally handle non-linearity in the binary patterns.

Also, although not shown here, it is quite easy to extend this algorithm to allow it

to handle guarded binary patterns; the only change that needs to be made is to add

appropriate guard actions to the action sequences and to the actions of decision

tree nodes. For example, for the second pattern of Example 3 which is guarded

by a Sz > 16 test, rather than generating a node with a goto(SL(b2)) action when

exhausting the actions of b2, a new node is created whose action is the guard test

guard(Sz, >, 16), its success branch is the node with action goto(SL(b2)) and its

failure branch is obtained by calling BuildTreeAutomaton(B \ {b2}).

5.2 Complexity characteristics

Regarding the size of the resulting decision tree, the worst case for this algorithm is

when no conclusions can be drawn to prune actions and patterns from B. If k is the

number of patterns and ni is the number of actions in each action sequence, then

the size of the constructed tree automaton is:

k∑
i=1

i∏
j=1

(ni)

which is O(nkmax) where nmax is the maximum number of actions (segments) in a

pattern, i.e. it is exponential in the number of patterns. The time complexity for the

worst case path through this tree is linear in the total number of segments.

5.3 Basic pruning

Let a be an action of a node. Based on a, procedure prune compatible creates

a pruned set of action sequences by removing a (or more generally actions which

are implied by a) and action sequences which contain a test a′ that will fail if a

succeeds. Similarly, procedure prune incompatible creates a pruned set of action

sequences by removing action sequences which contain a test a′ that will fail if a

fails, and actions that succeed if a fails. The functionality of these procedures can

be described as follows:

prune compatible(a, B) Removes all actions from action sequences in B which

can be proved to be compatible with any binary b such that a � b and all action

sequences that contain an action which can be proved to be incompatible with

any binary b such that a � b.

prune incompatible(a, B) Removes all actions from action sequences in B which

can be proved to be compatible with any binary b such that a �� b and all action

sequences that contain an action which can be proved to be incompatible with

any binary b such that a �� b.

5.3.1 Size test pruning

Using size tests to prune the tree automaton for binary pattern matching is similar

to switching on the arity of constructors when performing pattern matching on

50 P. Gustafsson and K. Sagonas

op opi relation conclusion

� � se � sei sti � b

� = se > sei sti �� b

= � se � sei sti � b

= � se < sei sti �� b

= = se = sei sti � b

= = se �= sei sti �� b

(a) Rules for prune compatible(st, B)

op opi relation conclusion

� � sei � se sti �� b

� = sei � se sti �� b

= = se = sei sti �� b

(b) Rules for prune incompatible(st, B)

Fig. 6. Size pruning rules.

structured terms. If equality (=) were the only comparison operator in size tests, the

similarity would be exact. Since in binary pattern matching the size test operator

can also be � and sizes of segments might not be statically known, the situation in

our context is more complicated.

To effectively perform size test pruning we need to set up rules that allow us to

infer the compatibility or incompatibility of a size test st1 with any binary b given

that another size test st2 is either compatible or incompatible with b.

In order to construct these rules we need to describe how size tests can be compared

at compile time. Consider a size test, st = size(op, se) where op is a comparison

operator and se a size expression. In the general case, the size expression will have

the form c+V where c is a constant and V is a multiset of variables. The following

definition of how to statically compare size expressions is based on what can be

inferred about two different size expressions c1 + V1 and c2 + V2, assuming that

during run-time, all variables in V1 and V2 will be bound to non-negative integers

(or else a runtime type error will occur).

Definition 12 (Statically comparable size expressions)

Let se1 = c1 + V1 and se2 = c2 + V2 be two size expressions.

• se1 is statically equal to se2 (denoted by se1 = se2) if c1 = c2 and V1 is the

same multiset as V2;

• se1 is statically larger than se2 (se1 > se2) if c1 > c2 and V1 is a superset of V2;

• se1 is statically larger or equal to se2 (se1 � se2) if se1 > se2, or se1 = se2, or

c1 = c2 and V1 is a superset of V2;

• se1 is statically different from se2 (se1 �= se2) if either se1 > se2 or se1 < se2.

Let b be any binary such that a size test st � b (is compatible with b). In the

prune compatible(st, B) procedure we want to prune all size tests sti such that

sti ∈ B and sti � b. We also want to prune all action sequences in B that contain

a size test stj such that stj �� b. If st = size(op, se) and sti = size(opi, sei) then

Fig. 6(a) presents the conclusions which can be drawn about the compatibility of sti
with b given values for op and opi, and a static comparison of size expressions se

and sei.

Now let b be any binary such that a size test st �� b (is incompatible with b).

The prune incompatible(st, B) procedure will prune all action sequences in B that

Efficient manipulation of binary data using pattern matching 51

contain a size test sti such that sti �� b. The rules in Fig. 6(b) describe when it is

possible to infer this size test incompatibility given values for op, opi, and a static

comparison of se and sei.

Example 10

To illustrate size test pruning, let st = size(=, 24+Sz) and B = {b1, b2, b3, b4} where:

b1 = {size(=, 24 + Sz), a1,2, . . . , a1,n1
}

b2 = {size(�, 24), a2,2, . . . , a2,n2
}

b3 = {size(=, 16), . . .}
b4 = {size(�, 32 + Sz), . . .}

and let ai,j be actions whose size expressions cannot be compared with the size

expression of st statically. Then prune compatible(st, B) = {b′
1, b

′
2} where b′

1 =

{a1,2, . . . , a1,n1
}, and b′

2 = {a2,2, . . . , a2,n2
}. Why the size test st is removed from b1

should be obvious. In b2, the size test size(�, 24) is implied by st (see the third row

of Table 6(a)) and is removed. Sequences b3 and b4 each contain a size test which

fails if st succeeds (this is found by looking at rows six and four of Table 6(a)) and

are pruned. We also have that prune incompatible(st, B) = {b2, b3, b4}.

5.3.2 Match test pruning

A simple form of match test pruning can be based on the concept of similarity of

match tests. Let b be a binary and mt1 = match(v1, ra1) and mt2 = match(v2, ra2) be

two match tests whose read actions ra1 and ra2 are statically equal. If v1 = v2, then

we have the following rules:

mt1 � b ⇒ mt2 � b

mt1 �� b ⇒ mt2 �� b

If both v1 and v2 are constants and v1 �= v2, we get the additional rule:

mt1 � b ⇒ mt2 �� b

In Section 5.6.2 we describe how to extract more information from the success or

failure of a match test by taking interference of actions into account. Doing so

increases the effectiveness of match test pruning.

5.4 Adaptive selection of actions

The select action procedure controls the traversal order of actions and makes the

binary pattern matching adaptive. It also allows discussion of the binary matching

algorithm without an a priori fixed traversal order.

For the binary pattern matching problem, there are constraints on which actions

can be selected from the action sequences. A size test cannot be chosen unless its

size expression can be evaluated to a constant. Similarly, match tests whose read

actions have a yet unknown size cannot be selected. More importantly, a match test

cannot be selected unless all size tests which precede it have either been selected

52 P. Gustafsson and K. Sagonas

or pruned. This ensures the safety of performing the read action which a match

test contains: otherwise a read action could access memory which lies outside the

memory allocated to the binary.

What we are looking for is to select actions which perform effective pruning and

thus make the size of the resulting tree automaton small. Since minimizing the size

of a binary decision tree is an NP-complete problem (Hyafil & Rivest, 1976), we

employ heuristics. One such heuristic is to select actions which make the size of

the success subtree of a node small. Such actions, called eliminators, are defined

below.

Definition 13 (Eliminators)

Let B = {b1, . . . , bk} be an ordered set of action sequences. A test α (of some bj ∈ B)

is an eliminator of m sequences if exactly m members of B contain a test which will

not succeed if α succeeds.

A test α is a perfect eliminator if it is an eliminator of k − 1 sequences.

A test α is a maximal eliminator if it is an eliminator of m sequences and for all

l > m there do not exist eliminators of l sequences.

So we are looking for maximal eliminators, ideally perfect ones. If a perfect

eliminator exists each time the select action procedure is called, then the size of

the tree automaton will be linear in the total number of actions. Also, the height

of the decision tree (which controls the worst time it takes to find a matching) will

be no greater than the number of patterns plus the maximum number of actions in

one sequence.

In the absence of perfect eliminators, the following heuristics can be used. Some

of them reduce the size of the tree, and some reduce the time needed to find a

matching.

Eliminator A maximal eliminator is chosen. As a tie-breaker, a top-down, left-to-

right order of selecting maximal eliminators is followed.

Pruning The action which minimizes the size of the sets of action sequences

returned by the prune * procedures is chosen. A top-down, left-to-right order is

used as a tie-breaker.

Left-to-Right This is the commonly used heuristic of selecting actions in a top-

down, left-to-right fashion. This heuristic does not result in adaptive binary

pattern matching, but on the other hand it is typically effective as the traversal

order is the one that most programmers would expect (and often program for!);

see also Scott & Ramsey (2000).

We evaluate the effects of these heuristics on a set of benchmarks in Section 7.2.

5.5 Example of building a tree automaton

Having described all procedures used in the BuildTreeAutomaton algorithm (Fig. 5)

we show an example of how the algorithm actually works. Consider the piece of

code in Fig. 3 and the corresponding action sequences in Example 9. Note that

Efficient manipulation of binary data using pattern matching 53

none of the variables that are being matched are bound or used in a non-linear

way, which means that all match tests involving variables will succeed. This allows

us to postpone such match tests until we have determined which pattern matches

the incoming binary. (In other words, until we have found a match we need not

consider these match tests. Also, when the match is found the nodes containing

these match tests need success branches only.) So, the action sequences to consider

at the beginning of the tree construction are the following ones:

b1={size(�, 40), match(4, read(0, 8, int)), match(0, read(16, 8, int))}
b2={size(�, 24), match(4, read(0, 8, int))}
b3={size(�, 40), match(5, read(0, 8, int)), match(0, read(8, 8, int))}
b4={size(�, 24), match(5, read(0, 8, int))}

If we use the left-to-right heuristic we should first select the action size(�, 40).

Using the rules in Table 6(a), we find out that size(�, 40) and size(�, 24) are

compatible with the binary in the prune compatible procedure. This means that

Bs will contain the following action sequences:

b1={match(4, read(0, 8, int)), match(0, read(16, 8, int))}
b2={match(4, read(0, 8, int))}
b3={match(5, read(0, 8, int)), match(0, read(8, 8, int))}
b4={match(5, read(0, 8, int))}

For the prune incompatible procedure we find that size(�, 40) is incompatible

with the binary and that we cannot say anything about size(�, 24). The Bf set will

thus contain the following action sequences:

b2={size(�, 24), match(4, read(0, 8, int))}
b4={size(�, 24), match(4, read(0, 8, int))}

To show how match pruning works, we now show the result from applying the

BuildTreeAutomaton procedure to Bs. Suppose that the select action procedure

chooses match(4, read(0, 8, int)) as selected action. If this test is compatible with

a binary we know from the rules in Section 5.3.2 that match(5, read(0, 8, int)) is

incompatible with that binary. This means that the prune compatible procedure

would return the following action sequences:

b1={match(0, read(16, 8, int))}
b2={}

For the prune incompatible procedure on the other hand we would end up with

the following action sequences:

b3={match(0, read(8, 8, int))}
b4={}

When the BuildTreeAutomaton procedure is complete, we end up with the

decision tree automaton shown in Fig. 7.

54 P. Gustafsson and K. Sagonas

size>=40

match(4,read(0,8,int))

 True

size>=24

 False

goto(2)

match(5,read(0,8,int))

match(0,read(8,8,int)) failure

match(Tag3,read(16,16,int)) match(Tag4,read(8,8,int))

match(Length3,read(32,8,int))

match(B3,read(40,_,bin))

goto(3)

match(Length4,read(16,8,int))

match(B4,read(24,_,bin))

goto(4)

match(0,read(16,8,int)) match(4,read(0,8,int)) failure

match(Length2,read(8,8,int)) match(5,read(0,8,int))

match(Tag2,read(16,8,int))

match(B2,read(24,_,bin))

goto(2)

match(Tag4,read(8,8,int)) failure

match(Length4,read(16,8,int))

match(Length1,read(8,8,int)) match(Length2,read(8,8,int))

match(B4,read(24,_,bin))

goto(4)

match(Tag1,read(24,16,int))

match(B1,read(40,_,bin))

goto(1)

match(Tag2,read(16,8,int))

match(B2,read(24,_,bin))

Fig. 7. The tree automaton created for the program of Fig. 3.

5.6 Optimizations

The basic decision tree construction algorithm presented so far makes no attempt to

reduce the size of the resulting tree automaton. We therefore present three kinds of

optimizations that can decrease its size; in practice they often do so quite effectively.

5.6.1 Turning the tree automaton into a directed acyclic graph

Creating a directed acyclic graph (DAG) instead of a tree is a standard way to

decrease the size of a matching automaton. One possible choice is to construct the

tree automaton first, and then use standard finite state automaton minimization

techniques to create the optimal DAG. This might however be impractical, since

it requires that a tree automaton of possibly exponential size is first constructed.

Instead, we use a concept similar to memoization to construct the DAG directly.

We simply remember the results we got from calling the BuildTreeAutomaton

procedure, and if the procedure is called again with the same input argument, we

simply return the subtree that was constructed at that time.

We show the directed acyclic graph that we create for our running example in

Fig. 8. This optimization alone decreases the number of nodes from 35 down to 25.

Note that turning a tree into a DAG does not affect the time it takes to perform

binary pattern matching. This is evident since the length of paths from the root to

each leaf is not changed. It is difficult to formalize the size reduction obtained by

this optimization, as it depends on the characteristics of the action sequences and

its interaction with action pruning. In general, the more pruning the selected actions

perform, the harder it is to share subtrees. In our experience however, turning the

tree into a DAG is an effective size-reducing optimization in practice.

5.6.2 Pruning based on interference of match tests

Recall that basic pruning based on match tests, introduced in Section 5.3.2, takes

place when two match tests contain read actions which are statically equal. We

Efficient manipulation of binary data using pattern matching 55

size>=40

match(4,read(0,8,int))

True

size>=24

False

goto(2)

match(5,read(0,8,int))

match(0,read(8,8,int))

failurematch(Tag3,read(16,16,int)) match(Tag4,read(8,8,int))

match(Length3,read(32,8,int))

match(B3,read(40,_,bin))

goto(3)

match(Length4,read(16,8,int))

match(B4,read(24,_,bin))

goto(4)

match(0,read(16,8,int)) match(4,read(0,8,int))

match(5,read(0,8,int))match(Length2,read(8,8,int))match(Length1,read(8,8,int))

match(Tag1,read(24,16,int))

match(B1,read(40,_,bin))

goto(1)

match(Tag2,read(16,8,int))

match(B2,read(24,_,bin))

Fig. 8. The directed acyclic graph corresponding to the tree of Fig. 7.

can increase the amount of pruning performed based on match tests by taking

interferences between match tests into account. The idea is easy to illustrate with an

example.

Example 11

In the binary patterns b1 = <<Sz:4, 0:12, X:Sz>> and b2 = <<255:8, . . .>> there

do not exist any statically equal read actions in match tests. It is, however, clear that

if the match test associated with the second segment of b1 succeeds, then b2 cannot

possibly match the incoming binary. This is because these match tests interfere. The

notion is formalized below.

Definition 14 (Interference)

Let p1 and p2 be statically known positions where p1 � p2. Also, let s1 and s2 be

statically known sizes. We say that two match tests match(v1, read(p1, s1, t1)) and

match(v2, read(p2, s2, t2)) interfere if p1 + s1 > p2. Their common bits are bits in the

range [p2, . . . , min(p2 + s2, p1 + s1)].

For pruning purposes, the concept of interfering match tests is only interesting

when both terms v1, v2 of the match tests are statically known. Let us denote the

common bits of v1 and v2 by v′
1 and v′

2, respectively.

Definition 15 (Enclosing match test)

Let mt1 = match(v1, read(p1, s1, t1)) and mt2 = match(v2, read(p2, s2, t2)) be two

match tests which interfere. Without loss of generality, let p1 � p2. We say that mt1
encloses mt2 (denoted mt1 ⊇ mt2) if p1 + s1 � p2 + s2.

56 P. Gustafsson and K. Sagonas

Now consider two match tests mt1 and mt2 which interfere and let v′
1 and v′

2 be

their common bits. Then mt2 will be:

1. compatible with all binaries that mt1 is compatible with if v′
1 = v′

2 and

mt1 ⊇ mt2;

2. incompatible with all binaries that mt1 is compatible with if v′
1 �= v′

2;

3. incompatible with all binaries that mt1 is incompatible with if mt2 ⊇ mt1 and

v′
1 = v′

2.

The first two rules can be used in the prune compatible(mt1, B) procedure to

prune interfering match tests. The last rule can be used to guide the pruning in the

prune incompatible(mt1, B) procedure.

This optimization is particularly important for network protocol applications such

as packet classification. In such applications it is typical that some patterns match

on the first 8 bits of the IP address, others match on the first 24 bits, and others on

the entire address.

5.6.3 Factoring read actions

To ease exposition of the main ideas, we have thus far presented read actions as

tightly coupled with match tests although they need not really be. Indeed, read

actions can appear in the action field of tree nodes. Such tree nodes need a success

branch only (their failure branch is null). With this as the only change, read actions

can also be selected by the select action procedure, statically equal read actions

can be factored, and read actions can be moved around in the tree (provided of

course that they are still protected by the size test that renders them safe).

Since, especially in native code compilers, accessing memory is quite expensive,

one important optimization is to avoid unnecessary read actions. This can be done

for read actions rak that are statically equal to a read action ra which has already

been performed. Then the result of ra can be saved in some temporary register,

and each of the rak actions can then be replaced by a use of that register. (This is

a standard compiler optimization called global common subexpression elimination.)

Our experience is that in practice this caching read values into registers significantly

reduces the time to perform binary pattern matching.

Also, to reduce code size, other standard compiler techniques like code hoisting

can be used to move a read action to a node in the tree automaton where a statically

equal read action will be performed on all paths from that node to a leaf containing

a goto(SL(b)) action. These read actions can then be removed, reducing the code

size.

To illustrate the results of this optimization we will show its effect on our running

example. In order to do this we need to separate the read actions from the match

tests. To do this in a more succinct way, we will use shorter names for the actions;

these names are shown in Table 4.

To show the total effect of the optimization we show the tree automaton where

the read actions have been separated from the match tests and where all read actions

are present in the automaton, even those that are only used in match tests where

Efficient manipulation of binary data using pattern matching 57

Table 4. Short names for actions in our running example

st1 = size(�, 40) st2 = size(�, 24)

ra1 = read(0, 8, int) ra2 = read(8, 8, int)

ra3 = read(16, 8, int) ra4 = read(24, 16, int)

ra5 = read(40, , bin) ra6 = read(24, , bin)

ra7 = read(16, 16, int) ra8 = read(32, 8, int)

mt1 = match(4, ra1) mt2 = match(0, ra3)

mt3 = match(5, ra1) mt4 = match(0, ra2)

Fig. 9. Tree automata before and after read factoring.

the term to be matched is an unbound variable. This automaton, containing all read

actions, is shown in Fig. 9(a); the result after the read factoring optimizations are

performed is shown in Fig. 9(b).

58 P. Gustafsson and K. Sagonas

6 A space conservative approach

The main drawback of the decision tree automaton approach is that the size of

the automaton can be exponential in the number of patterns. In most applications

the optimizations of section 5.6 are quite effective and make the size of the tree

automaton manageable, but decision tree automata provide no polynomial space

guarantees and in pathological cases the size of the automaton can explode. When

code space is at a premium, as in embedded controllers, a space conservative

approach which can avoid code explosion might be called for.

The obvious choice in this case would be to use a backtracking automaton, similar

to those proposed by Augustsson (1985) for structured terms, to perform the pattern

matching. In backtracking automata, each of the actions of every pattern appears

only once, but on the other hand, there is no sharing of similar actions across different

patterns. Since it is often typical in our context to have statically equal actions which

belong to several action sequences, in practice the size of the backtracking automaton

without sharing of these statically equal actions can be similar to that of the tree

automaton. Moreover, backtracking automata have the disadvantage that they do

not provide polynomial execution time guarantees.

We want to do better than that. For that reason, in this section we introduce the

concept of a guarded sequential automaton.

6.1 Guarded sequential automata: Properties and mode of operation

For our space conservative approach we would like to produce an automaton with

the following properties:

1. Its space requirements are minimal in the sense that each statically distinct

action appears at most once in the automaton.

2. During execution, no statically distinct action is performed more than once.

Before describing a binary pattern matching approach which achieves these two

properties, let us re-examine the various kinds of automata and compare their modes

of operation. Recall the program that we have used as our running example:

extract_tlb(Bin) ->

case Bin of

<<4:8, Length1:8, 1:8, Tag1:16, B1/binary>> -> {Tag1, Length1, B1};

<<4:8, Length2:8, Tag2:8, B2/binary>> -> {Tag2, Length2, B2};

<<5:8, 1:8, Tag3:16, Length3:8, B3/binary>> -> {Tag3, Length3, B3};

<<5:8, Tag4:8, Length4:8, B4/binary>> -> {Tag4, Length4, B4}

end.

The tree automaton produced by the BuildTreeAutomaton algorithm for these

binary patterns using the left-to-right heuristic and read hoisting is shown in

Fig. 10(a). The deterministic form of a backtracking automaton we could create

using standard techniques is shown in Fig. 10(b). The unoptimized form of the

automaton produced by the space conservative approach, which we will call a

guarded sequential automaton, is shown in Fig. 10(c).

Efficient manipulation of binary data using pattern matching 59

failure

ra6

goto(2)

mt3

mt4

ra7 ra3

ra8

ra5

(a) Tree (a) Backtracking (a) Guarded sequential

goto(3)

ra6

goto(4)

st1

st2 ra1

ra1

ra2

ra3

ra6

mt1

goto(2)

mt3

goto(4)

ra2

mt1

ra3

mt2

ra4

ra5

goto(1)

 1,3

failure

goto(1)

ra6

 2,4

goto(2)

 2

mt3

 3,4

mt4

 3

ra7

 3

ra8

 3

goto(3)

 3

goto(4)

 4

st2

ra1

 1,2,3,4

mt1

 1,2

ra2

 1,2,3,4

ra3

 1,2,4

mt2

 1

ra4

 1

ra5

 1,3

 1

st1

 2,4

failure

st2

ra1

mt3

mt4

ra7

ra8

goto(3) ra2

ra3

ra6

mt1

st1

ra1

goto(2)mt3

goto(4)

ra2

ra5

mt1

ra3

mt2

ra4

goto(1)

Fig. 10. Three pattern matching automata for our running example.

It is easy to describe how the decision tree and backtracking automata are used to

find the pattern which matches the binary. When there are two edges out of a node,

one of them is taken when the action in the node is compatible with the binary and

the other one when the action is incompatible. A match has been found when we

reach a node containing a goto action. When the failure node is reached, we know

that no pattern matches the binary.

How the guarded sequential automaton operates is not so clear. Because the

actions of various action sequences are interspersed, in order to use it for binary

pattern matching we must answer the following questions:

1. How do we determine that a match has been found?

2. How do we bypass execution of unsafe read actions and inappropriate goto

actions?

To determine that we have found a match with pattern bi, we need to know that all

relevant actions of bi have been performed and all of them are compatible with the

60 P. Gustafsson and K. Sagonas

binary we are matching. Also, in accordance with Definition 11, we need to ensure

that none of the sequences with higher priority is an instance of the binary. To

remember which binary patterns from B = {b1, . . . , bk} can still match with a binary

b, we can associate a boolean variable with each bi. Let us call this variable the

π-variable of bi (or πi for short). These variables will be initialized to true and each

πi will hold this value as long as all of the actions of bi that have been performed so

far are compatible with b. As soon as the guarded sequential automaton performs

an action that belongs to bi which is incompatible with b, the value of πi will be

changed to false. If πi is still true when we have performed all of the actions that

belong to bi, we know that bi is an instance of b. If at any point πi becomes false,

we know that bi cannot be an instance of b and thus cannot match b.

Before describing how to bypass unsafe read actions, we first need to define when

a read action is safe.

Definition 16 (Safety of read actions)

In the context of a binary pattern matching between a set of action sequences

B = {b1, . . . , bk} and a binary b, a read action ra is safe if there exists an action

sequence bi ∈ B such that ra ∈ bi and for all size tests st ∈ bi such that st precedes

ra, st is compatible with b.

Naturally, we not only want to perform read actions when these are safe, but we

also want to avoid performing unnecessary actions.

Definition 17 (Avoidability of actions)

In the context of a binary pattern matching between a set of action sequences

B = {b1, . . . , bk} and a binary b, an action a is avoidable if there exists no bi ∈ B

such that a ∈ bi and bi can match b.

That is, before performing an action we must be able to determine whether it

is avoidable at this point in time, in which case we could simply ignore it, but we

also have to be certain that it is safe, because only in this case we are allowed to

perform that action. So both read and match actions are constrained to appear

only on certain positions in the guarded sequential automaton. Thus, to create the

automaton, we need a notion of selectability of actions similar to the one discussed

in Section 5.4 for constructing the tree automaton.

Definition 18 (Selectability of actions)

The condition determining whether an action is selectable depends on its type:

• A size test is selectable when its size expression can be evaluated to a constant.

• A read action is selectable when all of the size tests which precede it in any of

the action sequences that the read action belongs have been selected.

• A match test is selectable when the corresponding read actions have been

selected.

Naturally, the construction algorithm for the guarded sequential automaton needs

to respect the constraint on selectability of actions. Also, it can easily be seen

that selectability of read actions implies their safety. We can now describe how the

automaton is constructed.

Efficient manipulation of binary data using pattern matching 61

Procedure BuildGuardedSequence(B)

1. u := new guarded node()

2. if B = ∅ then

3. u.action := failure

4. else

5. bi := the highest priority action sequence in B

6. if current actions(bi) = ∅ then

7. u.action := goto(SL(bi))
πi

8. B′ := B \ {bi}
9. u.next := BuildGuardedSequence(B′)

10. else

11. aΠ := select and annotate action(B)

12. u.action := aΠ

13. B′ := remove equal(a, B)

14. u.next := BuildGuardedSequence(B′)

15. return u

B, B′ : sets of action sequences

bi : i-th action sequence

SL(bi) : the success label of bi
aΠ : guarded action

πi : guard with index i

u : automaton node

Fig. 11. Construction of the guarded sequential automaton.

6.2 The basic algorithm

Figure 11 shows an algorithm which creates this guarded sequential automaton.

Each state in the automaton is represented by an action annotated by a set of

π-variables. There is one variable for each sequence that the action is a member of.

Whenever the highest priority action sequence is exhausted, a guarded goto

action node is created (lines 5–9). Otherwise, the select and annotate action(B)

procedure chooses one of the actions in B, provided it is selectable according to

Definition 18, and annotates it with all the π-variables of action sequences that

contain a statically equal action. This creates a new automaton node.

The remove equal(a, B) procedure removes the action a from all action sequences

in B. Note that if the action a has been annotated with n π-variables in line 11 of

the algorithm (i.e., |Π| = n), exactly n actions will be removed from B in line 13.

The result of the BuildGuardedSequence procedure is an automaton where each

node contains an action annotated with the π-variables corresponding to action

sequences the action belongs to. The π-variables guard the execution of the action;

an action will be performed only if at least one of these variables has the value

true. If a node’s action fails, all the π-variables which annotate this node will be set

to false. Unless a final state has been reached, both upon success and failure of an

action, the guarded sequential automaton moves to the next state.

Nodes containing a goto action are considered accepting states of the automaton;

i.e., states where a match has been found. Note that each goto(SL(bi)) action is also

annotated – and therefore guarded – by the π-variable associated with the action

sequence bi. Thus, it is not possible to perform an inappropriate goto action when

using the guarded sequential automaton. If the failure node is reached, the matching

has failed.

62 P. Gustafsson and K. Sagonas

6.3 Example of building a guarded sequential automaton

To show how the BuildGuardedSequence algorithm constructs the guarded sequen-

tial automaton shown in Fig. 10(c), consider the action sequences of the four binary

patterns of our running example with action names abbreviated as in Table 4.

b1 = {st1,ra1,mt1,ra2,ra3,mt2,ra4,ra5}
b2 = {st2,ra1,mt1,ra2,ra3,ra6}
b3 = {st1,ra1,mt3,ra2,mt4,ra7,ra8,ra5}
b4 = {st2,ra1,mt3,ra2,ra3,ra6}

Note that for these k = 4 sequences, the total number of actions is n = 28 but the

number of distinct actions is m = 14.

Let us assume a left-to-right, top-down selection strategy for actions. This causes

st1 to be selected first. The node which is created is annotated with the boolean

guard π1 ∨π3 since st1 is present in sequences b1 and b3. The next action to consider

is ra1, but this is not a selectable action, since it is present in all sequences and some

of them still have unselected size tests which precede this action. As a result, the

next action to select is st2 and the next node is annotated with π2 ∨ π4 since st2 is

a member of sequences b2 and b4. We can now select ra1. Since ra1 is present in

all four action sequences its node is annotated with π1 ∨ π2 ∨ π3 ∨ π4. We continue

selecting actions in this manner until b1 no longer contains any action at which

point we insert an appropriate goto action annotated with π1. In the end, we end up

with an automaton with the following sequence of guarded actions.

〈 st
π1∨π3
1 , st

π2∨π4
2 , ra

π1∨π2∨π3∨π4
1 , mt

π1∨π2
1 , ra

π1∨π2∨π3∨π4
2 ,

ra
π1∨π2∨π4
3 , mt

π1
2 , ra

π1
4 , ra

π1∨π3
5 , goto(1)π1 , ra

π2∨π4
6 , goto(2)π2 ,

mt
π3∨π4
3 , mt

π3
4 , ra

π3
7 , ra

π3
8 , goto(3)π3 , goto(4)π4 , failure〉

This is the automaton shown in Fig 10(c) which has m = 14 ordinary states, k = 4

accepting states and one failure state.3 Two of the ordinary states contain size tests,

four contain match tests and eight contain read actions. In contrast, if we use the

pruning heuristic to create a DAG automaton we would need 23 ordinary states

when read hoisting is used, and 19 ordinary states when the backtracking automaton

approach is used.

6.4 Complexity characteristics

There are three different costs involved in performing binary pattern matching this

way: testing and updating π-variables and performing actions (i.e., read actions, size

and match tests).

Proposition 1

If B = {b1, . . . , bk} is a set of k action sequences containing a total of n actions then

the guarded sequential automaton constructed for these sequences will perform at

most (n + k) π-variable guard checks.

3 Note that in Fig. 10(c) the nodes are annotated by integers rather than boolean expressions, but the
correspondence between the two notations should be clear.

Efficient manipulation of binary data using pattern matching 63

Proof

Note that the transitions between consecutive nodes of the guarded sequential

automaton form a chain and during operation each node is visited only once.

The automaton contains a total of n π-variable guards annotating its non-

accepting nodes. Each of these n variables will be tested at most once to decide

whether to perform the action in each non-accepting node.

Each one of its k accepting nodes (i.e. nodes annotated with gotos) are guarded

with only one π-variable each, and these nodes too will only be visited once.

Therefore, the total number of π-variable guard checks is at most (n + k). �

Proposition 2

If B is a set of k action sequences containing a total of n actions then the guarded

sequential automaton for B will perform at most min(k(k+1)
2

, n) π-variable updates.

Proof

π-variables are updated only if an action fails. If all actions fail, at most n π-

variables will be updated as this is the total number of π-variables annotating the

action-containing nodes of the automaton.

Also note that at most k actions can fail as at least one π-variable will be changed

to false when an action fails. Therefore when k actions have failed all variables will

have the truth value false and no more actions will be performed. The only case

when k actions fail is when only one variable is changed from true to false for each

failure.

A variable is set to false at a failure whether it is false or true. In the worst

case scenario, the number of variables which are set to false at each failure is the

number of variables which contain false plus one, since only one variable is changed

from true to false at each failure. Since the number of variables which contain

false is equal to the number of failures which have occurred, the bound on updated

variables for failure i is 1 + (i− 1). There will be at most k failures and thus we get:

k∑
i=1

1 + (i − 1) =

k∑
i=1

i =
k(k + 1)

2

Since the number of updates is limited by both these numbers the minimum of

these numbers is a limit for the number of π-variable updates. �

Proposition 3

For a set of k action sequences B = {b1, . . . , bk} which contains a total of m

statically distinct actions, at most m+ k transitions will be needed before the guarded

sequential automaton for B successfully reaches an accepting state.

Moreover, during runtime, at most m actions (i.e., read actions, size and match

tests) actions will be performed.

Proof

The total number of nodes in a guarded sequential automaton for a set of m

statically distinct actions is m nodes annotated with (read, size and match test)

actions, k nodes with gotos and one failure node which always appears last. �

64 P. Gustafsson and K. Sagonas

Let us summarize the results in these three propositions. If TT , TU , and TA

are the times it takes to perform a test, an update of a π-variable, and an action

respectively, and T is the total time it takes to perform a matching on k action

sequences containing a total of n actions out of which m are statically distinct, then

we have the following relation:

T = (n + k) × TT + min

(
k(k + 1)

2
, n

)
× TU + m × TA

This result indicates that the guarded sequential automaton approach is expedient

only if the cost of tests and updates of the π-variables is significantly smaller than

the cost of performing the corresponding actions. It is reasonable to expect that this

is the indeed the case since the boolean-valued π-variables can each be represented

by one bit and tests can be performed in groups of such variables.

6.5 Optimizations

We can actually create a slightly more efficient variant of the guarded sequential

automaton by performing the following two kinds of optimizations.

6.5.1 Avoiding unnecessary tests

Sometimes testing the values of the π-variables is unnecessary. One trivial such

example is the first time a π-variable is used, since we know that all π-variables

are initialized to true and their value does not change until we have performed an

action in a node guarded by the corresponding variable.

There are two more cases when we can use similar reasoning to avoid tests:

• Suppose that we have two consecutive actions aΠ1

1 and aΠ2

2 , where Π1 is a

subset of Π2 (denoted Π1 ⊆ Π2). If we find that a1 is compatible with the

binary, then we know that at least one of the variables in Π1 holds the value

true. Since Π1 ⊆ Π2 and the variables in Π1 do not change values, then we

also know that at least one of the variables in Π2 holds the value true. Thus,

we do not have to test the variables in Π2 at runtime.

• Suppose we have an action aΠ1

1 and we find out that all of the variables in Π1

contain the value false. We can find this out, either from the test of Π1, or if

a1 is not compatible with the binary in which case all of the variables in Π1

will be set to false. This allows us to conclude that a transition to an action

aΠ2

2 when Π2 ⊆ Π1 will not be possible. In this case we should instead try to

transition directly to the next action a
Πj

j for which Πj �⊆ Π1.

This approach to avoiding tests is based on local reasoning about the possible

values of the π-variables and is the one we have implemented. It can of course

be extended to a full-fledged path sensitive analysis of the possible values of the

π-variables, but this could be quite costly since the cost of performing the analysis

would be proportional to the total number of paths in the automaton which in turn

is exponential in the number of nodes. We want to avoid exponential costs in the

Efficient manipulation of binary data using pattern matching 65

failure

1
goto(1) 2,4

ra6 2
goto(2)

3,4
mt3 3

mt4

3
ra7

4
goto(4)

3
ra8

3
goto(3)

1,3
st1

2,4
st2

1,2,3,4
ra1

1,2
mt1

1,2,3,4
ra2

 1,2,4
ra3

1
mt2

1,3
ra5

1
ra4

Fig. 12. Guarded automaton where some guard tests are skipped.

guarded sequential automaton approach; which in turn disqualifies the use of a path

sensitive analysis.

Note that after performing such optimizations to avoid unnecessary π-variable

tests, we no longer have a sequential automaton. Instead we take one of two different

transitions from a node. One transition is chosen when the guard succeeds and the

action is compatible to the binary we are matching against. The other transition is

chosen when either the guard fails or the action is incompatible with the binary we

are matching against. The first transition is always to the next node in the sequential

automaton, the other can be to any node later in the sequence. Also note that

this optimization preserves the characteristics we wanted for our space conservative

approach since no new nodes are created and all transitions in the new automaton

are from a node earlier in the sequence to a node that is later in the sequence.

The result of applying this optimization to the guarded sequential automaton

of Fig. 10(c) is shown in Fig. 12. (Dotted lines denote that the π-variables of the

destination node do not need to be tested during these transitions.) It is notable

that this optimization removes the need to test the π-variables about half the time

that an action is compatible with the binary and that it is possible to skip at least

one node more than half the time that a test fails.

6.5.2 Joining match tests

Another possible optimization is to combine match tests which have the same read

action. In our running example, the value returned by the read action read(0, 8, int)

is matched with four in one node and with five in another. If the first match test

succeeds, we know that the action sequences that contain a match with five will

fail. This means that we can perform the matching more efficiently. The rules for

how the π-variables are updated under these circumstances are different from the

ordinary case. In this case each possible value is associated with the variables of one

or more action sequences. All of the π-variables associated with cases which do not

match are set to false.

Let B′ = {b1 . . . bl} be a set of action sequences which match the same read action

to a set of l different values and let Π = π1 ∪ . . . ∪ πl denote the set of π-variables

which are associated with B′. We perform the “parallel” matching action if any

variable in Π is true. If the matching action succeeds with the value of the match

test in bi then all variables in Π \ {πi} are set to false. Furthermore, if no value is

matched all variables in Π are set to false.

66 P. Gustafsson and K. Sagonas

This optimization can be very effective particularly if there is one field in the

binary which is used as an index to decide which sequence to match. (This is very

similar to pattern matching against structured terms in the cases where constructors

provide such an index.) The impact of this optimization increases if it is used together

with the static analysis since more information will come from one big matching

action than from several small matches in a sequence.

6.6 A hybrid approach

Note that the two approaches to binary pattern matching that we have described in

section 5 and in this section create their matching automata from the same building

blocks. Therefore it is possible to combine them by calling BuildGuardedSequence

rather than BuildTreeAutomaton under some circumstances within the body of

the BuildTreeAutomaton procedure. This way, one can limit the size of the

resulting decision tree automaton while still profiting from the runtime advantages

of performing binary pattern matching using decision trees.

6.7 Discussion

The guarded sequential automaton approach to binary pattern matching that we

have introduced and described has nice theoretical properties and is quite intriguing.

Its advantages are that the size of the automaton is linear in the total number

of (non-similar) actions. Also, note that a relatively little machinery is needed to

implement it: one variable per binary pattern and a mechanism for testing the truth

value of guards. Since the π-variables are boolean-valued they can be represented

using a single bit, and guards of nodes can be implemented using bit vectors. This

implementation has the additional advantage that testing whether a disjunction of

π-variables is true boils down to testing whether the bit vector is zero or not. So, the

approach is fast and its space requirements are small. More importantly, there is no

risk of code explosion which makes the approach of interest for embedded telecom

controllers, for instance, where code size is a concern.

On the other hand, a disadvantage is that the runtime cost of finding a match

depends linearly on the total number of distinct actions. The fact that some read

actions interfere is not exploited in this approach. This is unfortunate since in some

applications that optimization alone is very effective.

7 Experimental evaluation

In previous work (Gustafsson & Sagonas, 2002), we have presented a scheme for

efficient compilation of BEAM instructions that manipulate binaries to native code.4

On a set of benchmarks, when executing native code, the speedups range from 20%

4 BEAM is the virtual machine of the Erlang/OTP (Open Telecom Platform) system. Native code
compilation of binaries is available in the Erlang/OTP distribution since October 2002 and the
adaptive pattern matching scheme we describe in this article since October 2004; see www.erlang.org.

Efficient manipulation of binary data using pattern matching 67

to four times faster compared with BEAM. The native code compilation scheme of

Gustafsson & Sagonas (2002) is the basis of our implementation on top of which we

implemented the various binary pattern matching automata approaches described

in this article. In this section, we evaluate their code space and runtime performance

using standard benchmark programs from the area of packet classification and from

actual telecom applications written in Erlang.

7.1 Packet classification

One of the possible application areas for binary pattern matching is packet classifica-

tion. That is classifying network packets in order to treat them differently depending

on the contents of the packet headers.

Typically packet classification is based on a five tuple of values (Destination IP-

address, Source IP-address, Protocol Number, Destination Port, and Source Port).

In typical packet classification algorithms (Baboescu & Varghese, 2001; Gupta &

McKeown, 2001) these values are first extracted from the packets and the packets

are then classified. Our approach does not require any such extraction, nor does

it require that the problem can be described as matching on a few distinct header

fields. This is possible since the bit syntax is used to match directly on the packets.

Therefore our approach is easily extensible to more complex classification rules

which e.g., use fields from higher level protocol headers if they are available.

To evaluate the effectiveness of the different approaches for this application

we used the ClassBench system to create a set of rules and a set of packets to

exercise the rules. ClassBench (Taylor, 2004) is a benchmarking framework for the

packet classification area. It allows the user to create synthetic rule sets whose

characteristics are determined by a specification file. ClassBench is distributed with

several specification files which have been distilled from real rule sets for packet

classification. For our first benchmark, we used the acl1 rule set specification.

We compare three different compilation methods: one which uses a tree auto-

maton, one which uses a guarded sequential automaton and one which uses a

backtracking automaton (this is what the BEAM bytecode compiler implements).

For each method, we measured the compilation time, the size of the resulting code,

and the time it took to classify three million packets for several different numbers

of rules. The experiments were run on a 2.0 GHz AMD Athlon64 machine with

1 GByte of memory running Linux. Table 5 shows the raw data obtained. To see

the big picture more easily, we also present code sizes and run times in the form of

graphs; see Fig. 13.

As we can see in Fig. 7.1, the runtime of the tree automaton approach stays more

or less constant as the number of patterns increases. The compilation times and size

requirements for the tree automaton approach grow linearly. The reason that the

code size only grows linearly with the number of patterns is that in the rule-set we

use there are a lot of interfering actions. This results in a lot of pruning, which in

turn helps limit the size.

It is clear that the guarded sequential automaton approach suffers from the fact

that both runtime and code size depends quite heavily on the number of binary

68 P. Gustafsson and K. Sagonas

Table 5. Impact of number of rules

Tree Automaton Guarded Sequential Backtracking

Rulesa Sizeb CompTc RunTd Size CompT RunT Size CompT RunT

1 0.7 0.1 0.53 0.9 0.3 0.57 0.7 0.1 0.54

50 12.1 2.4 0.69 9.1 1.8 1.07 14.1 3.5 0.77

100 19.9 3.9 0.62 17.4 2.9 1.12 27.8 7.9 0.81

150 22.1 4.7 0.70 22.3 3.8 1.36 32.3 10.2 1.02

200 44.2 6.5 0.76 35.2 6.5 1.54 48.6 17.1 1.20

250 31.4 7.7 0.74 44.0 8.4 1.66 54.6 21.3 1.31

300 35.3 8.9 0.75 49.8 9.5 1.68 64.4 26.1 1.27

400 40.8 10.4 0.72 60.1 11.3 2.01 81.2 33.0 1.45

500 53.7 15.0 0.79 98.4 18.4 2.52 101.0 55.0 1.81

600 60.7 18.2 0.79 120.0 26.2 2.69 110.0 75.2 2.02

1000 101.0 35.3 0.75 212.0 55.5 4.67 192.0 159.0 2.42

a Number of rules.
b Size of the generated AMD64 native code (in KBytes).
c Compilation times (in secs).
d Run times (in secs).

0 100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

Number of rules

C
o

d
e

S
iz

e
(k

b
)

Tree Automaton
Guarded Sequential
Backtracking

(a) Code sizes

0 100 200 300 400 500 600 700 800 900 1000 1100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of rules

R
u

n
ti

m
e

(s
)

Tree Automaton
Guarded Sequential
Backtracking

(b) Runtimes

Fig. 13. Graphs corresponding to data in Table 5.

patterns. The results for BEAM’s backtracking approach shows that the performance

of this approach also deteriorates as the number of patterns grows.

For the acl1 rule set specification of ClassBench, the tree automaton approach

generates the smallest and fastest code. We were somewhat surprised by the code

size result, and indeed it is a fluke, but we show the results using acl1 nevertheless

to highlight the fact that the tree automaton approach can in practice actually be

more economical in space than the guarded sequential automaton when the amount

of sharing is considerable. In the case of acl1, pruning based on interference of

match tests (section 5.6.2), which is unique to the tree automaton approach, is very

effective. For other filter sets the picture is however different. Table 6 shows the

resulting code sizes for nine different rule set specifications distributed with the

Efficient manipulation of binary data using pattern matching 69

Table 6. Code sizes for different filter sets (in Kbytes)

Filter Set Tree Automaton Guarded Sequential Backtracking

acl1 35.3 49.8 64.4

acl2 202.0 60.7 62.5

acl3 241.0 87.9 86.1

acl4 194.0 92.3 86.2

acl5 40.3 53.7 67.9

fw1 335.0 39.1 60.1

fw3 385.0 42.7 57.9

ipc1 251.0 72.6 74.9

ipc2 73.8 21.9 32.9

Average size 195.0 57.9 65.9

Std. deviation 125.0 23.1 16.2

ClassBench framework. As expected, the guarded sequential automaton approach

generates the smallest code on average. The tree automaton approach generates the

smallest code for two of the benchmark sets, but for the other sets it often generates

significantly larger code than both the guarded sequential and the backtracking

automaton approach. On the other hand, the tree automaton approach is clearly the

fastest. For this reason, the remainder of the performance section concentrates on

the tree automaton approach.

7.2 Impact of pruning heuristics and optimizations

To evaluate the impact of pruning heuristics and optimizations, we selected as bench-

mark programs three different (parts of) actual protocol applications that perform

binary pattern matching. The BER-decode matching code is quite complicated and

contains 14 different patterns and 10 distinct read actions. BS-extract contains just

four patterns and 11 distinct read actions (each pattern contains a perfect eliminator;

adaptive selection is required to benefit from it). The PPP-config matching code

contains 8 different patterns and seven distinct read actions. Using these benchmarks,

we measured the impact of different heuristics used in the select action function.

The Eliminator, Pruning, and Left-to-Right heuristics are as described in Section 5.4.

Both size and two time-related aspects of the heuristics are reported in Table 7: the

average and maximum height of the DAG.

In Table 7, the Read Hoisting row refers to an optimization which aggressively

uses code hoisting to move read actions up to a node if statically equal read actions

exist on at least two paths from that node. Therefore this optimization yields tree

automata that are small in size. The time properties of these automata are, however,

rarely better and actually sometimes worse than those for automata created using

the Left-to-Right heuristic. The Eliminator and Pruning heuristics give similar time

characteristics for these benchmarks, but it seems that the Pruning heuristic yields

automata which are both small in size and with better matching times. As optimizing

70 P. Gustafsson and K. Sagonas

Table 7. Impact of heuristics and optimizations

BER-decode BS-extract PPP-config

Heuristic Sizea AvgHb MaxHc Size AvgH MaxH Size AvgH MaxH

Eliminator 101 15.30 17 28 17.5 19 40 8.73 10

Pruning 74 14.31 17 28 17.5 19 41 8.73 10

Left-to-Right 78 14.36 17 43 17.5 19 46 10.93 16

Read Hoisting 66 15.50 17 22 17.5 19 28 10.90 15

a Number of nodes in the decision tree automaton when converted into a DAG.
b Average height (length of paths from a start node to a leaf node) of the DAG.
c Maximum height (length of paths from a start node to a leaf node) of the DAG.

Table 8. Comparison between programs manipulating binary data

written in C and in Erlang

Program written in Time

C returning its result as a binary 2.22

Erlang using binary pattern matching 2.58

C returning its result as an Erlang term 4.11

Erlang processing the data in the binary represented using a list of integers 41.06

for time is our current priority, we find the Pruning heuristic to be the most suitable

choice. We are currently using it as default.

7.3 Speed of binary pattern matching in Erlang

Speed is critical in programs implementing telecom and network protocols. It is

quite common for developers to resort to low-level languages such as C in order to

speed-up the time-critical parts of their applications, and indeed manipulating bit

sequences is considered C’s bread and butter. So, we were curious to know how well

binary pattern matching in Erlang compares with manipulating binaries in C.

We were fortunate to find four different versions of the same program whose

input is a binary. The benchmark is taken from the ASN.1 library available in the

Erlang/OTP distribution. Two versions written in C exist: one which is supposed

to be a stand alone program (first row of Table 8) and one which is supposed

to be used as a linked in C-driver in an application which is otherwise written

in Erlang. The latter thus needs to return its output in the form of an Erlang

term, and a translation step is included as the last step of the C program. The

other two versions are written completely in Erlang: one manipulates its input as

a binary, performs binary pattern matching and returns a result as an Erlang term

for further processing, while the last version receives its input in the form of a list of

integers (a representation which could be a reasonable choice if a binary term were

not available in the language).

As seen in Table 8, showing times in secs, the stand-alone C program (compiled

using gcc -O3) is the fastest program but is only about 15% faster than the Erlang

Efficient manipulation of binary data using pattern matching 71

code using adaptive binary pattern matching. When the rest of the application is

written in Erlang, and a translation step in needed for the C program to be used

as a linked-in driver, the Erlang code with binary pattern matching is about 60%

faster. Using a list of integers representation rather than a binary data type results in

a program with a rather poor performance. It should be mentioned that the Erlang

programs have been run with a rather large heap to avoid garbage collections,

which C does not perform. (Running with a large initial heap size mostly affects

the last two rows of Table 8, as binaries above a certain size are stored off-heap in

Erlang/OTP and collected via reference counting; see Gustafsson & Sagonas (2002)

for more information.)

8 Related work

In functional languages, compilation schemes for efficient pattern matching over

structured terms have been developed and deployed for more than twenty years.

Their main goal has been to make the right trade-off between time and space costs.

The backtracking automaton approach proposed by Augustsson (1985) (see also the

description by Wadler (1987)) is a priori economical in space usage (because patterns

never get compiled more than once) but is inefficient in time (since the same symbols

can be inspected several times). This is the approach used in implementations of

typed languages such as in the Objective-Caml and Haskell compilers. Recently,

Le Fessant & Maranget (2001), in the context of the Objective-Caml compiler,

suggested using exhaustiveness and incompatibility characteristics of patterns to im-

prove the time behavior of backtracking automata. Exhaustiveness is only applicable

when constructor-based type definitions are available, and thus cannot be used in

binary pattern matching. In our context, a kind of incompatibility-based pruning is

obtained by the rules for taking advantage of match test interference (section 5.6.2).

Deterministic tree automata approaches have been proposed before, e.g. by

Baudinet & MacQueen (1985) or by Sekar et al. (1995). Such tree-based approaches

guarantee that no constructor symbol is inspected twice at runtime, but doing so

leads to exponential upper bounds on the automaton size. One way of dealing with

this problem is to try to construct an optimal traversal order to minimize the size

of the tree. However, since the optimization problem is NP-complete, heuristics

should be employed to find near-optimal trees. An early work on the subject of

appropriate such heuristics is that of Baudinet & MacQueen (1985). In the same

spirit, Sekar et al. (1995) also suggest several different heuristics to synthesize an

adaptive traversal order that results in a tree automaton of small size. To further

decrease the size of the automaton they generate a directed acyclic graph (DAG)

automaton by sharing all isomorphic subtrees and construct automata which are

minimal under certain criteria. Finally, Scott & Ramsey (2000) also examine several

different pattern matching compilation heuristics (including those of Baudinet &

MacQueen (1985) and Sekar et al. (1995)) and measure their effects on different

benchmarks. However, all these works differ from ours in that they heavily rely

on being able to do a constructor-based decomposition of patterns, and to inspect

terms in positions which are known statically.

72 P. Gustafsson and K. Sagonas

Wallace & Runciman (1998) introduced an API for a bit stream data structure

for Haskell by exploiting its foreign language interface. Pattern matching on these

bit streams is however not explored. Some of the techniques presented here could

likely be used to implement pattern matching on bit streams for Haskell which

would allow for a less imperative style of programming. There are however some

fundamental differences between our work and that of Wallace and Runciman as

the lazy setting of their work might restrict the traversal order of tests.

Several packet filtering frameworks have been developed by the networking com-

munity. Some of them, e.g. PathFinder (Bailey et al., 1994), DPF (Engler &

Kaashoek, 1996) and BPF+ (Begel et al., 1999), use the backtracking automaton

approach to pattern matching to filter packets. To achieve better performance

common prefixes are collapsed in Bailey et al. (1994) and Engler & Kaashoek (1996).

In contrast, the BPF+ framework employs low level optimizations such as redundant

predicate elimination to produce efficient pattern matching code. Redundant pre-

dicate elimination achieves many of the same goals as the pruning actions that we

perform (section 5.3), incorporates the read factoring optimization of Section 5.6.3,

but also implements some more aggressive optimizations (e.g. partial redundancy

elimination) and allows for more types of tests than the ones in our framework.

Lakshman & Stiliadis (1998) describe a method for packet classification which is

to some extent similar to the guarded sequential automaton approach of Section 6.

Their method uses boolean variables to decide how a packet is classified in the

same way that our method uses boolean variables to decide which pattern a packet

matches. In contrast to guarded sequential automata however, their method does

not deal with issues of safety of performing actions; this happens in a preprocessing

step. This in turn means that the boolean variables do not need to guard actions

and that their method does not need to guarantee that actions are performed in a

certain order. Since guarded sequential automata guarantee the safety of all actions

(e.g. that read actions access data within bounds), their construction is constrained

by a (partial) order in which actions must be performed.

There are also packet classification algorithms which are similar in some respects

to the tree automaton approach described in this article. Notable among them are

HiCuts (Gupta & McKeown, 2000) and Tuple Space Search (Srinivasan et al., 1999).

Finally, McCann & Chandra (2000) propose an external type system for packet data

which allows for type checking of packets and suggest a scheme to use pattern

matching based on type refinement to construct efficient packet filters.

9 Concluding remarks

From the examples of section 3 and the performance data in Table 8 it should be

clear that enriching a functional programming language with a binary data type

and implementing a binary pattern matching compilation scheme such as the ones

described in this article are worthwhile additions to the language. Indeed since 2000,

when a notation for binary pattern matching was introduced to Erlang, binaries

have been heavily used in commercial applications and programmers have often

found innovative uses for them.

Efficient manipulation of binary data using pattern matching 73

Our adaptive binary pattern matching compilation scheme is already part of the

Erlang/OTP system from Ericsson (since release 10, October 2004), and Erlang

programmers have already benefited from it. The ideas we presented are, however,

generic. For this reason, we hope that other high-level programming languages,

which employ pattern matching, will also benefit from them.

References

Augustsson, L. (1985) Compiling pattern matching. In: Jouannaud, J.-P. (ed.), Functional

Programming Languages and Computer Architecture: LNCS 201, pp. 368–381. Springer-

Verlag.

Baboescu, F. and Varghese, G. (2001) Scalable packet classification. Proceedings of the

ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication, pp. 199–210. ACM Press.

Bailey, M. L., Gopal, B., Pagels, M. A., Peterson, L. L. and Sarkar, P. (1994) PathFinder: A

pattern-based packet classifier. Proceedings of the First USENIX Symposium on Operating

Systems Design and Implementation, pp. 115–123.

Baudinet, M. and MacQueen, D. (1985) Tree pattern matching for ML. Unpublished paper.

Begel, A., McCanne, S. and Graham, S. L. (1999) BPF+: Exploiting global data-

flow optimization in a generalized packet filter architecture. Proceedings of the ACM

SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication, pp. 123–134. ACM Press.

Engler, D. R. and Kaashoek, M. F. (1996) DPF: Fast, flexible message demultiplexing using

dynamic code generation. Proceedings of the ACM SIGCOMM Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, pp. 53–59. ACM

Press.

Gupta, P. and McKeown, N. (2000) Classifying packets with hierarchical intelligent cuttings.

IEEE Micro, 20(1), 34–41.

Gupta, P. and McKeown, N. (2001) Algorithms for packet classification. IEEE Network, 15(2),

24–32.

Gustafsson, P. and Sagonas, K. (2002) Native code compilation of Erlang’s bit syntax.

Proceedings of ACM SIGPLAN Erlang workshop, pp. 6–15. ACM Press.

Hyafil, L. and Rivest, R. L. (1976) Constructing optimal binary decision tress is NP-complete.

Infor. Process. Lett. 5(1), 15–17.

Lakshman, T. V. and Stiliadis, D. (1998) High-speed policy-based packet forwarding using

efficient multi-dimensional range matching. Proceedings of the ACM SIGCOMM Conference

on Applications, Technologies, Architectures, and Protocols for Computer Communication,

pp. 203–214. ACM Press.

Le Fessant, F. and Maranget, L. (2001) Optimizing pattern matching. Proceedings of the Sixth

ACM SIGPLAN International Conference on Functional Programming, pp. 26–37. ACM

Press.

McCann, P. J. and Chandra, S. (2000) Packet types: Abstract specification of network protocol

messages. Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, pp. 321–333. ACM Press.

Nyblom, P. (2000) The bit syntax - the released version. Proceedings of the Sixth International

Erlang/OTP User Conference. Available at http://www.erlang.se/euc/00/.

Scott, K. and Ramsey, N. (2000) When do match-compilation heuristics matter? Technical

report CS-2000-13, Department of Computer Science, University of Virginia.

74 P. Gustafsson and K. Sagonas

Sekar, R. C., Ramesh, R. and Ramakrishnan, I. V. (1995) Adaptive pattern matching. SIAM

J. Comput. 24(6), 1207–1234.

Srinivasan, V., Suri, S. and Varghese, G. (1999) Packet classification using tuple space search.

Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, pp. 135–146. ACM Press.

Taylor, D. E. (2004) Models, algorithms, & architectures for scalable packet classification. PhD

thesis, Sever Institute of Washington University.

Wadler, P. (1987) Efficient compilation of pattern matching. In: Peyton Jones, S. L.

(ed.), The Implementation of Functional Programming Languages, pp. 78–103. Prentice-Hall

International.

Wallace, M. and Runciman, C. (1998) The bits between the lambdas: Binary data in a lazy

functional language. Proceedings of ISMM’98: ACM SIGPLAN International Symposium on

Memory Management, pp. 107–117. ACM Press.

Wikström, C. and Rogvall, T. (1999) Protocol programming in Erlang using binaries.

Proceedings of the Fifth International Erlang/OTP User Conference. Available at

http://www.erlang.se/euc/99/.

