
A symbolic approach to the state graph
based analysis of high-level Markov
reward models

Ein symbolischer Ansatz für die
Zustandsgraph-basierte Analyse von
hochsprachlichen Markov Reward
Modellen

Der Technischen Fakultät

der Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von
Kai Matthias Lampka

Erlangen, März 2007

Als Dissertation genehmigt von

der Technischen Fakultät der
Universität Erlangen-Nürnberg

Tag der Einreichung: 27.11.2006

Tag der Promotion: 19.3.2007

Dekan: Prof. Dr.-Ing. Alfred Leipertz

Berichterstatter: Prof. Dr.-Ing. Markus Siegle (Univ. der Bundeswehr München)
Prof. Dr.-Ing. Reinhard German (Univ. Erlangen-Nürnberg)
Prof. Ph.D. William H. Sanders (Univ. of Illinois, Urbana-Champaign)

Abstract
Markov reward models considered in this thesis are compactly described by means of Marko-
vian extensions of well-known high-level model description formalisms. For numerically com-
puting performance and dependability (= performability) measures of high-level system
models, the latter must be transformed into low-level representations, where the concur-
rency contained in the high-level model description is made explicit. This transformation,
where a high-level model is mapped onto a (stochastic) state/transition-system, generically
denoted as state graph (SG), may therefore yield an exponential blow-up in the number of
system states. This problem is known as the notorious state space explosion problem. Deci-
sion diagrams (DD) have shown to be very helpful when it comes to the representation of
extremely large SGs, easing the restriction imposed on the size and complexity of models
and thus systems to be analyzed. However, to efficiently apply contemporary symbolic tech-
niques the high level models must possess either a specific compositional structure and/or
the employed modeling formalism must be of a specific kind. This work lift these limitations,
where the number of system states, the state probability of wich must be computed, is still
the limiting factor of the analysis.

To represent SGs, this thesis extends “zero-suppressed” binary decision diagrams to the
case of “zero-suppressed” multi-terminal binary decision diagrams (ZDDs). To deduce the
pseudo-boolean function represented by a ZDD’s graph correctly, the set of Boolean function
variables must be known. Consequently, within a shared DD-environment as it is provided
by well-known DD-packages, ZDD-nodes lose their uniqueness. To solve this problem, the
concept of partially shared ZDDs (pZDDs) is introduced, so that nodes are extended with
sets of function variables. It is shown that pZDDs are canonical representations of pseudo-
boolean functions. For efficiently working with pZDDs, this thesis also develops a wide range
of (symbolic) algorithms. These algorithms are designed in such a way that they allow to
implement pZDDs within common, shared DD-environments.
If a model description formalism does not possess a symbolic semantic, symbolic repre-
sentations of annotated state/transition-systems can only be deduced from its high-level
model descriptions by explicit execution. To do so in a memory and run-time efficient man-
ner, this work exploits local information of high-level model constructs only, yielding the
activity/reward-local approach. This new semi-symbolic technique comprises the four follwing
steps: (a) The activity-local scheme for generating symbolic representation of a high-level
model’s SG. Since the suggested procedure does not generate all system states explicitly,
the use of a symbolic composition scheme is required. The newly developed composition
scheme delivers the potential SG and its restriction to the set of reachable transitions is
efficiently achieved by making use of symbolic reachability analysis, where this thesis in-
troduces a new “quasi” depth-first-search based algorithm. (b) The reward-local scheme for
obtaining symbolic representations of reward functions as defined on the high-level model.
Analogously to the above procedure, one explicitly executes the reward functions for eval-
uating the reward values of states and transitions. But for reducing the number of explicit
state visits, the procedure once again exploits local information only. (c) For the computa-
tion of state probabilities, this work introduces a ZDD-based variant of the hybrid solution
method, developed in the context of other symbolic data structures. (d) Given symbolically
represented reward functions and state probabilities, as the next step, one determines the
user-defined performability measures of the high-level model, where for this purpose a new
graph-traversing algorithm is introduced.

Since the activity/reward-local scheme depends on explicit but in most cases partial execu-
tion it is not limited to a certain description technique. Based on a new symbolic composition
scheme and contrary to other symbolic approaches, it is still applicable, if the high-level mod-
els are neither compositionally constructed nor possess a decomposable structure of a certain
kind. Thus this thesis not only introduces a new type of decision diagram and algorithms
for efficiently working with it, but also develops a universal symbolic approach for the SG
based analysis of high-level Markov reward models with very large SGs.

Table of Contents

List of Figures . IV

List of Algorithms . V

List of Tables . VI

1 Introduction . 1
1.1 Motivation . 1
1.2 State space explosion problem and related approaches . 2
1.3 State-of-the symbolic techniques . 4
1.4 Contributions of this thesis . 7
1.5 Organization of the thesis . 7

2 Background Material . 9
2.1 Organization of the chapter . 9
2.2 Markov Theory . 9

2.2.1 Continuous-time Markov reward model (MRM) 9
2.2.2 Numerical solution of MRM . 11
2.2.3 Reduction techniques . 16
2.2.4 State/Transition systems . 19

2.3 High-level Markov reward models . 20
2.3.1 High-level model description techniques . 21
2.3.2 Specification of performability measures . 22
2.3.3 Composition of high-level model descriptions . 23
2.3.4 Mapping of high-level models to MRMs . 24

2.4 Non-compositional state graph construction . 24
2.5 Compositional state graph construction . 25

2.5.1 Fundamentals . 26
2.5.2 SG composition for pure interleaving . 26
2.5.3 SG composition for activity synchronization . 27
2.5.4 SG composition for sharing of SVs . 28
2.5.5 SG composition for replication of submodels . 29
2.5.6 Limitation of Kronecker operator driven composition schemes 29

3 Zero-suppressed Multi-terminal BDDs:
Concepts, Algorithms and Application . 31
3.1 Organization of the chapter . 31
3.2 Binary Decision Diagrams and extensions . 32

3.2.1 Binary Decision Diagrams (BDDs) . 32
3.2.2 Zero-suppressed BDDs (z-BDDs) . 37
3.2.3 Multi-terminal BDDs (ADDs) . 38

I

3.2.4 Zero-suppressed Multi-terminal BDDs (ZDDs) . 39
3.3 Partially shared ZDDs (pZDDs) . 40

3.3.1 Definitions . 41
3.3.2 Canonicity of pZDDs . 43

3.4 Operations on pZDDs . 45
3.4.1 Preliminaries . 45
3.4.2 Applying binary operators to pZDDs . 46
3.4.3 Variants of the pZApply-algorithm . 52
3.4.4 Relabeling of variables . 54
3.4.5 The pZRestrict-operator . 54
3.4.6 The pZAbstract-operator . 54

3.5 Applications . 56
3.5.1 ZDD based representations of sets and relations 57
3.5.2 ZDD based representations of matrices . 59
3.5.3 Extending ZDDs for efficiently computing matrix-vector products . . . 66
3.5.4 Beyond DD based matrix representations . 69

3.6 Related work and own contributions . 69

4 The Activity/Reward-local Scheme:
Symbolic SG based Analysis of High-level Markov Reward Models 73
4.1 Organization of the chapter . 73
4.2 Model world . 74

4.2.1 Static properties . 74
4.2.2 Dynamic properties . 75
4.2.3 Derived properties . 81
4.2.4 Boundness of models . 86

4.3 The activity-local scheme:
Generating symbolic representations of state graphs . 86
4.3.1 Main routine . 86
4.3.2 Explicit state graph generation and encoding . 88
4.3.3 Symbolic state graph composition . 89
4.3.4 Symbolic reachability analysis . 89
4.3.5 Re-initialization of the scheme . 91
4.3.6 Example . 91

4.4 Completeness and correctness of the scheme . 94
4.4.1 Generation scheme . 94
4.4.2 Composition scheme . 96
4.4.3 Reachability analysis . 98

4.5 Computing performability measures . 99
4.5.1 Computing state probabilities . 100
4.5.2 The reward-local scheme:

Generating symbolic representations of reward functions 100
4.5.3 Computing moments of performance variables . 102

4.6 Extending the basic activity-local scheme . 103
4.6.1 Handling explicitly modeled symmetries . 103
4.6.2 Handling of immediate activities . 106

4.7 Related work and own contributions . 108
4.7.1 Fully symbolic techniques . 111
4.7.2 Semi-symbolic techniques . 112
4.7.3 Semi-symbolic, compositional

and submodel-interdependent techniques . 114
4.7.4 Symbolic algorithms for generating the set of reachable states 116

4.8 Pre-published material . 117

II

5 Empirics . 119
5.1 Organization of the chapter . 119
5.2 Preliminaries . 120

5.2.1 Employed models for benchmarking . 121
5.2.2 Layout of presented run-time data . 124
5.2.3 Platform . 124
5.2.4 Comparisons . 124

5.3 Assessing the activity-local SG generation scheme . 126
5.3.1 Comparing ADD and ZDD based SG generators 126
5.3.2 Assessment of the new symbolic reachability analysis algorithm 128
5.3.3 Significance of variable ordering . 130

5.4 Comparison of symbolic SG generation techniques . 131
5.4.1 Comparison to fully symbolic methods . 131
5.4.2 Comparison to semi-symbolic methods . 137

5.5 Assessing the ZDD based solvers . 142
5.5.1 Comparing ADD and ZDD based numerical solvers 142
5.5.2 Choice of block and sparse level . 144
5.5.3 Significance of variable orderings . 146

5.6 Comparison with other solvers . 147
5.6.1 Comparison to the sparse matrix solvers of Möbius 147
5.6.2 Comparison with the solvers of Smart . 149

5.7 Case Study: Telecommunication service system . 151
5.7.1 System description . 151
5.7.2 Model evaluation . 152

5.8 Pre-published material . 154

6 Conclusion . 155
6.1 Summary . 155

6.1.1 Zero-suppressed multi-terminal BDDs . 155
6.1.2 Activity/Reward-local scheme . 156
6.1.3 Computation of state probabilities . 157
6.1.4 Computing performability measures . 157

6.2 Benefits of pZDDs and the activity/reward-local scheme 158
6.3 Future work . 159

A Appendix: Mathematical Background . 161
A.1 Boolean functions . 161
A.2 Pseudo-boolean functions . 162
A.3 Kronecker operators . 162
A.4 Notation of modus ponens . 163
A.5 Pseudo-code and related notation . 163

B Appendix: Algorithms for BDDs and derivatives . 164

C Appendix: Algorithms for handling models with immediate activities . . 165

References . 167

German Translations . 173

III

List of Figures

1 Introduction
1.1 Scheme for classifying the approaches to the state space explosion problem . . 3

2 Background Material
2.1 Bisimilar SGs . 19
2.2 Compositional SG construction for interleaving and synchronization 26

3 Zero-suppressed multi-terminal binary decision diagrams
3.1 BDTs and the merging of isomorphic structures . 34
3.2 iso-free BDD based representations of boolean functions 35
3.3 Shared or multi-rooted iso-free BDDs . 36
3.4 dnc-free BDD based representations of boolean functions 37
3.5 z-BDD based representations of boolean functions . 38
3.6 ADD based representations of pseudo-boolean functions 39
3.7 ZDD based representations of pseudo-boolean functions 40
3.8 pZDD based representation of boolean functions . 42
3.9 Function tables and pZDD based representation . 44
3.10 Resulting pZDD and call-tree for M := A · B . 54
3.11 sLTS, its ZDD based representation and underlying transition rate matrix . . . 60
3.12 Mt-DD based representation of the identity function 1⊥(V) 61
3.13 Block-wise access by dfs-traversal . 62
3.14 Cross-product building and variable orderings (M := A × B) 64
3.15 Development and inheritance of concepts within BDT based data types 70

4 The Activity/Reward-local Scheme
4.1 A SPN and its underlying sLTS . 92
4.2 Activity-local structures and binary encodings . 93
4.3 Symbolic representation of the set of reachable states and the sLTS 93
4.4 Exemplification of the reward-local approach . 102
4.5 SPN with user-defined symmetric submodels . 104
4.6 Classification of symbolic SG generation methods . 109

5 Empirics
5.1 Illustration of the adjunct processor (board) system [GLW00] 151
5.2 Single sub-unit specified as SAN . 152

IV

List of Algorithms

3 Zero-suppressed multi-terminal binary decision diagrams
3.1 Function for allocating unique pZDD nodes only . 43
3.2 The generic pZApply-algorithm . 49
3.3 pZDD op-functions for boolean operators . 50
3.4 pZDD op-functions for arithmetic operators . 51
3.5 The pZAnd-algorithm implementing conjunction and multiplication 53
3.6 The pZRestrict-algorithm . 55
3.7 The pZAbstract-algorithm . 56
3.8 Generating symbolic representations of singletons . 57

4 The Activity/Reward-local Scheme
4.1 Main routine for the activity-local SG generation scheme 87
4.2 Procedures for explicit SG generation and encoding . 88
4.3 Variants of symbolic reachability analysis . 90
4.4 Re-initialization of explicit SG exploration and encoding 91
4.5 Main routine for computing user-defined PVs . 100
4.6 Generating symbolic representations of reward functions 101
4.7 Algorithm for computing moments of PVs via graph-traversal 103
4.8 Applying the lumping theorem in case of user-defined model-symmetries 105

B Appendix: Algorithms for BDDs and derivatives
B.1 The Satisfy-algorithm for BDTs and BDDs . 164
B.2 The Satisfy-algorithm for z-BDDs . 164
B.3 The Satisfy-algorithm for pZDDs. 164

C Appendix: Algorithms for handling models with immediate activities
C.1 Explicit SG exploration in the presence of immediate activities 165
C.2 Encoding state-to-state-transitions and testing for further exploration 165
C.3 Symbolic reachability analysis for models with immediate activities 166
C.4 Re-initialization when immediate activities are present . 166

V

List of Tables

5 Empirics
5.1 Model specific data for the various case studies . 121
5.2 Run-time data of the activity-local scheme employing ADDs and ZDDs 127
5.3 Ratios for comparing ADDs and ZDDs . 128
5.4 Comparison of the two variants of symbolic reachability analysis as

implemented within the tool Möbius and by employing ZDDs 129
5.5 Comparison of the two variants of symbolic reachability analysis as

implemented within the tool Caspa . 130
5.6 Assessing the significance of the variable orderings . 131
5.7 Comparing the activity-local scheme to Caspa . 132
5.8 Comparing the activity-local scheme to Prism . 135
5.9 Comparison to a non-compositional semi-symbolic SG gen. scheme 137
5.10 Comparison to the approach of [DKS03] (run-time data) 138
5.11 Comparison to the approach of [DKS03] (ratios) . 140
5.12 Comparing activity-local scheme and Smart (run-times) 141
5.13 Comparing activity-local scheme and Smart (memory consumption) 142
5.14 ADD and ZDD based solution of CTMCs . 143
5.15 HO ZDD based solution for different sparse and block levels 144
5.16 HO ZDD based solution for different variable orderings . 146
5.17 Comparison with Möbius’ sparse-matrix based solvers . 148
5.18 Comparison with Smart’s solvers: Run-time data for the Kanban model 149
5.19 Comparison with Smart’s solvers: Run-time data for the FMS model 150
5.20 Data as obtained for analyzing the case study . 153

VI

1

Introduction

1.1 Motivation

It is commonplace that complex hard- and software systems have become part of our daily
life. Because of our high dependency on these systems, it becomes more and more important
to assert that they are working correctly and that they meet high requirements concerning
performance and dependability. However, practice may forbid to directly obtain the data for
evaluating a system’s performance and/or dependability, commonly denoted as performa-
bility. In such cases, where the system under study is not directly accessible to carry out
system tests or system measurements, one is restricted to analyze a (mathematical) system
model instead. The major advantage of such a (formal) procedure is obvious: The model-
based evaluation enables one to assess the functionality and the quantitative behavior of a
not necessarily existing system, so that one is already capable to assert the correctness and
dependability of a system design in the early stage of the (re-)design process and thus may
avoid costly maldevelopment.

Annotated state/transition-systems (ST systems) give an adequate framework for formally
describing complex system behaviors. However, nowadays hard- and software systems are
often parallel or even distributed, resulting in a high degree of complexity, so that a detailed
system description as a ST system is often not only hampered, but simply impossible due to
the size of the resulting model. Formal high-level model description methods, as developed in
the past decades, have shown to be powerful tools for compactly describing complex systems.
By including a stochastic concept of time and costs and/or gains into the model description,
one obtains what is denoted as high-level stochastic performability model. Depending on
the high-level model, on the employed formalism, and on the probability distributions used
for describing the timed delay between successive system states, one either may evaluate
the desired performability of the system analytically, numerically or empirically. Obtaining
a solution analytically, i.e. via evaluating a closed-form expression, is in principle restricted
to a limited class of queuing systems. For empirically or numerically evaluating a system
model’s performability measures, one is forced to partially or completely generate and ana-
lyze a model’s underlying annotated ST system. In contrast to empirical model evaluation,
as provided by simulation studies, where only traces of a system’s behavior are generated,
high-level Markov reward models allow their exhaustive analysis, which requires the com-
plete generation of the underlying ST system. However, the benefit of an exhaustive analysis
comes at the drawback that the system behavior is required to be Markovian. I.e. timely
delayed state changes are only allowed to occur after the elapsing of a time span, the length
of which is described by an exponentially distributed random variable.

Markov reward models considered in this thesis are compactly described by means of Marko-
vian extensions of well-known high-level model description formalisms, such as generalized
stochastic Petri nets (GSPNs), stochastic activity networks (SANs) and stochastic process
algebras (SPAs), to name only a few of them. In order to analyze them, the high-level model
description is transformed into a finite, stochastic ST system, also often denoted as low-level
representation or (stochastic) state graph (SG). The ST system can directly be interpreted
as Markov reward model (in a mathematical sense). The theory of models of this kind is well-
known. It allows one to numerically compute a probability distribution on the set of system
states, where for evaluating the desired performability measures these state probabilities are
aggregated.

1

2 1 Introduction

1.2 State space explosion problem and related approaches

The first step when analyzing a high-level Markov reward model is the generation of the
low-level model representation. Here one already faces the notorious state space explosion
problem

State space explosion
The concurrency of activities must be made explicit when transforming high-level models
into their low-level representations. The interleaving semantics of standard Markovian model
formalisms yields an explicit extraction of all possible execution sequences of system activ-
ities, when generating the (stochastic) SG. Consequently, this may lead to an exponential
blow-up of the SG in the number of system states. This phenomenon is commonly addressed
as state space explosion problem. In the context of high-level Markov models the state space
explosion problem hampers or may prevent the SG based analysis of complex and large sys-
tems for the following two reasons: (a) The number of system states is to large, so that they
can not be kept in memory nor is their individual generation feasible. (b) The transition rate
matrix of the high-level model underlying SG imposes a non-tolerable memory requirement.

Before discussing recent approaches for coping with this two-fold problem, the traditional
technique for analyzing high-level Markov reward models will be discussed, where its limi-
tation as imposed by the state space explosion problem is emphasized.

Traditional exploration techniques
The traditional technique of generating all reachable states of a modeled system is called
exhaustive state space exploration, where the individual visiting of states is denoted as
explicit exploration in the following. The states, which can be visited by starting at the initial
system state, give the set of reachable states. The data structure required for generating
the complete set of reachable system states is a buffer (state buffer) and a large somehow
structured storage space (state table). The latter holds the detected states, where the former
holds the detected, but yet not explored ones. Usually a state is considered to be explored
once all its successor states have been determined. Since the state buffer is accessed in a
structured manner, the currently not used parts can be swapped onto secondary storage
device. Thus and contrary to the state table, the state buffer is not the bottleneck of an
exhaustive and explicit state space exploration. The state table serves as a database, its
single purpose is to determine if a reached state is already known or not. Since the state
table is accessed in an unstructured way, and hard drive access is computational expensive,
the number of system states to be explored is restricted by the size of the available random
access memory (RAM). As a consequence the the size and complexity of high-level models
and thus systems to be analyzed is strongly restricted in practice.
For exemplification one may think now of a SG, where each state consists of 103 counters.
Let the values of the counters be bounded to 255, so that each state descriptor consumes
approx. 0.977KByte. Thus one already requires approx. 0.93GByte for storing 106 distinct
states. But not enough, the look-up of states and their storage into memory, which includes
hashing and collision resolution, as well as the explicit generation of all transitions among
the systems states, induces a not ignorable run-time overhead. So let us assume that there
is enough RAM available, let us say for storing 108 states, at an average of 1.3E−4 secs1

of CPU time spent for the processing of each state, one is already forced to wait approx.
3.6 h for transforming a high-level model consisting of 108 system states into its low-level
representation.

1 This is the average CPU time consumed per state by the SPN based tool DSPNexpress for
generating and storing approx. 106 system states, where the tool ran on a 64-bit AMD Opteron
architecture.

1.2 State space explosion problem and related approaches 3

Techniques based on
symbolic data types

Semi−symbolic
Fully symbolic Explicit/exhaustive

procedures
proceduresprocedures

Classification of approaches to the
state space explosion problem

Full state space storage

Partial storage of
state space

Approaches for handling
huge state graphs

Reduction techniques

symbolic data types

HW based and/or
distributed methods (exploiting compositionality)

Implicit representation

HW based and/or
distributed methods

generating huge state spaces
Approaches for

Probabilistic methods Reduction techniques

Exhaustive Exploration Partial Exploration

Figure 1.1: Scheme for classifying the approaches to the state space explosion problem

Traditional SG storage techniques
Once all system states and the transitions among them are generated, one numerically com-
putes the individual state probabilities. This is done on the basis of the transition matrix,
as to be derived from the generated SG. The matrix is commonly stored in a memory effi-
cient “sparse matrix format”, but nevertheless, its size may impose a non ignorable memory
requirement E.g. the SGs of the well-known “Kanban Manufacturing System” and “Flex-
ible Manufacturing System” benchmark models, (cf. Chapter 5), the SGs of which consist
of ∼ 2.5E6 and ∼ 4.5E6 system states, already require ∼ 380 and ∼ 500 MBytes, when
storing the respective transition rate matrix in “sparse matrix format”.2

For the above reasons the traditional technique is currently restricted to analyze models
consisting of clearly less than 107 system states on a commodity computer.

Classification of approaches
For coping with the state space explosion problem on the one hand and the limited avail-
ability of memory space and CPU time on the other hand, many approaches have been
developed. A classification of existing methods is illustrated in Fig 1.1, where we concen-
trated on approaches developed in the context of high-level Markov models. At the top level
one may distinguish between approaches that perform partial state space exploration and
approaches executing exhaustive state space search. There exist many ways to organize a
partial state space exploration. The two most prominent representatives of this class are
reduction techniques and probabilistic methods. Reduction techniques aim to prune away
redundant activity-sequences. This can be achieved, for example, by defining an equivalence
relation on the system behavior (e.g. [God95]) or exploiting user-defined symmetries within
the high-level model specification, so that one is enabled to apply the state lumping theorem
on-the-fly (cf. Sec. 2.4, p. 24ff). Using probabilistic methods, large state space can be stored.
But due to not resolving hash collisions different states my be falsely considered as identical,
and thus only a fraction of all reachable states may be generated. As a consequence the prob-
ability that states are omitted, and thus the probability that the computed performability

2 The values are the ones as obtained when analyzing the two benchmark models with the Möbius
modeling tool [DCC+02] and its standard Markov reward model analysis module, details will
follow in Chapter 5, cf. Tab. 5.1 (p. 121) and Tab. 5.17.B (p. 148).

4 1 Introduction

measures are incorrect, is greater than zero.3

The approaches that perform exhaustive state space search, can be divided into two classes:

(1) Approaches that store a reduced SG: This is achieved by not (permanently) storing not
needed states during exploration, e.g. by eliminating vanishing states on-the-fly.

(2) Concerning the exhaustive approaches, which store the complete state space, one may
now differentiate between methods that target the exploration of huge state spaces and
between methods, which are concerned with the storage of huge SGs, as well as the
efficient computation of performability measures.

(2.a) Approaches for generating huge state spaces: An exhaustive state space generation
can be organized by

i. making use of powerful hardware, i.e. utilizing mass storage and/or distributed
hardware (e.g. [Kno99, HW06]), or

ii. making use of symbolic SG generation techniques (cf. Sec. 1.3).

(2.b) Existing techniques for storing and handling huge SGs can be grouped into the fol-
lowing four classes:

i. Methods employing mass storage and/or making use of distributed hardware,
(e.g. [Kno99, HBB99, Meh04]).

ii. Methods making use of reduction techniques a posteriori to SG generation by
detecting and exploiting an equivalence relation on the system behavior (cf.
Sec. 2.2.3, p. 17ff).

iii. Implicitly representing the SG with the help of Kronecker operators (e.g. [Pla85,
Buc91, Sie95, CT96]).

iv. Methods making use of symbolic data types (Decision diagrams) (cf. Sec. 1.3).

As illustrated in Fig. 1.1 the employment of symbolic data types (Decision diagrams) yields
the nice feature that they not only support an efficient exploration of huge SGs, but also
realize a compact storage of the SG, its transition rate matrix resp.. Furthermore, other
techniques may make use of them for increasing their efficiency, for exemplification one
may think of implicit (symbolic) matrix representation techniques [Sie98, CM99b], decision
diagram based SG reduction techniques [Sie02] among others. Concerning the above made
classification, the contribution of this thesis to the alleviation of the state space explosion
problem on the basis of a (new) symbolic data type is therefore three-fold: (a) A method
for efficiently generating the symbolic representation of a high-level Markov models SG will
be introduced. (b) An approach for efficiently storing and handling the obtained SG will
be developed, so that performability measures of the system under study can be computed
efficiently. (c) We will also present an approach, which exploit user-defined model symmetries
and delivers a reduced SG, so that the numerical analysis can operate on a reduced number
of system states. Thus the symbolic framework, as to be developed in this thesis, is to be
characterized by the bold-faced concepts contained within the classification of Fig. 1.1.

1.3 State-of-the symbolic techniques

Decision diagrams can be employed for efficiently storing function tables. Consequently it
is straight forward to employ them for representing characteristic functions of finite sets
and thus for representing sets of states and/or transition relations. Approaches making use
3 An overview over probabilistic methods can be found in [KL04].

1.3 State-of-the symbolic techniques 5

of such a storage scheme are commonly denoted as symbolic state space representation
techniques.

Symbolic data types
The usage of Binary Decision Diagrams (BDDs) in today’s CAD-tools is state-of-the tech-
nique, since they are known to be extremely efficient in the representation of boolean func-
tions and thus highly suited for representing the characteristic functions of sets. Furthermore,
efficient algorithms for their manipulation are known [Bry86]. Throughout the last decade
many derivatives have been developed in order to employ them successfully not only in the
context of hardware verification, but also in the context of applications, where extremely
large sets of number strings are needed to be kept in the RAM, e.g. [SS03]. Thus, it is not
surprising that the field of stochastic modeling has taken advantage of this kind of symbolic
set or symbolic transition relation representation. In the context of stochastic modeling, the
most prominent decision diagrams are multi-terminal or algebraic BDDs (ADDs) [FM97],
multi-valued decision diagrams (MDDs) [KVBSV98] and matrix diagrams (MxD) [Min01].

Since ADDs are the multi-terminal extension of BDDs the most important BDD-algorithms
are directly applicable to them and many implementations exist. Consequently this type of
decision diagram has a long history, when it comes to the modeling of systems. However, in
the context of high-level model description, it turned out that the BDD-specific don’t care
reduction rule is from minor interest for the memory-efficiency (as far as paths leading to
the terminal 1-node are concerned) [Par02].

Generation techniques
Techniques for generating a symbolic representation of a high-level model’s underlying SG
range from the explicit generation and encoding of all states (exhaustive) [Web02, DKK02],
up to fully symbolic approaches [PC98, KS02, AKN+00] (cf. Fig. 1.1). In case of the lat-
ter a symbolic representation is even directly derived from the high-level model description
making the fully symbolic approaches highly computational efficient. However, contrary
to methods making use of conventional SG exploration, the fully symbolic methods re-
quire the high-level model formalism to possess a symbolic semantic. Another important
class of approaches, which in contrast to the fully symbolic methods is independent of the
employed modeling formalism, are the so-called semi-symbolic, compositional techniques
[CM99b, CLS01, HMKS99, Sie01]. Techniques of this kind are characterized by a combina-
tion of explicit exploration and purely symbolic manipulations, where contrary to explicit
exhaustive methods, a composition scheme is employed.4 Compositionality seems to be cru-
cial, not only for the semi-symbolic methods, since it not only reduces the runtime, as not
all sequences of independent activities have to be extracted explicitly, but also induces reg-
ularity on the symbolic structures and thus reduces the peak memory consumption of the
schemes.

However, the symbolic SG generation techniques mentioned above are limited to cases where

(1) the high-level formalism is of a specific kind [PC98, KS02, AKN+00],

(2) bounds of components of the state descriptor are either specified directly in the high-
level model [KS02, AKN+00], or can be computed by means of an invariant analysis
[PRCB94, DKK02], or where

(3) the high-level model possesses a compositional or a specific decomposable structure and
the SGs of the submodels can be generated in isolation [CM99b, HMKS99, AKN+00,
Sie01, CLS01, KS02, LS02].

4 Applying a composition scheme means, that the SG of the overall model is constructed from
smaller components, commonly from the SGs of the user-defined submodels (submodel-local
SGs), where details will follow in chapter 2.

6 1 Introduction

Recently developed semi-symbolic, compositional methods as presented in [CMS03, DKS03]
generate the submodel-local SGs in a submodel-interdependent fashion, overcoming the
above restrictions. But nevertheless their efficient application is still restricted, for the fol-
lowing reasons:

(1) The technique applied in [CMS03] requires a decomposition of the high-level model into
(independent) partitions, in such a way that the overall model’s SG can be obtained by
making use of a Kronecker operator driven composition scheme (cf. Sec. 2.5, p. 25ff).

(2) The technique employed in [DKS03] makes use of the user-defined modular structure of
the overall model, so that inefficiency occurs, if the interaction among the submodels is
not very limited.

(3) Concurrency taking place within the submodels is not exploited in general. Consequently,
shuffled sequences of independent activities are fully expanded at the submodel level, so
that in case of submodels with extremely large SGs, the methods are in general not very
efficient.

The above discussion leads to the following focal aims for a new scheme:

• Independence of the employed high-level model description technique.

• The individual treatment of states (both their exploration and encoding) should be
avoided as much as possible.

• The scheme should be applicable to both, to composed and non-composed models, i.e.
to models possessing a modular structure as well as to models which are non-modularly
(monolithically) structured.

• But on the level of SGs, it should in any case exploit some form of compositionality.

SG reduction techniques
Even under the symbolic techniques the number of system states, the probabilities of which
must be computed, is the bottle-neck of SG based analysis of high-level Markov reward
models. Sometimes it is possible to reduce the SG, so that one only needs to compute
the individual state probabilities for a smaller number of states. The following classes of
approaches exists:

(1) High-level model reduction techniques:
By applying transformation rules, which depends on the employed high-level formalism,
a high-level model may be transformed into a simpler one, exhibiting the same timed
behavior concerning the performability measures to be computed. At exploration this
transformed model may yield a smaller SG if compared to the original model.

(2) On-the-fly: These techniques are applied during SG generation, allowing to assess mod-
els, the analysis of which would otherwise be impossible.

(3) A-posteriori to SG generation: These techniques are applied to the complete SG. Con-
trary to the on-the-fly strategies, the techniques of this class are much more general. For
exemplification one may think of applying the lumping theorem or eliminating time-less
traps within the system behavior.

Due to the above mentioned reasons the development of SG reduction techniques is still a vi-
brant field of research activity, where respective symbolic approaches have been developed in
the past years. Unfortunately the symbolic algorithms, as well as their explicit counterparts,
are known to be computational expensive.

1.5 Organization of the thesis 7

Numerical solution techniques
Once a symbolic representation of a high-level model’s underlying SG is generated, the next
thing to do is the computation of state probabilities. However, in the context of symbolic SG
representations, only the employment of iterative numerical solution methods seems useful.
As known from practice, fully symbolic methods, which besides a symbolically represented
generator matrix also employ symbolically represented iteration vectors, are not very efficient
[Fra99]. Therefore the hybrid solution technique [Par02] is currently well established in
practice. Within a hybrid implementation of a numerical solution method, the transition
rate or generator matrix is stored symbolically and the iteration vectors are stored as arrays,
which speeds-up the iteration-steps significantly. After the state probabilities are computed,
the next thing to do, is the evaluation of user-defined performability measures by computing
rate- and impulse reward values of states and aggregate them accordingly.

1.4 Contributions of this thesis

In this thesis, we present a symbolic framework for the analysis of very large (finite)
continuous-time Markov Reward models. For representing the Markov reward models, a new
type of decision diagram is introduced, which we denote as zero-suppressed multi-terminal
binary decision diagram (ZDD). For working with ZDDs, this work also develops a set of
symbolic algorithms. This new type of symbolic data structure is then employed within a
new (semi-symbolic) scheme for efficiently generating a symbolic representation of a Markov
Reward model as stemming from a high-level model description. This scheme, which we
denote as activity/reward-local scheme is based on partial explicit SG exploration, a new
scheme for symbolic composition and a new scheme for symbolic reachability analysis. In
contrast to existing techniques, it employs model-inherent structures, rather than explicitly
user-defined ones. Consequently, the activity/reward-local scheme is highly suited for being
applied not only for compositional model worlds, but also for monolithic ones; i.e. to be
applied in cases where models cannot be decomposed in a Kronecker operator compliant
way (cf. Sec. 2.5.6, p. 29f) or if individual submodel-local SGs are disproportionally large.

In order to reduce the number of states, the probability of which must be computed, we
augment the basic activity/reward-local scheme with a symbolic algorithm, which executes
a SG reduction, when user-defined symmetries are present.

For computing state probabilities, we extended the hybrid solution method, as known from
other symbolic approaches, to the case of the here newly introduced ZDDs. Since we also
handle user-defined performability measures, the individual contributions of this thesis yield
a complete approach for the SG based analysis of high-level Markov Reward models with
very large underlying state/transition systems.

For evaluating the applicability of the developed concepts, an implementation has been inte-
grated into the multi-formalism performance evaluation tool Möbius [DCC+02]. This allows
not only the analysis of well-known benchmark models, but also to evaluate the availability
of an adjunct processor system as employed in the telecommunication industry, so that the
performance of the here presented approach could be assessed.

1.5 Organization of the thesis

This thesis is organized as follows: Chapter 2 recapitulates the required background knowl-
edge and gives needed definitions (see also Appendix A). Chapter 3 introduces our new
type of decision diagram, as well as the important algorithms for its efficient manipulation.
A survey on ZDD based set and matrix representation, as well as an introduction to the
ZDD-based hybrid solution methods for solving systems of linear and differential equations
will round the chapter. Chapter 4 explains our new semi-symbolic, compositional approach
for the efficient SG based analysis of high-level Markov reward models. Empirical results,

8 1 Introduction

including comparisons with other tools and implementations, are presented in Chapter 5.
Chapter 6 concludes the thesis by presenting a summary and indicating future steps.

2

Background Material

2.1 Organization of the chapter

For carrying out qualitative and quantitative analysis of systems it is required to specify a
mathematical model representing the system under study. Markovian models build the fun-
dament for a wide range of different techniques for evaluating systems. Sec. 2.2 recapitulates
aspects concerning the theory of Markovian models, including the definition of continuous-
time Markov Reward models (MRMs), approaches for their numerical solution, basics about
reduction of MRMs and different types of state/transition systems, as commonly employed
for representing MRMs. Complexity of todays hard- and software systems advises the use
of a formal high-level modeling technique, rather than specifying the system to be analyzed
directly as a stochastic state/transition system.
Sec. 2.3 introduces the basic high-level modeling techniques, discusses how performability
measures can be defined and briefly introduces methods for organizing high-level models in
a hierarchic and compositional style. In total, these methods allow one to define what we de-
note as a high-level MRM. Via state graph (SG) generation, as already mentioned in Sec. 1.2
(p. 2f), a high-level MRM can be mapped to a ST system, which itself can be interpreted as
MRM and therefore in the following as low-level MRM referred to. If the high-level model
possesses a compositional structure, this structure can be exploited in the process of SG
generation, so that the overall SG of the high-level model can be constructed from smaller
components. How high-level models can be mapped to MRMs via SG generation is briefly
explained in section 2.3.4.
However, since this thesis develops a new scheme for carrying out SG generation, a detailed
discussion on this issue needs to follow. This is done in Sec. 2.4 for monolithic or non-
compositional SG generation procedures and in Sec. 2.5 for the compositional ones. Since
compositionality is essential for symbolic SG representation techniques, at least for the ones
relying on (partial) explicit SG exploration, Sec. 2.5 introduces basic methods for composi-
tionally constructing SGs. The well known Kronecker operator driven composition schemes
are discussed there, as well as a new scheme for composing submodels interacting via the
sharing of variables.

Some mathematical basics about boolean functions and their expansion as directly employed
in this thesis are briefly re-visited in the appendix (cf. Appendix A). Furthermore it also
defines the Kronecker product (KP) and the Kronecker sum (KS) of matrices and clarifies
the pseudo-code and related definitions as employed in this thesis.

2.2 Markov Theory

In the following we introduce some basic concepts of Markov theory.

2.2.1 Continuous-time Markov reward model (MRM)
In the context of this thesis a system is specified by making use of a high-level modeling
technique, where each specified model can ultimately be mapped to a (low-level) Markov
Reward model. In the following the discussion is limited to models of this kind. However,
due to the nature of the high-level model description methods, it appears that after SG
generation one may end up with a SG, where two kinds of transitions between pair of
states exists, namely timed and instantaneous transitions. However, as it will be discussed
in Sec. 2.2.3, the latter can be eliminated, so that one finally ends up with a SG which defines

9

10 2 Background Material

a (pure) continuous-time Markov chain (CTMC) For this reason, we directly concentrate on
CTMCs in the following paragraphs.

Continuous-time Markov Chain (CTMC)
A stochastic process is a family of random variables {X(t)| t ∈ N}. Parameter t is commonly
associated with the system time. The co-domain of X(t) is called state space. In the context
of this thesis the latter is assumed to be a finite set of vectors of constant dimension (�s ∈ S).
However, for simplicity we will employ simple state indices like i and j in the paragraphs to
follow, rather than making use of a vector-oriented notation as employed latter. Stochastic
processes with discrete state spaces are commonly denoted as chains.
The property of being memoryless gives for a process, that its future evolution depends only
on the current state and not on the past history. Chains possessing this property are known
as Markov chains.

Definition 2.1: Markov chain

A state discrete stochastic process is denoted as Markov chain if the following holds: ∀n ∈ N

and ∀t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn it holds that

Prob[X(tn) = j|X(tn−1) = in−1, X(tn−2) = in−2, . . . , X(t0) = i0]

= Prob[X(tn) = j|X(tn−1) = in−1]

The above property implies that a Markov process is not only independent of the sequence
of visited states in the past, but also that its sojourn time Ti to be spent in the current state
i is independent of the sojourn time already elapsed:

Prob(Ti > t+ �t|Ti > t) = Prob(Ti > �t)

The only discrete probability distribution which satisfies this property for modeling discrete
sojourn times is the geometric distribution: Prob(Ti = n) = pn−1

i,i (1 − pi,i), where Ti is the
random variable which gives the number of time steps the Markov chain stays in state i and
where pi,i is the (discrete) one-step probability of staying in state i. Randomly distributed
continuous sojourn times, satisfying this property can only be modeled with the exponential
distribution: Prob(Ti ≤ t) = 1 − e−λit. Whether parameter t is discrete (number of steps) or
continuous, one speaks of discrete-time Markov chains (DTMC) or continuous-time Markov
chains (CTMC) [Ste94]. DTMC or CTMC are commonly defined by a set of states, a matrix
of transition probabilities or transition rates and a initial probability distribution on the
set of states. Since DTMCs are of minor interest in the context of this work, we solely
concentrate on CTMCs which the define as follows:

Definition 2.2: Continuous-time Markov Chain

A continuous-time Markov chain (CTMC) is defined by a triple C := (S, T, �π(0)). S is the
finite set of system states and T is the matrix of transition rates among the states. I.e. T
gives a mapping S × S �→ �

+
0 where 	∃i ∈ S : T (i, i) 	= 0 holds. Vector �π(0) defines an initial

probability distribution on S.

In the context of this thesis, we are only concerned with time-homogenous CTMCs, i.e. with
CTMCs where the transition rates are time-independent. Cycles within a Markov Chain
which can not be left are denoted as bottom strongly connected components (BSCC), i.e.
for a given state i of the BSCC each other state j of the BSCC can be visited by taking a
finite number of intermediate transitions. States of a Markov chain which do not belong to
a BSCC are denoted as transient. In this sense an absorbing state is a BSCC consisting of
a single state. A Markov chain consisting of a single BSCC is denoted as irreducible. In the

2.2 Markov Theory 11

following we are solely concerned with finite irreducible CTMCs. How to handle CTMCs
with absorbing states and/or non-irreducible CTMCs can be found in the literature [Ste94].

Markov Reward Models (MRM)
A MRM consists of a CTMC and a set of reward functions, where two kinds of rewards are
known: (a) rate rewards, which are associated with states and (b) impulse rewards, which re-
fer to transitions. In the context of this work, the specific state- and/or transition-dependent
reward values are assumed to be time-independent and we define them as follows:

Definition 2.3: Rate reward of a CTMC

A rate reward r defined on a CTMC is a function Rr : S → �

The set of all rate rewards defined for a given CTMC is denoted R.

Definition 2.4: Impulse reward of a CTMC

An impulse reward a of a CTMC is a function Ia : S × S → �.

The set of all impulse rewards defined for a given CTMC is denoted I
Based on the above definitions one is now enabled to define a continuous-time Markov re-
ward model as follows:

Definition 2.5: Continuous-time Markov Reward Model

A continuous-time Markov reward model (MRM) is defined by a triple M := (C, I,R),
where C is a CTMC, I is a set of impulse reward functions and R a set of rate reward
functions.

2.2.2 Numerical solution of MRM
For the CTMC one may compute a probability distribution on the set of system states,
which of course evolves over time. For computing the actual rate and impulse rewards the
state probabilities and reward functions are combined and somehow aggregated. At first we
will now derive the system of equations to be solved for obtaining state probabilities. This
will be followed by introducing methods for computing the probability distribution on the
set of states of the CTMC, where such solution methods, i.e. the software implementing
them is commonly denoted as numerical solver. After state probabilities are obtained, one
is now in the position to compute rewards, which together with the probability distribution
evolve over time.

Chapman-Kolomogoroff system of equations
It is known that the minimum of n exponentially distributed random variables is once again
exponentially distributed, with parameter λ :=

∑n
1 λi. The probability of random variable

Xi “to win the race” and thus to hold the minimum value, is then given by λiPn
1 λj

. Within
a CTMC C := (S, T, �π(0)) and a state i ∈ S this situation is given if state i can be left via
n (exponentially delayed) transitions. This gives the probability for moving from state i to
state j within time interval �t as follows:

pi,j(�t) :=

⎧⎨⎩
T (i,j)
E(i) · (1 − e−E(i)�t) ⇔ E(i) 	= 0

0 else
(2.1)

12 2 Background Material

where E(i) :=
∑n

1 T (i, j) is the sum of the i’th row, also commonly denoted as exit rate of
state i. Rows with row sums equal to 0, i.e. holding 0-entries only, refer to absorbing states.
It is intuitive clear that such states do not have outgoing transitions, thus the probability of
leaving an absorbing state must be 0 and the probability of the process of staying in such a
state, once it is reached, is 1. Since the above equation gives a probability for each pair of
states (i, j) ∈ {S×S} it enables onto construct the matrix of transition probabilities P (�t).
Now we are interested in the marginal transition probabilities, i.e. the probabilities for
�t→ 0:

qi,j := lim
�t→0

pi,j(t+ �t) − pi,j(t)
�t

where t can be set to 0, since we are only concerned with time-homogenous CTMCs. For
computing this marginal probability, we need to differ among the cases i 	= j and the case
that the process remains in state i.

(1) A single transition from i to j occurred:
As t grows, the probability of leaving state i grows, but as t diminishes this probability
falls towards 0. Thus the probability of a transition taking place in state i at time-point
t = 0 is equal to 0. By employing this in Eq. 2.1 and L’Hospital’s theorem it follows:

qi,j := lim
�t→0

pi,j(�t)
�t = T (i, j) for i 	= j (2.2)

(2) The process stays in its state:
As t grows, the probability of staying in state i falls, but as t diminishes the probability
of staying in i grows towards 1, thus pi,i(0) must be equal to 1. Employing this in Eq. 2.1
yields:

qi,i(�t) := lim
�t→0

pi,i(�t) − 1
�t

Since pi,i(�t) = 1 −∑i�=j pi,j(�t) it follows:

qi,i(�t) = lim
�t→0

1−P
i�=j pi,j(�t)−1

�t

= lim
�t→0

− P
i�=j pi,j(�t)

�t

which is something we already know, namely the negative exit rate of state i:

qi,i(�t) = −
∑
i�=j

T (i, j) = −E(i) (2.3)

If one writes the results achieved above in a matrix notation, one obtains:

Q := lim
�t→0

P (�t) − 1⊥S

�t
where 1⊥S is a S × S identity matrix. Matrix Q is commonly denoted as (infinitesimal) gen-
erator matrix.

Based on the transition probability matrix P (�t) as constructed in Eq. 2.1, one is enabled
to define the probability for being in state i at time-point t+ �t as follows:

�π(t+ �t) = �π(t)P (�t)
For computing state probabilities at arbitrary time points, one simply needs to compute the
differential of t and t+ �t:

δ�π(t)
δt

= lim
�t→0

�π(t+ �t) − �π(t)
�t = �π(t) lim

�t→0

P (�t) − 1⊥S

�t (2.4)

2.2 Markov Theory 13

Due to the results achieved above lim
�t→0

P (�t)−1⊥S

�t is already known, it is the generator ma-

trix Q. This gives us finally the well-known Chapman-Kolomogoroff system of differential
equations:

δ�π(t)
δt

= �π(t)Q.

Its solution gives the distribution of probabilities on the set of states at time point t.

Computing state probabilities
For numerically computing state probabilities one needs to solve the Chapman-Kolomogoroff
system of equations. If one is interested in the distribution of the state probabilities after
a specific time-interval has elapsed, commonly denoted as transient analysis, one needs to
solve a set of differential equations. Steady-state analysis, yields the distribution of states
probabilities on the long-run, i.e. t→ ∞.

In the following the will briefly recapitulate the basic schemes as found in practice for
computing transient and steady state probabilities for CTMCs. The interested reader may
refer to the textbook [Ste94] for details.

(A) Transient analysis
A well-known approach to solve the Chapman-Kolomogoroff system of differential equations
is based on the uniformization of the generator matrix. Via uniformization one discretizes a
given CTMC, i.e. one transforms the CTMC into a DTMC. This is achieved as follows:

P := Q�t+ 1⊥S with �t =
1

c · max
i∈S

|qi,i| and where �t ≤ 1
max
i∈S

|qi,i| must hold.

The constant u := c · max
S

(|qi,i|) is commonly denoted as uniformization constant, a good

choice in practice is obtained for c := 1.02. Applying the closed-form solution for a system
of differential equations, where Q of the Chapman-Kolomogoroff system is substituted with
u(P − 1⊥S) gives:

�π(t) = �π(0) · euP ·t · e(−u)t.

For the Taylor expansion ex =
∑∞

k:=0 x
k/k! one obtains

�π(t) =
∞∑
k:=0

�π(0)P k
(ut)k

k!
· e(−u)t

This is the computation of distribution of state probabilities after k time steps of the dis-
cretize CTMC (�π(0)P k) and a weighting of the obtained state probabilities with the discrete
probabilities of a Poisson distribution for k arrivals (p(k, u, t) := (ut)k

k! ·e−ut). From the above
equation it also arises that the state probabilities depend on the initial distribution of prob-
abilities on S. However, for a irreducible CTMC and a large value t, this dependency fades
away. Fortunately it suffices to compute the above sum for the summation index set L . . .R,
rather than computing the infinite sum. The choice of the left- and right truncation point
(L,R) depends on the product ut and a user-defined maximum round-off error. Details on
the computation of the Poisson probabilities and the truncation points can be found in
[FG88].

(B) Steady-state analysis
For irreducible CTMCs the state probabilities are independent of t and the differential
quotient δ�π(t)

δt = 0, as �t→ ∞ (cf. Eq. 2.4). Contrary to the transient analysis, one therefore
needs to solve solely a set of linear homogenous equations:

�0 = �πQ

14 2 Background Material

In contrast to irreducible CTMCs, for reducible CTMCs the distribution of steady-state
probabilities depends on the initial distribution. I.e. one may be forced to compute the
steady-state distribution of the different BSCCs individually and weight the obtained results
with the respective probability of ending up in the respective BSCC.

Direct solution methods are computational expensive and since the coefficient matrix must
be adapted after each step, iterative methods are more likely to be found in practice. In the
following paragraphs we will briefly introduce the basic schemes as far as it is from concern
for this work, for a detailed discussion the reader may once again refer to [Ste94].
Power method (POW method): The Power method is also based on uniformization, yielding
the following iteration scheme:

�πk+1 = �πk · (Q�t+ 1⊥S) with �t <
(

max
i∈S

(|qi,i|)
)−1

must hold.

To achieve good convergence 0.99
maxi∈S(|qi,i|) is known to be a good value for �t. In an element-

wise notation we have:
πk+1
i := πki

∑
j∈S

πkjQ(j, i)�t

Jacobi method (JAC method): Instead of discretizing the CTMC one employs here a decom-
position. The generator matrix Q can be partitioned into a matrix of its diagonal elements
and the rate matrix R, yielding Q := R − D. One may note that matrix D carries the
exit rates of the respective states, whereas matrix Q carries the negative exit rates on its
diagonal. The iteration scheme of the JAC method is then given as follows:

�πk+1 = �πk ·RD−1

which can be written in an element-wise notation as follows:

πk+1
i :=

1
|qi,i|

∑
j∈S

i�=j

πkjQ(j, i)

Gauss-Seidel method (GS method): Similar to the JAC the GS method also employs matrix
decomposition: Q := D − T , where D carries now the negative exit rates of the respective
state, i. e. di,j := qi,j for i = j and 0 otherwise. The transition rate matrix T can be de-
composed further T := (L+U), where L and U are the negative lower and upper triangular
portions of the transition rate matrix T . The iteration scheme is then given for two variants:

(1) Forward GS method: �πk+1 = �πk · L(D − U)−1. This can be written in an element-wise
notation as follows:

πk+1
i :=

1
|qi,i|

⎛⎜⎜⎜⎜⎝
∑
j∈S

j<i

πk+1
j Q(j, i) +

∑
j∈S

j>i

πkjQ(j, i)

⎞⎟⎟⎟⎟⎠ (2.5)

(2) Backward GS method: �πk+1 = �πk · U(D − L)−1. The element-wise notation is achieved
by simply swap �πk+1 and �πk on the right side of the Eq. 2.5.

In contrast to the JAC, the GS method already employs the newly computed state proba-
bilities for all states having a lower index as the state of the current row (j < i), for states
having a larger index one employs the probabilities of the last iteration –in case of the back-
ward method this is simply the other way round. This implies that the GS method has a
better convergence, but this also requires an ordered access (row- or column-wise access)
to the state probabilities and thus matrix elements of Q, at least for the states the new
probability of which is needed.

2.2 Markov Theory 15

Over-relaxation For improving the convergence of the JAC and GS method, one may build
the weighted sum of the state probabilities of the previous and of the recently finished iter-
ation for obtaining the state probabilities employed in the next iteration. This is commonly
denoted as over-relaxation. Together with the above introduced iteration schemes this yields
the Jacobi over-relaxation method (JOR) and the forward or backward GS over-relaxation
method (GSOR). –However, choosing the weight for computing π̃k+1

i := (1−ω)π̃ki +ωπk+1
i ,

turns out to be difficult in practice, even though ω is known to be restricted to the interval
(0, 2)

Computing rewards
For simplicity we defined rate and impulse rewards as being state-/activity-dependent func-
tions. However, the underlying stochastic process is a CTMC, consequently as the system
evolves over time, so do the reward values. Thus it is required that we extend the time-
independent reward functions defined in Def.2.3 and 2.4 with a notion of time. However, it
is essential to note that the reward value induced by a specific state or transition remains
time-independent. We will now roughly investigate the concept of rate and impulse rewards.
The interested reader may refer to [San88, MS91, CBC+93, Ger00] for further details.

Rate reward
A rate reward is the cost or gain obtained while being in a state i. Thus the rate reward
obtained in a specific state i at time point t can be computed as follows:

Rr(i, t) = πi(t) · Rr(i) (2.6)

where πi(t) is the probability for being in state i at time point t and Rr(i) is the time-
independent rate reward value of state i concerning rate reward r (cf. Def. 2.3). The prob-
ability πi(t) employed in the above equation can be computed by executing the methods
illustrated above, where for arbitrary time points t a transient and for t→ ∞ a steady state
analysis is applicable. Since each state i ∈ S has its own rate reward value with respect
to reward function r, one must simply sum the reward values over all states yielding the
state-independent reward value Rr(t) at time-point t:

Rr(t) :=
∑
i∈S

Rr(i, t) (2.7)

So far we only computed instant-of-time rewards, however also interval-of-time and time av-
eraged interval-of-time rewards are from concern. A rate reward obtained for a time interval
[t, t+ �t] can be compute as follows:

Rr(t, t+ �t) :=
∑
i∈S

Rr(i) · π̄i(t, t+ �t) · �t (2.8)

where π̄i(t, t + �t) is the average state probability for being in state i during time interval
[t, t+ �t]. It can be computed as follows:

π̄i(t, t+ �t) :=
1
�t

t+�t∫
τ=t

πi(τ)δτ

By norming the computed value to the time period analyzed (1
�t), the above interval-of-

time reward measure can converted into time-averaged value. Now one may investigate the
behavior of the interval-of-time rewards, if t→ ∞ or t+�t→ ∞. So in case of steady-state
πi(t, t+�t) needs solely to be replaced with the steady-state distribution πi, where in case
of a time-averaged reward a subsequent norming to the length of the time interval must
follow. This should suffice for the time being, since a deeper discussion is out of scope of
this work.

Before we proceed one may also note that due to the above definition of rate rewards, only
those states contribute to Rr which have a state probability different from 0. We will come
back to this issue in the next section, where SG reduction techniques are covered.

16 2 Background Material

Impulse reward
An impulse associated with a specific transition is obtained, each time the respective transi-

tion is taken by the system, i.e. a transition i
λi,j−→ j may contribute to the overall value of an

impulse reward Ia. One may compute then the impulse obtained during the time interval
[t, t+ �t] by a single transition as follows:

Ia(i, j, t, t+ �t) := π̄i(t, t+ �t) · �t · Ia(i, j) · λi,j (2.9)

where π̄i(t, t+ �t) is the average state probability for being in state i during time interval
[t, t+ �t] as already employed before.

Since there might be more than one transition emanating form state i and contributing to
impulse reward Ia it follows:

Ia(i, t, t+ �t) :=
∑
j∈S

Ia(i, j, t, t+ �t) = πi(t, t+ �t) · �t ·
∑
j∈S

Ia(i, j) · λi,j (2.10)

In order to obtain the “state-independent” impulse reward Ij(t) one simply needs to sum
over all states, yielding:

Ia(t, t+ �t) :=
∑
i∈S

Ia(i, t, t+ �t) =
∑
i∈S

∑
j∈S

Ia(i, j, t, t+ �t) (2.11)

So far we only computed an interval-of-time impulse reward. By norming the computed
values to the length of the time-interval (�t), the above interval-of-time reward measures
can be converted into time-averaged values.

In case of steady-state we restrict the discussion to time-averaged impulse rewards, so that
πi(t, t + �t) in Eq. 2.9 can be replaced with the steady-state distribution πi, where a sub-
sequent norming to the length of the time interval of interest must follow. This yields:

Ĩa(i, j) := πi · Ia(i, j) · λi,j (2.12)

If this is employed in Eq. 2.10 and 2.11 one obtains:

Ĩa(i) :=
∑
j∈S

Ĩa(i, j) = πi ·
∑
j∈S

Ia(i, j) · λi,j and Ĩa :=
∑
i∈S

∑
j∈S

Ĩa(i, j) (2.13)

which is the average impulse reward (value) obtained in steady-state for impulse reward a.

2.2.3 Reduction techniques
The number of states a MRM consists of is a bottleneck for the SG based analysis, since as
pointed out above, individual state probabilities must be computed for evaluating rate and
impulse rewards. Therefore an important goal can be seen in the reduction of the number
of states. This reduction can either be done on-the-fly, i.e. while transforming the high-level
model description into a low-level MRM, or a posterior to state space exploration.

Elimination of vanishing states
Due to the nature of the high-level model description methods, as it will be discussed in
Sec. 2.3, it appears that after transformation of the high-level model into its low-level rep-
resentation two kinds of transitions between pair of states exist, immediate and timed ones.
Timed transitions are taken with an exponential delay, whereas instantaneous transitions
are taken immediately. It is is evident that within states with outgoing immediate and timed
transitions, the latter will never be taken (“win the race”). This yields that the system will
spend only time in states which can exclusively be left via outgoing timed transitions. States
of such kind are denoted as tangible, whereas states to be left via immediate transitions are

2.2 Markov Theory 17

denoted as vanishing. –States which can not be left are denoted as absorbing states, (see dis-
cussion above).– In case a vanishing state can be left via more than one immediate activity,
the non-determinism has to be resolved. This is commonly done by assigning probabilities
to each immediate transition, where the probabilities of all immediate transitions emanating
from the same state must sum up to 1. As results one yields a transition matrix T , where
some entries refer to transition probabilities and some entries refer to transition rates. As
known from the literature, e.g. [BCD+95, CBC+93], T can now be converted into a pure
transition rate matrix, defining a proper CTMC, which is achieved by eliminating all entries
referring to vanishing states. Doing so is justified, since a vanishing state does not contribute
to the overall rate reward Rr as πi is zero. In case of a impulse reward the situation is more
complicated. For simplicity we solely allow timed transitions to induce impulse rewards, so
that vanishing states and their outgoing transitions are also irrelevant here. –For a discussion
on impulse rewards induced by immediate transitions the reader may refer to [Ger00].

The construction of the proper CTMC from a transition matrix of the above kind, can be
achieved by the following steps:

(1) Partitioning of the transition matrix T :

T =
(
Tt,t Tt,v
Pv,t Pv,v

)
(2.14)

where Tt,t and Tt,v are the sub-matrices which solely contain transition rates, so that Tt,t
refers to the transition rates among the tangible states and Tt,v refers to the transition
rates from tangible to vanishing states. Matrix Pv,t and Pv,v are the sub-matrices, which
contain the transition probabilities, in case of Pv,v between the vanishing states and in
case of Pv,t from the vanishing to the tangible ones.

(2) Calculating the proper transition rate matrix T ′ :
Now one is able to calculate a transition rate matrix which represents the effective tran-
sition rates between the tangible states, after the vanishing states have been eliminated.

T ′ = Tt,t + Tt,vNPv,t (2.15)

where N =
∞∑
n=0

Pnv,v = (1−Pv,v)−1. This approach reduces the SG, because the vanishing

states are eliminated and the (n × n) transition matrix T is reduced to the (nt × nt)
transition rate matrix T ′.

The disadvantage of the above scheme under traditional SG exploration techniques is quite
clear, it requires a full expansion of all reachable states, before reduction can be done.
Therefore many tools make use of an on-the-fly reduction method, where vanishing states
are either stored temporarily, or they are not stored at all. However, as it will be discussed
in this thesis, for symbolic methods the generation and storage of large SGs is is not an
issue. Thus it seems useful to execute the elimination of vanishing states a-posteriori to SG
generation, especially since this simplifies the handling of time-less traps.1 The respective
symbolic algorithms can be found in [Sie02].

Lumping the states of a MRM
The idea of state lumping [San88, Buc94, Sie95, BCD+95] is as follows: One partitions the
state space of a CTMC and lump all states belonging to the same partition. The states of
a partition are then represented by a dedicated representative, often also denoted as macro
state. The transition rates among the resulting macro states need hereby to be adapted
accordingly, so that one solely needs to compute the probability distribution on the set of
partitions, rather than on the set of individual system states. Since the number of partitions

1 A BSCC containing vanishing states only, is commonly denoted as time-less trap.

18 2 Background Material

is in general much smaller than the number of states the advantage of such a procedure is
obvious.

Different levels of lumpability exist, which we define as follows:

Definition 2.6: Lumpability of states

Let C := (S, T, �π(0)) be a CTMC and P := {S1, S2, . . .Sn} a partitioning of S.

(1) If for k, l ∈ {1, . . . , n} and ∀i, j ∈ Sk :∑
x∈Sl

T (i, x) :=
∑
x∈Sl

T (j, x)

holds, one denotes C as ordinarily lumpable.

(2) If for k, l ∈ {1, . . . , n} and ∀i, j ∈ Sk :

πi(0) = πj(0) and∑
x∈Sl

T (x, i) :=
∑
x∈Sl

T (x, j)

holds, one denotes C as exactly lumpable.

(3) If for k ∈ {1, . . . , n} and ∀i, j ∈ Sk the conditions of ordinary and exact lumpability are
satisfied, one denotes C as strictly lumpable.

One may note that only in case of exactly lumpable states, the individual state probabili-
ties of the states of a partition are obtainable (πSk

|Sk|), in case of ordinary lumpability these
probabilities are not available.

What left out so far, is the lumpability of states annotated with reward values, i.e. so far
we were only concerned with the states of a CTMC. Ordinary lumpability turns out to be
problematic, since as pointed out above, the individual state probabilities can here not be
derived from the probability distribution on the set of macro states. Therefore it is essential
to augment the ordinary lumpability defined above with the requirement that two states
of a MRM M := (C, I,R) are only ordinarily lumpable if their rate reward values or the
impulse reward values of their emanating transitions are identical, i.e. for k, l ∈ {1, . . . , n}
and ∀i, j ∈ Sk the following condition must be satisfied:

∀Rr ∈ R : Rr(i) = Rr(j) and

∀Ia ∈ I :
∑
x∈Sl

Ia(i, x)T (i, x) =
∑
x∈Sl

Ia(j, x)T (j, x)

One may note that a partitioning satisfying the criteria of exact lumpability defines an
equivalence relation on the set of states, thus one also speaks of class of states rather than
partitions. The equivalence relation on MRMs, the transitions of which are additionally
equipped with labels, is commonly denoted as Markovian bisimulation. I.e. weak or strong
Markovian bisimulation can be seen as refinement of lumpability, since contrary to Markov
chains, bisimulation considers transition labels, so that not only the aggregated rates must
match but also the labels of the transitions. Details can be found in [Göt94, Her98]. For
simplicity we will speak of bisimulation only, but in fact are referring to (strong) Markovian
bisimulation.

The next question to be dealt with, is to answer how the transition rates among the macro
states need to be adjusted if (a) the partitioning of the state space is achieved (b) strict
lumpability is satisfied and (c) one wishes to construct a reduced MRM having the same so-
lution concerning the performability measures as the original, un-reduced MRM. We will an-

2.2 Markov Theory 19

01 00 100 01 1

10 10 0

01 10 0 10 01 0

00 10 1 01 01 0 10 00 1

00 00 2 00 00 2

01 00 1

01 01 0 10 00 1

10 01 0

10 10 0

555

1 1

22

34 4

6 6

43

2

a, λ

a, λ

a, λ
a, λ

a, λ
a, λ

a, λa, λ a, 2λ

b, µ

b, µ

b, µ

b, µ
b, µ

b, µ
b, µ

b, µ

b, 2µ

e, ρ

e, ρ

(A) Unreduced SG (B) Reduced SG

Figure 2.1: Bisimilar SGs

swer this question informally, further details can be found in [San88, Buc94, Sie95, BCD+95].

For constructing a reduced MRM from its un-reduced counterpart one may proceed as fol-
lows:

(1) Mark each state according to its class Si.

(2) For each class Si pick the class representative ri. For i, k ∈ {1, . . . , n} and i 	= k the
(aggregated) rate λ̃ri,rk

of the transition connecting state ri with state rk within the
reduced MRM can be computed by λ̃ri,rk

:=
∑

x∈Sk
λi,x.

For exemplification one may finally refer to Fig. 2.1.A, where a MRM, the transitions of which
are equipped with rates and labels, is illustrated. Let the initial probability distribution on
states be uniformingly distributed. Consequently this MRM fulfills the conditions of strict
lumpability, where we numbered the equivalence class and labeled the states accordingly.
–In fact, the partitioning not only fulfills exact lumpability but also (strong) Bisimulation,
since also the labels of the transitions connecting the states of the different equivalence
classes match.– In the next step, we pick a class representative for each class, and compute
the aggregated or cumulative rates according to the above procedure. E.g. state (10 10 0)
reaches two states of class 2, consequently the cumulative rate can be evaluated to 2λ.
Contrary to this, the representative of class 2, the state (10 01 0), is solely connected to one
state of class 3 and one state of class 4, thus no transitions need to be aggregated here. The
completely lumped SG is illustrated in Fig. 2.1.B.

The major problem of state lumping is the finding of a partitioning P , so that the criteria of
Def. 2.6 are matched. As simplification [San88, Sie95] suggest the construction of high-level
models in a structured manner, so that the partitions of the state space to be lumped are
known, But this procedure may not necessarily yield the minimal equivalence relation on
the set of states. We will comeback to this in Sec. 2.4 and 2.5.

2.2.4 State/Transition systems
For representing finite Markov Reward models, this thesis employs various types of state-
transition systems (ST systems), which will be introduced in the following. The discussion
follows hereby an order of inheritance, so that the characteristics required for the more
simpler forms of transitions are also assumed to be decisive for the more complex ones.

A ST system consists of a (finite) set of states (S), and a transition function. A transition
function is a mapping ∆ : S �→ S, yielding a predecessor/successor relation →⊆ S × S on
the set of states. If each directed edge, connecting a predecessor with its successor state,

20 2 Background Material

is labeled with a symbol l ∈ Act one speaks of a labeled transition system (LTS), yielding
the relation → ⊆ S × Act × S. In the context of this work we require that all edges of
a set of edges, connecting the same pair of successor and predecessor state (i, j), carry
different labels. Besides labels, transitions can also be equipped with probabilities p ∈ [0, 1]
or rates r ∈ �+

0 . A LTS, where transitions are exclusively equipped with probabilities, is
denoted probabilistic LTS (pLTS), so that → ⊆ S ×Act× [0, 1]× S. The probabilities of all
edges emanating from the same state i are required to sum up to 1. In case all transitions are
equipped with rates only, one speaks of a stochastic LTS (sLTS), where →⊆ S×Act×�+×S.
Transition systems where the directed edges are either labeled with a probability or a rate
are denoted as extended sLTS (esLTS). For esLTS it is required that all edges emanating
from a state i are either all probabilistic, i.e. they carry a probability or that they are
stochastic, i.e. they carry a rate. The source states of probabilistic transitions are denoted
as vanishing states, whereas the source states of stochastic transitions are denote as tangible
states. Analogously to a pLTS it is also required that the probabilities of the transitions
emanating from the same (vanishing) state sum up to 1. Given an esLTS, sLTS or pLTS one
obtains the respective non-labeled variant by removing the labels from the directed edges,
where edges connecting the same pair of states are merged. The resulting edge is hereby
equipped with the cumulative rate or probability, which is the sum of the individually edges
to be merged [Göt94].

Form a sLTS S a CTMC C := (S, T, �π (0)) can be constructed as follows:

(1) The states of S′ are the states of the CTMC.

(2) Remove all labels and make S a non-labeled sTS S′, according to the above procedure.

(3) The transition rate matrix T is constructed as follows:

T (i, j) =

⎧⎪⎨⎪⎩
µ ⇔ (i, a, µ, j) ∈ S

∧ i 	= j

0 else
(2.16)

(4) The initial probability distribution is defined as follows:

(4.a) ∀i ∈ S : πi(0) := 1/|S| or

(4.b) for one i ∈ S : πi(0) := 1 and ∀j ∈ S where j 	= i : πj(0) := 0.

Thus in the context of this thesis each sLTS is directly interpreted as a CTMC. Due to
the nature of the high-level model description methods, it appears that after transformation
of the high-level model, one obtains an esLTS, rather than a sLTS. But as illustrated in
Sec. 2.2.3 as far as it is from concern for this work, the transitions equipped with probabilities
and the states they emanate from can safely be eliminated, so that one ends up with a proper
sLTS and thus a proper CTMC. In the following paragraphs we will therefore generically
speak of SGs, in order to refer to a sLTS or esLTS, in case the difference is significant the
precise notation will be employed.

2.3 High-level Markov reward models

The introduction to high-level stochastic modeling formalisms will be followed by briefly
indicating how performability measures on the level of high-level models can be defined.
Compositionality plays an important role, since it follows the design principle of modularity.
Thus it avoids the error-prone specification of monolithic models, which, as matter of size,
might tend to become unreadable. Therefore we will also cover methods for constructing
high-level models from smaller components in this section. How high-level models can be
mapped to MRM via SG generation is briefly explained at the end of this section, a profound
discussion, as far as it is from concern for this thesis, will follow in the next sections.

2.3 High-level Markov reward models 21

2.3.1 High-level model description techniques
Over the past years several powerful methods as known from the functional analysis of
systems, have been extended to the Markovian case. In the following we will briefly introduce
some of them. However, a deeper discussion is avoided, since a large amount of introductory
and advanced literature for this topic exists. Before we proceed it is essential to note that
all high-level model specification methods have in common, that each model S consists of
a finite ordered set of discrete state variables (SVs) si ∈ S, and a finite set of activities
(Act). In contrast to the standard Petri net nomenclature, we speak of activities when
referring to the high-level constructs. Thus transitions in the context of this work are the
connection between system states, established each time an activity has been executed. This
differentiation si useful, as far as high-level model description methods are from concern,
where system states are not part of the specification method, e.g. Petri nets, process algebras,
etc.. In case “simpler” modeling methods, where system states are part of the description
technique, we will also speak of transitions.

Stochastic automata networks
Stochastic automata networks [Pla85, Buc91, Ste94] are a very low-level modeling approach,
since high-level model description and its low-level representative are almost identical. A
stochastic automata consists of states and activity-labeled transitions among them, where
the latter may also be equipped with a stochastic rate or they may not. In the former case
one specifies an exponentially delayed transition, whereas in the latter case an un-delayed
behavior is modeled. In consequence a stochastic automata can be viewed as a Markov
model with tangible and vanishing states. In order to compactly specify complex systems,
the modeler is enabled to combine sets of stochastic automata by activity synchronization
(cf. Sec. 2.3.3). This gives one a network of stochastic automata, naturally describing the
behavior of a system in a compositional way. Since the individual stochastic automata do not
contain any local variables the state of a stochastic automata network is naturally described
by a set of local state counters, each referring to the state of a specific stochastic automata.

Stochastic state charts
In recent years, state charts like the ones employed in the modeling standards SDL or UML,
have been extended to the Markovian case. In its simplest form a stochastic state chart may
consist of a set of states, variables and transitions among these states, which may modify the
variables when executed. Thus a state of the state chart can be described by the current val-
ues of the local variables and an additional state counter. In order to specify timed behavior
one may think now of equipping transitions with stochastic rates, referring to an exponential
delay of the associated transition’s execution. Transitions of this kind are commonly denoted
as Markovian transitions. In order to allow also the employment of case distinctions, one
may also make use of a special node, its incoming edge is a Markovian transition, and its
outgoing edges are equipped with execution probabilities. Since the outgoing edges are taken
with a zero delay, they are commonly denoted as immediate or instantaneous transitions. By
introducing the concept of initial and terminal states and referencing of (sub-) state charts,
state charts can be organized in a modular fashion. However, it seems to be straight-forward,
to also allow the composition of state charts via the sharing of variables and/or the joint
execution of activities (cf. Sec. 2.3.3). A sophisticated extension of UML state charts can be
found in [JHK03].

Generalized stochastic Petri Nets
A generalized stochastic Petri Net (GSPN) is a bi-partite graph, which consists of a set of
activities and a set of places. Each place may contain an arbitrary number of tokens. Here a
state of the system can be described by the current number of tokens contained in each place,
so that each place of the GSPN gives a SV of the overall model. Activities and places are
connected via the definition of a connection relation. The execution behavior of activities

22 2 Background Material

is then steered by its connected input places, whereas its execution will manipulate the
contents of the places contained in the activity’s set of output places. For specifying timed
behavior, activities are either executed after an exponential delay or instantaneously, where
the race condition among the competing activities must be resolved. A profound overview
over GSPNs can be found in [BCD+95].
In order to organize a GSPN in a modular way, so that its readability is improved, one
may combine different(sub-)nets via the sharing of places. Furthermore concepts known
from stochastic automata and stochastic process algebras have been extended to the case of
GSPNs, so that also the composition via activity-synchronization can be found, e.g. [CT96,
HHMR97] (cf. Sec. 2.3.3).

Stochastic Activity Networks
Stochastic Activity Networks (SAN), introduced in [San88], are an extension of GSPNs.
Consequently a state of a SAN can also be described as a tuple of SVs, where each refers to
a specific place of the net. In addition to GSPNs, SANs allow the use of so called input and
output gates. These gates can be seen as the enrichment of the enabling predicates (guards)
and the execution functions of the connected activities. SANs also allow the association of
each activity with a set of cases, where each case needs to be parameterized with an execution
weight. Simply speaking a case is the execution of an activity, subsequently followed by an
execution of a set of instantaneously activities, where the individual execution probability is
determined by the specific case-individual weight. In contrast to GSPNs, SANs allow the use
of other than exponential distributions for describing the timed delay of activity executions.
However, in the context of this work, we are occupied with Markov models only, thus we
only allow activities to have exponential or un-timed behavior. Analogous to GSPNs, SANs
can be combined via the sharing of places or as realized recently via the joint execution of
activities.

Stochastic process algebras
Within a stochastic process algebra (SPA) a process specification consists of operators for
choices, guarded choices, process variables, individually labeled activities, and most impor-
tantly of a reference to the subsequent behavior at process termination, e.g. stop, or calling
another process. Consequently the state of the process may be described by the values of the
local process variables and a process counter. Activities can be timed, i.e. they are equipped
with rates, or they are instantaneous. Examples of stochastic process algebras can be found
in [Göt94, Hil94a, HHK+98, HHM98].

A very important concept, which has been developed in the context of PA, is constructivity
of the formalism: (a) Like stochastic automata a system can be built in a compositional
manner, where activity-synchronization (cf. Sec. 2.3.3) is employed for combining the indi-
vidual process instances. (b) Another feature of SPAs is the possibility of hiding internal
behavior (activities) from the environment, which may lead via exploitation of bisimulation
to fewer system states and thus simplify the SG based analysis. (c) A very strong concept is
the axiomatization of SPAs, and the notion of equivalence of processes. This allows one to
replace processes with simpler ones, so that the overall system is much smaller, but exhibits
the same functional and timed behavior. In recent years, aspects of constructivity have been
adopted to other high-level model composition methods, where especially the compositional
construction of high-level models plays an important role [HHMR97]. Since most SPAs also
allow to specify local variables, a composition of submodels via the sharing of variables seems
applicable, but may interferes with the above explained concept of constructivity.

2.3.2 Specification of performability measures
The elementary units of performability measures are reward values, associated with each
state or transition of a MRM underlying a high-level model description. However, for main-
taining transparency, most modeling tools enable the user to specify reward functions on

2.3 High-level Markov reward models 23

the level of the high-level model description.
In this context a rate reward r is a function, which takes a subset of the SVs of the high-level
model as its function variables. Depending on the values of these SVs a specific rate reward
value can be computed. In contrast to rate rewards, impulse rewards are associated with
the completion of activities. Therefore the user simply defines a reward value obtained if a
specific activity is executed. However, this reward value may also depend on the values of
some SVs, which makes each impulse reward activity and SV-dependent. A set of rate and
impulse reward functions defined on the high-level model can than be aggregated, in order
to establish complex performance variables (PV), where the value of a PV p is the sum of a
set of rate or a sum of a set of impulse reward functions or the sum of both.

2.3.3 Composition of high-level model descriptions
A high-level model can be constructed in a modular and hierarchic way by specifying a set
of submodels and define the way of how they are interacting.

Pure interleaving
If no interaction among the submodels takes place one speaks of pure interleaving, i.e. the
submodels, which are in fact (disjoint) partitions of the overall model are executed concur-
rently. Pure interleaving is the special case of composition via joint activity execution and
composition via the sharing of SVs, as discussed next. There pure interleaving is obtained,
if the sets of objects the composition is archived by is empty.

Joint activity execution (Sync)
When composing submodels via joint activity execution, the submodels are executed in
parallel, where a subset of dedicated activities has to be executed jointly by all participating
partners. Different approaches concerning the type of synchronizing activities exists, where
also the computation of the rate of the synchronized activities is the target of discussion.
In the following we will employ the operator S1‖SS2 for specifying the synchronization of
submodel S1 and S2 over all activities appearing on the set S, but where solely activities
with the same label are executed synchronously.

Sharing of SVs (Join)
If a high-level model description method employs (local) variables, it is possible to compose
submodels, specified in the respective formalism, by merging sets of local variables (J)
[San88]. This technique is commonly denoted as sharing or joining of SVs (Join for short).
We we will employ the operator S1 <J> S2 for specifying that submodel S1 and S2 share
the variables appearing on the set S, but where solely SVs with identical labels are merged.

Replication of submodels (Rep)
A Rep causes the multiple instantiation of a dedicated submodel. These instances can then
expose information for further composition to the environment, where one may differ be-
tween the sharing of variables or the joint execution of activities. In [San88] the sharing
of a dedicated variable with the environment is introduced, where the respective variable is
also shared among all instances of the replicated submodel (Rep\Join). A synchronization of
activities is the strategy introduced in [Sie95], where all instances of the replicated submodel
synchronize on the same set of activities (Rep\Sync).
It is important to note, that the replication of dedicated submodels induces strong bisimula-
rity on the level of a high-level model’s underlying (activity-labeled) MRM. In the following
we will denote this bisimulation as submodel-imposed symmetry.

24 2 Background Material

2.3.4 Mapping of high-level models to MRMs
According to the above discussion, one can assume that each model M consists of a finite
ordered set of discrete state variables (SVs) si ∈ S, and a finite set of activities (Act), which
are either of Markovian (Actm) or instantaneous nature (Acti). Concerning the high-level
model description by means of GSPNs, SANs or SPAs, each si records hereby the number
of tokens in a place, the state of the program counter, the values of the process parameters,
etc.. Since the set of SVs is finite and ordered, each state of the model can be written as
a vector �s. The i’th component of a (state) vector �s, addressed by the notation �s [i], yields
the current value of SV si in state �s. During SG generation, as already briefly introduced in
Sec. 1.2, on successively visits all possible system states and generates all possible transitions
among them. This procedure allows one to map a high-level model to an esLTS, which can
be interpreted as a CTMC once the vanishing states have been eliminated. In order to
equip the CTMC with rate and impulse rewards, one may also execute the rate and impulse
reward functions during SG generation, so that one yields a reward value for each state
or transition. This allows one then to interpret the generated and reward annotated SG as
(low-level) MRM, its solution (cf. Sec 2.2.2, p. 11ff) will given one the desired performability
measures as specified by the modeler on the high-level model description. In the next sections
we will briefly explain, how the SG generation can be organized. Two classes of strategies
can be recognized: (a) the non-compositional or monolithic procedures, which executed the
SG generation for the complete model and (b) the compositional SG generation procedures,
where the SGs of the overall models are constructed from smaller components, commonly
from the SGs of user-defined submodels, and thus representation of SGs can be restricted
to the submodels, given that a respective composition scheme is provided.

2.4 Non-compositional state graph construction

If the SG of a high-level model is not constructed from smaller components, one commonly
speaks of a non-composition or monolithic SG generation procedure. For handling the com-
position operators, so that one is enabled to also carry out a monolithic SG construction
procedure for compositionally constructed high-level models, additional effort is required:

(1) Sync: For resolving the Sync-composition operator on the level of the high-level model
description, one simply needs to build the conjunction of the entrance or enabling con-
ditions and of the execution functions of all activities to be executed synchronously.
Since the SG generation is monolithic, activity priorities, rates and weights of the newly
obtained activity can be chosen arbitrarily [Lam00].

(2) Join: For sharing SVs among submodels, one simply needs to map the local SVs to be
shared to the same new SV, so that the submodels are enabled to invisibly, mutually
manipulate their behavior [San88].

(3) Rep: For realizing the Rep-operator one simply allocates multiple instances of the re-
spective submodel. Their merging is than achieved by either executing a Sync or a Join
on the level of the resulting high-level model description. As it will be pointed out below,
the Rep-operator can already be exploited by a monolithic SG generation procedure, so
that one is enabled to generate a reduced (bisimilar) SG on-the-fly.

After applying the above transformations, one is enabled to carry out a monolithic SG
generation procedure, even for compositionally constructed models. For constructing the
SG of the overall model, one executes each enabled activity of the high-level model, one at
a time, for each visited state, so that the model evolves from one state to another, where
each SV si can take an arbitrary value from N. This procedure yields the set of reachable
states (S)2 and the set of transitions among them, where the elements of S are mappings of
the following kind:
2 Reachable means, that there exists a sequence of activity executions which brought the state

about, starting in the initial state (this will be formalized in Sec. 4.2.2, Def. 4.9, p. 77).

2.5 Compositional state graph construction 25

M : (s1, . . . , s|S|) → N
|S|, (2.17)

and S ⊂ N|S|. As long as the high-level model’s underlying SG is finite the above procedure
will terminate.

Exploiting user-defined symmetries
As already mentioned previously, the employment of a Rep-operator yields strict lumpability
of states, or to be precise strong Markovian bisimularity. This can be exploited for generating
a reduced SG on-the-fly as follows:
For constructing a reduced SG on-the-fly each visited state is immediately replaced by
the macro state of the partition it belongs to, which yields the following effects: (a) One
only explores one state per partition, namely the macro state. (b) When generating the
successor states of a (macro) state one executes all enabled activities, where the target
states are once again immediately replaced by the partition representatives, and transitions
connecting the same pair of states are aggregated. I.e. one obtains a single transition between
pair of states, which is equipped with the cumulative rate. The main problem is now to
determine all states which belong to the same partition, so that each state can be replaced
by the state descriptor of its macro state. However, in the presence of explicitly modeled
submodel-imposed symmetries, this is no problem, the partitions and thus macro states of
each visited state can be determined on-the-fly. For simplification one may consider now
a high-level model consisting of m distinct and k identical submodels, and that states of
identical submodels are labeled in exactly the same way. Thus a state of the overall model
is given as a vector containing (m + k) sub-states, where each of the latter refers to a
specific unique or replicated submodel. A partition of the overall model contains now all
states, where the state vector is a permutation of the k sub-states, but carries identical
values on the m remaining positions. This allows one to transformed the k sub-states into
a canonical representation [San88], or to order the k sub-states in such a way that always
the lexicographic largest or smallest state descriptor is produced [Sie95]. This allows an easy
mapping of each newly reached state to its macro state.

One may note that even the above procedure exploits the compositional structure of high-
level models, the SG construction procedure is still monolithic, since the overall model’s SG
is not constructed from smaller components.

2.5 Compositional state graph construction

When generating the SG of a high-level model, the compositional structure of the latter
can be exploited. I.e. it might be possible to construct the SG of the overall model from
smaller components, e.g. the SGs of the submodels. This, which we denote as compositional
SG construction, may yield the following advantages:

(1) The runtime of the SG generation procedure may be reduced, since not all sequences
of independent activities have to be extracted explicitly. –This of course holds only for
symbolic compositional techniques, where states can be computed, rather than explicitly
generated.

(2) It is known that in case of activity-synchronization and for a limited class of Join-
composed models the transition rate matrix of the overall model can be represented by
a Kronecker operator based expression of submodel-local transition rate matrices, so
that the storage of the overall transition rate matrix is unnecessary.

(3) One may replace local SGs by smaller ones, as long as the information required for
composition is preserved, which is commonly denoted as compositional SG reduction.

Consequently approaches exploiting compositionality on the level of SGs are possibly not
only more run-time-efficient but also more memory-efficient.

26 2 Background Material

T1:

��
��

�s1
�a, λ

��
��

�t1

T2:

��
��

�s2
�

a, µ

��
��

�t2

T3 := T1‖{a}T2

��
��
�s1, �s2

�a, ϕ(λ, µ)

��
��
�t1, �t2

T4 := T1‖∅T2

��
��
�s1, �s2

������a, λ

������a, µ

��
��
�t1, �s2

��
��
�s1, �t2

Figure 2.2: Compositional SG construction for interleaving and synchronization

In the following paragraphs we will briefly explain the semantics of high-level model composi-
tion techniques on the level of SGs. Hereby the Kronecker operator (KO) driven composition
of local SGs [Pla85, Buc91, Sie95] for constructing an overall model’s CTMC will be dis-
cussed along the way. The definition of the respective operators is given in appendix A.3. The
compositional construction of a reduced SG of the overall models, when submodel-induced
symmetries are present, will also be discussed. However, details about the KO driven compo-
sition scheme are omitted here, they can be found in [Sie95]. This section will be concluded
by pointing out the limitations of Kronecker operator based composition schemes.

2.5.1 Fundamentals
In the following we briefly introduce some concepts as far as it is important for an under-
standing of the following paragraphs, a deeper discussion will follow in chapter 4.

It is assumed that each submodel Si consists of a finite ordered set of discrete state variables
(SVs) sij ∈ Si, and a finite set of activities (Acti). By executing activities, one at a time, the
model evolves from one state to another, where each SV sij can take an arbitrary value from
N. Since the set of SVs is finite and ordered, each state of submodel Si can be written as
a vector �si. The finite set of all reachable (submodel-local) states is denoted as Si ⊂ N|Si|,
An element of Si is a mapping:

Mi : (si1, . . . , s
i
|Si|) → N

|Si|, (2.18)

Thus a state of the overall model can be described as a vector over all submodel-local vectors
�si, so that the set of all SVs is given as union of the submodel local ones (S :=

⋃n
i:=1 Si)

and a state of the overall model as vector (s11, . . . , s
1
n1
, . . . , sji , . . . , s

n
1 , . . . , s

n
ni

). Analogously
the set of all activities is given by Act :=

⋃n
i:=1 Acti. For simplicity it is now assumed that

the local SG of submodel Si is denoted Ti and that it is generated on beforehand.

2.5.2 SG composition for pure interleaving
If no interaction among the submodels takes place one speaks of pure interleaving, i.e. the
submodels, which are in fact (disjoint) partitions of the overall model are executed in parallel.
On the level of the SG of the overall models this means:

2.5 Compositional state graph construction 27

�si
a,λ−→ �ti

(�s1, . . . , �si, . . . , �sn)
a,λ−→ (�s1, . . . ,�ti, . . . , �sn)

For the meaning of the above notation one may refer to Appendix A.4 (p. 163). An example
of pure interleaving is depicted in Fig. 2.2: SG T4 is obtained by pure interleaving of the
submodels. I.e. the non-interactive composition of T1 and T2 results in a pure interleaving
of the a transitions as induced by the high-level model activities of the respective submodel
S1 and S2.

As a result the SG T of the composed overall model (S) is the Cartesian product of the local
SGs (Ti) of the submodels (Si), commonly denoted as product SG (PSG).3 I.e. in case of n
submodels one has:

S := S1‖∅S2‖∅ · · · ‖∅Sn ⇒ T := T1 × T2 × · · · × Tn.

Each of the local SGs induces a transition rate matrix Ri of a (submodel-local) CTMC Ci
(cf. Eq. 2.16). These matrices can be combined via a Kronecker sum, yielding the transition
rate matrix R of the CTMC underlying the overall model [Pla85]:

S := S1‖S2‖ · · · ‖Sn ⇒ R :=
n⊕
i:=1

Ri

2.5.3 SG composition for activity synchronization
For simplicity we will now ignore priorities and execution rates of activities to be synchro-
nized. This is justified, since in the context of this thesis, we will develop a SG exploration
scheme, where constructivity as known from SPAs is irrelevant. Consequently the preserva-
tion of properties of the submodel-local SGs is here not important and thus the handling of
priorities and execution rates in a compositional style not necessary.

Composition scheme
When executing two submodels (S1 and S2) in parallel, a subset of the activities (S) may
have to be executed jointly, whereas other activities are executed in a pure-interleaved
fashion. As a result, the SG T of the composed SG is a subset of the Cartesian product
of the local SGs Ti of the submodels Si:

S = S1‖SS2‖S · · · ‖SSn ⇒ T ⊆ T1 × T2 × · · · × Tn.

As an example consider once again Fig. 2.2. The rate of transition a in SG T3, which results
from a synchronization of T1 and T2, is given by ϕ(λ, µ). In case of the SPA Tipp [HHK+98],
the rate of a synchronized Markovian transition is given by ϕ(λ, µ) = λ ·µ. However, other
policies for computing the resulting transition rate are also possible [Hil94b].

In the following, we describe how a synchronization of timed activities has to be handled on
the level of the SGs: Let S ⊆ Act be the set of activities to be jointly executed, where the
activities to be synchronized in the various submodels are assumed to carry the same label.
The following cases needs to be handled:

(1) Pure interleaved execution (a 	∈ S): This case was already discussed above.

(2) Synchronized execution (a ∈ S):

�si
a,λa−→ �ti ∧ · · · ∧ �sj a,λa−→ �tj

(�s1, . . . , �si, . . . , �sj, . . . , �sn)
a,ϕ−→ (�s1, . . . ,�ti, . . . ,�tj , . . . , . . . �sn)

where ϕ is a function over the set of rates of the activities participating in the synchro-
nization.

3 In case of SGs the Cartesian product is obtained by simply building the cross-product of the sets
of the (submodel-local) states and still maintaining the transitions between the combined state
descriptors.

28 2 Background Material

Kronecker operator driven composition of SGs
In case the submodels to be synchronized expose all the relevant information to the environ-
ment, it is possible to construct the transition rate matrix from the submodel-local transition
rate matrices by applying a Kronecker operator based scheme. To do this, it is required to
split each submodel-local transition rate matrix into a transition rate matrix referring to the
transitions as induced by non-synchronizing activities (Ri) and into a set of transition rate
matrices, where each refers to the transition induced by a specific synchronizing activity a
(Ri,a). The (potential) transition rate matrix of the overall model can then be constructed
as follows [Pla85]:

S := S1‖SS2 · · · ‖SSn ⇒ R̃ :=
n⊕
i:=1

Ri +
∑
a∈S

ωa

n⊗
i:=1

Ri,a (2.19)

The parameter ωa is a predefined weight, so that the rates of transitions referring to syn-
chronized activities are weighted with ωa. But one may also apply other strategies, the only
thing from concern is that the resulting rate can either be somehow computed from the
submodel-local rates or is a predefined constant. In this latter case ωa gives this constant
value, whereas the non-zero entries of the submodel-local transition rate matrices Ri,a are
replaced by ones. However, one may note that the transition rate matrix R̃ may contain
entries for non-reachable states, since the cross-product building of the above scheme does
not take the initial state of the overall model into account. However, if one knows the set of
reachable states, such positions can be identified easily.

Synchronization or Kronecker operator driven decomposition of models
Due to the advantages of compositional SG construction as illustrated at the beginning of
this section, it is not surprising that concepts known from compositional SG construction
have found their way into the world of monolithic high-level model descriptions, such as
GSPNs, etc.. Here a monolithic model is decomposed into partitions, where the activities
manipulating SVs of more than one partition are split accordingly. For obtaining the model’s
overall SG from the submodel’s local SGs, activity synchronization over the previously split
activities takes place [CT96, HHMR97], so that a representation of the model’s overall SG
is obtained by applying Eq. 2.19. In the following such a strategy will be denoted as Sync
driven decomposition. However it is important to note that the finding of a good partitioning
is still an open question.

2.5.4 SG composition for sharing of SVs
In case of a compositional SG construction the sharing of SVs is more complex, i.e. for
composing the SGs of the submodels, one must guarantee that one only combine submodel-
local states having the same values in the position of the shared SVs. For doing this one
may proceed as follows: Let the set of shared SVs be denoted J , where J ⊆ S and let for
simplicity the SVs to be shared among the different submodels have the same identifier, e.g.
sj . Analogously to the synchronization one may implement the Join-composition operator
on the level of submodel SGs then as follows:

S := S1 < J > S2 · · · < J > Sn ⇒ T̃ :=
n∑
i:=1

Ti × 1⊥S\Si
, (2.20)

where 1⊥S\Si
is the identity function on the SVs of set S \ Si. Similar to the composition

of submodels via joint execution of activities, the above scheme gives one also the potential
transition rate matrix (T̃). But knowing the set of reachable states, allows one to identify
positions referring to un-reachable states and replacing all respective matrix entries with
zeros, yielding the proper transition rate matrix T . However, one may already note, that the
above scheme is in general not to be realized by the means of a Kronecker sum (see discussion
below), so that the explicit storage of T may not be avoidable. But when employing symbolic
storage techniques, the memory consumption of T is not an issue.

2.5 Compositional state graph construction 29

2.5.5 SG composition for replication of submodels
The Rep-operator can be combined with the sharing of SVs or an activity synchronization.
In both cases it is possible to explore the submodel-local SGs and to apply one of the above
composition schemes for obtaining an un-reduced transition rate matrix of the overall model
and subsequently executes a reduction (a-posteriori reduction). However, when employing
non-symbolic storage techniques, such a naive approach may be hampered by the size of the
un-reduced transition rate matrix. Thus the advantage of an compositional SG reduction
technique is at hand, it simply avoids the construction of the un-reduced transition rate
matrix. But due to the nature of the Join and Sync-operator, Rep\Join and Rep\Sync have
to be discussed separately.
Before we proceed, one may note that we only will roughly investigate compositional SG
reduction, since in the context of this thesis an a-posteriori techniques will be introduced.
This is justified, since due to our symbolic technique the generation and storage of un-reduced
SGs is not an issue.

Compositional SG reduction when the Rep\Sync-operator is employed
The Rep-operator in combination with the synchronization of activities can be employed for
constructing a reduced SG in a compositional style. How to do this is described in [Sie95].
The main idea is as follows: At first one construct a reduced SG for the model consisting of
the replicated submodels only. Secondly one applies a Kronecker operator driven composition
scheme for composing the reduced SGs of the replicated submodels with the submodel-local
SG of the non-symmetric units, yielding a representation of a reduced transition rate matrix
of the overall model.

Compositional SG reduction when the Rep\Join-operator is employed
Contrary to activity-synchronization the Join-method does not allow to apply the concept
of constructivity in a straight forward manner. The notion of equivalence must be modified
in such a way, that two submodels are equivalent not only if they have the same timed
behavior, but also expose the same set of values taken by the SVs to be shared, to the
environment. Also the abstraction of internal behavior may only be restricted to activities
not affecting SVs, which are employed for sharing. If these aspects are obeyed, it seems to
be straight forward to reduce the SG of the replicated submodels and subsequently apply
the Join-composition scheme as introduced above. However, to the best of our knowledge
such a procedure is not yet described in the literature.

2.5.6 Limitation of Kronecker operator driven composition schemes
There are two significant drawbacks attached to schemes employing compositional SG con-
struction and representation. (a) The schemes either require the generation of the SGs of
the submodels in isolation and/ or (b) they require the high-level model to be of a certain
structure. This makes the employment, especially of the decomposition techniques in prac-
tice often problematic, if not impossible.

For coping with the first problem, recently developed approaches, including our own
activity/reward-local scheme, explore the submodels in a submodel-interdependent fash-
ion. As consequence, upper bounds of SVs need not to be known in advance, nor does a
submodel-local exploration in isolation have to be possible.

In contrast to the first (more general) problem, the second problem is not only related to
a compositional SG construction procedure, but to the employed composition scheme (cf.
Eq. 2.19 and 2.20). As it will be shown latter for applying a KO driven composition scheme
it is required that the SVs of the submodels appear in a non-interrupted sequence. If such
an order exists, the respective model is said to have a KO compliant structure (cf. Sec. 3.5.2,
p. 62ff)
If one takes now into consideration that each submodel must contain at least all those SVs

30 2 Background Material

which are relevant for the execution function of the submodel’s activities, it is evident that
there are high-level models which can not be transformed into their low-level representa-
tion by following a Sync driven decomposition strategy, since a KO compliant partitioning
of them does simply not exists. In such cases a KO based composition scheme and all ap-
proaches making use of it are not applicable. In the context of compositionally constructed
high-level models, this is most likely to be the case for Join-composed high-level models.
However, for compositional constructed high-level models, where submodels are composed
via Sync, this is not an issue, since in such setting a KO compliant structure of the overall
high-level model is always present, due to the fact that the submodels do not share any of
their SVs.

3

Zero-suppressed Multi-terminal BDDs:

Concepts, Algorithms and Applications

As major contribution this chapter presents zero-suppressed Multi-terminal Decision
Diagrams (ZDDs) and the concept of partially-shared ZDDs (pZDDs). This new type
of Decision Diagram will be shown to give canonical representations for pseudo-
boolean functions. Based on Bryant’s BDD-algorithms, algorithms for efficiently
manipulating pZDDs will be developed. A survey of ZDD based set and matrix
representation and manipulation will round this chapter, where concepts known
from Algebraic Decision Diagrams (ADDs) for solving sets of linear and differential
equations are extended to the case of ZDDs.

3.1 Organization of the chapter

In order to simplify the definitions of the different types of Binary Decision Diagrams
(BDDs), this chapter obeys a hierarchy of inheritance of basic concepts among the vari-
ous types (cf. Fig. 3.15, p. 70). Since the different data structures become more complex as
more different concepts are combined, this chapter starts in Sec. 3.2 with the ordinary and
most simple form, the Binary Decision Trees (BDT). After the reader is familiar with the ba-
sic concepts, the next thing to follow is the introduction of reduction rules. Therefore Sec. 3.2
subsequently introduces the basic reduction rules for BDTs, yielding isomorphism-free and
shared BDDs, and their extended version of don’t-care-free and zero-suppressed BDDs. The
discussion on the basic BDD-types is rounded by Sec. 3.2.3 introducing their multi-terminal
extensions. This yields the well known type of (don’t-care-free) Multi-terminal BDDs, which
are also commonly denoted as Algebraic Decision Diagrams (ADDs) and zero-suppressed
Multi-terminal BDDs (ZDDs), where to the best of our knowledge this latter type has not
been described in the literature yet.

If employing the zero-suppressing reduction rule, the graph of a DD alone does not define
the represented function, the set of boolean variables the DD is defined over also must be
known. Within a shared BDD environment it is required to handle ZDDs being defined
over different sets of boolean variables. Standard algorithms as known from literature fail
to do so. For solving this problem, this work develops the concept of partially shared ZDDs
(pZDDs), which is described in Sec. 3.3. Based on this concept, Sec. 3.4 introduces algo-
rithms for efficient manipulation of pZDDs.

Now the discussion is ready for tackling the main issue of symbolic data types in the context
of this work: Symbolic representation of sets, transition relations and matrices. Therefore
Sec. 3.5 discusses how z-BDDs over n boolean variables and their multi-terminal extensions
can be employed for encoding sets of states, - transition relations and real-valued matrices.
Since the solvers for computing state probabilities considered in this work follow the hybrid
solution approach, “pure”-symbolic matrix-matrix - and matrix-vector operations are irrele-
vant, except the cross-product building of matrices. Due to its relevance for SG composition
(cf. Sec. 2.5, p. 25ff), this operation in case of ZDD based matrices and its difference to the
Kronecker product of matrices is discussed in great detail. What follows next is a discus-
sion on how to extend ZDDs for efficiently solving very large sets of linear and differential
equations, where we follow the hybrid approach as suggested by [Par02] for ADDs. The last
paragraph of Sec. 3.5 is then devoted to briefly discussing the latest storage techniques going
beyond symbolic matrix representations.

31

32 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

The chapter is concluded by Sec. 3.6, which gives an overview over related work and indicates
our own contributions.

3.2 Binary Decision Diagrams and extensions

3.2.1 Binary Decision Diagrams (BDDs)

Binary Decision Trees (BDTs)
An ordered Binary Decision Tree (BDT) is a bi-partite graph, where the variables labeling
the non-terminal nodes obey a fixed total ordering. BDTs are defined as follows:

Definition 3.1: Binary Decision Tree

An ordered Binary Decision Tree (BDT) B < V , π > is a rooted binary tree B < V , π >:=
{K, var, then, else}:
(1) V is a finite and non-empty set of boolean variables with the fixed ordering relation

π ⊆ V × V defined one.

(2) K = KT ∪KNT is a finite non-empty set of nodes, consisting of the set of terminal nodes
KT and non-terminal nodes KNT , with KT ∩ KNT = ∅.

(3) The following functions are defined:
(3.a) the value-returning function value : KT �→ � for each terminal node,
(3.b) the variable-returning function var : KNT �→ V for each non-terminal node,
(3.c) the child node-returning functions else, then : KNT �→ K for each non-terminal

node, and
(3.d) the root node-returning function getRoot : B �→ K.

(4) For the BDT to be ordered the following constraint must hold:

∀u ∈ KNT :
then(u) ∈ KNT : var(then(u)) π> var(u)
else(u) ∈ KNT : var(else(u)) π> var(u).

The relation π allows one to write the elements of V as a vector �v := (v1, . . . vnV). It is
defined that v1 is the boolean variable with the lowest and vnV the one with the highest
order with respect to the elements of V . We define that �v [i] returns the variable at position
i, where we will also write vi instead. Since π is assumed to be fixed, we will also employ
the notation B <�v >, in case �v is also known we simply write B.

While traversing a BDT from the root node to a terminal node, one visits a sequence of
nodes. Such a sequence p := (nr, . . . , nq, t); with nr, nq ∈ KNT and t ∈ KT and is commonly
denoted as path. In the following PB denotes the set of all paths of a BDT B. The nodes
as contained in paths are ordered by the sequence of their appearance, starting at the root
node of the BDT.

Summarizing the above discussion, the following conventions, concerning the graphical rep-
resentation of BDTs and their derivatives, are applicable:

(1) The nodes of a BDT are organized level-wise, where all nodes labeled with the same
variable x ∈ V appear at the same level. Sometimes we therefore speak of a level of a
node, rather than of its variable.

(2) The order π is applied from top to bottom, so that the variable with the highest order
appears at the bottom, and the variable with the lowest order at the top-level.

3.2 Binary Decision Diagrams and extensions 33

(3) The terminal nodes always appear at the bottom-level.

(4) Arrow-heads of the directed edges among the BDT nodes can be omitted, since the
graph of a BDT is to be traversed always from the root to the terminal node, i.e. from
top to bottom.

(5) then− and else−edges, also commonly denoted as 1- and 0-edge, are represented by a
solid, dashed line respectively. In this respect one also speaks of a 0- or 1-child of a node,
when referring to the nodes reached via the respective outgoing edge of a non-terminal
node.

Fig. 3.1.i (p. 34) illustrates a complete BDT, as one can see the variable ordering is obeyed
on all paths. The non-terminal node n3 is the 1-child of root node n1, where the 0-child of
the latter is node n2. One may note that in contrast to Fig. 3.1, the above definition do not
require the BDTs to be complete. I.e. a path within a BDT may not necessarily contain all
of its function variables.

Semantics of BDTs
The Shannon expansion develops a boolean function f : �|nV | → � by replacing each of
the nV variables of V by the respective literal (cf. Def. A.1, p. 162). It is straight forward to
organize the process of BDD construction for a boolean function by applying the Shannon-
expansion recursively, starting with the allocation of nodes at the level of terminal nodes.
Thus it follows immediately that a BDT must be the graph based representation of a boolean
function. Consequently each BDT-node represents a function. The set of boolean assignments
fulfilling a boolean function fk represented by a BDT-node k can be defined as follows:

Satk := {�b | Satisfy(�b, k,�v) 	= 0} (3.1)

where Satisfy is specified as Algo. B.1 (p. 164). As input parameters it takes a bit string
of length nV , the root node of the respective BDT and the vector of function variables the
BDT is defined over. Each of the fulfilling assignments �b defines a monomial as follows:

Minterm(�v,�b) :=
nV∧
j:=1

xj ,where xj :=
{

vj iff bj = 1
¬vjiff bj = 0 (3.2)

where the j’th variable is mapped to the j’th bit position. Since each induced monomial
is complete with respect to the set of boolean variables the BDT rooted in n is defined
over, one may also speak here of minterms as defined by Eq. 3.2. The disjunction over all
the induced minterms gives one the canonical SOP of the represented boolean function as
follows: ∨

Satn

Minterm(�v,�b) (3.3)

From the above discussion it arises that from the graph of a BDT directly a boolean function
can be deduced. Furthermore each BDT node n already defines a boolean function fn(�b),
where the mapping of bit position i to a variable vj ∈ V must be adjusted accordingly
(vj = �v[i]). Function fk may also be denoted fB if k is the root node of BDT B. The terminal
0-node gives the constant 0-function and the terminal 1-node the constant 1-function.

Isomorphism-free BDDs
If one turns back to the BDT of Fig. 3.1.i, it is easy to see that the terminal 1-nodes and
0-nodes occur multiple times. This redundancy can be eliminated by representing all these
terminal nodes by a single 1-node and a single 0-node, where the incoming arcs of the nodes
to be replaced are re-directed towards the remaining nodes (see Fig. 3.1 (i) and (ii)). As
a result, one obtains a degenerated BDT, where the non-terminal nodes of a BDT with

34 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

0 1 0 0 00 1 1 10 10 10

VV

KTKT

(i) Complete BDT (ii) Partially reduced
BDD

(iii) iso-free BDD

v1v1

v2v2

v3v3

n1 n1n1n1

n2 n2n2n3 n3n3

n4 n4 n4n4n5 n5n6 n6 n6n7 n7n7

Figure 3.1: BDTs and the merging of isomorphic structures

the highest order, which are labeled by the same variable, may possess the same 1- and 0-
child (terminal) nodes. Such non-terminal nodes are isomorphic, and they represent the same
boolean function, including variable labeling. Consequently such nodes can be merged, where
the redundant one can be eliminated once again. I.e. in general within a BDD-environment,
BDTs representing the same boolean function are merged. The merging of two BDT-nodes
can hereby be recursively applied in a bottom-up manner, or it can be directly incorporated
into the node allocating function. The isomorphism of nodes is defined as follows:

Definition 3.2: Isomorphism for BDT nodes

Two BDT-nodes u, v ∈ K of a BDT B are isomorphic if they represent the same boolean
function, including the labeling of the employed variables. This yields the following recursive
definition:

(1) Non-terminal case: u, v ∈ KNT
u ≡ v ⇔ var(u) = var(v) ∧ else(u) = else(v) ∧ then(u) = then(v)

(2) Terminal case: u, v ∈ KT : u ≡ v ⇔ value(u) = value(v)

The application of the above definition enforces a collapsing of isomorphic sub-structures,
so that the result is a directed acyclic graph rather than a tree, which is why one speaks of
Binary Decision Diagrams. An isomorphism-free Binary Decision Diagram (iso-free BDD)
is defined as follows:

Definition 3.3: Isomorphism-free Binary Decision Diagram

An isomorphism-free BDD (iso-free BDD) B < V , π > is a degenerated BDT B := {K, var,
then, else}, where in the sense of Def. 3.2 only unique nodes exist:

	∃ u, v ∈ K : u 	= v ∧ u ≡ v.

In the following all BDDs are considered to be isomorphism-free.

Fig. 3.1 shows how the merging of isomorphic nodes can be applied in a bottom-up fashion.
However, this is not necessary, one simply needs to encapsulate the above rule into the
functions: getTerminalNode(b), where b ∈ {0, 1} and getUniqueNode(v, t, e), where v ∈ V

3.2 Binary Decision Diagrams and extensions 35

1 0 0 110 1 01 0 0 110 1 0

VV

KTKT

B3B2 B4B1

v1v2¬v3v1v2¬v3¬v1v3 + v1v2¬v3¬v1v3 + v1v2¬v3 ¬(v1v2¬v3)¬(v1v2¬v3)¬v1 + v1v3¬v1 + v1v3

(A) BDD B1 for(A) BDD B1 for (B) BDD B2 for(B) BDD B2 for (C) BDD B3 for(C) BDD B3 for (D) BDD B4 for(D) BDD B4 for

v1v1

v2v2

v3v3

l1l1

l2l2 l3l3

l4l4 l5l5

n1n1

n2n2 n3n3

n4n4 n5n5
n6n6

k1k1

k2k2 k3k3

k4k4
k5k5

m1m1

m2m2 m3m3

m4m4 m5m5

Figure 3.2: iso-free BDD based representations of boolean functions

and t, e ∈ K for allocating terminal and non-terminal nodes within a BDD-environment.
These functions allocate a new node only if there does not yet exists an isomorphic one,
otherwise they return the existing node. This strategy is very important, when handling
different BDDs at the same time, since even among different BDDs it guarantees, that
isomorphic nodes are merged, which yields shared or multi-rooted BDDs, as to be discussed
next. Examples of iso-free BDDs are drawn Fig. 3.2.

Shared BDD-environment
The concept of sharing (sub-)graphs between different BDDs is straight forward and a well
accepted technique to increase the efficiency of BDDs. Due to the strict application of the
isomorphism rule of Def. 3.2 (p. 34) within a single BDD-environment, two isomorphic nodes
never co-exist. Consequently within a shared BDD-environment there is in principle only one
global set of nodes for each variable, one global set of terminal nodes and one global set of
boolean variables (V). However, the set of function variables of a function fn, as represented
by node n is a sub-set of V (Vn ⊆ V), requiring the adaptation of the mapping of bit
position i to variable vj ∈ Vn. However, concerning function Satisfy this is irrelevant, since
its third input parameter is assumed to be the ordered sequence of the function variables of
the represented function (cf. Algo B.1).

In the remainder of this section, all BDDs are assumed to be shared. But in terms of graphical
representation the concept of non-shared BDDs is maintained, which improves the clearness
of the drawn graphs as well as the clearness of the call-trees of the algorithms presented
later. Fig. 3.3 shows the respective graph if the BDDs of Fig. 3.2 were allocated in a shared
BDD-environment.

Don’t-care-free BDDs
A don’t-care-free BDD (dnc-free BDD) is a BDD, where don’t-care nodes are eliminated,
and the incoming edges are re-directed to the child n. Hereby a non-terminal node d is
considered as dnc-node if its 1- and 0-edge point to the same node n ∈ K. The Shannon
expansion concerning a function f as represented by a BDD rooted in a dnc-node labeled
with variable vk is given as follows:

f = ¬vkf0 + vkf1 where f0 = f1 per dnc-rule
= (¬vk + vk)f ′ for f ′ := f0 = f1
= f ′

(3.4)

36 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

10

V

KT

B2 B3 B4B1

v1

v2

v3

l1 n1

n2

n4

k1

k2 k3

k4 k5

m1

m2m3

m4

Figure 3.3: Shared or multi-rooted iso-free BDDs

Obviously variable vk is a non-decisive variable for function fd. The sub-functions f1 and
f0, which are rooted in the then- and else-child n of don’t-care node d are the 1- and 0
co-factor of function fd, consequently we will also use the notation fd1 and fd0 . A dnc-free
BDD can be formally defined now as follows:

Definition 3.4: Don’t-care-free BDD

A don’t-care-free BDD (dnc-free BDD) B < V , π > is a iso-free BDD B := {K, var, then,
else} where don’t care nodes are eliminated:

	∃u ∈ KNT : else(u) = then(u).

For exemplification one may turn to Fig. 3.4, which shows diverse examples of dnc-free BDDs
as obtained from the BDDs of Fig. 3.2 (p. 35) by eliminating the dnc-nodes bottom-up and
merging the newly created isomorphic sub-structures. However, it should be clear that the
dnc-reduction rule can easily be encapsulated into a node allocating function. Thus it is
not necessary to define a respective reduction algorithm for obtaining dnc-free BDDs. This
node-allocating algorithm (getUniqueNode) returns a node labeled with variable vi if e 	= t.
In case e = t getUniqueNode returns node e, since under the dnc-reduction rule incoming
arcs of a dnc-node are re-directed to its 0 and 1-child.

In cases of paths where levels are skipped, more than one assignment is deducible. This
feature arises from the fact that for each skipped-variable vj , which we will also denote as
dnc-variable, the respective bit at position i can take the values 0 or 1. As a consequence each
path, containing the terminal 1-node induces ultimately two minterms for each dnc-variable
vj , namely a minterm where the variable x is set to vj and a minterm where x is set to ¬vj .
But the existence of dnc-variables does not require a re-definition of algorithm Satisfy,
namely the version introduced for BDTs handles paths where variables are skipped (cf. line
3 of Algo. B.1, p. 164). According to Eq. 3.3 (p. 33) one may build the disjunction over all
minterms as induced by the set of fulfilling assignments, in order to obtain the canonical
SOP of the represented function. It is straight-forward that dnc-variables can be eliminated
then from each minterm, so that one yields the minimal DSOP of the represented function.
Thus it should be clear that if V and π is fixed, a dnc-free BDD is a (strong) canonical
representation of a boolean function, where a graph alone defines the represented function
(cf. [Sas96, MT98, Bai05]).

In a shared BDD-environment a dnc-reduction rule also implies that for a BDD B it
does not matter, whether it is defined on the whole set of boolean variables or not. I.e.

3.2 Binary Decision Diagrams and extensions 37

1 0 0 110 1 0

V

KT

B3B2 B4B1

fB3 :=v1v2¬v3fB2 :=¬v1v3+v1v2¬v3 fB4 :=¬(v1v2¬v3)fB1 :=¬v1+v1v3

v1

v2

v3

n1

n2

n3
n4

k1

k2

k3

m1

m2

l1

l2 m3

Figure 3.4: dnc-free BDD based representations of boolean functions

all variables 	∈ VB are skipped within all paths as contained on PB. Due to their dnc-
semantics on all paths(!), these variables are not-decisive for the represented function.
For exemplification one may refer to B1 as depicted in Fig. 3.4. Since the level of vari-
able v2 is skipped on all paths leading to the terminal 1-node (l1, 1), (l1, l2, 1) one may
remove v2 from the set of variables of B1. I.e. according to Eq. 3.3 (p. 33) one ob-
tains f(v1, v2, v3) := ¬v1v2 + ¬v1¬v2 + v1v2v3 + v1¬v2v3 which can be re-formulated to
f(v1, v3) := ¬v1 + v1v3, which truly does not depend on the variable v2.

In the literature dnc-free BDDs are often denoted as RO BDDs or simply as BDDs. In
order to simplify the definition of zero-suppressed BDDs, a more restrictive notation is em-
phasized. I.e. in the following a BDD addresses the isomorphism-free version of an
ordered BDD, where in case of a dnc-free BDD the dnc-reduction rule is addition-
ally obeyed.

3.2.2 Zero-suppressed BDDs (z-BDDs)
Zero-suppressed BDDs [Min93] are derivatives of BDDs, however all non-terminal nodes,
where the 1-child is the terminal 0-node (0-suppressed node), are eliminated. Consequently
the expansion rule concerning a function f as represented by a BDD rooted in a 0-suppressed-
node labeled with variable vk is given by:

f = ¬vkf0 + vkf1 where f1 = 0, per 0-sup-rule
= ¬vkf0

(3.5)

According to the Shannon expansion f is obviously not independent of vk, thus vk is one of
its decisive variables! In order to eliminate 0-sup.-nodes, their incoming edges are re-directed
towards the 0-child. The 0-sup. reduction applied in a recursive manner yields:

Definition 3.5: Zero-suppressed BDD

A zero-suppressed BDD (z-BDD) Z < V , π > is a iso-free BDD B := {K, var, then, else},
where

	∃ u ∈ KNT : then(u) = 0-node.

Fig. 3.5 shows some examples for z-BDDs, where the drawn graphs are obtained by applying
the 0-suppressing (0-sup.) reduction rule to the BDDs of Fig. 3.2 (p. 38). Analogously
to the dnc-, the 0-sup.-reduction rule can be easily encapsulated in the respective node
allocating function (getUniqueZDDNode). This function returns a node labeled with variable
vi if t 	= 0-node, otherwise it returns node e, since under the 0-sup.-reduction rule incoming

38 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

1 0 110 0 1 0

V

KT

Z1 Z2 Z3 Z4

fZ3 :=v1v2¬v3fZ2 :=¬v1v3∧ v1v2¬v3 fZ4 :=¬(v1v2¬v3)fZ3 :=¬v1+v1v3

v1

v2

v3

l1

l2 l3

l4 l5

n1

n2 n3

n4

k1

k2

m1

m2 m3

m4 m5

Figure 3.5: z-BDD based representations of boolean functions

arcs of a 0-sup. node are re-directed to its 0-child.

As a consequence of the 0-sup. reduction rule (cf. Eq. 3.5, p. 37) the graph of a z-BDD
alone does not define the represented boolean function. One also needs to know the set
of variables of the z-BDD, in order to deduce the encoded boolean function correctly. For
exemplification one may refer once again to the z-BDD Z3 of Fig. 3.5. Here variable v3 is
skipped on all paths within Z3. Under a dnc-free BDD this does not matter, since v3 is
non-decisive, i.e. it is interpreted as being either 1- or 0-assigned, so that the value of the
bit at position 3 does not change the function value. Thus the graph interpreted as a dnc-
free BDD defines the boolean function f := v1v2v3 + v1v2¬v3 = v1v2. If one interprets the
graph as a z-BDD, the situation for paths ending up in the terminal 1-node differs. If one
assumes that VZ3 := {v1, v2} the same situation as in case of a dnc-free BDD is achieved,
namely the value of v3 does not change the outcome of function fZ3(v1, v2). However, since
VZ3 := {v1, v2, v3}, only the assignment �b := 110 yields a function value of 1, where all
other assignments can be evaluated to the function value 0. According to Eq. 3.3 (p. 33)
this yields the function fZ3(v1, v2, v3) := v1v2¬v3 instead of v1v2. As one can see, in contrast
to BDDs and dnc-free BDDs, for a z-BDDs graph the represented function may change as
soon as the set of variables changes. E.g. within a shared BDD-environment the terminal
1-node in isolation must be interpreted as the function

∧nV
i:=1 ¬vi, rather than the constant

1-function as in case of BDDs and dnc-free BDDs. In contrast, the constant 0-function is
still represented by the terminal 0-node, no matter which BDD type is employed. So in case
of z-BDDs, a shared BDD environment means not only the sharing of the same sub-graphs,
it means also a sharing of all variables the z-BDDs are defined over. If V and π are fixed, a
z-BDD Z < V , π > is a (weak) canonical representation of a boolean function [Min96, Bai05]
and its graph rooted in node n gives the canonical SOP of this function fn by applying
Eq. 3.3 in combination with the appropriate version of function Satisfy. The 0-sup.-version
of the latter is presented as Algo. B.2 (p. 164). For the time being it is therefore now
assumed, that the z-BDDs are all defined on the same set of variables V.

3.2.3 Multi-terminal BDDs (ADDs)
Don’t-care free Multi-terminal Binary Decision Diagrams, which are commonly known
as Multi-terminal Binary Decision Diagrams (MTBDDs) or Algebraic Decision Diagrams
(ADDs), are an extension of dnc-free BDDs [ADD97]. The original concept was introduced
in 1993 by two different groups of authors [CFM+93, CMF+93, BFG+93]. Extending a dnc-
free BDD to the case of an ADD is straight forward. One simply extends the co-domain
of function value (cf. Def. 3.1, p. 32) to a finite set � from an arbitrary universe, e.g. �.
Consequently an ADD M is the graph based representation of a pseudo-boolean function
fM: �n �→ �, and we formally define it as follows:

3.2 Binary Decision Diagrams and extensions 39

(i) Function fB

v3v4v5v6

b1b2b3b4
fB(�b)

1 1 1 0
1 0 0 1

δ

0 1 0 1
0 1 0 0

γ

0 0 1 0 µ

(ii) Function fA

v1v2

b1b2
fA(�b)

1 1 1

0 0 1

(iii) ADDs representing
function fA and fB

1

A

B
v2

v4

v6

v1

v3

v5

KTδ µγ

Figure 3.6: ADD based representations of pseudo-boolean functions

Definition 3.6: Algebraic Decision Diagram

An Algebraic Decision Diagram (ADD) M < V , π,� > is a dnc-free BDD B :=
{K, var, then, else}, where

(1) a finite non-empty set �,

(2) and a function value : KT �→ � is defined.

The functionality of allocating terminal nodes holding also values other than 0 and 1, can
be easily encapsulate into function getTerminalNode. Since the set of variables V and its
total order π are assumed to be fixed and since the set of terminal values is often not from
concern, we will also employ the notation M.
Examples for ADD based representations of pseudo boolean functions are given in Fig. 3.6,
where the ADD A is the special case of a dnc-free BDD, also commonly denoted as 0-1
ADD. For clarity the labels of the nodes were omitted, as well as the edges leading to the
terminal 0-node. These “graphical simplifications” will be maintained throughout the rest
of this work, unless required for exemplification purpose. In order to reduce the function ta-
bles as presented in Fig. 3.6.i and ii, the non-decisive variables of the represented functions
are omitted, e.g. v1, v2 	∈ VB. Furthermore, table i and ii show also the mapping of each
boolean variable vj to its bit positions bi within the assignment fulfilling the function fA, fB

respectively.

3.2.4 Zero-suppressed Multi-terminal BDDs (ZDDs)
Like dnc-free BDDs were extended to ADDs, one may also extend z-BDDs to the multi-
terminal case, yielding:

Definition 3.7: Multi-terminal zero-suppressed BDD

A multi-terminal zero-suppressed BDD (ZDD) Z < V , π,� > is a z-BDD Z :=
{K, var, then, else}, where

(1) a finite non-empty set �,

(2) and a function value : KT �→ � is defined.

40 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

(i) Function fB

v1 v2 v3 v4 v5 v6

b1 b2 b3 b4 b5 b6
fB(�b)

dnc dnc 1 0 0 1
dnc dnc 1 1 1 0

δ

dnc dnc 0 1 0 1
dnc dnc 0 1 0 0

γ

dnc dnc 0 0 1 0 µ

(ii) Function fA

v1 v2 v3 v4 v5 v6

b1 b2 b3 b4 b5 b6
fA(�b)

1 1 dnc dnc dnc dnc 1

0 0 dnc dnc dnc dnc 1

(iii) Shared ZDDs for fA and fB

1

AB

v2

v4

v6

v1

v3

v5

KT

k1

k2

k3

k4

k5

k6

n1

n2

n3

n4 n5

n6 n7

n8 n9

δ µγ

Figure 3.7: ZDD based representations of pseudo-boolean functions

Examples for ZDD based representations of pseudo-boolean functions are given in Fig. 3.7.
The illustrated ZDDs represent herby the same pseudo-boolean functions as already illus-
trated in Fig. 3.6. However, as one can see, various dnc nodes are required to be inserted,
n1, n2, n9 and k3 − k6. Since some of them appear on all paths, the associated boolean vari-
ables are non-decisive variables concerning the represented function (cf. Eq. 3.4, p. 35). In
order to reduce the size of the function tables as shown in Fig. 3.7.i and 3.7.ii, bit positions
referring to non-decisive variables are marked accordingly, so that their explicit 0- and 1-
assignments could be omitted. Furthermore table i and ii show also the mapping of each
boolean variable vj to its bit positions bi within the assignment fulfilling the function fA, fB

respectively. It is clear that one may wish to remove non-decisive variables and their dnc-
nodes, not only from the function table, but also from a ZDD’s graph, e.g. v1, v2 and v3 	∈ VB

and thus from the set of boolean variables it is defined over. However, until now a (fully)
shared BDD-environment is assumed, and thus dnc nodes at the respective levels need to
be allocated, since otherwise one would interpret the associated bit position –referring to
skipped variables– as 0-assigned!

3.3 Partially shared ZDDs (pZDDs)

Until now, it was assumed that all BDDs were allocated in a shared BDD-environment, i.e.
all decision diagrams (DDs) possess the same set of function variables. In case of BDDs and
ADDs this assumption is without significance, since the variables of skipped levels are always
interpreted as dnc-variables, where dnc-variables do not change the monomial as induced by
a respective path and thus do not influence the semantics of the represented function (cf.
Sec. 3.2.1, p. 35). However, in the context of z-BDDs skipped variables within a variable
sequences as induced by a path p := (nr, . . . , nq, t) have different semantics. This semantic
depends on the value of the terminal node t and the level of the final non-terminal node nq:

(1) value(t) = 0 ∧ var(nq) <π �v[nV]:
Skipped variables with larger order than the variable labeling node nq are interpreted
as referring to dnc-variables. This interpretation arises from the fact that the incoming
edges of the fictitious nodes of the skipped levels are re-directed to the 0-child, which
is here also its 1-child, namely the terminal 0-node. For exemplification one may refer
to z-BDD Z3 depicted in Fig. 3.5. On the dashed line v2 and v3 are skipped, yielding a
dnc-semantics for them on the resp. path. Consequently the assignments (0,0,0); (0,0,1);
(0,1,0); (0,1,1); and (1,0,0); (1,0,1); obtain the function value 0.

3.3 Partially shared ZDDs (pZDDs) 41

(2) all other cases:
Each variable skipped within a path is interpreted as being 0-assigned. Consequently the
bit at position i of the assignment as induced by a path p takes the value 0 and thus the
derived minterm contains ¬�v[i]. For exemplification one may refer once again to z-BDD
Z3 of Fig. 3.5, but this time to the path leading to the terminal 1-node. Here variable
v3 is skipped, which gives one the assignment (1,1,0) due to the 0-sup.-reduction rule in
case of v3.

Consequently the function as represented by a ZDD-node and its subgraph can only be
deduced correctly, if the set of variables is known. Furthermore also the algorithms for ma-
nipulating ZDDs only work properly, if the set of variables the respective ZDDs are defined on
are given. This is not problematic as long as one operates within a shared BDD-environment,
where each ZDD has the same set of variables. Consequently within a non-fully shared
BDD-environment a ZDD-node alone does not define a boolean function. I.e. if
allocating ZDDs in a shared BDD-environment, where a variable is supposed not to be de-
cisive for a specific ZDD, a case distinction must always be made, where one always checks
whether a variable belongs to a given ZDD or not while traversing the respective ZDD.
In the following, ZDDs which are defined on a subset of the variables of the entire BDD-
environment, will be denoted as partially shared ZDDs (pZDDs). The set of variables, i.e.
the set of all variables defined in a BDD-environment is from now on denoted VG. Since
z-BDDs are a special case of ZDDs, also often denoted as 0-1 ZDDs, it is furthermore clear
that the concepts and algorithms to be developed in the following are also applicable there.

3.3.1 Definitions
Basically one has two choices for making the graphs of pZDDs a canonical representation of
boolean functions:

(1) Inserting dnc-nodes at the respective levels, which is the strategy which was applied
in Fig. 3.5 for z-BDD Z1 and for the ZDDs depicted in Fig. 3.7. By doing so, one
artifically converts the pZDDs into fully shared ZDDs, allowing the use of well known
BDD-algorithms [Bry86], adapted to the 0-sup.-reduction rule (cf. [Bai05]). However,
doing so comes at the cost of significantly increasing the memory consumption and thus
also time efficiency of the resulting implementation.

(2) One may equip each node n with the set of variables Vn the function to be represented
is defined over.

In the following design alternative two will be applied.

As already indicated in Def. 3.2 (p. 34), together with the canonicity of BDDs, it is clear
that within a shared BDD-environment, the nodes representing the same (pseudo-) boolean
function are merged. However, for pZDDs this means, two nodes n and m can only be
considered as isomorphic iff their sub-graphs and their set of variables of the resp. functions
are also identical. This leads one to the following definition:

Definition 3.8: Set of function-variables
.

Let the function varset : K �→ V be defined, assigning a set of function variables (Vn) to
each node n. The elements of Vn are denoted as function-variables. Since the relation π is
still defined on the function-variables, the elements of each Vn can be mapped to a vector
�vn, so that �vn[i] refers to the i′th variable and the i’th bit position of a resp. assignment.

The above definition forces one to define a set of function-variables for each node. However
this also allows to directly deduce the represented function from the graph. E.g. assigning
the empty set to the terminal non-0-nodes yields, that a terminal non-0-node n represents
the constant value(n)-function with value(n) 	= 0, rather than the function:

42 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

1 1 00 1 0 1 0

V

KT

Z1Z1Z1 Z2Z2

v1

v2

v3

{v1,v3}
{v1,v3}

{v3} {v3}{v3} {v3}{v3}{v3}

{v1,v2,v3}{v1,v2,v3}

{∅}
{∅}{∅} {∅}{∅} {∅}

l1

l2 l3

l4 l5

n1 n1

n2 n3

k1k1

k2k2 k3k3

(a) (b) (c) (d)

Figure 3.8: pZDD based representation of boolean functions

fn(�b) :=
{
value(n) ⇔ �b = �0
0 otherwise

as it would be the case in a shared BDD-environment. Contrary to this, the terminal 0-node
always represents the constant 0-function.

Based on the set of function-variables, one is enabled to re-define the isomorphism-rule for
nodes, yielding:

Definition 3.9: Isomorphism of ZDD-nodes

Two ZDD nodes n,m ∈ K are isomorphic iff they are isomorphic according to Def. 3.2
(p. 34) and their sets of function-variables are identical, i.e.:

(1) Non-terminal case: n,m ∈ KNT
n ≡ m⇔ var(n) = var(m) ∧ else(n) = else(m) ∧ then(n) = then(m) ∧ Vn = Vm

(2) Terminal case n,m ∈ KT : n ≡ m⇔ value(n) = value(m) ∧ Vn = Vm.

For exemplification one may refer to Fig. 3.8. If the ZDDs of Fig. 3.8.a and b are both inter-
preted as standard shared ZDDs, i.e. VZ1 = VG, they represent different functions, namely
the boolean function fZ1 := ¬v1 + v1v3 in case of Fig. 3.8.a and fZ1 := ¬v1¬v2 + v1¬v2v3

in case of Fig. 3.8.b. However, if the variables v1 and v3 are the only function variables for
the function represented by node k1, the graphs of Fig. 3.8.a and b are interpreted as the
same function. In contrast the ZDDs of Fig. 3.8.b and 3.8.c have isomorphic graphs, with
respect to Def. 3.2 (p. 34). In a shared BDD-environment they consequently would repre-
sent the same function and would be stored as a single ZDD, which is truly not what was
intended. By defining sets of function-variables for their root nodes, where Vn1 = VG, and
Vk1 = {v1, v3}, and interpreting each graph over these sets, the intended different interpre-
tation is achieved. Consequently within a BDD-environment, where each node is intended to
represent a unique boolean function, node k1 and n1 can not be merged. This is achieved by
strictly applying the isomorphism-rule of Def. 3.9. Its application is illustrated in Fig. 3.8.d
where Z2 and Z3 are stored as multi-rooted ZDD. In contrast to node n1 and k1 the nodes
n2 and k2, as well as n3 and k3 can be merged, since they have isomorphic sub-graphs and
identical sets of function-variables. Embracing the above discussion, we define pZDDs now

3.3 Partially shared ZDDs (pZDDs) 43

Algorithm 3.1 Function for allocating unique pZDD nodes only
getUniquepZDDNode(v, t, e,V i)
(0) if t = 0-node then ;
(1) if e �∈ KT then ;
(2) return getUniquepZDDNode(v, then(e), else(e),Vi);
(3) else
(4) return getTerminalpZDDNode(Vi, 1);

(5) else
(6) Kv

NT := {n ∈ KNT |var(n) = v};
(7) if ∃n ∈ Kv

NT : then(n) = t && else(n) = e && Vn = Vi then
(8) return n;
(9) end
(10) n := getNode(v, t, e,Vi);
(11) KNT ←− n;
(12) return n;

formally as follows:

Definition 3.10: Multi-terminal partially shared zero-suppressed BDD

A partially shared zero-suppressed multi-terminal BDD (pZDD) Z < VZ, π,� > is a ZDD
Z := {K, var, then, else, varset}, where

(1) each node u ∈ K is equipped with a set of function-variables varset(u) := Vu (Def. 3.8),
and

(2) 	∃u, v ∈ KZ : u 	= v ∧ u ≡ v according to Def. 3.9 holds.

The new rule for node isomorphism can once again be encapsulated in the function
getUniquepZDDNode for allocating unique pZDD-nodes. As input parameters this algorithm
takes the variable the allocated node needs to be equipped with (v), its then and else-child,
and its set of function variables (Algo. 3.1, p. 43).

An example for the pZDD based representation of pseudo boolean functions is given in
Fig. 3.9 (p. 44). The function tables are given in Fig. 3.9.i and 3.9.ii. The drawn pZDDs are
intended to represent the same pseudo boolean functions as illustrated in Fig. 3.7. However,
in contrast to Fig. 3.7, one is now enabled to omit the dnc-nodes referring to non-function
variables. Consequently the mapping of bit position bi to a variable vj as shown in table (i)
and (ii) is also adapted.

3.3.2 Canonicity of pZDDs
Now we will prove that pZDDs are a (weak) canonical form of representing (pseudo-) boolean
functions.

Lemma 3.1: Each pZDD-node n with its set of function variables Vn represents a (pseudo-)
boolean function. fn : �|Vn| → �.

Lemma 3.1 directly arises from Def. 3.10, in combination with Eq. 3.1- 3.3 and the respective
version of function Satisfy (Algo. B.3, p. 164)

Theorem 3.2: Each (pseudo-) boolean function f : �nV → �, with a fixed set of function
variables (V) and a fixed total ordering relation π on V, is represented by a unique pZDD-
graph rooted in a pZDD-node n.

Proof: The proof directly arises from algorithm getUniquepZDDNode (Algo. 3.1), which is
based on the Shannon expansion (Def. A.1, p. 162) and the definition of pZDD-nodes. As
a consequence, this does not give any degree of freedom when constructing pZDD based

44 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

(i) Function fB

v3v4v5v6

b1b2b3b4
fB(�b)

1 0 0 1
1 1 1 0

δ

0 1 0 1
0 1 0 0

γ

0 0 1 0 µ

(ii) Function fA

v1v2

b1b2
fA(�b)

1 1 1

0 0 1

(iii) pZDDs for fA and fB

1

A

B
v2

v4

v6

v1

v3

v5

KT

k1

k2

n1

n2 n3

n4 n5

n6 n7

{∅} {∅} {∅}{∅}

{v1,v2}

{v2}{v3,...,v6}

{v4,...,v6}{v4,...,v6}

{v5,v6}{v5,v6}
{v6}

{v6}

δ µγ

Figure 3.9: Function tables and pZDD based representation
of pseudo-boolean function

representations of pseudo-boolean functions. The proof will therefore be carried out by
induction.

(1) Start of induction with nV = 0:
Lemma 3.1 gives that Theorem 3.2 is true for n ∈ KT : I.e. the constant 0-ary functions
for value(n) ∈ � are represented by n ∈ KT , where Vn = ∅ ⇔ nV = 0.

(2) Proposition of induction:
For each pseudo boolean nV-ary function there exists a unique pZDD-graph rooted in a
pZDD-node n.

(3) Induction step from nV to nV + 1:
Any pseudo-boolean (nV + 1)-ary function fn can be expanded as: fn := vjf

n
1 + ¬vjf

n
0

(cf. Def. A.1, p. 162), where each of the co-factors represents a (pseudo-) boolean
nV -ary function. The induction’s proposition yields that each of these nV-ary func-
tion can be represented by the unique pZDD-nodes l and k. The pZDD-node n :=
getUniquepZDDNode(var(n), l, k,Vn) is constructed in such a way, that the unique nodes
l and k are its children nodes and Vn := {var(n)} ∪ V l ∪ Vk (cf. Algo. 3.1, p. 43). Thus
one obtains a unique pZDD-node n representing the (nV + 1)-ary function fn. –It is im-
portant to note that in case n is a 0-sup. node, getUniquepZDDNode will return not the
as argument passed else-child, but a node of the respective level. which is also equipped
with the set Vn as its set of function variables.

Theorem 3.3: For a fixed order defined on the function variables, a pZDD is a (weak)
canonical representation of a pseudo-boolean function.

Proof: Theorem 3.2 gives that the mapping of a pseudo-boolean function f to a pZDD-node
is injective. Lemma 3.1 gives, that each pZDD-node represents a pseudo boolean function
f (surjectivity). Consequently the mapping of pseudo boolean functions to a pZDD-node is
bijective.

For making pZDDs a strong canonical representation, one must simply eliminate dnc-nodes
within the graphs and remove the associated variable from the set of function variables. This
can be achieved by extending the node allocating function getUniquepZDDNode accordingly.

3.4 Operations on pZDDs 45

However, in such a setting, one would either need to equip each 0 or 1-edge with its own
set of decisive variables or choose the set of function variables for each node in such a way
that only the variables of 0-sup.-nodes from larger order are recorded, for exemplification
one may refer to Fig. 3.9.iii and the graph rooted in node n3. Since the maintenance of
canonicity in case of partially shared ZDDs may increase the number of DD-nodes anyway,
no matter if weak or strong canonicity is to be achieved, we will apply a different strategy,
when it comes to implementing them.

3.4 Operations on pZDDs

For efficiently manipulating BDDs and their extensions, many recursive algorithms are
known. In the following we will introduce only those algorithms which are from concern
for this work. We will not go into details, concerning their BDD based variants, since they
are well known from standard literature (e.g. [Bry86, Min93, DB98, MT98, SF96, Bai05]).

3.4.1 Preliminaries
It is possible to implement pZDDs with different set of function variables in a common
shared BDD-environment, where only node-isomorphism according to Def. 3.2 is realized!
Such a strategy has the main advantage that one (a) does not need to store the sets of
function variables for each node and (b) increases the sharing among the pZDD-graphs.
But then a pZDD- node does not anymore represent necessarily a unique (pseudo-) boolean
function. As a consequence implementation is intricate, namely if testing two pZDD-nodes
for being equal, node-isomorphism of Def. 3.2 is not sufficient, the set of function variables
must also be compared! But within a standard BDD-environment these sets are in principle
not obtainable. For solving this dilemma one may proceed as follows: When operating on
a pZDD Z one simply passes its set of function variables (VZ) as additional argument to
the respective algorithm. These sets can be efficiently stored as a z-BDD cube representing
the boolean function

∧
VZ vj , also commonly denoted as cube set. A storage of these sets as

cube sets not only yields space efficiency but also allows an efficient iteration on them, while
recursing towards the terminal nodes of the pZDDs. As a consequence of such a strategy, one
significantly decreases time and space complexity of pZDDs. However, one the other hand the
recursion of the pZDD-manipulating algorithms may not terminate their recursion as soon
as possible, since each (redundant) dnc-node within the graphs may impose two additional
recursive calls, which in case of strong canonicity could be prevented. For exemplification
one may refer once again to Fig. 3.8.a, and consider that each node represents a boolean
function. In case of weak canonicity, the computation (l5 ∧ l3) must be carried out, even one
knows that the result is l3, since l5 is a non-decisive variable. But nevertheless in the next
step the recursion can be terminated, since (l3 ∧ l3) is alway known to be l3, due to the fact
that both nodes are identical.

In the following we assume an DD-environment, where nodes are not equipped with sets
of function variables. This allows us to replace function getUniquepZDDNode with the less
complex function getUniqueZDDNode(vi, e, t), for allocating ZDD-nodes (cf. Sec. 3.2.2). For
simplifying the algorithms to be developed in the following, we also re-define the previously
introduced function var, so that var : K �→ {V ∪ t}, where

var(ni) :=
{

v ∈ V iff ni ∈ KNT
� iff ni ∈ KT

This gives a variable-labeling of each terminal node with the special variable � 	∈ V . Conse-
quently the order π must also be extended accordingly:

π ⊆ {V ∪ �} × {V ∪ �},
where � is defined to have the highest order with respect to the elements of V .

46 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

3.4.2 Applying binary operators to pZDDs
A binary operator op can be applied directly to BDDs and its derivatives by the help
of Bryant’s recursive Apply-algorithm [Bry86] or variants thereof. The Apply-algorithm
and its variants constructs a new BDD B, representing the function fB := fB1 op fB2 .
I.e. in the following B := B1op B2 is always carried out by the help of the respec-
tive version of the Apply-algorithm, where the syntax of the initial call is given by
Apply(op, getRoot(B1), getRoot(B2)). The called version of Apply depends on the circum-
stances, whether one operates on DDs where the dnc- or the 0-sup. has been applied.

In case of DDs, where reduction rules have been applied, one traverses in general not jointly
on both DDs. Consequently one may reach the terminal nodes of one of them earlier, where
the partner DD still needs to be traversed. In some of these cases, it is possible to terminate
the recursion of the traversing algorithms, which of course depends on the applied binary
operator and the employed DD type, e.g. for a dnc-free BDD the case 0∧B will always give
the constant 0-function. I.e. with respect to universality, one can employ operator specific
functions, which steer the recursion of the traversing algorithms. I.e. the traversing algorithm
calls the respective op-function, rather than testing the terminal condition for the respective
binary operator itself. The called op-function returns then either a node, representing the
result of fn opfm, where n and m are the as argument passed nodes, or it returns the empty
node ε. In this latter case the recursion of the traversing algorithm must be continued, since
the terminal condition for terminating the recursion is not satisfied. Since the implemented
functions not only steer the recursion depth of the pZDD-traversing algorithm, but also
implement the functionality of the respective boolean or arithmetic operator, mostly on the
level of terminal nodes only, we denote them as operator functions (op-functions). They will
be discussed in greater detail after the generic pZApply-algorithm has been introduced.

Before introducing the pZApply, we will first execute the Shannon expansion for all different
cases as appearing when applying a binary operator op to (pseudo-)boolean functions rep-
resented by pZDDs. Doing so will determine the recursive branching as to be implemented
into a respective algorithm.

Applying the Shannon expansion
Let pseudo-boolean function g be represented by pZDD A and function h by pZDD B. If
one wishes to compute f := g op h, i.e. apply a binary operator to the pZDDs A and B,
the respective call to the pZApply-algorithm may look like pZApply(op, n,Vn,m,Vm, cube),
where

(1) n and m are the root nodes of A and B.

(2) Vn and Vm are their sets of function variables.

(3) The z-BDD cube represents f ’s function variables, encoded as cube set, so that cube can
serve as stack to the variables to be handled by the different recursions.

Let the nodes n and m be labeled with the variables vn and vm. For executing the Shannon
expansion, it is now only necessary to consider an arbitrary variable vc ∈ VG and to cover
all possible settings. I.e. depending on the variable labels vc, vn and vm the recursion of an
pZDD based algorithm has to implement the following expansions:

Variable vc is a function variable for both pZDDs
Since vc ∈ Vn ∩ Vm holds, the current variable is a function variable for both pZDDs as
rooted in n and m. However, it might be skipped within one, both or none of the graphs,
which yields the following case distinctions:

3.4 Operations on pZDDs 47

(1) No skipping of a variable appeared, i.e. vc = vn = vm, and consequently the nodes n
and m are both allocated at the level assigned to the current variable. This situation is
covered by the following expansion:

f := h op g
= (vch1 + v̄ch0) op (vcg1 + v̄cg0)
= vcvc(h1 op g1) + v̄cvc(h0 op g1) + vcv̄c(h1 op g0) + v̄cv̄c(h0 op g0)
= vc(h1 op g1) + v̄c(h0 op g0)

(3.6)

As one can see, for constructing the pZDD Z representing function f , one simply recurses
into the then-branch by executing h1opg1 and into the else-branch by executing h0opg0.

(2) A skipping of a variable within one of the pZDDs appeared, yielding the following case
distinctions:

(2.a) vn π> vc ∧ vm = vc, i.e. node m is labeled with vc, where node n is labeled with a
variable of higher order. Consequently vc is a 0-sup.-variable within the graph rooted
in n. This situation is resolved by the following expansion:

f := h op g
= (vch1 + v̄ch0) op (vcg1 + v̄cg0)
= vcvc(h1 op g1) + v̄cvc(h0 op g1) + vcv̄c(h1 op g0) + v̄cv̄c(h0 op g0)
= vc(h1 op 0) + v̄c(h0 op g0)

(3.7)

While expanding function h as usual, the expansion of function g follows the 0-sup.-
rule. I.e. for the else-branch g and g0 are represented by the same node, namely
node n. Within the then-branch function g1 is evaluated to 0. Thus one needs to
evaluate here h1 op 0.

(2.b) vm π> vc ∧ vn = vc, this case is symmetric to the one above.

(3) The current variable is skipped within both pZDDs i.e. vn, vmπ>vc. Since vc is a function
variable for both pZDDs, it must be 0-sup. for both pZDDs, which is expressed by the
following expansion:

f := h op g
= (vch1 + v̄ch0) op (vcg1 + v̄cg0)
= vcvc(h1 op g1) + v̄cvc(h0 op g1) + vcv̄c(h1 op g0) + v̄cv̄c(h0 op g0)
= vc(0 op 0) + v̄c(h0 op g0)

(3.8)

Since vc is a 0-sup.-variable for function h and g, the operator function, as called within
the next recursive step, can terminate the then-branch recursion, as long as the called
op-function is a 0-maintaining function (cf. Appendix A, p. 161). Otherwise one must
recurse with the remaining variables. In case of the else-branch recursion one resumes
with h0 op g0.

Variable vc is a function variable for only one of the pZDDs
Now the case of vc being a non-function variable for one of the pZDDs rooted in n, m resp.
is covered (vc 	∈ Vn ∩ Vm but vc ∈ Vn ∪ Vm), where the following situations may appear:

(1) The level referring to variable vc is skipped within the graph rooted in n, i.e. vc is not a
function variable for this pZDD e.g. the one representing function g (vc = vm∧vc <π vn).
This situation can be handled by the following expansion:

f := h op g
= (vch1 + v̄ch0) op (vcg1 + v̄cg0)
= vcvc(h1 op g) + v̄cvc(h0 op g) + vcv̄c(h1 op g0) + v̄cv̄c(h0 op g0)
= vc(h1 op g1) + v̄c(h0 op g0) where g = gi for i ∈ {0, 1}
= vc(h1 op g) + v̄c(h0 op g)

(3.9)

48 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

As one can see while expanding function h, nothing needs to be done for function g,
since the variable vc is not a function variable for this function.

(2) For vc = vn ∧ vc <π vm one obtains the symmetric case to the above one.

(3) The level referring to variable vc is skipped within the graph rooted in n, m respectively.
However, vc is 0-sup. for the former pZDD and not a function variable of the latter
(vn, vm π> vc ∧ vc 	∈ Vm), so that the following expansion applies:

f := h op g
= (vch1 + v̄ch0) op (vcg1 + v̄cg0)
= vcvc(h1 op g1) + v̄cvc(h0 op g1) + vcv̄c(h1 op g0) + v̄cv̄c(h0 op g0)
= vc(h op 0) + v̄c(h op g)

(3.10)

Since vc is a dnc-variable for function h and a 0-sup. one for function g, the then-branch
recursion simply takes h and 0 as its argument. In case of the else-branch recursion one
resumes with h op g.

(4) In case vn, vm π> vc ∧ vc 	∈ Vn one obtains the symmetric case to the above one.

Remark 3.4: Due to the above results a pZDD based algorithm, facing any of the above four
cases is forced to consider each variable as contained in Vn ∪ Vm. Consequently in contrast
to the known variants of the Apply-algorithm, it is not sufficient for the algorithm to stop
only at levels, where actually nodes within the graphs of fn and fm are appearing.

Variable vc is non-decisive for both pZDDs
In case vc 	∈ Vn∪Vm it appears that variable vc is skipped in both recursions, since vc is not
a function variable for both pZDDs. Consequently the dnc-semantics is applicable for both
pZDDs, yielding the following expansion:

f := h op g
= (vch1 + v̄ch0) op (vcg1 + v̄cg0)
= vcvc(h1 op g) + v̄cvc(h0 op g) + vcv̄j(h1 op g0) + v̄cv̄c(h0 op g0)
= vc(h1 op g1) + v̄c(h0 op g0) where h = hi and g = gi for i ∈ {0, 1}
= h op g
= f

(3.11)

Since vc is non-decisive for functions g and h, nothing needs to be done, one simply resumes
with the recursion for expanding h and g, in order to compute f := h op g.

Remark 3.5: The above result yields the nice feature that for variables vc ∈ VG \ (Vn ∪Vm)
nothing needs to be done. Consequently the z-BDD cube must not be defined over VG, but
over Vn ∪ Vm.

The generic pZApply-algorithm
The pseudo-code of the generic pZApply-algorithm is specified as Algo. 3.2. As input pa-
rameters the algorithm takes the binary operator to be executed, the pair of nodes the
functions to be combined are rooted in (n, m), their set of function variables (Vn, Vm) and
the cube-set over the variables the resulting function is defined over (cube). Alternatively
one may employ vc := min(Vn,Vm) within the algorithm, instead of recursing on cube. But
for efficiently implementing the sets, the employment of a z-BDD cube is recommended and
we will therefore employ it in the following algorithms.
At the first call n and m are the root-nodes of the respective pZDDs A and B. The variable
sets Vn and Vm are their individual set of function variables, and the z-BDD cube encodes
the cube-set over VA ∪ VB.

In line 1 and 2 the terminal condition with the help of the respective operator function

3.4 Operations on pZDDs 49

Algorithm 3.2 The generic pZApply-algorithm
pZApply(op, n,Vn,m,Vm, cube)
(0) node res, e, t;
(1) res := op(n,Vn, m,Vm);
(2) if res �= ε then return res;

/∗ Check op-cache if result is already known ∗/
(3) res = cacheLookup(op, n,Vn, m,Vm);
(4) if res �= ε then return res;

/∗ Remove variables from set ∗/
(5) Vn

new := Vn \ var(cube)
(6) Vm

new := Vm \ var(cube)

/∗ (A) No level is skipped ∗/
(7) if var(n), var(m) =π var(cube) then
(8) e := pZApply(op, else(n),Vn

new , else(m),Vm
new, then(cube));

(9) t := pZApply(op, then(n),Vn
new , then(m),Vm

new , then(cube));

/∗ (B) Skipped a level exclusively within one of the pZDD ∗/
(10) else if var(n) =π var(cube) then
(11) e := pZApply(op, else(n),Vn

new , m,Vm
new , then(cube));

(12) if var(cube) ∈ Vm then
(13) t := pZApply(op, then(n),Vn

new , 0-node, ∅, then(cube));
(14) else
(15) t := pZApply(op, then(n),Vn

new , m,Vm
new, then(cube));

(16) else if var(m) =π var(cube) then
(17) e := pZApply(op, n,Vn

new , else(m),Vm
new , then(cube));

(18) if var(cube) ∈ Vn then
(19) t := pZApply(op, 0-node, ∅, then(m),Vm

new , then(cube))
(20) else
(21) t := pZApply(op, n,Vn

new , then(m),Vm
new, then(cube));

/∗ (C) Skipped a level within both pZDDs ∗/
(22) else
(23) e := pZApply(op, n,Vn

new , m,Vm
new , then(cube));

(24) if var(cube) ∈ Vn && var(cube) ∈ Vm

(25) t := pZApply(op, 0-node, ∅, 0-node, ∅, then(cube));
(26) else if var(cube) ∈ Vn

(27) t := pZApply(op, 0-node, ∅, m,Vm
new , then(cube));

(28) else if var(cube) ∈ Vm

(29) t := pZApply(op, n,Vn
new , 0-node, ∅, then(cube));

/∗ Allocate new node, respecting (pZDD) isomorphism and 0-sup. rule ∗/
(30) res := getUniqueZDDNode(var(cube), t, e});
/∗ Insert result into op-cache and terminate recursion ∗/
(31) cacheInsert(op, n,Vn, m,Vm, res);
(32) return res;

is tested. If this is not successful, one checks the op-function specific computed table (op-
cache), if the result is already known from a previous recursion (line 3-4). As one may note,
the sets Vn and Vm must also be considered, since the set of function variables are not stored
within the ZDD-nodes themselves. In case the lookup is not successful, the recursion must
be entered, but before doing so the pseudo-code of lines 5 and 6 prepares the new sets of
function variables as required in the next recursion.

The different recursions are covered by the pseudo-code of lines 7-29:

• Line 7-9 handles the ordinary branching in case no-skipping of variables appeared within
the traversed graphs.

50 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

Algorithm 3.3 pZDD op-functions for boolean operators

ZAnd(n,Vn,m,Vm)
(0) node res := ε;
(1) if (n = m && Vn = Vm)
(2) then res := n;
(3) else if (n = 0-node ‖

m = 0-node)
(4) then res := 0-node;
(5) else if (n = 1-node &&

m = 1-node)
(6) then res := 1-node;
(7) return res;

(a) op-function for op = ∧

ZOr(n,Vn,m,Vm)
(0) node res := ε;
(1) if (n = m && Vn = Vm)
(2) then res := n;
(3) else if (n = 0-node)
(4) then res := m;
(5) else if (m = 0-node)
(6) then res := n;
(7) return res;

(b) op-function for op = ∨

ZSetMinus(n,Vn,m,Vm)
(0) node res := ε;
(1) if (n = m && Vn = Vm)
(2) then res := 0-node;
(3) else if (m = 0-node)
(4) then res := n;
(5) else if (n = 0-node)
(6) then res := 0-node;
(7) return res;

(c) op-function for op = \

• The code of lines 10-21 covers the case that the current variable of cube is a skipped
variable exclusively in one of the graphs. In such a case one executes at first line 11 or 17,
for entering the else-branch of the recursion. Concerning the then-branch, the behavior
is more complex. It depends on the circumstances, whether the variable var(cube) belongs
to the set of function-variables of the respective pZDD or it does not. I.e. one either
interprets var(cube) as 0-sup. - or as a non-decisive variable within the respective graph.
In case var(cube) is considered as being 0-sup., line 13 or alternatively line 19 is executed.
In case var(cube) is considered as being non-decisive, one executes line 15 or alternatively
line 21.

• Lines 22-29 cover the case that the variable var(cube) is skipped within both graphs.
For the else-branch, the current pair of nodes (n and m) is the pair of children nodes,
since the 0-children of the fictitious nodes being skipped are the current node n and m
themselves (line 23). Concerning the then-branch the following cases must be covered:
(a) the variable is a function variable for both graphs: here the standard 0-sup.-branching
rules apply, which means that in both cases the 0-node is the then-child to be recursed
on (line 25); (b) the variable is a non-function variable for one of the graphs and 0-sup.
for the other. Here the branching rules follows a dnc-rule in one case and a 0-sup.-rule
in the other case, which means that in the dnc-case one does not traverse any further,
where in the 0-sup.-case a traversal to the 0-node follows (line 27 and 29).

Finally, when returning from the recursion, one allocates a new pZDD node, representing
fn op fm (line 30). This result is then inserted into the op-cache, where also the respective
sets of function variables must be provided. Now the algorithm can terminate by passing
the result of line 30 as its return value to the calling function.

The op-functions
The pZApply-algorithm works for all binary boolean and binary arithmetic operators
(op ∈ {∨,∧, \ . . .} and op ∈ {·,+, . . .}), given that a respective op-function is provided
and no matter if it is 0-maintaining (cf. Appendix A, p. 161) or not. In case the op-function
returns a non-empty node the resp. calling pZApply terminates the recursion by returning
the received node as result. In the following we will discuss now the different op-functions
each implementing a different binary operator. In the following paragraph we will only dis-
cuss the op-functions, which are of concern for this work. The op-functions for other binary
operators can be implemented analogously.

op-functions implementing boolean operators
(1) In case op = ∧ the pZApply-algorithm is steered by the op-function of Algo. 3.3.a. In case

of node-equality the recursion can only be terminated, if also the set of function-variables
matches (line 1-2). Due to the different semantic of skipped variables, –one assumes a
dnc-semantics for the remaining variables in case of reaching a terminal 0-node, where

3.4 Operations on pZDDs 51

Algorithm 3.4 pZDD op-functions for arithmetic operators

ZTimes(n,Vn,m,Vm)
(0) node res := ε;
(1) if (n = 0-node ‖m = 0-node)
(2) then res := 0-node;
(3) else if (n, m ∈ KT) then
(4) v := value(n) · value(m);
(5) res := getTerminalNode(v);
(6) return res;

(a) op-function for op = ·

ZDiv(n,Vn,m,Vm)
(0) node res := ε;
(1) if (m = 0-node) then
(2) error exit

(3) if (n = 0-node)
(4) then res := 0-node;
(5) else if (n = m && Vn = Vm)
(6) then res := 1-node
(7) else if (n, m ∈ KT) then
(8) v := value(n)/value(m);
(9) res := getTerminalNode(v);
(10) return res;

(b) op-function for op = ÷

ZPlus(n,Vn,m,Vm)
(0) node res := ε;
(1) if (n = 0-node)
(2) then res := m;
(3) else if (m = 0-node)
(4) then res := n;
(5) else if (n, m ∈ KT) then
(6) v := value(n) + value(m);
(7) res := getTerminalNode(v);
(8) return res;

(c) op-function for op = +

ZMinus(n,Vn,m,Vm)
(0) node res := ε;
(1) if (n = m && Vn = Vm)
(2) then res := 0-node;
(3) if (m = 0-node)
(4) then res := n;
(5) else if (n, m ∈ KT) then
(6) v := value(n)− value(m);
(7) res := getTerminalNode(v);
(8) return res;

(d) op-function for op = −
in case of a terminal 1-node a 0-sup. semantics is addressed (cf. beginning of Sec. 3.3,
p. 40)–, one may only terminate the recursion, if either one of the nodes is the terminal
0-node (line 3) or both are the terminal 1-node, which is already covered in line 1, but
stated here for compatibility with 0-1 pZDDs once again (see discussion at the end of
this section).

(2) The op-function for op = ∨ is given as Algo. 3.3.b, where similar to the above case a
termination in case of reaching a terminal 1-node is only possible, if this is the case for
both pZDDs and in case all variables are processed. In case of node-equality the recursion
can only be terminated, if the sets of function-variables also matches (line 1-2).

(3) Due to the different interpretation of skipped variables, depending on the terminal node
reached, the complement-building of pZDDs is more complex than in case of BDDs. In
order to avoid the negation of pZDDs the op-function ZSetMinus is defined, so that a
call to pZApply with op-function ZSetMinus gives one a z-BDD based representation
of the function f := fn ∧ ¬fm. –This is of great use when it comes to the symbolic
computation of a high-level models reachability set of states (cf. Algo. 4.3, p. 90).– The
pseudo-code for operator ZSetMinus is given as Algo. 3.3.c.

In order to increase the readability of the symbolic algorithms presented later, op-functions
for boolean operators are implemented in such a way, that they are also applicable to non-
0-1 pZDDs. Otherwise one would need to convert a pZDD to its boolean counterpart, by
replacing each terminal node t, where value(t) 	= 0, with the terminal 1-node. I.e. when
executing the pZApply-algorithm for two pZDDs Zg and Zh and op ∈ {∨,∧, \}, one always
obtains a 0-1 pZDD representing Zg opZh. This is achieved by simply removing all cases
from the op-functions of Algo. 3.3, where a non-terminal node is returned as result (line 1-2
of Algo. 3.3.a and line 1-6 of Algo. 3.3.b).

52 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

op-functions implementing arithmetic operators
The op-functions for op ∈ {·,÷,+,−} can be implemented analogously to the boolean ones,
where one simply needs to return value(n) op value(m) in case terminal non-0-nodes are
reached (see Algo. 3.4).

3.4.3 Variants of the pZApply-algorithm
Besides partially shared ZDDs, where the sets of the function variables of the employed
pZDDs may differ, one may also identify some specific scenarios, each yielding its own
improved variant of the pZApply-algorithm:

(1) Fully shared ZDDs, here the pZDDs have identical sets of function variables: VA =
VB ⊆ VG. Due to the Shannon expansion as carried out above, one may reveal that
pZDDs of this kind can be manipulated by a standard ZApply algorithm, given that a
0-maintaining operator op is applied (cf. Appendix A, p. 161). Contrary to the pZApply
algorithm, the respective variant to be developed is solely required to recurse on vari-
ables, for which actually a node is allocated. This simplifies the algorithm, so that it is
only required to be called with the 0-maintaining operator to be applied together with
the root nodes of the fully shared ZDDs to be manipulated. In case of a skipping of
a function variable the ZApply algorithm follows then a 0-sup.-rule, which means that
within the else-branch and the skipped variable the current node is the next node to
be traversed, whereas within the then-branch and the skipped variable the 0-node is
passed to the next call to ZApply.

(2) Non-shared ZDDs, here the pZDDs have no function variable in common: VA ∩ VB = ∅.
They can be manipulated by a specialized pZApply-algorithm. This variant is obtained by
simply omitting line 7-9, 12-14, and 18-20 of the original pZApply-algorithm as developed
above.

The pZApply in case of non- and partially shared ZDDs has to consider each variable the
initial pZDDs are defined on (Vcube := VA ∪ VB). Thus one needs to execute two recursive
calls for each variable vc ∈ Vcube. This significantly increases the number of entries for the
computed table. However, as it will be discussed next, in case op ∈ {∧, ·}, the pZApply-
algorithm can be replaced a more efficient variant, which we denote as pZAnd-algorithm.

The pZAnd-algorithm
While skipping a variable, one assumes a dnc - or a 0-sup. semantics, whether the associated
variable is a function variable or not for the respective pZDD-graphs. In case of non- and
partially shared ZDDs this led to many case distinctions. If one assumes now that a variable
vc is skipped in both pZDDs, the following scenarios appear:

(1) The omission results from different semantics, this means for the represented functions
by applying the Shannon-expansion:

g := ¬vcg0 + vcg1 dnc sem., i.e.g = g1 = g0

h := ¬vch0 0-sup. sem., i.e.h1
(!)
= 0

This can be employed for computing f := g · h, yielding:

f := (¬vcg0 + vcg1)(vch1 + ¬vch0) with h1 = 0
= ¬vcg0h0 + vc¬vcg1h0

= ¬vcg0h0 + 0
= ¬vcg0h0

Thus function f solely depends on the expansion of ¬vcg0h0, where the pZDD based
representation of g0 and h0 are rooted in the 0-children of the “fictious nodes” being
skipped, which are the current nodes themselves. Since furthermore vc also fulfills the
0-sup.-semantics nothing needs to be done here.

3.4 Operations on pZDDs 53

Algorithm 3.5 The pZAnd-algorithm implementing conjunction and multiplication
pZAnd(op, n,m)
(0) node res, e, t;
(1) res := op(n, ∅, m, ∅);
(2) if res = ε then return res;

/∗ Check op-cache if result is already known ∗/
(3) res = cacheLookup(op, n, m);
(4) if res �= ε then return res;

/∗ Depending on the order the respective recursion is entered ∗/
(4) if var(n) =π var(m) then
(5) v := var(n);
(6) e := pZAnd(op, else(n), else(m));
(7) t := pZAnd(op, then(n), then(m));
(8) else if var(n) <π var(m) then
(9) v := var(n);
(10) e := pZAnd(op, else(n), m);
(11) if (n ∈ VB) then t := pZAnd(op, then(n), 0-node);
(12) else t := pZAnd(op, then(n), m);
(13) else
(14) v := var(m);
(15) e := pZAnd(op, n, else(m));
(16) if m ∈ VA then t := pZAnd(op, 0-node, then(m));
(17) else t := pZAnd(op, n, then(m);

/∗ allocate new node, respecting isomorphism and 0-sup. rule ∗/
(18) res := getUniqueZDDNode(v, t, e);

/∗ Insert result into op-cache and terminate recursion ∗/
(19) cacheInsert(op, n, m, res);
(20) return res;

(2) The omission results from the same semantics: Nothing has to be done, since
(2.a) under the dnc-semantics vc /∈ Vf and therefore nothing needs to be done (cf.

Eq. 3.11).
(2.b) when the 0-sup.-semantics is applicable, also nothing needs to be done, since accord-

ing to Eq. 3.8 one has:

f = vc(0 · 0) + ¬vc(h0 · g0) = ¬vc(h0 · g0),

which is the Shannon expansion of a node to be 0-sup. (Eq. 3.5), since the 1-cofactor
of f is the constant 0-function. Consequently one solely needs to traverse the 0-
children of the two “fictiously 0-sup.-nodes” being skipped, which are the current
nodes n and m themselves.

For op = {∧, ·} the above conclusions allow one to omit lines 22-29 of the pZApply-algorithm
(cf. Algo. 3.2). I.e. in contrast to the pZApply-algorithms, the pZAnd-algorithm, like the
algorithm for fully shared ZDDs (in case of 0-maintaining operators), only needs to stop
at levels, where nodes are actually allocated, rather than executing two recursive calls for
each variable vc ∈ Vcube. This allows one furthermore to omit the set of function variables
and the cube-set cube as it was required in case of the pZApply-algorithm. The algorithm
which realizes the respective functionality is given in Algo. 3.5. As op-functions one may
employ the op-functions for ∧ and · specified above, where the set of function-variables can
be replaced with the empty sets.

For exemplification, one may refer to Fig. 3.10, where on the right the call-tree for pZAnd
is shown, if the pZDDs A and B of Fig. 3.9 are employed. Besides the different function
calls, the call tree also indicates the newly allocated nodes as created at the termination
of the respective recursion. In case of the second call to pZAnd(·, 1-node, n1), the framed of

54 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

0

0 0 0µ δδγ γ

(1, 0) (1, 0) (1, 0)(1, µ) (1, γ)(1, γ) (1, δ) (1, δ)

pZAnd(·, k1, n1)

pZAnd(·, 1, n1)

pZAnd(·, k2, n1)

pZAnd(·, 1, n3)

pZAnd(·, 1, n6)

pZAnd(·, 0, n1) pZAnd(·, 1, n1)

pZAnd(·, 1, n5)

pZAnd(·, 1, n7)

pZAnd(·, 1, n2)

pZAnd(·, 1, n4)

n1

n1

n1

n2
n2

n3

n3

n4

n4

n5

n5

n6

n6

n7

n7

m1

m1

m2

m2 v1

v2

v3

v4

v5

v6

γδ µ KT

(a) M := pZAnd(·, A, B) (b) Call-tree

Figure 3.10: Resulting pZDD and call-tree for M := A · B

Fig. 3.10.b, one is furthermore enabled to terminate the recursion directly, since the result is
already known due to a preceding call of pZAnd(·, 1-node, n1). The skipping of variables under
different semantics is nicely illustrated by call pZAnd(·, 1-node, n2), where the subsequent
recursion of the else-branch does not stop at the level of variable v5.

3.4.4 Relabeling of variables
Sometime it is also necessary to re-label nodes with another variable. I.e. one assigns a
new variable to all nodes labeled with a specific variable label, e.g. if v = var(nk) then
var(nk) := u. This functionality is addressed in the following by the notation: B{v ← u}.
The respective algorithm can be implemented straight-forward by basically traversing the
pZDD from bottom to top and calling getNode(u, then(n), else(n)) for each node n where
v = var(n). The iterative application allows one then the replacement of a set of variable
labels rather than individual labels only. Since one operates on ordered sets of variables
the notation B{�s ← �t}, where �s and �t are vectors of boolean variables and have the same
dimension, will be employed in the following. It is clear that the newly introduced variable
labels are not allowed to be function variables of the respective pZDD to be re-labeled.

3.4.5 The pZRestrict-operator
Sometimes it is necessary to extract the co-factor of a function f concerning a function vari-
able vi and with respect to its value. This can be achieved with the 0-sup.-variant of Bryant’s
pZRestrict-algorithm [Bry86]. As a result, this algorithm delivers a symbolic representation
of the function f |vi:=b for b ∈ {0, 1}. The basic algorithm can be extended to the case of a set
of variables, rather than a single variable. As result one obtains a symbolic representation
of function f |�v:=�b where bi ∈ {0, 1}. The pseudo-code of the algorithm incorporating this
behavior is specified as Algo. 3.6. As input arguments the algorithm takes the ordered tuple
of variables the pZDD will be restricted to (�v), the bit-assignment to determine their values,
the index of the currently processed variable (i), the root node of the pZDD to be processed
and the z-BDD cube, where the latter encodes the cube set over Vf .

3.4.6 The pZAbstract-operator
The abstraction from a set of function variables �v is implemented by the pZAbstract-
algorithm, called with a respective op-function. While traversing the original pZDD and

3.4 Operations on pZDDs 55

Algorithm 3.6 The pZRestrict-algorithm

pZRestrict(�v,�b, i, n, cube)
(0) node t, e, res;

/∗ Reached terminal nodes, end of recursion ∗/
(1) if cube ∈ KT ‖ i = dim(�b) + 1 then return n;

/∗ Check op-cache if result is already known ∗/
(2) res := cacheLookup(pZRestrict,�v,�b, i, n, cube);
(3) if res �= ε then return res;

(4) vi := �v [i];

/∗ variable to be removed not reached yet ∗/
(5) if vi π> var(n) then
(6) while var(n) π≥ var(cube) do cube := then(cube); end

(7) t := pZRestrict(�v,�b, i, then(n), cube);

(8) e := pZRestrict(�v,�b, i, else(n), cube);
(9) res := getUniqueZDDNode(var(n), t, e);

/∗ Reached variable to be removed ∗/
(10) else if vi =π var(cube) then

/∗ Variable to be removed is 0-sup. ∗/
(11) if var(n) π> var(cube) then

(12) if bi = 0 then res := pZRestrict(�v,�b, i+1, n, cube)

/∗ Found a node labeled with variable to be removed ∗/
(13) else res := 0-node

(14) else
(15) cube := then(cube);

(16) if bi = 0 then res := pZRestrict(�v,�b, i+1, else(n), cube)

(17) else res := pZRestrict(�v,�b, i+1, then(n), cube)

/∗ Insert result into pZRestrict-cache and terminate recursion ∗/
(18) cacheInsert(pZRestrict,�v,�b, i, n, cube, res);
(19) return res;

eliminating nodes labeled with vi ∈ �v, it might appear that previously distinct subtrees
collapses. In such cases the respective version of the pZApply-algorithm with the binary
boolean operator op has to be called. Consequently the pZAbstract-algorithm constructs a
representation of function f |viop f |¬vi , where in case of op ∈ {∨,+} the existential and in
case of op ∈ {∧, ·} the universal quantification is realized. The pZAbstract-algorithm can
be extended to the case of handling sets of variables.

The pseudo-code of the pZAbstract-algorithm is given as Algo. 3.7. Its parameters are the
binary operator op for steering the merging of collapsing subtrees, the set of variables to be
abstracted from (the ordered tuple �v), the position of the current variable to be removed
within �v (i), the root node of the pZDD to be manipulated (n), and the z-BDD cube repre-
senting the set of function variables of the pZDD to be manipulated. In line 1 one tests if the
terminal condition for terminating the recursion is satisfied. If this is the case a respective
node is returned, otherwise one tests at first, if a result from a previous recursion is known
(line 2-3). In case the cache-lookup does not deliver such a result the recursion is entered,
where three different cases must be covered (line 7-18): (a) The pseudo-code of line 8-10
covers the case that a 0-sup. variable is to be removed. (b) The pseudo-code of line 11-13
covers the case that the current node is labeled with the variable to be removed. In both
cases the removal of variables within the current paths yields a collapsing of subtrees, even
in case of 0-sup. variables! Thus it is now required to execute the pZApply-algorithm for
merging the sub-trees. However, since the collapsing subtrees rooted in node t and e are
fully shared ones, i.e. they are both defined one the same set of variables, namely the ones

56 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

Algorithm 3.7 The pZAbstract-algorithm
pZAbstract(op,�v, i, n, cube)
(0) node t, e, res;

/∗ Reached terminal nodes, end of recursion ∗/
(1) if (cube ∈ KT ‖ i = dim(�b) + 1) then return res;

/∗ Check op-cache if result is already known ∗/
(2) res := cacheLookup(pZAbstract, op,�v, i, n, cube);
(3) if res �= ε then return res;

(4) vi := �v [i];
(5) n := var(n);

/∗ Variable to be abstracted is located below var(cube) ∗/
(6) while vi π> var(cube) do cube := then(cube); end

/∗ Reached variable to be abstracted ∗/
(7) if n π≥ vi then

/∗ Variable to be abstracted is 0-sup. ∗/
(8) if vi �=π n then
(9) t := 0-node;
(10) e := pZAbstract(op,�v, i+1, n, then(cube));

/∗ Reached node carrying variable to be abstracted ∗/
(11) else
(12) t := pZAbstract(op,�v, i+1, then(n), then(cube));
(13) e := pZAbstract(op,�v, i+1, else(n), then(cube));

/∗ Merge collapsing paths ∗/
(14) res := pZApply(. . .);

/∗ Reached node carrying variable not to be abstracted ∗/
(15) else
(16) t := pZAbstract(op,�v, i, then(n), cube);
(17) e := pZAbstract(op,�v, i, else(n), cube);
(18) res := getUniqueZDDNode(n, t, e);

/∗ Insert result into pZAbstract-cache and terminate recursion ∗/
(19) cacheInsert(pZAbstract, op,�v, i, n, cube, res);
(20) return res;

represented by cube, one is enabled to employ the more efficient ZApply-algorithm, in case
a 0-maintaining operator is applied. Otherwise the standard pZApply-algorithm, with the
respective set of parameters (omitted here for simplicity) must be called (line 14). (c) The
pseudo-code of line 15-18 covers the case, that the algorithm reached a node referring to a
variable not to be abstracted.

In case op ∈ {∨,+} the algorithm can be simplified, since here one only needs to take
care of the nodes, which are labeled with variables to be abstracted. The handling of 0-sup.
variables to be abstracted is not necessary. Contrary to this, in case op ∈ {∧, ·} this is not
possible, since each path where vi is 0-sup. must be evaluated to 0.

3.5 Applications

In the following, we will introduce the basics for efficiently employing ZDDs within sym-
bolic state graph representation. Such state graph representations are commonly derived
from some high-level stochastic model description, which is irrelevant for the moment. The
obtained stochastic transition relation as represented by a pZDD directly encode the transi-
tion rate matrix of a CTMC. Consequently numerical solvers may employ the pZDD based
matrix representation for computing state probabilities of the high-level stochastic model.

3.5 Applications 57

Algorithm 3.8 Generating symbolic representations of singletons
Encode(b1, . . . , bBS

, c,�v)
(0) l := BS;
(1) n := getTerminalNode(c);

/∗ Construct ZDD bottom up ∗/
(2) while l > 0 do
(3) if bl = 1then n := getUniqueZDDNode(�v[i], n, 0-node);
(4) l−−;
(5) end

(6) return n;

In this section concepts as known from ADD based performability analysis, i.e. mainly the
work presented in [Par02] will be extended to the case of pZDDs. Details of the implementa-
tion of the new ZDD based solvers for computing state probabilities are not presented here,
they can be found in [Zim05, Har06]. Since the exact BDD type is often without signifi-
cance, we will sometimes generically speak of BDDs, Mt-DDs, or decision diagrams (DDs).
In case of the former either dnc-free BDDs or z-BDDs are addressed. In case of Mt-DDs
their multi-terminal extensions, such as ADDs, or pZDDs is referred to. In case all types of
BDDs and Mt-DDs is referred to, we will speak generically of DDs. Since we do not focus
on the application of binary operators onto the DDs, the set of their function variables is
without concern in the following, consequently instead of pZDDs we will generically speak
of ZDDs. But nevertheless, one may keep in mind that their sets of function variables may
differ or be actually disjoint as discussed in case of cross-product building of Mt-DDs.

3.5.1 ZDD based representations of sets and relations
We briefly introduce the encoding of states and transition relations as employed under state
space based analysis of high-level model description methods [Bry92, HMKS99].

In the scope of this work, finite sets of states S are considered, where each state is a vector
of integers. Each position within these state vectors refers to one of the N SVs, so that �s [i]
gives one value of SV si with respect to state �s. The number of bits required for encoding
each state is defined as follows:

BS :=
N∑
i:=1

Bi, whereBi := �log2(Ki)�, withKi := max
�s∈S

(�s [i]). (3.12)

Based on this, the elements of S can be encoded as binary assignments of fixed length,
if a respective function E : S �→ �

BS is provided. The DD accepting only the boolean
assignments as obtained from S as its satisfaction set, gives a graph based representation of
the characteristic function of S. It is clear that the desired DD can be generated iteratively,
so that a single element of S is encoded as ZDD by employing Algo. 3.8. Since this algorithm
is employed in the next chapter for encoding states and transitions, it is useful to explain
some of its implementation details now: As input parameters algorithm Encode takes a bit-
string of length BS, the function value to be stored within the terminal node, and the ordered
tuple of length BS, containing the function variables of the DD. Its main idea is that for
0-assigned bit positions nothing needs to be done, where in case of 1-assigned bit positions a
node must be allocated at the respective level (line 3). Each call to Encode gives one then a
ZDD based representation of a single element of S. The union over all singletons S is made
of, yields the desired symbolic representation of S, so that the following definition holds:

58 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

Definition 3.11: Symbolic Representation of Sets

The DD S over the variables �v and rooted in a node n is a symbolic representation of a set
S, i.e.

S ≡ S ⇔ Satisfy(E(�s), n,�v) =
{

1 iff �s ∈ S

0 else

where Satisfy is the function as defined in Sec. 3.2.

At this state it is necessary to mention the main advantages of employing ZDDs, when it
comes to the encoding of sets:

(1) 0-assigned bit positions within �b: here function Encode(�b, c,�v) needs to do nothing.

(2) The values Ki are in general not known prior to set generation. Thus during SG genera-
tion, one is forced to allocate a new most significant bit for any SV si by simply declaring
a new Boolean variable for the respective DD Z. Contrary to a dnc-free DD, a 0-sup. DD
has the nice feature that the structure of its graph does not need to be changed, since
the newly allocated variable is 0-assigned for all previously encoded states. Thus it is
not necessary to know the maximum Ki of SV si in advance. However, for dnc-free DDs
one is forced to insert a 0-assigned node on each path for the newly allocated variable.
This can be achieved by executing S := S · Bvi=0, with Bvi=0 := Encode(0, 1, vi), where
Bvi=0 represents function f(vi) = 1 ⇔ vi = 0.

A sLTS defines a set of transitions, so that (a, s, t, µ) ∈ T holds, if there is a directed edge
labeled with activity label a and rate µ and connecting state s with state t. In the scope of
this work the components s and t of the elements of T are elements of S. The activity label
a is an element of a finite set of labels Act and the stochastic rate µ ∈ �+. If one defines
now an adequate boolean encoding function E : Act × S × S �→ �

nV for the elements of T ,
the symbolic representation of a transition relation by a DD rooted in a node n, so that
T ≡ T, is analogous to the above explained method of symbolic set representation. The rate
µ of each transition is stored within a terminal node, so that Satisfy(E(a,�s,�t), n,�v) = µ for
each stochastic transition (a, s, t, µ) ∈ T . In terms of function Encode, one only needs to pass
the rate as second argument (parameter c in Algo. 3.8). In case one intends to symbolically
represent a probabilistic LTS (pLTS) T i the process can be handled analogously. However,
in such a setting the values of the terminal nodes are interpreted as probabilities, rather
than rates, i.e. µ ∈ (0, 1]. In case of an extended sLTS (esLTS) T , the situation is more
complicated, since one needs to distinguish between stochastic rates and probabilities. A
case distinction can easily be achieved by assigning a leading minus sign to the probabilities
or rates, and storing the other values as before. Alternatively one could also store the pLTS
and sLTS as contained in the esLTS separately, one may refer to [Sie01] for details.

So far it was quietly assumed, that the set V consists of the variables v1, . . . vnV , however
for simplicity different sets of boolean variables will be introduced now. For binary encoding
(a,�s,�t, µ) ∈ T under a “most-significant-bit-first” order, the following ordered sets of boolean
variables are defined:

Definition 3.12: Boolean variables holding binary encoded transitions

(1) �a := (a1, . . . , aBAct) holding the values for the binary encodings of the activity labels,

(2) �s i := (si1, . . . , s
i
Bi

) holding the values of the binary encodings of �s [i], and

(3) �t i := (ti1, . . . , tiBi
) holding the values of the binary encodings of �t [i]

The s- and t-variables are collected as two ordered tuples, where a most-significant bit first
order is assumed, yielding:

3.5 Applications 59

�s := (s1, . . . , sm) := (s11, . . . , s
1
B1
, . . . , sn1 , . . . s

n
Bn

) and
�t := (t1, . . . , tm) := (t11, . . . , t

1
B1
, . . . , tn1 , . . . t

n
Bn

). (3.13)

For convenience also the symbol VAct, Vs and Vt will be employed, if referring directly to
the sets of boolean a-, s- and t-variables.

The size of a DD is known to be sensitive concerning the chosen ordering on the boolean
variables the DD is defined on. For keeping the DDs small, we define that the boolean vector
�a, the variables of which encode the activity labels, appears first. Starting at level BAct + 1
the boolean vectors holding the binary encoded source and target states of a transition follow
in an interleaved fashion, defined as follows:

s1 <π t1 <π s2 <π . . . <π sm <π tm (3.14)

This ordering scheme is a commonly accepted heuristics for obtaining small DD sizes in the
context of symbolic representations of transition systems [EFT93, FM97, Sie01]. As it will
be discussed below, the interleaved ordering seems to be especially of great value, when it
comes to the encoding of identity matrices, where an advantage for 0-sup. DD-types over
the dnc based counterparts will be pointed out.

3.5.2 ZDD based representations of matrices
Since ZDDs map boolean vectors of the same dimension to an arbitrary set of values, they
are highly suited for representing real-valued matrices. One simply needs to binary encode
the set of row and column indices and store the matrix entry within the terminal nodes.

Basic encoding scheme
A matrix M can be understood as a two-dimensional finite function M : R × C �→ � ⊂ �,
where R,C ⊂ N

+
0 are the sets of row and column indices. The main idea of representing a

real-valued matrix M is as follows: One simply binary labels the set of row indices R as well
as the set of column indices C, by once again employing an adequate binary mapping E :

E : R× C �→ �
Br+Bc ,

where Br ≥ �log2(|R|)� is the number of bits required for encoding the row indices and
where Bc ≥ �log2(|C|)� is the number of bits required for encoding the column indices. Each
bit position as produced by E is bijectively mapped to a variable of V . Since for each pair of
row and column indices a real-valued entry ∈ � := {M(r, c)|r ∈ R∧c ∈ C} exists, and since
the above (ordered) encoding scheme E together with the different matrix entries (�) define
a pseudo boolean function: �Bc+Br �→ �, the encoding of a matrix by a ZDD is achieved:

Definition 3.13: ZDD based representation of a real-valued (quadratic) matrix

A ZDD Z over < V , π,� > rooted in a node k is a canonical representation of a real-valued
(2n × 2n) matrix M concerning a fixed order π (M ≡π M), if the following three conditions
hold:

(i)M(r, c) ↔ �, (ii)R×C ↔ �
2nand(iii) Satisfy(E(r, c), k,�v) = M(r, c), where2n := |V|.

According to the above definition, the represented matrices are quadratic, and the size of
the set of row and column indices (R,C) is a power of 2. If this is not the case, one simply
needs to extend M by an adequate number of rows and columns filled with zeroes (0-padding
[EFT93]), where we will refer to such entries as dummy entries.
For interpreting the ZDD based representation of stochastic transition system directly as its
transition rate matrix, it is necessary to distinguish, whether a bit position refers to a binary
encoded row or column index. Therefore we define that the variable si refers to bit position

60 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

(i) STLS T

(0, 0) (1, 1)(0, 1)

arrive,λ arrive,λ

depart,µdepart,µ

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

1

A:= Abstract(+,a1,B)

S:= MakeDD2BDD(Abstract(+,�t,A)∨
Abstract(+,�s,A)) {�s←�t}

B ≡ T

t11 �→ t1

t21 �→ t2

s11 �→ s1

s21 �→ s2

a1

KT µµ λλ

(iii) pZDD-based representations

(ii) Binary encodings

�s
l,q−→ �t ∈ T a1 s11 t11 s21 t21 fB

(0, 0)
arrive,λ−→ (0, 1) 0 0 0 1

(0, 1)
arrive,λ−→ (1, 1)

0
0 1 1 1

λ

(0, 1)
depart,µ−→ (0, 0) 0 0 1 0

(1, 1)
depart,µ−→ (0, 1)

1
1 0 1 1

µ

(iv) Matrix A0
BB@

0 λ 0 0
µ 0 0 λ
0 0 0 0
0 µ 0 0

1
CCA

Figure 3.11: sLTS, its ZDD based representation and underlying transition rate matrix

i of a binary encoded row index r and that variable tj refers to bit position j of a binary
encoded column index c, where a most-significant-bit-first and left-to-right sequence of bits is
assumed (cf. Eq. 3.14). The connection to the ZDD based encoding of a stochastic transitions
system is clear, one abstracts from the boolean variables encoding the activity labels, i.e. from
the a-variables and simply interprets the boolean variables collected in the vector �s and �t (cf.
Eq. 3.13) as binary encoded row - and column indices. As a consequence of this encoding
scheme each non-reachable state induces a dummy entry within the symbolic represented
transition rate matrix. However, the generated transition rate matrices are always square
matrices, since Br = Bc = BS, with |R| = |C| = |S| holds. Furthermore their dimension
is automatically a power of 2, since the number of bits (n) required for encoding a row-,
column index resp. is determined by the number of bits employed for encoding the state
labels, i.e. n = nV/2, where nV = 2BS holds. As a consequence additional zero-padding as
described above is unnecessary.

For exemplification one may refer now to Fig. 3.11. Part (i) depicts a small sLTS T , where
each state is given by a 2-dim. vector. The binary encodings of this transition system is given
in table 3.11.ii. This function table of a pseudo-boolean function enables one to construct
the respective Mt-DD B, where the striped nodes are the 0-sup. ones (Fig. 3.11.iii). If one
now abstracts form the activity labels, one obtains the Mt-DD A. The Mt-DD A directly
encodes the underlying transition rate matrix of the initial sLTS T , where the matrix is
given in Fig. 3.11.iv. For deriving the matrix correctly, the SVs are mapped to the respective
variables encoding the column and row-indices as it was already defined in Eq. 3.13 (p. 59).
This mapping is depicted on the left hand side of Fig. 3.11.iii.
From the sTS as encoded by A one may derive also the BDD S representing the set of
reachable states. The construction of S is hereby achieved via DD-manipulations, so that
the binary encoded state labels are solely stored within the s-variables, where the t-variables
are not function variables of S. As one can deduce from S, the state 10 is non-reachable. As
a consequence, the third column and row of matrix A are therefore filled with zeros only.

Efficiently encoding identity matrices
The symbolic representation of the identity function is defined as follows:

3.5 Applications 61

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

(B) Interleaved order(A) Non-interleaved order

t1

t1

t2

t2

t3t3

s1s1

s2

s2

s3

s3

KT KT1 1

Figure 3.12: Mt-DD based representation of the identity function 1⊥(V)

Definition 3.14: BDD based representation of the identity function

Let U := {s1, . . . , sn, t1, . . . , tn}. The identity function on n s- and n t-variables is defined as

follows: f1⊥(s1, . . . , sn, t1, . . . , tn) :=
n∏
i:=1

si ↔ ti. Its symbolic representation will be denoted

as 1⊥(U) in the following.

Within the context of Def. 3.13 one may interpret 1⊥(V) as an (2n × 2n) identity matrix.
For the BDD based representation of such an identity matrix, the number of nodes is linear
with respect to n, if an interleaved ordering is employed. In contrast a non-interleaved order
of the variables Vs and Vt yields an exponential number of nodes with respect to n, where
for different BDD-types the explicit number of nodes of course differs: (a) For a dnc-free
BDD based representation of a (2n × 2n) identity matrix the non-interleaved order requires
sizeof(1⊥(V)) = 3 · 2n − 1 nodes. In contrast the interleaved-order is only linear in space,
so that here solely sizeof(1⊥(V)) = 3n + 2 nodes to be allocated (cf. [Sie01]). (b) For a
z-BDD based representation one obtains sizeof(1⊥(V)) = 2(n+ 1) for the interleaved order
of the 2n variables. In contrast a non-interleaved order of the s− and t-variables requires
then sizeof(1⊥(V)) = 2n+1 nodes to be allocated, which is smaller than the dnc-case but
still exponential with respect to n. For exemplification one may refer to Fig. 3.12, which
shows 1⊥(V) as ADD for the non-interleaved and interleaved ordering schemes. The hatched
nodes are hereby the nodes to be eliminated under the 0-sup. reduction rule.

Access-pattern to the matrix entries
Since we defined a “most-significant-bit-first” order as well as an interleaved ordering of the
binary encoded row - and colum indices, a dfs traversal on the Mt-DDs realizes a block-wise
access-pattern to the elements of the represented matrices. I.e. the boolean expansion for
variable s1 gives: fM := s1f

M
1 + ¬s1f

M
0 , where the respective (sub-)graphs of fM{0,1}, gives

one the upper - or lower half of the matrix M . The subsequent expansion of t1 gives one
then the individual quadrants of M . I.e. the boolean expansion for the first pair of variables
s1, t1 gives:

fM := s1t1f
M
11 + s1¬t1f

M
10 + ¬s1t1f

M
01 + ¬s1¬t1f

M
00 ,

so that fMi,j is one of the four quadrants of matrix M . In the following fM�b addresses the co-

factors by making the variables associated with the bit positions of �b constant. Each graph
rooted in node representing fM�b is obviously a symbolic representation of sub-matrix Mi,j,

62 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

(i) Matrix B
¬t2 t2
¬t3 t3 ¬t3 t3

¬s3 0 0 γ γ¬s2 s3 µ 0 0 0
¬s3 0 δ 0 0

s2 s3 0 0 δ 0

(ii) Identity matrix A
¬t1 t2

¬s1 1 0

s1 0 1

0 0

0µ

(iii) pZDD-based representations

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

10

B,VB := {s2, . . . , t3}

A,VA := {s1, t2}

t1

t2

t3

s1

s2

s3

KT

n1

δ µγ

Figure 3.13: Block-wise access by dfs-traversal

with E(i, j) := �b. In the context of quadratic matrices, such a sub-matrix is also known as
block-entry of the overall matrix M . The above access scheme is then applied once again for
each matrix Mi,j, until one reaches the level of terminal nodes. So for a (4 × 4) matrix M
this would give us the matrix elements mr,c in the following sequence: m0,0,m0,1,m1,0,m1,1,
which are the matrix entries of the upper left quadrant of M . The next elements to follow
are m0,2,m0,3,m1,2,m1,3, which are the elements of the upper right quadrant, and so on.

For exemplification one may refer to Fig. 3.13 which shows two matrices and their pZDD
based representations. In order to illustrate the block-wise-addressing scheme as realized by
the chosen variable ordering, we wrote the matrices as tables, and equipped them with the
boolean variables. The minterm ¬s2¬t2, which is induced by the diagonally hatched path
starting at the root node of the pZDD B, gives us the (sub-)pZDD rooted in the diagonally
hatched node n1 at level s3. The (sub-)pZDD rooted in n1 represents the (sub-)function
fM00 (s3, t3) as obtained from fB by making the variables s2, t2 constant, here 0. Concerning
the matrix this means that we extracted the upper left block-matrix B(0, 0) (the hatched
one) as contained in the overall matrix B (cf. Fig. 3.13.i). The matrix-entries of B(0, 0) are
then given by the values of the terminal nodes reachable from n1, including the 0-entries we
ignored so far. A dfs-traversal with else-edge-first delivers the sequence 0, 0, µ, 0 of matrix
entries.
The pZDD A represents a (2 × 2) identity matrix (cf. Fig. 3.13.ii) or the boolean function
s1 �→ t1. A dfs-traversal with then-edge-first rule delivers the sequence 1, 0, 0, 1 of matrix
entries, starting at the lower right corner of matrix A.

Operating with pZDD based matrix representations
The solvers for computing state probabilities considered in this work follow the hybrid
technique as introduced for ADDs in [Par02]. Within this approach “pure”-symbolic matrix-
matrix - and matrix-vector operations are therefore not relevant, with one exception.1 Within
a pZDD based matrix representation the operation M := A · B in case VA ∩VB = ∅ gives the
cross-product of the structures A and B. This operation and its relation to the Kronecker
product of matrices will be investigated now, as it is from great importance for the SG based
composition of models (cf. Sec. 2.5 and Sec. 4.3.3).

1 An overview over algorithms on ADD based matrix operations can be found in [Sie01, ADD97].

3.5 Applications 63

Given that A ≡π A, B ≡π B, and VA ∩ VB = ∅, the operation M := A op B, for op ∈ {∧, ·}
gives a DD M, which encodes 2V

A+VB

possible assignments. I.e. one constructs a Mt-DD,
which encodes the cross product of the satisfaction set of A and B. On the level of matrix-
operations one might think that this realizes the Kronecker product A ⊗ B. If this is truly
the case will be investigated thoroughly now.

The variable order π defined on M turns out to be crucial. Thus one needs to distinguish
between (a) a non-interrupted ordering scheme, i.e. the variables of VA are all smaller or
larger than the ones of VB with respect to π, or (b) an interrupted ordering scheme with
respect to π, i.e. the variables of VA and VB are somehow (si, ti)-wise nested.

Lemma 3.6: Let A,B be two symbolic representations of the matrices A and B with a fixed
ordering πA,B of their variables: where sAi ∈ VA and sBk , s

B
l ∈ VB. Let Mt-DD M := A · B,

depending on the fixed variable order π one obtains the following results:

(1) Non-interrupted order:
(1.a) sAi <π sBk : A ·B gives a symbolic representation of the Kronecker-product A⊗B, i.e.:

A · B ≡π A⊗B

(1.b) sBk π> sAi here A · B gives a symbolic representation of the Kronecker-product B ⊗A,
i.e.

A · B ≡π B ⊗A

(2) Interrupted order: sAi <π sBk ∧ sAi π> sBl .
Here the symbolic matrix representation of A · B does not encode the Kronecker-product
of the matrices A and B in general:

A · B 	≡π A⊗B ∧ A · B 	≡π B ⊗A

Proof: If one considers the block-wise addressing scheme as realized by Mt-DDs (see discus-
sion above) and the definition of the Kronecker product, the proof of the above lemma is
straight forward: If Mi,j(k, l) addresses the matrix element in block (i, j) at position (k, l),
for all elements of M we have: Mi,j(k, l) = A(i, j) · B(k, l) (cf. Sec. A.3). I.e. under the
Kronecker product one combines the matrices A and B in an element-to-block-wise manner,
where each block is equal to matrix B, but multiplied with matrix entry ai,j := A(i, j). The
combination of the symbolically represented matrices as achieved by the Apply-algorithm
or its variants does so for the non-interrupted case, however in the interrupted case, the
row-to-row and column-to-column combination of the indices is somehow mixed.

Non-interrupted order of the variables
The order π as defined on M gives the assignment �b := (�b1,�b2), where �b1 defines the assign-
ment of the variables of VA and �b2 the assignment of the ones of VB. The boolean expansion
applied on the variables of VA yields:

fM := sA1 tA1 . . . s
A
nA

tAnA
fA(11 . . . 11)fB + · · · · · · · · · + · · · · · ·

+ · · · · · · · · · + · · · · · · · · · + · · · · · · · · · + · · · · · · · · ·
+ · · · · · · · · · + · · · · · · · · · + ¬sA1¬tA1 . . .¬sAnA

¬tAnA
fA(00 . . . 00)fB

where �b1 := EA(r, c) and thus fA(�b1) = ar,c (cf. Def. 3.13) holds. From Eq. A.1 (p. 162) and
the fact that B ≡π B, it follows immediately that A · B ≡π A⊗B.

The case sBk <π sAi is symmetric.

64 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

V{A,B}
π{A,B} VM

π′VM
π M<VM,π>

M<VM,π′>

A<VA,πA>

B<VB,πB>

(A) Mt-DDs to be combined (B) Non-interrupted scenario (C) Interrupted scenario

1

t1

t1

t1t2 t2

t2t3

t3t3

s1

s1

s1s2 s2

s2s3

s3s3

KT δδ δ µµµ γγγ

Figure 3.14: Cross-product building and variable orderings (M := A× B)

Interrupted order of the variables
In case of an interrupted order of the variables of A and B, the bits of �b1 and �b2 are somehow
mixed when combined to build �b. Consequently the co-factor as obtained after making
the first dim(�b1) bits constant, may in general not represent matrix B, since fM�b1

(�b2) 	=
Satisfy(�b2, getRoot(B),�vB) holds. I.e. due to the overall order π, the element-to-block-wise
access pattern while traversing M does not follow the element-to-block-wise combination
A(E−1(�b1)) · B(E−1(�b2)) as it is mandatory for the encoding the Kronecker-product of A
and B (cf. Eq. A.1, p. 162). It follows immediately that A · B 	≡π A⊗B. The case B ⊗A is
symmetric.

In the following we will employ the symbol × for emphasizing cross-product building as
occurring in case of multiplying DDs with disjoint sets of function variables. In case their
sets of function variables are not disjoint we will maintain the usage of the symbol · for
referring to the conjunction or multiplication of the DDs. However, one may note that on
the level of the DD-algorithms always the same op-functions are employed, e.g. ZAnd and
ZTimes in case of pZDDs.

For exemplification and giving a counter example to A × B ≡π A ⊗ B, one may refer to
Fig. 3.14. On the left (Fig. 3.14.A) the Mt-DDs A and B as already employed in previous
examples are given. In Fig. 3.14.B and 3.14.C the Mt-DD M as resulting from A × B for
two different variable orderings π and π′, is depicted. Here π induces once a non-interrupted
ordering of the variables of A and B (Fig. 3.14.B), whereas π′ yields an interrupted one
(Fig. 3.14.C). As one can see, the obtained results for M differ, where only M<VM, π,�>
represents the Kronecker product of matrix A and B, M<VM, π′,�> obviously presents a
permutation of A⊗B.

If one faces now a situation as illustrated in Sec. 2.5.6, where one needs to build the sum over
a set of cross-products of submodel-local transition rate matrices and identity structures (cf.
Eq. 2.20, p. 28), the definition of a variable order π, which preserves the non-interrupted order
for all variables, may not be possible. It might appear that π destroys the non-interrupted
order for one pair of Mt-DDs, whereas it produces this order for another pair of Mt-DDs.
Thus, due to the above considerations, it is clear that a KO driven composition scheme is
not applicable here, which leads to the following theorem:

Theorem 3.7: Within a shared BDD-environment, where a fixed variable order π is present
and for an index set I. The equation∑

i∈I
Ai × 1⊥i ≡π

⊕
i∈I

Ai,

3.5 Applications 65

where 1⊥ji are identity matrices of appropriate dimensions, does not hold in general.

Proof: The proof of the above theorem will be achieved by constructing a counter example.
To do so, one may consider the following setting:

• Na ≡π Na, and VNa := {a1, a2, b2} and

• Nb ≡π Nb, where VNb := {b1, b2} and

• Nc ≡π Nc, where VNc := {c1, a2, b2} and

• let 1⊥a := 1⊥<c1, b1>, 1⊥b := 1⊥<c1, a1, a2> and 1⊥c := 1⊥<a1, b1> be the identity structures
over the respective variables.

One can easily construct now the sum over the cross-products as follows:

M :=
∑

i∈{a,b,c}
Ni × 1⊥i

where the variable ordering π is irrelevant for the construction as long as an Apply-like al-
gorithm –or its pZApply based variants–, for combining the symbolic matrix representations
is employed. However, according to lemma 3.6 and for the variable ordering:

a1 <π a2 <π b2 <π c1 <π b1

it follows immediately

pZAnd(×, getRoot(Nb), getRoot(1⊥b)) 	≡ 1⊥b ⊗ Nb

A re-definition of π, so that the above inequality does not hold, destroys the non-interrupt
variable ordering for A. Thus within the above example we have:

	∃π :
∑

i∈{a,b,c}
Ni × 1⊥i ≡π

⊕
i∈{a,b,c}

Ni

According to the above discussion, it is clear, that situations exist, where the Apply-algo. or
its pZApply based variants are still capable of cross-product building, but where a Kronecker
product (KP) delivers a wrong result. This result is captured in the following definition.

Definition 3.15: Kronecker operator compliant structure (KO compliant)

A high-level model M consisting of n submodels Si, each with its own set of variables
(Si := {si1, . . . , siki

}) possesses a KO compliant structure if

∃π : s1
1 <π · · · <π s1

k1 <π s2
1 <π · · · <π · · · sn−1

kn−1
<π sn1 <π · · · <π snkn

.

In case such a order π does not exists, M is said to be not KO compliant.

The above theorem directly gives that high-level models, which do not possess KO compliant
partitionings, can not be analyzed by applying a Sync driven decomposition strategy and a
KO driven composition scheme for obtaining the models potential SG (cf. Sec. 2.5.3, p. 28).
–Alternatively one could compute Ñi := 1⊥1

i ⊗ Ni ⊗ 1⊥2
i and apply a respective permutation

matrix on Ñi (Ni = PÑi), so that
∑

i∈{a,b,c}Ni delivers the desired result. This strategy
is problematic, in case where M is not stored explicitly but generated on-the-fly, so that a
matrix entry M(i, j) is computed when needed by applying the respective KO driven scheme
on the local matrices (Ni).

We will come back to this discussion, when contemporary symbolic SG generation techniques
are investigated thoroughly (cf. Sec. 4.7, p. 108ff).

66 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

Limitations of “pure” symbolic solvers
In the scope of performability analysis one calculates transient- or steady state probabilities
by making use of iterative methods, which heavily employ matrix-vector-multiplication (cf.
Sec. 2.2.2, p. 13ff). Pure symbolic solvers employ then not only a symbolic matrix representa-
tion, they also make use of symbolic vector representations. Such a symbolic representation,
rooted in a node n is obtained analogously to Def. 3.11, where each probability p for a state
�s is stored within a terminal node, so that Satisfy(E(�s), n,�s) = p holds. In this context
ZDD based matrix- and / or ZDD based vector representation as illustrated in Fig. 3.11 is
hampered by the following conditions:

(1) Pure symbolic matrix-matrix or matrix-vector multiplication is known to be not very
efficient, due to the multitudinous ZDD-traversals before accessing the values of the
matrix- or vector elements themselves.

(2) The elements of the solution / iteration vector(s) may be all different, thus its symbolic
representation may not be compact at all.

(3) The elements of diagonal of the generator matrix, which are the negative row sums of the
transition rate matrix, may be all different. Thus their integration within the symbolic
matrix representation may lead to a significant blow up in the number of nodes of the
latter.

(4) The iterative solution methods require the manipulation of the vector, thus extensive
restructuring of the symbolically represented vector occurs.

(5) Some iterative solution methods require an ordered row- or column-wise access to the
matrix elements. As pointed out in Sec. 3.5.2 under an interleaved ordering of row - and
column indices a simple dfs-traversal can not deliver such a sequence. Instead one would
require to extract a column- or row by BDD-manipulation and subsequently extract
the single entries of the obtained Mt-DD. Consequently such a procedure leads to an
overhead as induced by the additionally required and probably extensively executed
ZDD based operations.

These considerations have lead to the development of hybrid solvers, as introduced in the
context of ADDs in [Par02], where this concepts will be adapted to ZDDs now.

3.5.3 Extending ZDDs for efficiently computing matrix-vector products
The iterative solvers as developed in [Par02] employ a hybrid approach in which the transi-
tion rate matrix is stored symbolically by the means of an ADD and the (iteration) vectors
are stored as arrays. In the following sections we will briefly introduce the basic ideas of the
hybrid approach, but adapted to ZDD based matrix representation.

Index-labeled ZDDs for matrix representation
If n Boolean variables are used for state encoding, there are 2n potential states of which only
a small fraction may be reachable. For exemplification one may refer to Fig. 3.11. The third
row and third column of matrix A as given in Fig. 3.11.iv (p. 60) is filled with zeroes only.
This stems from the circumstance that the binary label (10) is the label of a non-reachable
state ((10) 	∈ S). Thus all paths containing state label (10), either encoded within the s- or
t-variables end-up in the terminal 0-node, so that the respective matrix positions are filled
with zeroes. Allocating entries for unreachable states within the vectors is a waste of memory
space and severely restricts the applicability of the algorithms, e.g. if storing probabilities
as doubles, a vector with about 134 million entries will already require 1 GByte of RAM.
Therefore a dense enumeration scheme for the reachable states has to be implemented. The
indexing scheme as introduced for ADDs in [Par02] is adaptable to the case of ZDDs, so
that: (a) a dense indexing of reachable states is realized, so that the processing / storing

3.5 Applications 67

of dummy-entries, i.e. entries referring to non-reachable states, within the solution/iteration
vector is avoided. (b) Row and column index of a matrix entry mr,c are computed while
traversing the symbolic representation in a dfs-style.

The set of assignments fulfilling the boolean function as defined by a BDD can be indexed
by a dense enumeration scheme. The main idea is now to extend BDDs in such a way,
that during dfs traversal one computes the index of the assignment as induced by the path
currently traversed. However, this of course requires an 1:1 relation between paths and
assignments.2 For realizing the indexing of fulfilling assignments, each BDD node is equipped
with an offset. Such an offset of a node n is hereby defined as the number of assignments
fulfilling the boolean function rooted in else(n) (|Satelse(n)|), where for else(n) = 1-node
this number is 1 and for else(n) = 0-node it is 0. Sat is the function as defined in Eq. 3.1
in combination with the respective version of algorithm Satisfy (cf. Algo. B.2, p. 164). If
one descends now the graph rooted in node n, but by following the then-edge, it is clear
that Offset(else(n)) binary labels with a smaller index exist. In order to determine now
the index of an assignment �b as induced by a path p one simply needs to sum up the offsets
at nodes left through their out-going then-edge. Consequently the 0-sup. reduction is not
problematic since the then-edge of a respective node leads directly to the terminal 0-node,
so that its offset will never be considered. The adapted algorithm for offset-labeling z-BDDs
is omitted here, the interested reader may refer to [Zim05] for details.

In contrast to the author of [Par02] we speak of index-labeling when it comes to the number-
labeling scheme of symbolic matrix representations and speak of offset-labeling in case of the
symbolic representation of the binary encoded set of reachable states. This is justified, since
the terminology offset-labeling is in our opinion related to path counting. In the context
of symbolic “index”-labeled symbolic matrix representations, a node’s “index” does not
refer to the number of paths concerning the symbolic representation itself, it refers to the
offset, i.e. number of minterms as encoded by the “partner node” found within the symbolic
structure representing the set of reachable states. I.e. the nodes of a symbolic represented
matrix are not labeled by directly employing the offset-labeling scheme as illustrated above,
thus the denotation index-labeling seems to be much more appropriated. The procedure of
index-labeling a ZDD based matrix representation can be described as follows: Each non-
terminal node of the ZDD M representing a real-valued matrix is labeled by the offset of
the corresponding node within the z-BDD S representing the set of column, row-indices
respectively. Two nodes are hereby understood as being corresponding, if they encode the
same i’th bit position and if they belong to paths encoding the same binary encoded colum
- or row index respectively. While traversing now the ZDD from top to bottom the indices
of the matrix entries are calculated by summing up the index-labels of all nodes which are
left via their outgoing then-edge. Since the s and t variables are ordered in an interleaved
fashion, row and column indices are computed in an alternated fashion. I.e. the index-labels
of nodes labeled with an s variable may contribute to the (dense) row index, whereas index-
labels of nodes labeled with a t-variable may contribute to the column index. This procedure
allows one the mapping of each bit-string addressing a row- and column index of a matrix
entry, to a pair of natural numbers, rather than interpreting the bit-string itself as the binary
encoded column - or row index.
Within BDDs and derivatives thereof isomorphic sub-structures are merged. It might appear
now that some reachable states share the same subsequence of binary encoded state labels,
but are encoded on different paths within the BDD representing the set of reachable states.
However, in case of the Mt-DDs representing the transition matrix, it is possible that these
identical subsequences are represented by a single path. I.e. within the BDD representing
the set of reachable states one has more than one node which correspond to the single
node within the Mt-DD representing the transition matrix. If the offset-labels of the nodes

2 Dnc-free BDDs can not be employed here directly, since on each path each skipped variable
doubles the number of encoded assignments. In order to avoid this ambiguity, [Par02] suggested
to re-insert dnc-nodes as long as the edge to be re-directed does not lead to the terminal 0-node.

68 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

contained within the BDD are different an offset collision will occur, i.e. while executing the
index-labeling one visits a node carrying a label which differ from the one it should carry
with respect to the current recursion. For resolving this situation [Par02] simply duplicates
the respective nodes, so that isomorphic nodes are only merged if they are equivalent under
Def. 3.2 (p. 34) and also their index-labels match.

As already pointed out above for the offset-labeling of BDDs, the adaptation of the index-
labeling scheme for ADDs [Par02] to the case of ZDDs does not require the additional
allocation of nodes as in case of ADDs. The maintenance of the 0-sup. reduction rule is
hereby based on the fact, that under ZDDs one still has a 1:1 relation between pair of
indices and paths. However, the skipping of levels concerning the index-labeling algorithm
is intricate, since it might occur that a node does not possess a partner node in the z-BDD
representing the set of column - or row indices. But fortunately it shows that one simply
needs to continously iterate on the respective partner z-BDD until reaching the level of the
current ZDD-node to be index-labeled. Furthermore the case that a node within M does not
have a partner node within the offset-labeled counterpart will never occur, due to the 0-sup.
reduction rule itself. The interested reader may refer to [Zim05], where further details and
the algorithms can be found.

Hybrid index-ZDD based representation of matrices
Comparing ZDD based representation of real-valued matrices with conventional sparse ma-
trix techniques yields that the symbolic technique realizes memory space advantages. How-
ever, this efficiency comes at the cost of additional computational overhead. This overhead
stems from the recursive calls of the routines traversing the ZDDs in order to access the
terminal nodes, i.e. the matrix entries. Since the transition rate matrices as stemming from
high-level model descriptions are most likely to be block-structured, where a block- or sub-
matrix might appear various times, the author of [Par02] concluded that it is a good idea
to store the blocks (sub-matrices) in a conventional sparse matrix layout. The decision at
which ZDD variable one switches from a symbolic representation to a sparse matrix layout
depends hereby on the memory space available, where the respective variable will be denoted
as sparse variable in the following. In contrast to index-labeled ADDs, the root node of the
block-matrix to be converted into sparse format might not be the same for all paths, due to
the skipping of levels. However, this is not problematic, since the index of nodes eliminated
under the 0-sup. rule would not be taken into account anyway. Experiments carried out
showed, that the adjustment of the sparse variable to the s-variable at position [∼ � 1

3 |Vs|�]
seems to be a good choice, where [Par02] favored the s-variable at position � 2

3 |Vs|�. So in-
stead of removing the lower third of the DDs only, as suggested in [Par02], the experiments
of [Zim05] suggested a removal of two thirds of the variables of the DD representing the
respective transition rate matrix.

Block-structured hybrid index-ZDD based matrix representations
The interleaved ordering of the s- and t-variables does not allow a column- or row-wise
access to the matrix entries when executing a dfs-traversal (cf. Sec. 3.5.2). However, some
numerical-solution methods require such (ordered) access patterns, e.g. the GS-method (cf.
Sec. 2.2.2, p. 14). In order to make use of the good convergence behavior of the GS-method,
the author of [Par02] developed the pseudo Gauss-Seidel solution method (pGS). Its main
idea is to access blocks of the transition rate matrix in an ordered sequence, e.g. row-wise,
whereas the elements within the blocks are visited in an arbitrary order. This realizes GS on
the level of blocks, whereas within the block-matrices the JAC-method must be employed.
Consequently such an approach requires ordered access to the blocks, as well as an additional
iteration vector, where the size of the latter is determined by the size of the largest block
matrix. In contrast the JAC and POW-method do not need an ordered access, but an
iteration vector of the size of the full state probability vector.

3.6 Related work and own contributions 69

For block-structuring the overall transition rate matrix, one simply removes the first b pairs
of s- and t-variables of the ZDD based representation. Per each increment of b the number
of blocks increases by factor 4, i.e. one obtains nblck := 22b blocks for b pair of s- and t-
variables. After removing the first b s- and the first b t-variables, one ends up with a number
of hybrid and index-labeledZDDs, where each of them represent a different sub-matrix Mi,j

as contained in M . As more levels are removed, as more blocks one obtains and as faster the
solution can be obtained, due to the better convergence behavior of the GS-method. But this
speed-up comes with an additional memory overhead, since the different block matrices must
be administered. Consequently the adequate choice of b is also an optimization question as
the determination of the sparse-variable was before. In the following the last t-variable, which
is removed for constructing the block-structured matrix, is denoted as block-variable. For
administering the root nodes of the block-matrices. the ADD based approach as developed
in [Par02], makes uses of a sparse matrix storage scheme (column-major scheme). Due to
the imposed memory size, this limits the applicability of the approach, with respect to the
choice of b. Based on this observations and contrary to the ADD based approach of [Par02],
the ZDD based solvers as developed in the context of this work, make use of a linked list,
rather than a sparse matrix storage scheme, where only non-0-blocks are stored. Doing so
enables larger choices of b, where it turned out, that a good choices for 2b, i.e. the number of
variables being removed, lies between a third and a half of all variables the ZDD M <�s,�t> is
defined on. In contrast [Par02] suggest 2b to be a third of the number of all s- and t-variables.

3.5.4 Beyond DD based matrix representations
As already reported above, finding appropriated block - and sparse variables is an opti-
mization problem, which is up to now answered by practical experience. Given that the
ZDD-traversal increases the time per iteration, and that the applicability of the pure GS-
method is limited to the level of blocks, –the individual blocks can only be accessed via
ZDD-traversal,– one may wonder if the intermediate ZDD-levels can not be omitted at all.
Our implementation described in [Zim05] automatically assigned block- and sparse-level to
the same variable, if the user-defined choices of them are not consistent. As it turned out,
this scheme requires the largest memory space but delivers best run-times per numerical it-
eration. However, [Zim05] was not the first to develop such an idea. The author of [Meh04],
developed a two-fold sparse matrix format, where a sparse-matrix format administers the
individual block-entries and where the blocks are also stored in a sparse-matrix format. But
nevertheless such an approach, no matter if the block-entries are stored as linked list or un-
der a sparse-matrix format, goes beyond symbolic matrix representation. Therefore a deeper
discussion is avoided. This is also justified, since the author of [Meh04] focused on hard-drive
swapping strategies, i.e. so called out-of core methods for computing state probabilities of
CTMCs, where this work focuses on pure RAM based methods only.

3.6 Related work and own contributions

In order to obtain a picture of the field of BDD based data types and for gaining an overview
over the innovations presented in this chapter, one may turn to Fig. 3.15. There from top
to bottom the different refinements as suggested by different authors can be tracked, the
contributions of this work are given bold-faced. The different innovations will be discussed
now in detail.

Binary Decision Diagrams (BDDs) and derivatives thereof are widely used in today’s CAD-
tools, since they are known to be extremely efficient in the representation of boolean func-
tions. Their basic form, Binary Decision Trees are based on the observation that the n
variables of a boolean function can be recursively replaced by the constant 1 or 0. This ex-
pansion of boolean functions is commonly denoted as Shannon expansion. In 1938 the Amer-
ican mathematician Shannon published a paper about symbolic representation of switching
functions [Sha00]. I.e. he showed how switching functions can be mapped via expansion onto

70 3 Zero-suppressed Multi-terminal BDDs: Concepts, Algorithms and Application

Expansion Law: Boole 1847 [Boo52], Shannon [Sha00]

Lee [Lee59]

Akers [Ake78]
Bryant [Bry86]

Minato
[Min93] Parker [Par02]

Parker [Par02]

Parker [Par02]

Bahar et al. [BFG+93],
Clarke et al. [CFM+93, CMF+93]

Binary Decision Trees, Sec. 3.2

Binary Decision Diagrams (BDD), Sec. 3.2

don’t-care free BDDs, Sec. 3.2.10-suppressed BDDs, Sec. 3.2.1

Algebraic Decision
Diagrams, Sec. 3.2.3

0-sup. Multi-terminal BDDs
(ZDD), Sec. 3.2.4 and partially
shared ZDDs and algorithms,
Sec. 3.3 and 3.4

index-labeling for matrix
representations, Sec. 3.5.3

offset-labeling, Sec. 3.5.3

Is
o
m

o
rp

h
is

m

ru
le

(D
e
f.
:
3
.2

)

R
e
d
u
c
ti

o
n

ru
le

s
(D

e
f.
:
3
.4

,
3
.5

)

E
x
te

n
d
in

g
th

e
c
o
-d

o
m

a
in

o
f

B
D

D
s

(D
e
f.
:
3
.6

,
3
.7

,
3
.1

0
)

BDDsz-BDDs

ZDDs ADDs

H
y
b
ri

d
so

lu
ti

o
n

m
e
th

o
d
,
S
e
c
.
3
.5

.3
.

block- and / or hybrid
index-labeled ZDDs

block- and / or hybrid
index-labeled ADDs

two-fold
sparse-matrix format

Mehmood [Meh04]

Figure 3.15: Development and inheritance of concepts within BDT based data types

a boolean algebra, and thus laid the basics of modern hardware verification. Consequently
the term symbolic representation of boolean functions or symbolic set representation itself,
as it is used nowadays, is not very precise. One should better speak of graph based represen-
tation and manipulation of discrete (boolean) functions, when it comes to their BDD based
representation, which is also the appellation Bryant employed in his ground-breaking paper
[Bry86]. But due to the broad acceptance of this terminology we maintain it here.
Based on the work of Shannon, Lee [Lee59] developed the concept of binary decision pro-
grams, which can be viewed as variants of BDDs. In 1978 Akers [Ake78] introduced the
dnc-reduction rule, as well as the possibility of employing inverted arcs between the BDD
nodes. But it was up to Bryant [Bry86] to define an ordering relation on the boolean vari-
ables and thus to introduce reduced ordered BDDs, allowing him to develop algorithms for
the efficient manipulation of BDDs, where the Apply-algorithm is the most important one.
This generic algorithm follows the Shannon expansion and allows one to efficiently apply a
binary operator directly onto BDDs, where a new BDD representing the resulting function
is generated. Its development was the breakthrough for the success of BDDs in many of
today’s applications, since the efficiency of BDDs and derivatives thereof was from now on
not only restricted to memory savings. This development inspired many researchers, so that
nowadays a broad range of graph based data types and algorithms for their efficient manip-
ulation exists. The research activities of the past decades have hereby led also to other forms
of expanding boolean functions, suiting all different kinds of applications. For an overview
the interested reader may refer to [MT98] and [DB98].

3.6 Related work and own contributions 71

Since one may interpret the boolean function represented by a BDD also as a characteristic
function of a set, the elements of which are labeled by binary strings, the relation to efficient
set representation and manipulation is evident. Consequently it is not surprising that BDDs
are the most prominent representative when it comes to symbolic state space or state graph
representation. In the field of performability modeling the most prominent BDD based data
structures are multi-terminal - or algebraic decision diagrams [CFM+93, CMF+93, BFG+93],
and their offset-labeled variants [Par02]. Another branch contains multi-valued decision di-
agrams (MDDs) [KVBSV98] and matrix diagrams (MxDs) [Min01]. The interested reader
may find a detailed survey in [MP04], where binary and also non-binary decision diagrams
in the context of performability modeling are discussed.

Boolean functions with sparsely enumerated satisfaction sets, i.e. functions where the fulfill-
ing assignments possess many 0-assigned bit positions, may yield large BDD based represen-
tations. In such settings zero-suppressed BDDs (z-BDDs) [Min93] have shown to be very help-
ful. Thus it is a very natural way of replacing the don’t-care-reduction rule in case of ADDs
with the zero-suppressing reduction rule, as it was first suggested by us in [LS03b, LS06a].
As simple as the idea of extending z-BDDs to the multi-terminal case sounds, as difficult
the efficient algorithmic manipulation of the resulting ZDDs in shared BDD environments
turned out to be. These difficulties are closely related to the fact that in the presence of
the 0-sup.-reduction rule, the set of boolean variables a Mt-DD is defined over matters. This
circumstance forced us to develop the concept of partially shared ZDDs (pZDDs), i.e. to
consider ZDDs with differing sets of boolean variables. This new Mt-DD based data type
required a re-design of Bryant’s BDD-algorithms [Bry86], yielding most importantly the the
pZApply-, pZAnd-, pZRestrict- and pZAbstract-algorithm.

The concept of offset and index-labeling in case of z-BDDs and ZDDs as introduced in
this chapter, which is a precondition for the efficient BDD based solution of CTMCs, are
adaptations of the approaches developed in [Par02] for BDDs and ADDs. Using ZDDs we
had hereby to adapt the concept of offset- or index-labeling: With ADDs, skipped variables
lead to a re-insertion of nodes, whereas for ZDDs, skipped nodes correspond to zero-valued
variables for which the offset is irrelevant. Therefore, in the ZDD case, skipped nodes do not
have to be reinserted, which keeps the symbolic data structure in general more compact.
Analogously to the author of [Par02] we also adapted the idea of extending index-labeled
ZDDs by making use of sparse matrix formats, yielding block-structured and / or hybrid
index-ZDDs. However, in contrast to [Par02] we discovered that a linked list for administer-
ing the non-zero block-matrices is favorable, allowing us to pick an arbitrary value for the
block-variable. Given a flexible choice of block and sparse variable at hand, we discovered,
that the removal of all ZDD-variables residing between linked list for storing block-entries
and spare-matrix formats for individual block-entries delivers best iteration numbers and
times and the cost of a strongly increased memory consumption. A similar approach was
also suggested in [Meh04], however in contrast to this work, the author of [Meh04] focused
on out-of core methods, for computing state probabilities of CTMCs.

Several case studies have provided evidence that the ZDDs are superior to ADDs when repre-
senting Markov chains which are derived from typical high-level specifications (cf. Sec. 2.3).
It has been found that, in general, the ZDD based representation is more compact than the
ADD based representation. This has the positive effect that the construction and manipula-
tion of the symbolic representations, as well as the times for computing numerical solutions
are also reduced (cf. Chapter 5, p. 119ff).

4

The Activity/Reward-local Scheme:
Symbolic SG based Analysis of

High-level Markov Reward Models

At its core the activity/reward-local approach applies a selective breadth-first-search
scheme for explicit SG exploration, a scheme for symbolic composing state graphs,
algorithms for symbolic reachability analysis, and a scheme for generating symbolic
representations of reward functions. This yields a symbolic representation of the
high-level Markov reward model’s underlying reward-annotated state-transition sys-
tem. Based on the obtained symbolic representation a probability distribution on
the set of system states is computed, where the hybrid solution method, as already
discussed in the previous chapter, is applied. Algorithms based on graph-traversal
allows one then to efficiently compute the specified measures modeling the performa-
bility of the system under study. Since an important goal can be seen in the reduction
of the number of system states, the state probability of which must be computed, the
basic activity/reward-local scheme will be extended to cope with models contain-
ing submodel-imposed symmetries, where a symbolic algorithm for the state graph
reduction will be presented.

4.1 Organization of the chapter

The activity/reward-local scheme consists of two aspects: (a) the generation procedures for
obtaining a symbolic representation of a high-level model’s underlying esLTS, denoted as
activity-local scheme and (b) the procedure for generating symbolic representations of reward
functions, addressed as reward-local scheme. Before introducing these schemes we need to
introduce the model world, which is done in Sec. 4.2. The discussion ranges from helpful
definitions up to the limitations of the high-level models to be handled. This is necessary,
since the activity/reward-local scheme is not limited to a single high-level model description
method.

Sec. 4.3 explains the basics of the activity/reward-local scheme for efficiently constructing
symbolic SG representations. In order to keep the discussion simple we first restrict ourself to
purely Markovian high-level models1 and the basic SG generation and encoding scheme. The
completeness and correctness of the basic scheme is covert in Sec. 4.4. Sec. 4.5 discusses how
symbolic representations of reward functions and the distribution of state probabilities on
the set of reachable states can be obtained. Given symbolically represented reward functions
and the vector of state probabilities, one is enabled to determine moments of user-defined
performability measures, via a new graph-traversing algorithm as presented at the end of
section 4.5.

Now the discussion is ready for Sec. 4.6, where useful extensions of the basic scheme are
introduced. These extensions range from the application of the lumping theorem in case of
explicitly modeled symmetries, up to an extended activity/reward-local scheme for handling
high-level models containing prioritized immediate activities.

Since the last years have seen tremendous efforts on the sector of symbolic representations
for Markov models, a detailed discussion of related work is appropriate, which is done in
Sec. 4.7. The chapter is concluded by Sec. 4.8, which indicates our pre-published material.

1 Models where the set of immediate activities is empty

73

74 4 The Activity/Reward-local Scheme

4.2 Model world

The model world as to be developed in this section does not contain the explicit definition
of a partitioning of the high-level models. Since contrary to other compositional SG gener-
ation procedures, the scheme to be developed applies an automatized activity-wise model
decomposition. To do so, the only model structure required is an arbitrary connection re-
lation defined on the set of state variables and activities, each high-level model consists of.
However, as a consequence of this, compositionally constructed high-level models, where the
Sync composition method is employed, must be modified in such a way that the activities
to be jointly executed among the submodels are merged posteriori to SG generation, which
we already described in Sec. 2.4 (p. 24ff).

4.2.1 Static properties
(1) A high-level model M consists of a finite ordered set of discrete state variables (SVs)

si ∈ S, and a finite set of activities li ∈ Act, where the sets of SVs and activities are
assumed to be disjoint (S ∩ Act = ∅).

(2) SVs and activities are somehow related, which is reflected by the following connection
relation Con:

Con ⊆ (S ×Act) ∪ (Act× S). (4.1)

Connection relation, SVs and activities allows one to define the following static net structure:

Definition 4.1: Simple SV-Activity net (simple SA net)

A simple SA net N is a triple N := (S,Act, Con), where

• S is the ordered finite tuple of SV (s1, . . . s|S|),

• Act is the ordered finite tuple of activities (l1, . . . lnAct),
with nAct := |Act| and S ∩ Act = ∅,

• Con is the connection relation as defined in Eq. 4.1.

Throughout the rest of this work, it is assumed that not only SVs steering the execution
of an activity l appear in the above connection relation. It is essential that also all SVs
influencing the execution weight, - rate or - priority do so. Therefore we define an activity’s
set of dependent SVs as follows:

Definition 4.2: Set of activity-(in)dependent SVs

Within a simple SA net each activity l is connected via Con with a set of SVs. Such a set
of connected SVs shall be denoted as l’s set of dependent SVs and it is defined as:

SD
l := {si | si ∈ S : (si, l) ∈ Con ∨ (l, si) ∈ Con}.

The set SI
l := S \ SD

l is denoted as activity l’s set of independent SVs.

All functions steering the behavior of an activity l, are assumed to take only dependent SVs
as their input parameters, where each time activity l is executed, its dependent SVs SD

l

may change, and where the SVs belonging to l’s set of independent SVs (SI
l) maintain their

values!

Common Markovian model description methods allow one to employ either (a) immediate
activities l ∈ Acti and (b) timed activities l ∈ Actm (cf. Sec. 2.3). Therefore we extend the
concept of simple SA nets as follows:

4.2 Model world 75

Definition 4.3: SV-Activity net (SA net)

A SA net N is a simple SA net N := (S,Act, Con), where Act := Actm ∪ Acti, so that

• Actm is the set of timed activities and

• Acti is the set of immediate activities, and

• Actm ∩Acti = ∅.

The semantics of immediate and Markovian transition was already discussed in Sec. 2.2.3.
The semantics of their inducing high-level counterparts (immediate or timed activities) will
be clarified in the following section, when the dynamic behavior of SA nets is discussed.

4.2.2 Dynamic properties
Based on the vector-layout for states as introduced in Sec. 2.4 (Eq. 2.17, p. 25) and based
on the set of dependent (independent) SVs for each activity (cf. Def. 4.2) one may define
now the following mapping for an activity l and a state �s:

χD
l : N

|S| −→ N
|SD

l | (χI
l : N

|S| −→ N
|SI

l |) (4.2)

This mapping extracts the values of the dependent (independent) SVs as contained in a
state �s, where for simplicity the shorthand notations �sDl

:= χD
l (�s), and �sIl

:= χI
l (�s) will be

employed. The (sub-) vector �sDl
will be denoted as l’s dependent and the (sub-) vector �sIl

as l’s independent state marking concerning state �s.

The model’s evolution from state �s to the next state �t is achieved by the execution of the
activity specific transition or execution functions for each enabled activity. However, before
being qualified for defining the enabledness of an activity, one need to define the following:

Definition 4.4: Concession of an activity

An activity-specific predicate function predl : N
|SD

l | → {true, false} for a given state �s and
a specific activity l ∈ Act is defined as follows:

predl(�sDl
) := xwherex ∈ {true, false} ⇔ �s ∈ S

In case predl(�sDl
) = true one says that activity l has concession in state �s, which is addressed

by the notation �s � l. If predl(�sDl
) = false one writes �s 	� l.

It is enforced that the SVs, which influence the predicate of an activity l over a state �s are
also elements of SD

l .

Having concession alone is not sufficient for an activity l to be executed. In the presence of
priorities it is also necessary, that there is no other activity k which possesses concession in
�s and which has a higher priority than l. The priorities not only depend on the activity, they
may also depend on the models current state, which is reflected by the following definition:

Definition 4.5: Activity-specific priority function

A priority function priol for an SA net is a function priol : N|SD
l | → N for an activity l and

a state �s, which is defined as follows:

priol(�sDl
) := xwherex ∈

{
N>0 if l ∈ Acti ∧ �s � l

{0} if l ∈ Actm

76 4 The Activity/Reward-local Scheme

Now we are in the position of defining the enabledness of an activity l as follows:

�s [> l ⇔ �s � l ∧ (∃k ∈ Act : �s � k ∧ priok(�sDk
) > priol(�sDl

)) (4.3)

where �s [> l means that activity l is enabled. In case l is not enabled, since �s 	 � l or
∃k ∈ Act : �s � k∧priok(�sDk

) > priol(�sDl
), the notation �s [> li is employed. This allows one

to define the set of enabled activities to be executed in a given state �s:

Definition 4.6: Set of enabled activities

The set of activities enabled in a given state is defined as:
A�s := {l ∈ Act |�s [> l}.

Each successor state is then obtained by applying the activity-specific transition function δl
on the source state �s. However, concerning the targeted model world, the model description
method specific implementation of δl is without interest here. The only thing required is the
fact, that δl assigns new values only to those positions j of �s, which are associated with SVs
of l’s set of dependent SVs (sj ∈ SD

l). Positions referring to SVs of l’s set of independent
SVs (sj ∈ S \ SD

l) maintain their values. I.e. formally one has:

Definition 4.7: Activity-specific transition function

The activity-specific transition function δl : N|S| → N|S|, which returns the target state �t
for a given source state �s and an activity l is defined as follows:

δl(�s) := �xwhere�x [i] :=

{
�t [i] ∈ N⇔ si ∈ SD

l ∧ �s ∈ S

�s [i] ∈ N⇔ si ∈ SI
l ∧ �s ∈ S

The set of all activity-specific transition functions allows one to define the global transition
function of the high-level model:

Definition 4.8: State-to-State transition function on a SA net

The state-to-state transition function ∆ : {S ×Act} → S on a SA net is defined as follows:

∆(�s, l) := δl(�s) ⇔ l ∈ A�s
where A�s is the set as defined in Def. 4.6. This state-to-state transition function ∆ can be
generalized to a function ∆∗ : S ×Act∗ → S, which is inductively defined as follows:

∆∗(�s, ε) := �s
∆∗(�s, ωl) := ∆(∆∗(�s, ω), l)

where ε is the empty word.

The (global) transition function ∆, together with the initial state �s ε, which assigns an initial
value to each SVs, allows one to generate a set of states S for the SA net:

4.2 Model world 77

Definition 4.9: Set of reachable states and set of reachable transitions

The set of reachable states for a SA net, a transition function ∆ and an initial state �s ε is
inductively defined by

(1) �s ε ∈ S

(2) (�s ∈ S ∧ ∃l ∈ A�s) ⇒ ∆(�s, l)) ∈ S

Each transition of a SA net with source state �s, activity l and target state �t := ∆(�s, l) is a
triple (�s, l,�t). The set of all such triples yields a LTS T ⊆ S ×Act× S.

An element of the LTS T (t := (�s, l,�t)) is denoted as reachable if ∃ω ∈ Act∗, so that
�s = ∆∗(�s ε, ω) ∈ S. In case such an activity-execution sequence ω exists not, i.e. �s is not
reachable, t is denoted as non-reachable transition. In case a LTS contains more than the
actually reachable states it is denoted as potential transition system. With the help of ∆ and
�s ε one is enabled to construct the set of reachable states S, as well as the labeled transition
system T for a given SA net. The set of reachable states can be divided into the following
partitions:

Definition 4.10: Partitioning the set of reachable states

For the set of reachable states S of a SA net, we define the following partitioning:

S = SV an ∪ STan ∪ SAbsorb,

where

• SV an is the set of vanishing states: SV an : {�s ∈ S | ∃l ∈ Acti : �s [> l}
• STan is the set of tangible states: STan : {�s ∈ S | ∃l ∈ Actm : �s [> l}
• SAbsorb is the set of absorbing states: SAbsorb : {�s ∈ S | 	∃l ∈ Act : �s [> l}

The semantics of these different types of states was already discussed in Sec. 2.2.3.

A standard interleaving semantics resolves concurrency by executing all enabled activities.
Consequently one needs to decide which activity is executed first, i.e. to schedule the activ-
ities. This situation is commonly denoted as racing and it needs to be somehow resolved.
According to Eq. 4.3 among the activities with concession always the one(s) with the high-
est priority win(s). Furthermore Def. 4.5 gives that Markovian activities always have the
same priority level 0. Consequently analogously to the GSPN semantics, the situation is
constructed, that immediate activities granted concession always suppress the enabledness
of Markovian activities which are granted concession as well. Due to this dominance of im-
mediate activities over Markovian the race-situation for the two classes can be investigated
separately:

Immediate activities
The non-determinism in case of immediate activities is commonly resolved by computing
execution probabilities for the immediate activities enabled in a vanishing state. Since the
modeler might not wish that these probabilities are uniformingly distributed, common high-
level model description methods allow one to equipped each immediate activity with a
state-dependent execution weight. The weight returning function of an activity is defined as
follows:

78 4 The Activity/Reward-local Scheme

Definition 4.11: Activity-specific weight returning function

An activity-specific weight returning function Ωl : N|SD
l | × N|SD

l | → �
+ for l ∈ Acti over a

transition system T of a SA net is defined as follows

Ωl(�sDl
,�tDl

) := xwherex ∈ �+

where �tDl
:= χD

l (∆(�s, l)) (cf. Def. 4.2). By aggregating the weights of transitions emanating
from the same state, one obtains the (global) weight returning function Ω : SV an → �

+:

Ω(�s) :=
∑
l∈A�s

Ωl(�sDl
,�tDl

).

This allows one to calculate the probability for each transition (�s, l,�t) ∈ T as induced by an
immediate activity l ∈ Acti as follows:

Π(�s, l,�t) :=
Ωl(�sDl

,�tDl
)

Ω(�s)
. (4.4)

However, the case Ω(�s) = 0 needs to be eliminated. This is achieved by simply granting only
concession to activities, those execution weight 	= 0, this strategy is formalized in Def. 4.13.
In such a setting it holds then that the execution probabilities of all activities enabled in a
given vanishing source state sums up to 1:

∀�s ∈ SV an :
∑

l∈Acti∩A�s

Π(�s, l,∆(�s, l)) = 1

At this point it is useful to indicate, that the above suggested calculation of execution
probabilities requires global knowledge about all immediate activities to be executed in a
given state. This turns out to be problematic for a SG generation scheme which employs
local knowledge about activities only.

Timed activities
Analogously to a GSPN semantics it is assumed that an enabled timed activity l is executed
after a delay, where the latter is sampled from a neg. exponential distribution with parameter
λl. The transition from one state to another itself is instantaneous and does not consume
any time. Analogously to the weight returning function we define:

Definition 4.12: Rate returning function

An activity-specific rate returning function Λl : N|SD
l |×N|SD

l | → �
+ for an activity l ∈ Actm

over a transition system T of a SA net is defined as follows:

Λl(�sDl
,�tDl

) := xwherex ∈ �+

where �tDl
:= χD

l (∆(�s, l)) and �s ∈ S. By aggregating the rates of transitions between the
same pair of states, one obtains the (global) rate returning function Λ : S × S → �

+:

Λ(�s,�t) :=
∑

l∈Actm∩A�s

Λl(�sDl
,�tDl

)

According to the above definitions it might occur that there are enabled activities having
execution weights or rates equal to 0. Such activities should be removed from the set of
enabled ones, so that they do not interfere with the enabledness of other activities. In order
to guarantee this, one simple needs to re-define the condition for an activity for having

4.2 Model world 79

concession:

Definition 4.13: Concession of an activity under a weight or rate returning function

An activity l is said to have concession in a state �s (�s � l) if the activity specific predicate
function predl for a state �s is true and the activity’s execution rate or weight 	= 0. I.e. for a
reachable state �s ∈ S one has:

�s � l ⇔ [predl(�sDl
) = true ∧ Fl(�s,∆(�s, l)) 	= 0

]
where Fl is defined as

Fl(�s,�t) :=

{
Ωl(�sDl

, χ
D
l (∆(�s, l))) if l ∈ Acti

Λl(�sDl
, χ

D
l (∆(�s, l))) if l ∈ Actm

Due to the above extension of the concession rule, an immediate activity having concession
but a zero weight, does not suppress the execution of another activity having concession in
the very same state and a execution weight or rate other than 0. This is important when
it comes to symbolic reachability analysis in the presence of Markovian and immediate
activities (as to be discussed in Sec. 4.6.2, p. 106)

The discussion carried out so far, leads now to the definition of generalized stochastic SA net
model (GS-SA net) incorporating timed behavior:

Definition 4.14: A Generalized Stochastic SA net model (GS-SA net)

A GS-SA net is a 5-tuple N := (SA,∆,�s ε, Ω, Λ) where

• N is a SA net,

• ∆ is the global transition function as specified in Def. 4.8,

• the dedicated state �s ε ∈ STan gives an initial value for each SV,

• Ω : S × S → �
+ is the global weight returning function of Def. 4.11,

• Λ : S × S → �
+ is the global rate returning function of Def. 4.12

In case Acti = ∅ one speaks of a stochastic SA net model (S-SA net).

Thus it is clear that for a given initial state �s ε a GS-SA net can be mapped to a esLTS by
employing the functions ∆,Ω and Λ on SVs and activities, where a vector layout for each
state, and an appropriate connection relation on SVs and activities is present. This setting
constitutes the framework or model world for the symbolic SG generation approach to be
developed in this work.

Finally, we define the semantics of performance variables, enabling the modeler to define
complex performance measures on the level of the high-level models, rather than on the
level of their underlying esLTS. A performance variable (PV) consists of sets of rate reward
- and / or set of impulse reward functions. A rate reward function defines hereby the reward
gained by the model in a specific state, to do so a rate reward returning function takes
a reachable state as input and maps it to a real number. In contrast an impulse reward
defines the reward as obtained by executing a specific activity in a specific state, i.e. the
values of impulse reward functions are at least activity-dependent but may also be state-
dependent. In both cases the specific reward values are defined to be time independent,
thus they can be generated during SG construction (cf. Sec. 2.3.4). Analogously to weight
and rate returning functions we also emphasize the principle of locality here, i.e. we assume

80 4 The Activity/Reward-local Scheme

a connection relation between a rate or impulse reward and the SVs taken by the reward
returning function as input parameters. Thus we define the reward functions to take sub-
vectors (!) of the high-level model’s states as their input parameter, where in case of impulse
rewards this sub-vector is restricted to the set of dependent SVs of the associated impulse
generating activity. In case of a rate reward function, this set of SVs can be an arbitrary
subsets of the high-level model’s SVs. This gives us the following definitions:

Definition 4.15: Rate reward

A rate reward r on a GS-SA net is specified by the rate reward returning function Rr :
N|SD

r | → � and defined as follows:

Rr(�sDr) := xwherex ∈ �⇔ �s ∈ STan

where SD
r ⊆ S is the set of SVs the evaluation of the reward function depends on, denoted

as set of dependent SVs of reward r. Analogously to Eq. 4.2 �sDr is the shorthand notation
of a mapping of a state �s ∈ S onto the positions associated with r’s dependent SVs.

The set of all rate reward functions defined on a given high-level model will be denoted R,
so that a set of rate rewards may be obtainable for each state. Due to the computation of
rate rewards as introduced in Sec. 2.2.2 (p. 15ff), the above defined rate reward returning
function on a GS-SA net can be directly employed when aggregating rate rewards, in order
to construct complex performance variables. Contrary to this, impulse rewards must be
weighted with the respective activity rate before aggregation of multiple impulse reward
functions can be done (cf. Eq. 2.9 and 2.12, p. 16). This is needed, since more than one
activity may contribute to an impulse reward, so that the individual activity-dependent
impulse reward values are required to be aggregated. This makes impulse reward more
complex, where the following definition covers this aspect:

Definition 4.16: Impulse reward

An impulse reward j of a GS-SA net is received if a specific activity k is executed, and where
the activity-specific impulse reward generated by this activity may also be state-dependent.
The set of (Markovian) activities which contribute to impulse reward j will be labeled as
Actmj and denoted as j’s set of impulse reward inducing activities. The impulse reward
returning function Ij : STan → �, for impulse reward j can then be defined as follows:

Ij(�s) :=
∑

k∈A�s∩Actmj
Ijk(�sDk

) · Λl(�sDk
, δk(�sDk

))

where Λl is the rate returning function of Def. 4.12 and Ijk(�sDk
) is the impulse reward

returning function of activity k with respect to impulse reward j and which we restrict to
k’s set of dependent SVs:

Ijk(�sDk
) := xwherex ∈ �⇔ k ∈ A�s ∩ Actmj ∧ �s ∈ STan

Within the above definition Ijk(�sDk
) is constructed in such a way that it matches the basic

definition of impulse reward functions which we already gave in the context of low-level
MRMs (cf. Sec. 2.2.1 (p. 9)).
One simply needs to employ the activity-specific transition function δk on a source state �s,
so that the pair (�s, δk(�s)) can serve as input for an impulse reward function, so that Ijk(�sDk

)
is equivalent to function Ij(�s, δk(�s)) as defined in Def. 2.4 (p. 11). In cases where more than
one activity contributes to the actual value of an impulse reward, it is important that one

4.2 Model world 81

multiplies each activity-dependent reward function Ijk(�sDk
) with the respective activity rate

before the sum over the activity-dependent impulse reward functions is computed. This is
exactly what we did in the above definition, when specifying impulse function Ij(�s).
For a high-level model there might be more than one impulse reward returning function for
an activity k, which of course depends on the user-defined set of impulse rewards. The set
of all impulse rewards defined for a given high-level model will be denoted as I
Based on the above definitions one is now enabled to combine rate and impulse rewards
to build complex performance variables. If these performance variables are equipped with
a notion of time, a respective performability measure can be computed by applying the
equations of Sec. 2.2.2 (p. 15ff.). Therefore we assign a type to each PV, so that one is
enabled to distinguish between steady state or transient state performability measures. Since
the notion of time is only of concern when the concrete performability measures are computed
we define at this stage that PVs are static structures.

Definition 4.17: Performance variables for a GS-SA net

A performance variable p for a GS-SA net consists of set of rate reward functions (Rp)
and/or a set of impulse reward functions (Ip), which are aggregated as follows:

Rp(�s) :=
∑
r∈Rp

Rr(�sDr) and Ip(�s) :=
∑
j∈Ip

Ij(�s)

defined for all �s ∈ STan. Additionally we define that a PV p is of a specific
type, so that p.type ∈ {transient-state, steady-state}. Thus a PV is a mapping
S × {transient-state, steady-state} → (�,�).

Due to the above definition Rp can be employed as the state-dependent rate reward function
Rr(i) as used in Eq. 2.6 and 2.8 (p. 15). Thus the computation of Rp(t) and Rp(t, t +
�t) yields the user-defined (rate-oriented) performability measures of the high-level model.
Analogously Ip can be interpreted as the sum

∑
j∈S

Ia(i, j) · λi,j as employed in Eq. 2.10 and

2.13 (p. 16), so that Ip(t, t+ �t) and Ĩp can be computed accordingly.

Alternatively to the above definition, the aggregation of rate and impulse reward values
could also be achieved, but was omitted here for simplicity.

4.2.3 Derived properties
In the following we will give some additional definitions and find some properties derived
from the GS-SA net model and its features as specified in the previous sections. These
definitions and properties will be very useful when it comes to the activity/reward-local
scheme.

Language of a GS-SA net model
The transition system as derived from a GS-SA net model M directly induces a language
LM. This language is obviously the set of all possible transition words as generated by the
transition function of M . However, a formal definition, avoiding the de-tour over the under-
lying LTS, can also be given:

82 4 The Activity/Reward-local Scheme

Definition 4.18: Language of GS-SA net models

The language LM as produced by a GS-SA net is defined as follows:

LM := {ω ∈ Act∗|∆∗(�s ε, ω) ∈ S}

where ∆∗ is the generalized state-to-state transition function as defined in Def. 4.8. Each
word ω ∈ LM is denoted as transition word. On the level of the underlying semantic model
it describes a valid sequence of state changes, starting from the initial state �s ε.

Concerning the notation of target states, the notation �sω for ω ∈ LM instead of the simple
symbol �t, may be employed. This is sometimes appropriate since ω gives the sequence of
activities, the execution of which led to the resp. state. Analogously we will write �s ω−→ �s ω

when addressing the whole sequence of activity executions leading from states �s to state �s ω.
This allows us now to define the depth of a transition system.

Definition 4.19: Depth of a transition system

Let L′
M ⊆ LM be a subset of finite transition words, the execution sequence of which start

in the initial state �s ε and where each intermediate state is unique, so that

∀ω ∈ L′
M :
[
�s ε

ω−→ �s ω ⇒
(
	∃ψ ∈ L′

M : (�s ε
ψ−→ �s ψ ∧ |ψ| < |ω|)

)]
holds. The depth of the language inducing LTS is defined as DM := maxω∈L′

M
(|ω|).

Activity-local transition systems
Based on the vector-layout for states and on the set of dependent (independent) SVs we
already defined the mapping of a state �s to the values of the dependent (independent) SVs
(cf. Eq. 4.2). Thus the esLTS T , as derived from the GS-SA net net model, can be partitioned
into sets of transitions with same label l, where each state vector is reduced to the values
of the activity dependent SVs by employing the above mentioned mapping. In this sense we
define now the following:

Definition 4.20: Activity-local transition system

Let T be an esLTS as derived from a GS-SA net M. For each activity l ∈ ActM an activity-
local transition system is defined as follows:

T l := {(�x, l, λ, �y) | �x := �sDl
∧ �y := �tDl

∧ (�s, l, λ,�t) ∈ T }

Since l can either be the label of an immediate or timed activity, λ refers to a rate or weight.

The projection from T to T l is not injective, since the abstraction from the independent SVs
may result in the circumstance that an element of T l corresponds to more than one element
of T .

SV-oriented view of dependency among activities
Based on the set SD

l one may define now a dependency relation on the set of activities:

4.2 Model world 83

Definition 4.21: Set of activity-dependent activities

The activities which dependent on an activity l give the set of activity-dependent activities:

ADl := {k | l, k ∈ Act : SD
k ∩ SD

l 	= ∅}.

In case SD
k ∩ SD

l = ∅ the activities k and l are independent from each other, which can be
employed, analogously to the above definition, as follows:

Definition 4.22: Set of activity-independent activities

AIl := {k | l, k ∈ Act : SD
k ∩ SD

l = ∅}.

where ADl = Act \ AIl holds.

One may note that according to the above definition one has l ∈ ADl . Each time activity l is
executed, some of the dependent SVs for the activities of ADl may have changed, so that new
transitions might be obtainable by subsequently executing the activities of ADl . In contrast,
the independent SVs are unchanged, so that for the activities 	∈ ADl no new information is
generated by executing activity l. This observation is crucial and exploited under explicit
SG exploration as carried out by the activity/reward-local scheme. Based on the definition
of dependent activities, we can now find new definitions required in the process of explicit
SG generation as well as deriving some essential properties for independent activities.

Based on the SV-oriented definition of dependency among activities, one may define the
following relations:

(1) a symmetric dependency relation on Act×Act:

(k, l) ∈ ActD ⇔ l ∈ ADk (4.5)

(2) a symmetric independency relation on Act×Act:

(k, l) ∈ ActI ⇔ l /∈ ADk (4.6)

Execution properties of independent activities
Concerning two activities l and k, we define the following partitioning of the set of SVs:

DDI
l,k := SD

l ∩ SI
k DID

l,k := SI
l ∩ SD

k

DDD
l,k := SD

l ∩ SD
k DII

l,k := SI
l ∩ SI

k

(4.7)

The pairwise intersection of the above sets is empty and their union is the set of all SVs S.
After a suitable reordering of the state descriptor we can write �s = (�sDI , �sID, �sDD, �sII). We
can then distinguish the following cases concerning the execution sequences l k and k l:

�s
l k−→ �s lk ≡

(�sDI , �sID, �sDD, �sII)
l−→ (�s lDI , �sID, �s

l
DD, �sII)

k−→ (�s lDI , �s
k
ID, �s

lk
DD, �sII)

�s
k l−→ �s kl ≡

(�sDI , �sID, �sDD, �sII)
k−→ (�sDI , �s kID, �s

k
DD, �sII)

l−→ (�s lDI , �s
k
ID, �s

kl
DD, �sII)

(4.8)

In case (l, k) ∈ ActI ⇒ DDD
l,k = ∅, yielding the following properties:

84 4 The Activity/Reward-local Scheme

Definition 4.23: Properties of independent activities

For (l, k) ∈ ActI it holds:

if �s [> k then �s l [> k (Prop. Ia)
if �s [> l then �s k [> l (Prop. Ib)
if �s [> l ∧ �s [> k then �s lk = �s kl (Prop. II)

Due to these property it is clear that the execution order of the independent activities is
without significance, which is commonly also denoted as diamond property. By exploiting
this one may define a well-known equivalence relation on the set of sequences of transitions,
where two sequences ω and ρ are considered equivalent if and only if they can be obtained
from each other by swapping adjacent independent transitions. Each equivalence class is
commonly denoted as a trace [God95]. It is easy to see that one may execute independent
activities on a given source state separately, the target state of the joint execution of inde-
pendent activities can be obtained by simply combining the dependent sub-vectors, �s lDI and
�s kID in the above example. Since the diamond property holds for sequences of more than
two activities which are pairwise independent, it is clear that one solely needs to generate
the traces of dependent activities. The states of the traces stemming from the execution
sequences of sequence-wisely independent activities can be obtained by composition. This is
exploited by activity-local scheme.

Enabled dependent activities for selective exploration
Based on the definition for sets of dependent activities and based on the sets of enabled
activities A�s ωl (cf. Def. 4.6), one may define the following:

Definition 4.24: Set of enabled dependent activities

The set of dependent activities enabled in a given state �s ωl is defined as:
ADl

�s ωl := A�s ωl ∩ADl ,
where ωl ∈ LM. For the initial state we define: ADε

�s ε := A�s ε .

During SG exploration one only executes an enabled activity in a states �s once. Therefore
one needs to track the states an activity was already explored in, e.g. the source states as
contained within the activity-local transitions: (�sDl

, l, λ,�tDl
) ∈ T l, where such sets may be

denoted Ek.2 This allows one to refine the above definition:

Definition 4.25: Set of dependent activities to be executed

The set of dependent activities to be executed in a given state �s ωl is defined as:
FDl

�s ωl := {k ∈ ADk

�s ωl | �s ωlDk
	∈ Ek},

For the initial state we define: FDε

�s ε := A�s ε .

This construction allows us to generate the sets of activity-local transitions T l by following
not an exhaustive - but a selective explicit breadth-first-search scheme. I.e. for a detected
state �s l, which was reached by firing action l, one generates the set of successor states by
applying the activity-specific transition function δk for activities from FDl

�s l only.

2 For simplification Ek may record the activity-local markings of all states on which activity k was
already tested in a previous step. Thus �s l

Dk
�∈ Ek states that activity k was not yet tested on the

activity-dependent marking of state �s l.

4.2 Model world 85

Symbolic encodings
In the following paragraphs the main symbolic structures as employed by the activity-local
scheme are discussed.

• Encodings of transitions: Each symbolic structure Zl encoding the activity-local transi-
tion systems T l depends only on the boolean counterparts of l’s set of dependent SVs,
which is defined as follows:

∀l ∈ Act :
VDl := {(si1, . . . , siBi

), (ti1, . . . , t
i
Bi

) |si ∈ SD
l }

V Il := {(si1, . . . , siBi
), (ti1, . . . , t

i
Bi

) |si ∈ SI
l }

(4.9)

In this equation, �s i and �t i denote those Boolean variables which encode the value of
the SV si in the source and target state of a transition (�s, l, λ,�t) ∈ T . For simplicity we
gather now the s− and t-variable in different sets:
– Set of dependent s−variables: VDl

s := {sij ∈ VDl}
– Set of dependent t−variables: VDl

t := {tij ∈ VDl}
– Set of independent s−variables: V Il

s := {sij ∈ V Il}
– Set of independent t−variables: V Il

t := {tij ∈ V Il}
The global set of boolean variables for the shared DD environment is then given by:

VG := VAct ∪
(⋃
l∈Act

VDl
s ∪ VDl

t

)
(4.10)

where VAct are the variables required for encoding the activity labels.

For each activity its activity-local transition system T l is represented by Mt-DD Zl.
Concerning the latter the following aspects should be noted:
(1) each symbolic structure Zl holds only transitions as induced by activity l,
(2) each symbolic structure Zl depends solely on the boolean variables, which encode

the values of SD
l in a source state �s and the target state �t, so that VDl is the set of

function variables of Zl.
(3) for a transition (�s, l, λ,�t), the positions referring to elements of SI

l are dropped, and
(4) the transition weights or rates are stored within the terminal nodes of Zl.
In the following Zl will therefore also be denoted as activity-local structures, which are
formally defined as follows:

Definition 4.26: Symbolic representation of an activity-local transition system

Let a Mt-DD Zl < π,VDl > be a symbolic representation of a pseudo-boolean function and
let T l be an activity-local transition system:

Zl ≡ T l⇔Satisfy(E(l, �sDl
,�tDl

), getRootZl,VDl
t) =

{
λ ⇔ (l, �sDl

,�tDl
, λ) ∈ T l

0 else

Function E supplies a binary encoding of each transition as illustrated in Sec. 3.5.1 (p. 57ff).

Within the DD environment we assume the same ordering of the boolean variables as
specified in Def. 3.14 (p. 59), where the encodings of the activity labels appear at first.
However, since we have an activity-local structure for each activity, one may safely omit
the activity-labels and introduce them if needed (Zl×A{�a:=E(l)}), where the Mt-DD A is
obtained by applying function Encode(E(l), 1,�a) (cf. Algo. 3.8, p. 57).

• Encodings of tested states: The set El, which is employed in Def. 4.25 for each activity, is
also represented by the respective symbolic structure, denoted El. This structure solely
depends on the set of activity l’s dependent s-variables VDl

s .

86 4 The Activity/Reward-local Scheme

• Encodings of rate reward functions: The symbolic encodings of a rate reward’s r reward
function is organized in a similar fashion. Its symbolic representation solely depends on
the s-variables as contained in set VDr

s .

• Encodings of impulse reward functions: The symbolic encoding representing the im-
pulse reward function of an activity k (Ijk) is organized analogously to the encodings of
transitions. I.e. the respective symbolic structure encoding an activity’s impulse reward
function solely depends on the variables of (VDl).

4.2.4 Boundness of models
In [Hac76] it is stated that the inclusion of more than one zero-testing arcs, which have
been introduced by Agerwala [Age74] and others, gives the resulting “improved” Petri nets
“Turing-power”. Consequently most problems, such as boundedness and reachability are
undecidable there. Since in this work we deal with arbitrary transition functions, which only
need to satisfy Eq. 4.8, it is clear that all these problems are not decidable here as well.
Consequently for a given GS-SA net model the question, if it produces a bounded esLTS is
semi-decidable only. But if the SVs of the GS-SA net are known to be bounded, i.e. each
SV si can only take values from a finite set Wsi , S and thus T must be finite. Since for
|Wsi | <∞ trivially holds that

|S| ≤
∏

si∈S

|Wsi | <∞ whereWsi := {�s [i] |�s ∈ S}

Since si can only take values form N, one only needs to require therefore that there exists a
maximum on Wsi in order to enforce that S and T are finite sets.

Definition 4.27: k-Bounded GS-SA net

Let M be a GS-SA net model, equipped with a transition function ∆ and an initial state
�s ε:

M is k-bounded ⇔ ∃k ∈ N : k = max
si∈S

(
max(Wsi)

)
.

The maximum Ki is in general not known before hand and it is obviously semi-decidable
only as well, otherwise the reachability problem would be decidable. In the following we
consider the employed high-level models to be analyzed to be bounded, but
these bounds are not known a-priori to SG generation (see Sec. 3.5.1 (p. 58) for
details on the handling of unknown bounds of SVs).

4.3 The activity-local scheme:
Generating symbolic representations of state graphs

Due to the existence of priorities the handling of each immediate activity in isolation is
not applicable. Consequently the handling of Markovian models with immediate activities
imposes additional constraints. In order to keep the discussion simple only pure Markovian
high-level model specifications are considered now, i.e. we only consider models where Acti =
∅. Issues related to immediate activities are covered in Sec. 4.6.2.

4.3.1 Main routine

The top-level algorithm of the activity-local SG generation scheme is shown in Algo. 4.1.
Lines 0 - 7 contain the initialization:

(1) ZR holds the set of states reached so far, it is initialized with the initial state �s ε.

4.3 The activity-local scheme: Generating symbolic representations of state graphs 87

Algorithm 4.1 Main routine for the activity-local SG generation scheme
ExploreStateGraph()
(0) ZR := Encode(E(�s ε), 1,Vs);
(1) for k ∈ Actm do
(2) Zk := ∅;
(3) Ek := Encode(E(�s ε

Dk
), 1,VDk

s);

(4) if �s ε [> k ∈ Act then FDε
�s ε ←− k;

(5) end

(6) S-Buffer←− (�s ε,FDε
�s ε);

(7) T-Buffer := ∅;
(8) do
(9) do
(10) ExploreStates();
(11) EncodeTransitions();
(12) end until S-Buffer = ∅
(13) dZM :=

P
l∈Actm

Zl × 1⊥(SIl)× Al;

(14) ZR := ReachabilityAnalysis();
(15) InitNewRound(ZR);
(16) end until S-Buffer = ∅
(17) ZM := dZM · ZR;
(18) return ZR;

(2) Zk holds the activity-local transitions as induced by activity k and as generated and
encoded during the explicit exploration phase. Each Zk is initialized with the empty set.

(3) Ek encodes the sets of activity-local markings of states on which activity k was already
tested for being enabled. It therefore needs solely to encode activity k’s set of dependent
SVs only, so that VDk

s is the set of function variables of Ek. Consequently Ek is initialized
with the activity-dependent marking as contained within the initial state �s ε.

(4) FDε

�s ε is the set of activities enabled in the initial state (cf. Def. 4.25).

(5) The S-Buffer holds tuples of states and sets of activities (�s ωl,FDl

�s ωl). State �s ωl is hereby
the state reached through executing the ordered activity sequence ωl. The set FDl

�s ωl is
the set of enabled dependent activities (cf. Def. 4.25), its elements are the activities to
be executed in state �s ωl

(6) The T-Buffer holds explicitly generated transitions (�s l, k, λ, �s lk) to be encoded and
inserted into the respective symbolic activity-local structure Zk.

In the inner do-until loop (lines 9 - 12) procedures ExploreStates and EncodeTransitions
are called in an alternating fashion in order to carry out explicit SG exploration and the
encoding of the detected transitions. If a fixed point is reached, i.e. all sequences of depen-
dent activities starting from the initial state(s) are extracted and no new states for further
exploration are detectable, symbolic composition takes place (line 13). Since the obtained
symbolic structure ẐM encodes a set of potential transitions, it is necessary to perform sym-
bolic reachability analysis (line 14). Symbolic composition and reachability analysis gives
one now all states reached so far, but where some of them are generated only on the symbolic
level. Such composed states may trigger new model behavior, consequently re-initialization
must take place. This is realized by calling routine InitNewRound, (line 15), which searches
for such states and inserts them together with the respective activity into the S-Buffer. If
states, triggering new model behavior exist, a new round of explicit SG exploration and en-
coding follows, i.e. one re-enters the outer do-until loop (lines 8 - 16). In case such states
do not exist anymore, the activity-local scheme is finished and all reachable transitions of a
high-level model’s underlying sLTS have been computed (lines 17).

88 4 The Activity/Reward-local Scheme

Algorithm 4.2 Procedures for explicit SG generation and encoding

ExploreStates()
(0) while S-Buffer �= empty do

(1) (�s l,FDl

�s l)←− S-Buffer;

(2) for k ∈ FDl

�s l do

(3) �s lk := δk(�s l);

(4) λ := Λk(�s l
Dk

, k, �s lk
Dk

);
(5) T-Buffer←− (�s l, k, λ,�s lk);
(6) end
(7) end
(8) return ;

(A) Routine carrying out explicit
SG exploration for a dedicated
set of activities

EncodeT ransitions()
(0) while T-Buffer �= empty do;

(1) (�s, l, λ,�s l)←− T-Buffer;

(2) FDl

�s l := ∅;
(3) for k ∈ ADl do;
(4) if �s l

Dk
/∈ Ek ∧ �s l [> k

(5) then FDl

�s l := FDl

�s l ∪ {k};
(6) Ek := Ek + Encode(E(�s l

Dk
), 1,VDk

s);
(7) end

(8) if FDl

�s l �= ∅
(9) then S-Buffer←− (�s l,FDl

�s l);

(10) Zl := Zl + Encode(E(�sDl, �s
l
Dl

), λ,VDl);
(11)end
(12) return ;

(B) Routine carrying out symbolic
encoding and preparing next
round of explicit exploration

4.3.2 Explicit state graph generation and encoding
For generating the sets of activity-local transitions T l we follow a selective breadth-first-
search strategy, i.e. for a detected state �s l, which was reached by firing action l, we gen-
erate the set of successor states by applying the activity-specific transition function δk
for each activity k ∈ FDl

�s l , where FDl

�s l is the set of dependent enabled activities to be
fired (cf. Def. 4.25). The set Ek as employed in Def. 4.25 is hereby represented by Mt-
DD Ek. It encodes those activity-local markings on which activity k was already tested
(successfully or not). One could also test if �s lDk

∈ Zk, as source or as target state:
�s lDk

∈ (pZAbstract(Zk,�t,∨){�s ← �t} ∨ pZAbstract(Zk,�s,∨)). In such a case, one may re-
peatedly test states where �s [> k, but doing so would impose a minor run-time overhead.
Consequently Ek is initialized with the model’s initial state �s ε (cf. line 3 of Algo. 4.1).
The explicit SG generation and encoding itself is realized with the help of two complemen-
tary procedures ExploreStates and EncodeTransitions. Their pseudo-code is specified as
Algo. 4.2.A and B.

Explicit SG exploration
The task of routine ExploreStates (Algo. 4.2.A), is to execute all activities as contained in
set FDl

�s on a state �s l and to insert the established transitions into the T-Buffer. To do so it
reads tuples, consisting of a state and a list of activities from the S-Buffer (line 1). For each
activity k ∈ FDl

�s the successor state �s lk and the corresponding rate λ are computed (lines
3 and 4). The obtained transition tuple (�s l, k, λ, �s lk) is then inserted into the T-Buffer (line
5). Once S-Buffer is empty, routine ExploreStates terminates.

Encoding the SG
At first the complementary routine EncodeTransitions (Algo. 4.2.B) reads a transition
from the T-Buffer (line 1), secondly it generates the set FDl

�s l (for-loop of lines 3 - 7). In line
6 the activity-local marking of state �s l with respect to k is inserted into the symbolic struc-
ture Ek. Hereby functions E and Encode are the functions as already employed in Sec. 3.5,
where E converts a state into a bit-string and Encode generates the respective symbolic rep-
resentation. As third step EncodeTransitions inserts the tuples of state/activity-lists into
the S-Buffer (line 9) as to be employed in the next round of explicit exploration. As final
step the transition itself is encoded and inserted into the symbolic structure representing
the respective activity-local transition system (line 10). EncodeTransitions terminates as
soon as all transitions are processed and T-Buffer is empty.

4.3 The activity-local scheme: Generating symbolic representations of state graphs 89

By executing procedures ExploreStates and EncodeTransitions in an alternating sequen-
tial fashion, the scheme will reach a point where EncodeTransitions has been executed and
the S-Buffer is still empty. This means that the algorithm has visited all states reachable
from the initial state(s) through sequences of dependent activities. However, so far we have
not considered the combined execution of independent activities. The shuffled execution of
independent activities is realized on the level of the symbolic representation.

4.3.3 Symbolic state graph composition
At the end of explicit SG exploration and encoding, when the procedures ExploreStates
and EncodeTransitions have reached a local fixed point, nAct symbolic structures Zl are
generated. Each of these symbolic structures depends solely on those boolean variables en-
coding the activity-dependent SVs SD

l before and after the respective activity’s execution
(cf. Eq. 4.9, p. 851). Before composition can take place, each of the symbolic structures
Zl needs to be supplemented by the set of Boolean variables V Il encoding the set of inde-
pendent SVs, yielding the set of potential transitions as induced by activity l. Since a SV
si ∈ SI

l does not change its value when activity l is executed, i.e. it remains stable, one may
employ the identity structures for supplementation. Since on the level of Boolean variables
�s i,�t i ∈ V Il , encode the activity-independent SVs SI

l in the source and target state (cf.
Eq. 4.9), the symbolic structure 1⊥(V Il), or 1⊥l for short, (cf. Def 3.14, p. 61), will deliver
the required symbolic representation. After the activity-local transition systems have been
supplemented, they can be combined in order to obtain a symbolic representation of the
overall transition system T :

Zp :=
∑
l∈Act

Zl × 1⊥l × Al (4.11)

Hereby Al represents the binary encoded activity label l.3 Due to the use of the identity
structure over the values ranging from 0 to 2�log2(Ki)� − 1 for each boolean s- and t-vector i,
the composed transition system Zp constructed may not contain reachable transitions only.
Consequently at this point it is necessary to perform symbolic reachability analysis in order
to restrict Zp to the set of reachable transitions.

4.3.4 Symbolic reachability analysis

In the following a new variant for carrying out symbolic reachability analysis will be pre-
sented. However, at first the standard approach as published in previous works [PRCB94,
Sie01] and as employed in tools such as Caspa [KSW04] and Prism [Pri] will be discussed.
In both variants one obtains the set of reachable states, which allows one to restrict the set
of potential transitions to the actual reachable ones.

Standard breadth-first-search symbolic reachability analysis
The algorithm for standard breadth-first-search (bfs) symbolic reachability analysis itself
employs mainly the following four symbolic structures:

(1) ZU representing the set of unexplored states,

(2) Zp representing the set of potential transitions as induced by the nAct activities. For
simplicity we will ignore the activity-labels and the transition rates, and assume that Zp

only encode the potential transition relation T ⊆ S × S.4

(3) ZR, representing the set of reached states, (initialized in line 0 of Algo 4.1, p. 87) and

3 Since the activity-local transition systems are stored individually, these labels can also be omitted
and introduced when needed, e.g. when computing impulse rewards.

4 As pointed out in chapter 3 this is justified, since our symbolic algorithms are also capable to
employ binary operators to pseudo-boolean functions (cf. Sec. 3.4.2, p. 50ff).

90 4 The Activity/Reward-local Scheme

Algorithm 4.3 Variants of symbolic reachability analysis

ReachabilityAnalysis()
(0) ZU := ZR;
(1) Zp :=

P
l∈Act Zl × 1⊥l;

(2) do
(3) Ztmp := Zp · ZU ;
(4) Ztmp := pZAbstract(Ztmp,Vs, +);
(5) Ztmp := Ztmp \ ZR;
(6) ZR := ZR + Ztmp{Vs ← Vt};
(7) ZU := Ztmp{Vs ← Vt};
(8) end until ZU = ∅
(9) return ZR;

(A) Breadth-first-search symbolic reach-
ability analysis as proposed
in [PRCB94, Sie01]

ReachabilityAnalysis()
(0) ZU := ZR;
(1) for k ∈ Act do

(2) fZk := Zk × 1⊥k;
(3) end
(4) do
(5) ZR := ZR + ZU ;
(6) for k ∈ Act do

(7) Ztmp := pZAbstract(fZk · ZU ,Vs, +);
(8) Ztmp := Ztmp \ ZR;
(9) ZU := ZU + Ztmp{Vs ← Vt};
(10) end
(11) ZU := ZU \ ZR;
(12) end until ZU = ∅
(13) return ZR;

(B) Quasi depth-first-search symbolic
reachability analysis

(4) Ztmp representing the set of states detected in the current iteration.

In line 0 the initialization of ZU with the states already reached so far is done. In line 1
of Algo. 4.3.A one executes the composition scheme (cf. line 13 of Algo. 4.1). This gives
one the symbolic structure Zp representing the set of potential transitions. A set-oriented
bfs-scheme is then realized by the do-until loop of lines 2 - 8, since the multiplication
of ZU (unexplored states) and Zp (potential transitions) delivers all transitions emanating
from the states contained in the symbolic structure ZU . The subsequent re-movement of the
source states by executing an existential abstraction on the variables �s (line 4) gives one
finally the set of states reachable from the states of ZU in one step, commonly denoted as
image. Before one enters now the next iteration, the set of reachable states and the set of
unexplored states as represented by ZR and ZU are updated (line 6 and 7). Once the set of
unexplored states is empty, the set of all reachable states has been computed.

Quasi-dfs symbolic reachability analysis
The step of image computation as carried out in Algo. 4.3.A can be understood as being
set-oriented and parallel. Since ZU may represent more than one state, and one obtains
all successor states in one step, one operation respectively (ZU · Zp, as executed in line 3).
However, the required operations are all carried out by the Apply-algorithms or variants
thereof. Thus, the larger and denser the symbolic structures are the more hanging recursive
calls to Apply there are and the more op-cache replacements may occur. Therefore we propose
the following improvements:

(1) Replace the “parallel” set-oriented scheme (line 3 of Algo. 4.3.A) by a sequential set-
oriented scheme (lines 6 - 10 of Algo. 4.3.B).

(2) Update the set of unexplored states as soon as possible (line 9 of Algo. 4.3.B).

Algorithm 4.3.B realizes an activity-wise (sequential) application of the potential transition
functions in combination with an early update of ZU . This gives one a set-oriented mixture
of a bfs - and a depth-first-search (dfs) scheme. We denote this scheme as quasi-dfs scheme,
since activities are executed on a set of states sequentially, rather than all at once as before.

Doing so leads to a significant reduction of the number of iterations of the main (outer) do-
until loop if compared with the original approach of Algo. 4.3.A. However, it is worth noting
that in case the symbolic structure ZU would not be updated with the newly reached states
directly (line 9 of Algo. 4.3.B), but outside the inner for-loop, one would obtain exactly

4.3 The activity-local scheme: Generating symbolic representations of state graphs 91

Algorithm 4.4 Re-initialization of explicit SG exploration and encoding
InitNewRound(ZR)
(0) for k ∈ Act do
(1) Ztmp := ZR \ Ek;
(2) while Ztmp �= ∅ do

(3) Zs
�s←− Ztmp;

(4) �s := E−1(Encode−1(Zs));
(5) if �s [> k then S-Buffer←− (�s, {k})
(6) Ztmp := Ztmp \ pZAbstract(Zs,V Ik

s , +);

(7) Ek := Ek + Encode(E(�sDl), 1,VDl
s);

(8) end
(9) end
(10) return ;

the same number of iterations of the main (outer) do-until loop for both reachability
algorithms, but with lower run-times in case of the new algorithm.

In the spirit of a greedy-heuristic, the early update-strategy can be taken a step further. By
nesting line 7-9 in an additional loop, one is enabled to execute the current activity until a
local fixed point is reached, i.e. until no new state is visited. This strategy will decrease the
number of iterations of the main (outer) do-until loop further. However, experience shows
that the additional gained speed-up is strongly model-dependent and sometimes relatively
low.

4.3.5 Re-initialization of the scheme
After symbolic composition and symbolic reachability analysis have taken place, one ends
up with all states, reachable from the initial state so far. However, the scheme only ex-
plicitly generated sequences of dependent activities, where symbolic composition gives their
shuffled execution, but on the level of the symbolic representation. On the level of the high-
level model the states resulting from the joint execution of independent activities have not
been considered yet. As a consequence, activity sequences requiring independent activity
sequences as prefix may not be yet detected. Therefore algorithm InitNewRound, as speci-
fied as Algo. 4.4 checks for each activity individually, if there is a composed state triggering
new model behavior. In case it detects such a state, it inserts it together with the respective
activity into the S-Buffer. To do so, InitNewRound takes the set of reachable states as input
parameter (ZR). In lines 1 - 8 the algorithm determines those reachable states on which a
given activity has not yet been tested. For each of these states it tests now, if the respective
activity is enabled or not, since in case it is, new model behavior will be obtained. To do so,
pairs of such states and enabled activities are inserted into the S-Buffer (line 5), yielding the
input for the next round of explicit SG exploration, encoding, and symbolic composition and
reachability analysis. Considering only positions of dependent SVs imposes an equivalence
class on the set of states. Therefore routine InitNewRound only considers states differing on
the positions of dependent SVs (line 6) reducing the number of states to be tested signifi-
cantly, since one only needs to take care of one state per equivalence class. If the S-Buffer
is still empty after the execution of InitNewRound, the activity-local scheme has reached a
global fixed point and a symbolic representation of the complete SG has been generated.

4.3.6 Example
Fig. 4.1 shows a simple SPN and its underlying sLTS. The activity-local structures as
obtained under the interleaved execution of ExploreStates and EncodeTransitions are
shown in Fig. 4.2.A. The binary encodings of the transition as produced by the activity-
local scheme are given in Fig. 4.2.B. The symbolic representation of the set of reachable
states, as well as of the sLTS, as obtained after the final execution of symbolic composition
and symbolic reachability analysis is shown in Fig. 4.3. The Mt-DDs in the illustrations are

92 4 The Activity/Reward-local Scheme

(A) A stochastic Petri net

2

p1

p2

p3

p4 p5

a, λ

c, λ

b, µ

d, µ

e, ρ

(B) The corresponding sLTS

01 01 0 10 00 1

10 01 0

01 00 1

01 10 0

00 00 2

00 10 1

00 01 1

10 10 0

a, λ

a, λ

a, λ

c, λ

c, λ

c, λ

b, µ

b, µ

b, µ
d, µ

d, µ

d, µ

e, ρ

Figure 4.1: A SPN and its underlying sLTS

ordered, i.e. on all paths from the root to a terminal node we have the same variable order-
ing, and they are reduced, i.e. all isomorphic substructures have been merged. In the ADDs,
a dashed (solid) arrow indicates the value assignment 0 (1) to the corresponding Boolean
variable on the respective path. The nodes printed in dashed lines are those which get elim-
inated when applying the zero-suppressing reduction rule for ZDDs. Hereby the variables of
all other skipped levels, i.e. the levels where absolutely no nodes appear, refer to variables
which are not function-variables of the respective ZDD.

In the following the activity-local scheme illustrated so far will be recapitulated by means
of this example, where one may ignore the rate information for the moment, since it is ir-
relevant for the following discussion.

Starting from the initial marking (10100) of the SPN of Fig. 4.1.A, the activity-local scheme
will explore those transitions explicitly which are drawn by fat arrows in the sLTS of
Fig. 4.1.B. As an example, transition 10100 a−→ 01100 will be explored and then encoded in
the activity-local symbolic structure Za of activity a as 10**** −→ 01**** (cf. Fig. 4.2.A),
where the symbol * denotes a skipped position, since the respective boolean variables are
not function-variables of Za (cf. Fig. 4.1.A: only p1 and p2 belong to the set of dependent
SVs of activity a). The transitions drawn in Fig. 4.1.B by regular arrows are the ones which
are generated during the composition of the activity-local symbolic structures, which can be
seen as a cross product construction followed by symbolic reachability analysis as realized by
one of the algorithms presented as Algo. 4.3 and as called before procedure InitNewRound
is executed.

We will now explain why the transitions drawn as dashed arrows in the figure are not explic-
itly generated during the first round of exploration, i.e. the reason why more than one round
of explicit exploration is required: Consider, for example, transitions caused by activity d:
In the first round the algorithm explicitly generates the transition 10010 d−→ 10001, which
is encoded in the activity-local symbolic structure Zd as ***100 −→ ***001 (cf. Fig. 4.2).
The cross product construction yields any transition +++100 d−→ +++001, where the +-
positions are arbitrary but stable. But the composition does not yield the transition 000101
→ 00010, which refer to the dashed transition 00011 d−→ 00002 in the sLTS. During proce-
dure InitNewRound, one detects that state 00011 is reachable and that activity d has not
yet been tested in states of the type ***11. Therefore the tuple (00011,d) will be inserted
into the S-Buffer at this point, and this dashed transition (as well as the other two dashed
transitions) will be explored in the second round. After this second round InitNewRound
will not insert any (state/activity)-tuples into the S-Buffer, and the scheme reaches a global
fixed point and thus terminates.

4.3 The activity-local scheme: Generating symbolic representations of state graphs 93

(B) Binary encodings

�a �s �t
l a1a2a3 s1s2s3s4s5s6 t1t2t3t4t5t6

fM Round

a 000 10**** 01**** λ 1
c 001 **10** **01** λ 1

*1**00 *0**01 1b 010
*1**01 *0**10

µ
2

***100 ***001 1d 011
***101 ***010

µ
2

e 100 0*0*10 1*1*00 ρ 2

Za

ZbZbZc

ZdZd

Ze

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

λλ µµ µµ ρ

(A) pZDDs representing the act.-local SGs5

After 1st round After 2nd round

Figure 4.2: Activity-local structures and binary encodings

a1

a2

a3

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

λ µ ρ

(B) SLTS

1

ZR

s1

s2

s3

s4

s5

s6

(A) Reachable states

Figure 4.3: Symbolic representation of the set of reachable states and the sLTS

5 For illustration purpose nodes belonging to 0-sup. variables are also given, the dashed ones.
Consequently only levels referring to non-function variables are skipped within the pZDDs.

94 4 The Activity/Reward-local Scheme

4.4 Completeness and correctness of the scheme

In this section the correctness and completeness of the activity-local scheme will be shown.
This is achieved in three steps:

• The correctness of the symbolically represented activity-local transition systems is due
to the fact that the value changes on positions referring to SVs of SD

l are directly derived
from the high-level model’s execution (line 3 and 4 of Algo. 4.2, p. 88). This allows to
concentrate on the completeness of the explicit generation and encoding scheme, where
Theorem 4.4 (p. 96) states that each of the obtained symbolic representations (ZDl) of an
activity-local transition system is complete (and according to the above argument also
correct).

• Secondly we show that the symbolic composition scheme, as developed in Eq. 4.11,
delivers a superset of the transitions of a high-level model’s underlying sLTS, which will
find its formalization in Theorem 4.5 (p. 96).

• As third step we will prove Theorem 4.7 (p. 98), which states that the symbolic reach-
ability analysis delivers the correct set of reachable states (ZR), even though it employs
the superset of transitions.

Based on the correctness and completeness of the activity-local scheme, of the symbolic
composition scheme and of the symbolic reachability analysis we can conclude, that for a
high-level model’s underlying sLTS T , represented by a symbolic structure ZT<�a,�s,�t> the
following must hold:

T ≡ ZT<�a,�s,�t> =
(∑
l∈Act

Al × ZDl × 1⊥l
)
· ZR,

where the symbolic structures on the right hand side of the above equation are the ones as
delivered by the activity-local scheme, namely the set of potential transitions constructed
by the expression in parenthesis and the set of reachable states (ZR). The restriction of the
potential transition system to the real one by multiplying the respective symbolic struc-
tures is possible, since the symbolic composition scheme solely constructs un-reachable and
reachable transitions, but no false positives (cf. Sec. 4.4.3, p. 98ff). Thus the above equation
immediately implies, that at termination the activity-local scheme constructed a valid sym-
bolic representation of a high-level model’s underlying sLTS.

Weights and rates of transitions are generated by executing the high-level model (line 4 of
Algo. 4.2, p. 88), where its is required that the activity-local weight or rate-returning func-
tion only takes parameters from SD

l (cf. Def. 4.11 and 4.12). Furthermore weights and rates
are stored within the terminal nodes, where the composition scheme employs the identity
function on the variables encoding SVs of SI

l (cf. Eq. 4.11). Thus, weights and rates of
transitions are not changed when the potential transition system is generated. Consequently
one only needs to deal in the following with the case of an LTS and ignore weight - and rate
information.

4.4.1 Generation scheme
The explicit exploration undertaken may be partial. Therefore it needs to be shown that
our approach delivers the complete activity-local sLTS T l for each activity as defined in
Def. 4.20 (p. 82). A single execution of the do-until loop of line 8-16 of Algo. 4.1 (p. 87)
will be denoted in the following as a round. Since the set of partial state markings Ek, the
set of activity-local transitions Zk, as well as the set of reachable states ZR depend on the
number of rounds executed, they are now indexed accordingly. I.e. Eik, Zik and ZiR are the
respective symbolic structures as obtained after the i’th round has been executed. At the
beginning Z0

R contains the initial state �s ε, the set E0
k its activity-local marking �s εDk

, whereas
Z0
k is the empty set (line 0-5 of Algo. 4.1, p. 87). Since we deal with finite SGs, the scheme

4.4 Completeness and correctness of the scheme 95

will terminate after K rounds have been executed.

Lemma 4.1: For some state �s the activity-local scheme will generate all sequences of pair-
wise dependent activities.

Proof: Let within the j’th round exploration and encoding be executed nj-times (line 9-12
of Algo. 4.1), yielding the following sequences of activity firings:

�s
α1−→ �s α1 α2−→ · · · αnj−→ �s α1,...αnj

where (αi−1, αi) ∈ ActD and �s α1...αi−1 [> αi for 0 < i ≤ nj holds. For simplification, let
k := αi, l := αi+1 and ω := α1 . . . αi−1k. The following two cases appear when state �s ω is
visited:

(A) l ∈ FDk

�s ω ⇒ �s ωDl

l−→ �s ωlDl
∈ Zjl (transition will be explored)

(B) l 	∈ FDk

�s ω ⇒ �s ωDl

l−→ �s ωlDl
∈ Z<jl ∨ 	∃�s ωDl

l−→ �s ωlDl
(transition already explored

or does not exist)

(4.12)

The above equation simply states that if there is an execution sequence of pairwise dependent
activities ((l, k) ∈ ActD) starting from state �s, it will be explored and this only once (cf.
do-until loop of line 9-12 of Algo. 4.1 in combination with Algo. 4.2.A and line 4-6 of
Algo. 4.2.B. (p. 88)).

The above lemma holds for all sequences as long as the pair (�s, α1) is entered into the
S-Buffer.

Lemma 4.2: The re-initiation of the activity-local scheme will trigger the exploration of all
states contained in ZjR, as long as their activity-local marking have not been exposed to the
respective activity yielding (new) model behavior, which is not already contained in ZjT .

Proof: Let us assume now that within round j explicit exploration and encoding has reached

its local fixed point (∃αnj ∈ Act : FDαnj

�s
α1...αnj

	= ∅). Now symbolic composition takes place,
yielding the joint execution sequences of all activity sequences explicitly extracted so far and
encode in ZjT (cf. Sec. 4.2.3: Execution properties of independent activities). The subsequent
execution of a symbolic reachability analysis gives then the current set of reachable states ZjR.
–Symbolic reachability is necessary since as it will be discussed below, symbolic composition
yields the potential transition system.– The next step is re-initialization, where the states
of ZjR serve as input and where for composed states triggering new model behavior, the
following holds:

(∃�s ∈ ZjR : �s l−→ �t ∈ T ∧ �sDl

l−→ �tDl
	∈ Zjl) ⇒ �sDl

	∈ Ej−1
l ∧ �s [> l (4.13)

The execution of routine InitNewRound (Algo. 4.4, p. 91) yields then:

Ejl := Ej−1
l + Encode(E(�sDl

), 1,VDl
s) and l → FDε

�s (4.14)

where Ej−1
l is the set of activity-local markings tested explicitly for enabling activity l, before

the inner while-loop of InitNewRound is executed (line 2-7 Algo. 4.4). FDε

�s is a singleton,
containing an activity to be explicitly explored in state �s, where this state/activity pair is
inserted into the S-Buffer (line 5) and to be processed by routine ExploreStates (Algo. 4.2.)
in the next round j + 1, so that

�sDl

l−→ �tDl
∈ Zj+1

l (4.15)

96 4 The Activity/Reward-local Scheme

holds. I.e. according to Lemma 4.1 and 4.2 symbolic composition, symbolic reachability and
re-initialzation trigger another round (j + 1), which starts once again with the nj+1-fold
explicit exploration and encoding of activity-execution sequences, where (αi−1, αi) ∈ ActD
holds.

Lemma 4.3: At termination the activity-local scheme explored and generated activity-
sequences up to the length of the depth (cf. Def. 4.19) of the high-level model’s underlying
LTS.

Proof: According to Lemma 4.1 the activity-local scheme explicitly explores all execution
sequences of pairwise dependent activities (ω) starting in a state �s, so that at the end of
round j sj sequences, with the max. length nj have been extracted. Symbolic composition
and symbolic reachability will then generate sequences of max. length Nj :=

∑j
i:=1 ni (see

discussion of diamond property in Sec. 4.2.3: Execution properties of independent activities).
Since this procedure is repeated until �sω does not trigger any new model behavior, an activity
execution sequence with the maximal length NK is generated. However, this must be the
depth of the LTS, since otherwise, according to Lemma 4.2, �s ρ with |ρ| = NK would trigger
new model behavior.

For wrapping up the above discussion, let us assume that the activity-local scheme terminates
after K rounds and ∃�sω l−→ �sωl ∈ T and �sωDl

l−→ �sωlDl
	∈ ZKl . According to Lemma 4.3 the

activity-local scheme generates execution sequences of the length NK :=
∑K

i:=1 ni Now the
following cases have to be considered:

(1) |ωl| < NK : Lemma 4.1 and 4.2 yield that state �sω is explored in round j < K. Thus
�sωDl

l−→ �sωlDl
∈ Zjl and Zjl ⊆ ZKl gives �sDl

l−→ �sωlDl
∈ ZKl (contradiction !).

(2) |ωl| > NK : Obviously NK is not the depth of T , but according to Lemma 4.3 the
activity-local scheme stops only if all sequences up to the depth of the sLTS have been
generated. Consequently this case can never appear.

From this discussion, we can conclude:

Theorem 4.4: The selective bfs scheme for explicitly exploring states (combined with the
symbolic composition scheme) as employed by the activity-local scheme is complete, i.e.:

	∃�s l−→ �t ∈ T : �sDl

l−→ �tDl
	∈ ZKl

It is essential to note that the above line of argumentation assumed that symbolic compo-
sition and reachability analysis delivers the correct and complete set of states as reachable
form the initial state �s ε and as generated up to round j. This completeness and correctness
will be discussed next. However, the fact that the generation of ZR and ZT is possibly di-
vided over several rounds is irrelevant for the discussion to follow, it can therefore safely be
ignored from now on.

4.4.2 Composition scheme
Let T be the LTS of a high-level model M and let ZT<�a,�s,�t> be the symbolic representation
of T according to the definitions introduced in Sec. 3.5.1 (p. 57ff).

Theorem 4.5: The composition scheme introduced in Eq. 4.11 delivers the superset of tran-
sitions Zp of a high-level model M , so that

ZT<�a,�s,�t>⊆ Zp

For showing this, we will show how the activity-local structures as generated by the activity-
local scheme can be deduced from the symbolic structure ZT representing the high-level
model’s underlying transition system T .

4.4 Completeness and correctness of the scheme 97

Proof: Each transition is equipped with the label of the activity it was induced by, thus one
may decompose ZT into a sum of sets of transitions carrying the same label:

ZT =
∑
l∈Act

Z̃Cl , where Z̃Cl := pZRestrict(ZT ,�a, E(l)). (4.16)

In order to remove now the activity labels from the symbolically represented activity local
transition systems, one may simply apply an existential abstraction on each Z̃Cl for the
boolean variables �a:

ZCl := pZAbstract(Z̃Cl ,�a,+) so that Z̃Cl := ZCl × Al (4.17)

where Al := A{�a:=E(l)} is the symbolic representation of activity label l. Since ZCl depends
only on the remaining variables VG \ �a (cf. Eq. 4.10, p. 85), we can decompose each ZCl
into a symbolic structure ZDl depending on the boolean variables of VDl and into a symbolic
structure ZIl depending on the boolean variables of V Il (cf. Def. 4.9, p. 85). I.e. we have:

ZDl := pZAbstract(ZCl ,V Il ,+)
ZIl := pZAbstract(ZCl ,VDl ,+) (4.18)

where ZDl is exactly the structure generated by the activity-local SG generation scheme. The
operation ZDl × ZIl gives then the superset of transitions for each activity l: ZCl ⊆ ZDl × ZIl ,
since from VDl ∩ V Il = ∅ it follows that ZDl × ZIl encodes the cross product of the Boolean
vectors fulfilling the boolean function represented by ZDl , ZIl respectively (cf. Sec. 3.5.2,
p. 62f). This result together with Eq. 4.16 and 4.17 yields:

ZT =
∑
l∈Act

ZCl × Al ⊆
∑
l∈Act

ZDl × ZIl × Al (4.19)

Now we will show that the satisfaction set of ZIl is a subset of the one of 1⊥l (Sat1⊥l
). This is

intuitively clear, since ZIl contains only the markings of the independent SVs as contained
within the reachable states from which a transition labeled with l emanates from, where
the satisfaction set Sat1⊥l

of 1⊥l contains 2|V
Il | elements, bit combinations resp. (cf. Def. 3.14,

p. 61).
Let Ψl be now the set of all activity-independent markings as contained in a reachable state
from which a transition with label l emanates from:

Ψl := {�sIl
|�sIl

:= χIl(�s) ∧ (�s, l, �s l) ∈ T } (4.20)

Each SV sk ∈ SI
l does not change its value if activity l is executed (cf. Sec. 4.2.3, p. 83f).

Consequently the i’th variable of V Il
s and V Il

t within a transition �s
l−→ �t ∈ T encode the

same value. Thus ZIl represents the following function:

fZl
(s1, . . . , sn, t1, . . . , tn) :=

{
1 ⇔ E−1(�s) ∈ Ψl ∧ η(si) = η(ti)
0 else

where η(x) gives the value currently held by variable x. Thus fZl
is the identity function

restricted to the vectors as contained in Ψl. Consequently ZIl ⊆ 1⊥l must hold.

Replacing ZIl with 1⊥l in Eq. 4.19 yields:

ZT<�a,�s,�t>⊆
∑
l∈Act

ZDl × 1⊥l × Al, (4.21)

where the right part of this equation is the composition formula of the activity-local scheme
as introduced in Eq. 4.11 (p. 89).

From the above equation one can conclude that the composition scheme may construct a
larger transition system with respect to the original transition system T . However, as it will
be shown in the next section, the additional transitions as contained in the set of composed
transitions are not false positives, they emanate from unreachable states only.

98 4 The Activity/Reward-local Scheme

4.4.3 Reachability analysis
Irrespective of the employed variant, symbolic reachability analysis starts with the initial
state, where its symbolic representation serves as initial value to ZR (cf. line 0 Algo. 4.1). The
set of states to be explored in the next step is represented by Mt-DD ZU , which is initialized
with the set of states already known to be reachable (line 0 of Algo. 4.3.A and B, p. 90). For
simplicity one may ignore the early-update strategy applied to ZU within Algo. 4.3.B for
the moment. Furthermore it is irrelevant that within Algo. 4.3.B the transition relations are
applied to ZU in a sequential manner (line 6-10), whereas Algo. 4.3.A follows an all-at-once
strategy (line 3). The execution of the set of potential transition functions, in the states
stored in ZU yields the one-step reachability set (Ztmp) of all transitions emanating from
a state �s ∈ ZU . We will now prove that the additional transitions contained in the set of
composed states, denoted Zp and as constructed in Eq. 4.21 (p. 97) can only emanate from
non-reachable states and that the symbolic reachability algorithms construct therefore the
complete and correct sets of reachable states.

Let the symbolic structure ZR encode the set of reachable states and let the symbolic struc-
ture ZT encode the set of transition functions of a high-level model M . Let ZpT be the
potential transition system as derived from M by applying the activity-local scheme. Let a
false positive be a transition f := (�s, l,�t) where �s ∈ ZR ∧ f 	∈ ZT holds.

Lemma 4.6: ZpT contains no false positive.

The proof of the above lemma will be carried out to by constructing a contradiction.

Proof: Assumption: ZpT contains a false positive f .
Since �s ∈ ZR, there must be a finite sequence of activity executions, leading from the
initial state �s ε to state �s (repetitive execution of line 3 - 7 of Algo. 4.3.A and line 5-11
of Algo. 4.3.B). This execution sequence can be generated, irrespective if one successively
executes ZT or the potential transition function ZpT , since as shown before ZT ⊆ ZpT holds.
This sequence of activity executions visits reachable states only, which is intuitively clear,
but can also be shown via induction over the length of activity execution sequences as
constructed by repetitively executing the (outer) do-until loop of Algo. 4.3.A and B.
Consequently the execution of the potential transition function ZpT in a state �s must give
then the false positive (�s, l,�t), but where �sIl

= �tIl
must hold! It follows immediately that

(�s, l,�t) must be a valid state change for the following reasons: (a) The values stored on
the positions of SI

l are valid values, since they are contained in the reachable state �s. (b)
The change of the values of position referring to the SVs of SD

l is also correct, since it was
obtained from explicit exploration. This gives that �s,�t ∈ ZR and therefore also f ∈ ZT must
hold. This is a contradiction of the initial assumption, which stated that f is a false positive
and contained in ZpT .

Due to the above lemma it is clear that the additional transitions as contained in ZpT can
solely emanate from unreachable states. Based on this we can now show that the Algo. 4.3.A
and B compute the correct set of reachable states ZR.

Theorem 4.7: Given a potential transition system ZpT , which is the superset of transitions of
a transition system T and given the initial system state6 as input, the symbolic reachability
Algo. 4.3.A and B generate a complete and correct symbolic representation of T ’s set of
reachable states.

Proof: As shown in the previous section ZT ⊆ ZpT holds. According to the above lemma ZpT
does not contain any false positives, so that the repetitive application of ZpT to the states
of ZU yields reachable states only, which are stored in the symbolic structure ZR (line 6 in
Algo. 4.3.A and line 5 in Algo. 4.3.B). Since the number of transitions stored in ZpT is finite,
the repetitive execution of ZpT to the states of ZU will reach a fixed point and Algo. 4.3.A

6 As initial state one can employ any state from which all other states of T are reachable.

4.5 Computing performability measures 99

and B terminate. Since according to Theorem 4.5 ZpT contains all reachable transitions, the
complete set of reachable states has been generated then, which is due to the fact that

ZR ⊆ ZpR where ZpR := pZAbstract(ZpT ,Vt,+) + pZAbstract(ZpT ,Vs,+){�s ←�t}

and the remaining states as contained in ZpR are not reachable. Thus the generated symbolic
structure ZR is a complete and correct representation of the set of reachable states of a
high-level model’s underlying sLTS T .

This concludes our discussion on the completeness and correctness of the activity-local
scheme.

4.5 Computing performability measures

For obtaining performability measures of the system under study the modeler specifies PVs
on the level of the high-level model description. As pointed out in Sec. 4.2.2 a PV consists
of a set of rate rewards - and / or impulse reward functions and a type. The set of all
reward functions specified on the high-level model was defined to be denoted R for the rate
and I for the impulse rewards. If for all elements of R and I a symbolic representation
was generated, one simply needs to combine them via summation, in order to generate
symbolic representations of the user-defined PVs, which are in fact aggregated rate and
impulse reward values (Rp and Ip of Def. 4.17, p. 81). The first and second moments of PVs
can then be computed via a graph-traversing algorithm, given that the transient or steady-
state probabilities have been computed before. However, depending on the fact whether one
intends to compute instant-of-time, interval-of-time or time averaged interval-of-time values,
a multiplication of the result with �t must follow, where in case of instant-of-time and time
averaged interval-of-time performance measures we define �t := 1 (cf. Sec. 2.2.2, p. 15ff).

The above illustrated functionality is incorporated into algorithm ComputePV (Algo. 4.5)
and its sub-routines. It employs the following data structures:

(1) ZR representing the set of reachable states and ZT representing the set of reachable
transitions.

(2) ZoR the offset-labeled z-BDD representing the set of reachable states. This structure
is needed for determining the (dense) state indices, while traversing the symbolically
represented reward functions and computing the performability measures.

(3) prob the vector of state probabilities (transient or steady state).

(4) The current PV p which is assumed to additionally offer substructures for storing the
moments and variance of Rp and Ip.

(5) Zprate and Zpimp, the symbolic structures representing Rp and Ip of the current PV p.

After executing line 0-4 the offset-labeled z-BDD representing the set of reachable states,
and the symbolic representations of each reward function is given, where the routines
MakeImpulseRewards and MakeRateRewards will be explained below, for details on offset-
labeling the reader may refer to Sec. 3.5.3 (p. 66ff). Now one is ready to compute the
user-defined performability measures, which is done in the for-loop (line 5-17, Algo. 4.5).
As first step one computes either transient or steady-state probabilities, depending on the
type of the current PV (line 6). In the next step one merges the individual rate - and impulse
reward functions for each PV p in order to construct a symbolic representation of Rp and Ip
(line 7 and 8), where subsequently the root nodes of the resulting Mt-DDs, as well as the root
node of the offset-labeled BDD ZoR are fetched (line 9-11). These nodes, as well as the mem-
ory locations for storing the first and second moment of a PV’s rate and impulse function
is passed to algorithm ComputeMoment. This algorithm computes first and second moments

100 4 The Activity/Reward-local Scheme

Algorithm 4.5 Main routine for computing user-defined PVs
ComputePV()
(0) ZR := ExploreStateGraph();
(1) ZT = ZT · ZR;
(2) Zo

R := OffsetLabel(ZR);
(3) MakeRateRewards(ZR);
(4) MakeImpulseRewards(ZR);
(5) for p ∈ PV do
(6) prob := ComputeStateProbabilities(p.type,Zo

R, ZT);
(7) Zp

rate :=
P

r∈Rp Rr;

(8) Zp
imp :=

P
i∈Ip Ii;

(9) n := getRoot(Zp
rate), r := getRoot(Zo

R);
(10) ComputeMoment(n, r, 0, p.r mean, p.r var);
(11) n := getRoot(Zimp);
(12) ComputeMoment(n, r, 0, p.i mean, p.i var);
(13) p.r mean := p.r mean · �t, p.r var := p.r var · �t2;
(14) p.i mean := p.i mean · �t, p.i var := p.i var · �t2;
(15) p.r var := p.r var − p.r mean2;
(16) p.i var := p.i var − p.i mean2;
(17) end
(18) return ;

of symbolically represented reward functions, given that the symbolic representation of the
set of reachable states is offset-labeled and the state probabilities are stored in an array
of respective size. In case one intends to compute interval-of-time measures the obtained
results must be normed to the length of the interval (�t) or its square (�t2), which is done
in line 13 and 14. – In case of instant-of-time and time-average intervals-of-time measures
one simply defines �t to be 1.– Based on this, algorithm ComputePV computes the variance
for Rp and Ip (line 15 and 16). Once all PVs are processed algorithm ComputePV termi-
nates and the desired performability measures for the system under study are computed. In
the following we will now briefly discuss the routines as employed by the main algorithm
ComputePV.

4.5.1 Computing state probabilities
By executing one of the iterative solution method as described in Sec. 2.2.2, one can compute
steady state and transient state probabilities for a given high-level MRM. In this thesis we
employ their hybrid implementation as already illustrated in Sec. 3.5.3 (p. 66ff). In contrast
to pure symbolic solvers the hybrid ones employ solely a symbolic representation for the
transition rate matrix, whereas the matrix diagonal of the latter, as well as the iteration
vectors are stored as plain arrays. At termination the hybrid solver delivers the vector prob,
containing either transient state or steady state probabilities for each state. What follows
next is the generation of the symbolic representation of the user-defined reward functions.

4.5.2 The reward-local scheme: Generating representations of reward functions
Traditionally one computes PVs or their rate and impulse rewards while generating the
high-level model’s SG. However, under symbolic SG representation only a fraction of states
is visited explicitly. Given that a reward returning function may be of arbitrary complexity,
but solely depends on a subset of S, it seems reasonable, to compute them once the symbolic
representation of the overall SG is generated. In order to explicitly process as few states as
possible we once again consider only local information of the reward function definitions (cf.
Def. 4.15 and 4.16). I.e. in case of rate reward r it is assumed that a rate reward specific set
of dependent SVs SD

r is present. Analogously to activity-local markings one will speak of
rate reward-local markings, when addressing the positions referring to elements of SD

r in a
model’s state �s. In case impulse reward functions, it is assumed that all impulse rewards as
induced by an activity k solely depend on SD

k . The above illustrated ideas are incorporated

4.5 Computing performability measures 101

Algorithm 4.6 Generating symbolic representations of reward functions

MakeRateRewards()
(0) for k ∈ R do
(1) Rk := ∅;
(2) ZU := pZAbstract(ZR,V Ik

s , +);
(3) while ZU �= ∅ do

(4) Zs

�sDk←− ZU ;
(5) ZU := ZU \ Zs;
(6) Ztmp := ZR · Zs;

(7) Zs
�s←− Ztmp;

(8) �s := E−1(Zs);
(9) rew := Rk(�sDk);
(10) if (rew �= 0) then
(11) Rk := Rk + rew · Ztmp;
(12) end
(13) end
(14) return ;

(A) Obtaining a symbolic representation-
for each rate returning function

MakeImpulseRewards()
(0) for i ∈ I do
(1) for k ∈ Actm

i do
(2) Iik := ∅;
(3) ZU := pZAbstract(Zk,VDk

t , +);
(4) while ZU �= ∅ do

(5) Zs

�sDk←− ZU ;
(6) ZU := ZU \ Zs;
(7) Ztmp := ZR · Zs;

(8) Zs
�s←− Ztmp;

(9) �s := E−1(Zs);
(10) imp := Ii

k(�sDk);
(11) if (imp �= 0) then
(12) Iik := Iik + imp · Ztmp;
(13) end
(14) end
(15) Ii := Ii + Iik;
(16) end
(17) return ;

(B) Obtaining a symbolic representation-
for each impulse returning function

into the algorithms MakeImpulseRewards and MakeRateRewards (Algo. 4.6). These are the
algorithms for generating symbolic representations of rate - and impulse reward functions
and which will be explained now.

Generating representations of rate reward functions
Algorithm MakeRateRewards (Algo. 4.6.A) consists of two nested loops. In the outer for-
loop one processes each rate reward function as defined by the user, whereas in the inner
while-loop these definition are processed individually. I.e. at first the set of reachable states
is reduced to reward-local markings by simply abstracting from those boolean variables
referring to the rate reward’s set of independent SVs (SI

r := S \ SD
r). From the obtained

set of rate reward-local markings represented by symbolic structure ZU on pops now “rate-
local” marking by “rate-local” marking and temporarily stores each in the symbolic structure
Zs (line 4). The set of reachable states which are all equivalent concerning the positions of
SD
r is then generated in line 6 and stored within symbolic structure Ztmp. Now one simply

extracts one of the states as contained within Ztmp and calculates its rate reward concerning
rate reward function r, which is done by explicitly executing r’s specific reward returning
function (line 7 - 9). In case this reward is not equal to 0, one simply needs to multiply
the symbolic structure Ztmp with this constant and add the result to the the previously
computed pairs of states and rewards as represented by Rk (line 10 and 11). This procedure
is repeated until all “rate-local” markings are processed and ZU represents the empty set (cf.
line 5). Rather than processing all states for each rate reward, algorithm MakeRateRewards
handles classes of states per step, where each equivalence class consists of all states being
equivalent concerning the values held by r’s dependent SVs (SD

r).

For exemplification, one may assume that rate reward r is defined as the number of tokens
contained in place p5 of the SPN of Fig. 4.1.A (p. 92). The symbolic structure (here a ZDD)
ZR of Fig. 4.4 (p. 102) encodes the set of reachable states, which is the initial value of ZU .
Let us further assume that the states popped from the symbolic structure ZU in the inner
for loop are the following: (00 00 2), (00 01 1) and (01 01 0). The corresponding pZDD
Zs and ZDD Ztmp, as obtained after executing line 4 and 6 of algorithm MakeRateRewards
for the three states are then also depicted in Fig. 4.4. The final symbolically encoded rate
reward function obtained at termination is given as the ZDD Rr. Rather than computing

102 4 The Activity/Reward-local Scheme

s1

s2

s3

s4

s5

s6

(1)(1) (2)(2) (3)(3)

2 11 1111 11

iteration:

Rr <�s >

Zs<s5, s6> at the
i’th iteration

Ztmp <�s > at the
i’th iteration

ZR <�s >

Figure 4.4: Exemplification of the reward-local approach

and encoding the rate reward r for each of the 9 states as contained in ZR, this is only done
3 times, namely once for the states where p5 = 2, once for the states where p5 = 1, and once
for the states where p5 = 0.

Generating representations of impulse reward functions
Algorithm MakeImpulseRewards specified as Algo. 4.6.B is organized in a similar way as
the algorithm for generating symbolic representations of rate reward functions. But since
an activity may generate different impulse rewards for different impulse reward functions,
one needs to iterate over three nested loops. In the outer two for-loops one processes each
impulse reward function and its respective sets of activities. Within the inner while-loop
one processes all activity-local markings the current activity k is enabled in (line 5-12). The
impulse reward as induced by the activity’s execution is calculated in line 10. In case it is
not equal to 0, one simply multiplies the symbolic structure Ztmp with this value. This gives
one a symbolic representation of all states being equivalent concerning the current activity-
local marking �sDk

, where these states of course have all the same impulse reward value with
respect to activity k and impulse i. Due to the construction of ZU , Zs and thus Ztmp, the
obtained pairs of states and impulse rewards are automatically weighted by the execution
rate of the activity under process, so that Def. 4.16 (p. 80) is satisfied. At termination
of the inner for-loop (line 1 -14) one ends up with a symbolic representation for each
activity-specific impulse reward function with respect to impulse reward i. In line 15 one
finally builds iteratively the sum over all symbolic structures encoding such activity-specific
impulse reward functions, so that one obtains a symbolic representation for each impulse
reward function i as contained within a user-defined PV.

4.5.3 Computing moments of performance variables
Algorithm ComputeMoment (Algo. 4.7) computes first and second moment of the reward func-
tions by simultaneously traversing the symbolic structure representing the reward function
and the offset-labeled structure representing the set of reachable states. As input parameters
this algorithm takes the root nodes of the respective symbolic structures, the initial offset
value off , which is set to 0 and the variables for storing first and second moment of the
current reward function. While traversing the symbolic structures the state index of the
traversed path is obtained by summing over the offsets of nodes left via then-edge (line 6).
In case one reaches a terminal non-zero node, the index of the current state is known and
one can successively compute mean and second moment of the respective reward (line 1 -2).
The vector prob, which holds steady state or transient state probabilities is hereby assumed
to be globally visible.

4.6 Extending the basic activity-local scheme 103

Algorithm 4.7 Algorithm for computing moments of PVs via graph-traversal
ComputeMoment(node1, node2, off,m, v)
(0) if n ∈ KT then
(1) m := m + prob[off] ∗ value(node1);
(2) v := v + prob[off] ∗ value(node1)2;
(3) else if var(node1) π> var(node2) then
(4) ComputeRew(node1, else(node2), off, m, v);
(5) else
(6) ComputeRew(then(node1), then(node2), r.offset + off, m, v);
(7) ComputeRew(else(node1), else(node2), off, m, v);
(8) return ;

4.6 Extending the basic activity-local scheme

In this section we will cover issues related to the handling of (a) user-defined symmetries
within the SG, and (b) models, where immediate activities are present.

4.6.1 Handling explicitly modeled symmetries
For mapping a CTMC to its reduced (bisimilar) counterpart, generally applicable, symbolic
algorithms are known [Sie01]. However, non- and symbolic approaches are also known to
be not very efficient, since partitioning the state space without having apriori knowledge of
the high-level model-structure, turns out to be cumbersome in practice. As simplification
[San88, Sie95] therefore suggest the construction of high-level models by employing the Rep-
operator, which induces submodel-imposed symmetries on the SG of the overall model and
thus enables a partitioning of the state space, where the individual state of the partitions are
strictly lumpable. By taking advantage of the explicitly defined symmetric model structure,
the reduced SG of the overall model can in principle be constructed on-the-fly, i.e. during
explicit SG generation (cf. Sec. 2.2.3, p. 17 and Sec. 2.4, p. 24). However, in the context of
the activity-local scheme a symbolic implementation of such an on-the-fly procedure seems
to destroy the partial character of the explicit SG generation. Therefore it seems more
appropriate to generate first the un-reduced SG and subsequently apply the state lumping
on the level of the symbolic structure, especially since the storage of the un-reduced SG is
also not problematic. By taking advantage of the symmetric model structure, a procedure to
be designed, is expected to be more efficient as the general, symbolic approach introduced
in [Sie02].
Since the ideas developed below also applies to Markov chains consisting of tangible and
vanishing states, we will now generically speak of rates, rather than always referring also to
the aggregation of execution probabilities of symmetric activities.

For exemplification one may turn now once again to Fig. 4.1.A (p. 92). Instead of a monolithic
model the SPN depicted there shall be organized in a structured manner. To do so we build
3 non-disjoint submodels: The first submodel M1 consists of the place p1, p3, p5 and the
activities a and b, the second submodel M2 consists of the places p3, p4, p5 and the activities
c and d. The remaining activity e and its set of dependent places builds submodel M3.
The submodels are composed via the sharing of places having the same label within the
submodel, i.e. the places p1, p2 and p5 are the shared ones among the submodels. In order
to make use of a user-defined symmetry, it is specified that submodel M2 is replaced with
another instance of submodel M1. This process is depicted in Fig. 4.5 (p. 104). Let each
submodel-local state descriptor be organized as follows:

• lower instance of M l
1: �s l := (pl1, pl2, p5)

• upper instance of Mu
1 : �su := (pu1 , p

u
2 , p5) and

• instance of model M3: �sM3 := (pl1, p
u
1 , p5).

If the joined state variables are mapped to the same vector component a state may be de-
scribe by vector �s := (pl1, p

l
2, p

u
1 , p

u
2 , p5). Via the activity-local SG generation scheme one

104 4 The Activity/Reward-local Scheme

2 2

M1

M1 M3

p1

p1

p1

p2

p2

p2

p3

p4

p5p5

a,λ

a,λ

a,λ

c,λ

b,µ

b,µ

b,µ

d,µ

e,ρ e,ρ

Building a
model with
identical
submodels

Figure 4.5: SPN with user-defined symmetric submodels

may now construct the un-reduced SG, which we already depicted in Fig. 2.1.A (p. 19). For
applying the state lumping, all states which are permutations of each other, with respect
to the identical (or symmetric) submodels, are replaced by their representative or macro
state Thus analogously to the procedure illustrated at end of Sec. 2.4 (p. 24f) states being
submodel-wise permutations from each other, e.g. ((0, 1), (1, 0), p5) and (1, 0), (0, 1), p5) are
known to be strictly lumpable. In Fig. 2.1.A these (symmetric) states were marked with
the same number, i.e. the number of their equivalence class. If these states are lumped, i.e.
replaced by their macro state and the rates are adapted accordingly (cf. Sec. 2.2.3), one ob-
tains the lumped SG as illustrated in Fig. 2.1.B. Since each partition is solely represented by
its macro state, the multiply occurring transitions among the macro states and the states of
the other partitions are aggregated via summation, which is the strategy already illustrated
in Sec. 2.2.3 and which is the strategy behind algorithm LumpSG (Algo. 4.8), which we will
explain in detail now.

Let the sub-vector, describing the state of all symmetric submodels be denoted as replica-
local vector. For realizing the lumping of states a posteriori to the construction of a symbolic
representation of the un-reduced SG, one generates first a symbolic representation for each
partition of strictly lumpable states. Therefore the boolean s- and t-variables encoding the
SVs of all identical (symmetric) submodels are defined as follows: VR := VRs ∪VRt , where the
elements of VRs hold the values of the replica-local source states and the elements of VRt hold
the values of the replica-local target states. In the upper for-loop of algorithm LumpSG one
computes a replica-local symbolic representation for each partition Zisub<VRt > and already
chooses a replica-local macro state Ri<VRs > (line 1-7). This means in detail that in line 2
one simply pops an arbitrary state from the set of the replica-local states, and constructs all
of its submodel-wise permutations, stored as target states, which is done by calling function
MakeAllPerm() (line 3). In line 4 one chooses a state descriptor for representing the macro
state (Risub), whereas in line 5 all states referring to the current partition of replica-local
states are removed from the set of all replica-local states. The upper for-loop terminates
as soon as the set of replica-local states is empty. Thus at termination each partition has its
symbolic representation, as well as its symbolic represented macro state.
As next step one needs to compute the cumulative rates and construct the reduced SG, where
we follow the idea illustrated above. Let NC be now the number of partitions as known after
executing the upper for-loop. Within the inner for-loop (line 9-13) one first extracts all
transitions emanating from states carrying the replica-local marking of the current macro
state within the variables of VRt (line 10). In line 11 we simply remove the positions refer-
ring to the replica-local markings, where the rates of collapsing transitions are automatically
summed. As next the reduced SG is iteratively generated by simply filling the empty po-
sitions of Ztmp with the replica-local marking of the macro state representing the target
partition and subsequently adding this new set of transitions to the previously computed
ones (line 12). This procedure is repeated until all partitions have been processed (line 8

4.6 Extending the basic activity-local scheme 105

Algorithm 4.8 Applying the lumping theorem in case of user-defined model-symmetries
LumpSG()
(0) Zsub <VR

s >:= pZAbstract(ZR,Vs \ VR
s , +);

/∗ Generate equivalence classes on the level of symmetric submodels ∗/
(1) for (NC := 0, i := 1; Zsub �= ∅; NC++, i++) do

(2) Z�s <VR
s >

�s←− Zsub;
(3) Zi

sub <VR
t >:= MakeAllPerm(Z�s);

(4) Ri
sub <VR

s >:= GetClassRep(Z i
sub);

(5) Zsub <VR
s >:= Zsub \ Zi

sub{VR
s ← VR

t };
(6) end

/∗ Compute cumulative probabilities and rates, and generate reduced SG ∗/
(7) Z′T <Vs,Vt>:= ∅;
(8) for (i := 1; i ≤ NC ; i++) do
(9) for (j := 1; j ≤ NC ; j++) do

(10) Ztmp <Vs,Vt>:= ZT · Ri
sub <VR

s > ·Zj
sub <VR

t >;
(11) Ztmp := pZAbstract(Ztmp,VR

t , +);

(12) Z′T := Z′T + Ztmp × Rj
sub <VR

t >;
(13) end
(14) end
(15) ZT := Z′T ;
(16) ZR := pZAbstract(ZT ,Vs, +) + pZAbstract(ZT ,Vt, +);
(17) return ;

-14). Thus the complexity of the above algorithm is O(N2
C), since one needs to compute the

cumulative rates leading from partition i to partition j for each partition separately.

It is important to note that the above illustrated procedure assumes knowledge about the
submodels behaving symmetric to each other, as it is the case for the Rep-composition op-
erator (cf. Sec. 2.3.3, p. 23). However, in case the model contains multiple instances of the
same submodel, it is required that the user specifies, if they behave symmetric or not, which
of course depends on the environment. This is already illustrated by the example of Fig. 4.5.
Here states being submodel-wise permutations from each other, e.g. ((0, 1), (1, 0), p5) and
(1, 0), (0, 1), p5) belong to the same partition, even though the respective submodel-local
states with respect to submodel M3 differ ((1, 0, p5) and (0, 1, p5)). But this does not mat-
ter, since the submodel local behavior of M3 is identical for both states, so that states of the
kind (pl1, p

l
2,), (p

u
1 , p

u
2), p5), where the first tuples are permutations of each other belong to

the same partition of strictly lumpable states. As a consequence, it is clear that the identical
submodels M l

1 and Mu
1 only exhibit symmetric behavior, since the environment is reacting

with them in the same way. On the other hand it makes also clear, that an on-the-fly pro-
cedure as illustrated in Sec. 2.4, as well as the approach presented here can only be applied,
if the user-explicitly defines that M l

1 and Mu
1 , will have the same behavior. In case of the

Rep-operator, where either SVs or activities are shared with the environment, and among all
replicas, this is implicitly guaranteed. In case this symmetry is not explicitly specified or im-
posed by the composition operator, submodel-imposed symmetries can only be detected by
applying a standard symbolic algorithm for SG reduction (cf. [Sie02]). However, as already
mentioned above, these algorithms are known to be computational expensive, but deliver
the smallest equivalence relation, i.e. the one with the a minimal number of partitions. –We
will come back to this issue in Sec. 6.3.

The symbolic representations of reduced SGs are known to be less memory efficient, if com-
pared to their un-reduced counter parts. However, this phenomenon is not surprising, since
the number of rates among the states increases, whereas the number of represented transi-
tion decreases. Thus the symbolic structure may benefit less from the isomorphism-reduction
rule (cf. Sec. 3.2.1, p. 33ff), which is the most influential factor of keeping symbolic struc-
tures compact. However, in case of the hybrid solution method (cf. Sec. 4.5.1, p. 100) for
computing state probabilities, the number of elements of the probability vector gives the

106 4 The Activity/Reward-local Scheme

bottleneck. Thus an increased size of a symbolic representation of the transition rate matrix
is of minor interest, whereas the reduced number of states plays a key role.

4.6.2 Handling of immediate activities
The activity-local scheme follows a selective bfs scheme for explicit SG exploration, where
only local knowledge about activities is taken into consideration. However, this turns out
to be problematic in case of immediate activities for the following reason: Let l, k ∈ Acti
and let (k, l) ∈ ActI hold. Now we define that ∃�x, �y ∈ S : �x � {l, k}; �y � {l, k}; where
priol(�xDl

) > priok(�xDk
) ∧ priol(�yDl

) < priok(�yDk
) holds. As a consequence activity l will

sometimes suppress the execution of k, and sometimes k will suppress the execution of l.
If one solely considers local information only and therefore executes k and l independently
from each other, the explicit generation would yield the generation of false positives, where
the target state of such a transition would wrongly be considered as reachable (cf. Sec. 4.4.3,
p. 98). But not enough, the exploration of the target state of a false positive lead to other
non-valid states, so that a previously bounded SG may become now unbounded. It is im-
mediately clear that a correction of such false positives, a posteriori to SG generation, is
therefore not possible. From this one may also conclude that immediate activities, which
mutually suppress their execution are required to be tested always together, so that their
enabledness is determined correctly. Such a strategy will be referred to as combined explo-
ration strategy. The enforcement of a combined exploration scheme is straight forward, one
simply defines that the dependent SVs, of all interfering activities are added to an activities
set of dependent SVs. Unfortunately one can not decide a priori to SG generation whether
∃l, k ∈ Acti : l 	∈ ADk and ∃�s ∈ S : �s [> l, and �s � k but �s [> k, since the reachability of
�s is semi-decidable only. Thus it is not possible to generally decided whether a GS-SA net
requires the above re-definitions or not and which activities need to be grouped together.
Therefore one is forced to re-define the sets of dependent SVs for each immediate activity
in a brute-force manner:

Definition 4.28: Re-definition of the set of dependent SV of immediate activities:

The set of activity-dependent SVs for each l ∈ Acti is defined as follows:

S̃D
l :=

⋃
∀k∈Acti

SD
k

In the following we will denote the above set SD
Acti , since S̃D

l = const for all l ∈ SD
Acti .

Unfortunately it is directly clear that the above definition lowers the partial character of the
explicit SG exploration of the activity-local approach. But on the other hand immediate ac-
tivities can be considered as a kind of “syntactic sugar”, since one can in principle eliminate
them already on the level of the high-level model. Thus it seems reasonable to assume, that
high-level model consists mainly of Markovian activities, rather than immediate ones. Thus
the overhead imposed by a combined explicit exploration strategy for immediate activities
should be small in practice.

In case the immediate activities have all the same constant priority 	= 0, the above re-
definition of the activity-specific sets of dependent SVs of the immediate activities is obsolete.
Since here immediate activities are not in the position to mutually suppress their enabled-
ness. Consequently in such a setting the basic definition for a set of activity-dependent SVs
(cf. Def. 4.2, p. 74) for each immediate activity is sufficient, but of course employed with
the extended algorithms to be discussed next.

4.6 Extending the basic activity-local scheme 107

Explicit SG Generation and Encoding
Due to the above construction in combination with the sophisticated rule for deciding
whether an activity is enabled or not (cf. Eq. 4.3 , p. 76 in combination with Def. 4.13,
p. 79) algorithms ExploreStates and EncodeTransitions need to be slightly modified.

Explicit exploration of states
In case of exploration one simply tests, if there are immediate activities in the set of exe-
cutable dependent activities (line 3-7 of Algo. C.1, p. 165). If this is the case one executes
them and inserts the resulting transitions into the T-Buffer. One may note that we directly
compute the individual execution probabilities (line 5). This is justified, since all the im-
mediate activities are explored together. In case there are no immediate activities to be
executed, one explores the Markovian activities as before.

Encoding and testing for further exploration
The modified algorithm for encoding the established transitions and testing for further ex-
ploration is given as Algo. C.2 (p. 165). Since immediate activities suppress the enabling of
Markovian activities, a newly reached state must first be tested for being vanishing or tan-
gible, which is done in line 4 to 7. In this context line 5 also means that there exists no other
immediate activity, which can suppress the enabledness of the current immediate activity
handled. If there are no immediate activities enabled one continues with the Markovian
activities as before (line 8 - 11).

Symbolic Composition
Even under a combined exploration strategy for the immediate activities as illustrated above,
the scheme for symbolic composition may give one false positives, namely for m ∈ Actm, k ∈
Acti and (k,m) ∈ ActI in cases where �xDm = �yDm and �x [> m but �y [> m since �y [> k.
However, this problem can be fixed on the level of symbolic reachability analysis, since such
false positives only appear on the level of symbolically represented transitions.

Symbolic reachability analysis
Since immediate activities suppress the enabling of Markovian activities having concession
in the same state, it is clear that for the execution of the latter, it is essential that no imme-
diate activity is enabled in the current state. This issue was solved on the level of explicit
exploration by considering immediate activities first. However, symbolic composition may
introduce false positives concerning the Markovian transitions, i.e. the scheme will gener-
ate states, where immediate and Markovian transitions may emanate from. For fixing this
problem, we simply need to decide, whether a state is vanishing or not, before we decide
whether the execution of the Markovian activities in this state must be prevented or not.
Therefore the newly reached target states within the symbolic reachability analysis must
first be tested if they are vanishing or not. Consequently the strategy of updating the set of
unexplored states as soon as possible (early update strategy of Sec. 4.3.4, p. 90), can only
be employed when exploring immediate activities. In case of Markovian transitions one can
therefore only compute the one-step reachability set for the given (tangible) source states.

Incorporating this functionality into the existing reachability algorithms yields two new
variants for symbolic reachability analysis. The pseudo-code of the resulting algorithms is
specified as Algo. C.3.A and C.3.B (p. 166). For separately exploring immediate and Marko-
vian activities under a standard bfs-scheme, one generates two different sets of potential
transitions. The symbolic structure ZP holds the set of potential immediate activities and
the symbolic structure ZM the potential transitions as induced by the Markovian ones.
Besides the structures holding the unexplored and reached states (ZU and ZR), one also
maintains the set of vanishing states, as well as the set of tangible states, represented by
the symbolic structures ZV an and ZTan. The SG exploration for models with immediate

108 4 The Activity/Reward-local Scheme

activities for a standard bfs-scheme is carried out in the do-until loop of lines 5-20 in
Algo. C.3.A (p. 166). In line 6 one generates all immediate transitions emanating from the
states represented by ZU . After updating the set of vanishing states (line 9) and restricting
the set of unexplored states to the case of tangible ones (line 10), one generates all Marko-
vian transitions emanating from the states represented by symbolic structure ZU (line 12).
This procedure is repeated, until no unexplored state is left. –Algorithm C.3.B similar to
Algo. 4.3.B, is organized by following an activity-wise partitioning of the execution of the
potential transition functions, where each is represented by the symbolic structures Z̃k.
However, as already elaborated above, this needs to be done for immediate and Markovian
transitions separately, where in case of the latter the early update strategy for unexplored
states cannot be applied. I.e. in the upper inner for-loop one first executes the immedi-
ate activities, and does so until no new states are reached (line 5 - 11 Algo. C.3.B). What
follows next is the one-step execution of all Markovian transitions, which gives possibly a
new set of unexplored states, represented by symbolic structure ZU , where this set serves
as new input for the next round of SG exploration, starting with the immediate activities.
This alternated execution of immediate and Markovian activities is carried out until no new
states are reached.

Re-initialization Scheme
It is essential to note, that the set of tangible states as represented by ZTan may not be
correct, it can contain states wrongly assumed to be tangible. Since such states may trigger
new immediate model behavior, suppressing any Markovian activity being enabled in such a
state. In case of symbolic reachability analysis, this is not problematic, since we are dealing
with finite sets of symbolically encoded transition rules, so that the reachability routines
will terminate. However, in the context of routine InitNewRound new immediate model be-
havior must be detected and Markovian activities must be prevented from being executed in
vanishing states. For doing this one first tests all states if they trigger new immediate model
behavior (line 1 - 10, Algo. C.4, p. 166). In this context line 8 also means that there exists
no other immediate activity, which can suppress the enabledness of the current immediate
activity handled. After processing all immediate activities, the test of new Markovian model
behavior is restricted to the remaining states. I.e. in line 11-22 those states which are now
(correctly) known to be tangible are tested for triggering new (Markovian) model behavior.

Calculate execution probabilities
In case immediate activities are handled all together, execution probabilities can be obtained,
when establishing the transitions as induced by them. But as already mentioned above, in
case immediate activities have the same static priority level, it is possible to explore them
independently from each other. In such a case the established immediate transitions are
equipped with weights, rather than execution probabilities, where the respective activity-
specific weight returning function is employed. Consequently one need to transform these
weights into probabilities and once a symbolic representation of the overall SG is constructed.
This can be achieved by employing a symbolic algorithm, where the weights of transitions
emanating from a tangible state are simply normed to their sum.

Eliminating vanishing states
Once the SG is constructed and once the activity weights are converted into probabilities,
vanishing states can be eliminated, so that one ends up with a proper CTMC. In [Sie01]
algorithms for eliminating vanishing states on the basis of symbolic data types are discussed,
this approach can also be employed in the context of this work.

4.7 Related work and own contributions

Published symbolic approaches range from the generation and symbolic encoding of each
state individually up to fully symbolic approaches, where explicit SG generation is completely

4.7 Related work and own contributions 109

sy
nc

hr
on

iz
at

io
n

or
 s

ha
ri

ng
 o

f
SV

s?

Explicit:

Implicit:

Methods for generating
a symbolic SG representation

ex
pl

or
at

io
n

or
ga

ni
ze

d?

A.1 Compositional, A.2 Monolithic,

model structure

− Local SGs must be finite

− Efficiency depends on

possible
+ Very compact encodings

− Capacities of some SVs
must be defined

+ Independent of model
structure

− Fine− grained encodings
of SVs required,

− Extensive use of complex
BDD functions

D
ec

om
po

si
ti

on
:

us
er
−d

ri
ve

n

models via sharing
of SVs

H
ow

 is
 t

he
 e

xp
lic

it
 S

G
a

co
m

po
si

ti
on

 s
ch

em
e?

P
re

se
nc

e
of

E
xp

lic
it

 S
G

 e
xp

lo
ra

ti
on

?

Employing model inherent elementary structures
for decomposition, e.g. activity − or event−structures

+ Decomposition of models into arbitrary submodels
 => Reducing the number states to be explicitly explored
− Individual encodings of SVs required, but still memory

efficient

− Not well partitioned

Respecting the user −
defined model structure,

+ Compact encodings

− User−defined compositional

via activity synchronization
Composition of submodels

structure is required !

State of the art 2006

+ Independent of model description method

of states, as less explicit is done, as more efficient
the method becomes

+ Reachability analysis is carried out on the level of

(A) Fully symbolic technique

the symbolic structures.
− limited to specific model description methods

State of the art 2002

+ Only inspection of syntax−tree of model description

B.1 Compositional
approaches

+ Reachability analysis or
saturation technique is

− Efficiency depends on
model structure

carried out on the level
of the symbolic structure

− Requires explicit SG exploration and encoding

+ Reduced number of
explicitly explored states

B.2 Monolithic
approaches

+ Independent of model
structure

− Large runtime overhead
imposed by exhaustive
explicit exploration and
encodings of states

+ Coarse encoding of SVs possible, since not all SVs
must be represented (compact encodings)

− Efficiency depends on the user−defined partitioning

− Local SGs must be finite in isolation, i.e. capacity
of SVs must be known apriori to SG generation

of the model

−User−defined compositional
structure is respected , but
KPF must not hold !

− Capacities of local SVs must

Composition of submodels

exploration
be known apriori to SG

via sharing of SVs

Composition of sub−

C
om

po
si

ti
on

 v
ia

 a
ct

iv
it

y−
or

 m
od

el
 in

he
re

nt
?

re
st

ri
ct

in
g

th
e

po
te

nt
ia

l s
ta

te
 g

ra
ph

?
E

m
pl

oy
ed

 d
at

a
ty

pe
, T

ec
hn

iq
ue

 f
or

+ Local SGs must not be finite in isolation nor
must capacities of local SVs be known apriori

for generating set of reachable states
=> Employs saturation technique
Employed Data Type: MDDs, MxDsEmployed Data Type: MT−DDs

+ Applicable for a general class of models

still exist
− Pathologically inefficient model structures

still exist

=> Employs symbolic reachability analysis
for generating set of reachable states

− Pathologically inefficient model structures
+ Applicable for a general class of models

of SVs possible

models may lead to
very large runtimes

Composition via activity−sync.

−User−defined compositional
structure is respected !

Representation scheme:

+ Granluarity, i.e. coarseness of SV encodings depends
on the decomposition (user−defined or model inherent)

+ Coarse SV encodings possible

(i) Submodel−interdependent exploration, after 2003
(ii) Submodel−segregated exploration, before 2003

(B) Semi−symbolic generation techniques

Ref.:[KS02, Par02] Ref.:[PRCB94]

[PRC97, PC98]
Ref.:[DKK02, Web02]

Sec. 5.4.1

[CMS03]

[Sie98, HMKS99]

[Sie01, Sie02]

[CM99b, CM99a]

[CLS00, CLS01]

Ref.:[LS02]

Ref.:[DKS03]

Ref.:[LS03b, LS03a, LS06a] Ref.:[Min04, CY05]

Figure 4.6: Classification of symbolic SG generation methods

110 4 The Activity/Reward-local Scheme

avoided. Fig. 4.6 (p. 109) shows a classification of symbolic SG representation schemes. The
criteria which drove the process of refining the individual classes of symbolic SG genera-
tion schemes are given on the left side. The major line of development, which brought the
activity/reward-local approach about is framed by boxes with solid lines. The state-of-the-
art of the year 2002, when this research project was started and the-state-of-the-art of the
year 2006, –the year a full conference version of the activity/reward-local scheme appeared
and this thesis was submitted,– is given in grey-shaded boxes. The pros and cons which
drove the design process leading to the activity/reward-local scheme are given in bold faces.
In the following the classification will be discussed in greater detail.

At the top level, one may distinguish between fully symbolic and semi-symbolic techniques.
Fully symbolic methods require a symbolic realization of the next-state function, which is
directly derived from the high-level model description. In contrast, semi-symbolic techniques
are characterized by the fact that the symbolic representation of a model’s SG is obtained
by a combination of explicit exploration and symbolic encoding. At the next level one may
split these main categories into the classes of monolithic and compositional approaches. In
contrast to the compositional ones, the monolithic approaches do not apply any composi-
tion scheme. I.e. they do not take any advantage of a high-level model’s structure, let it be
user-defined or model inherent. Under a compositional SG generation strategy the high-level
model is considered as being decomposable into several submodels.7 Rather than executing
or deriving the symbolic transition function of the high-level model’s activities in a general
context, this is done on the level of submodels, yielding a set of symbolically represented
local SGs. A symbolic representation of the overall SG is then obtained by applying a sym-
bolic composition scheme, which implements the schemes as illustrated in Sec. 2.5 (p. 25).
Previous compositional schemes handled the local SGs in isolation, requiring the finiteness
of all local SGs. To do so published SG generation schemes often take for granted that
either capacities of SVs are computable in advance, e.g. by P-invariant analysis, or that
bounds of some SVs are modeled explicitly. Given that the decomposition of flat models
into sub-units with finite local SGs of adequate sizes is still an open question, and given
that the bounds of SVs is semi-decidable only, the efficient applicability of these methods
is clearly limited. From 2003 on, several authors proposed therefore adapted semi-symbolic
compositional schemes. The newly proposed schemes carry out explicit SG generation in
a submodel-interdependent fashion, so that neither apriori knowledge about capacities of
SVs nor the finiteness of local SGs in isolation is required. This allows one to split the
class of semi-symbolic compositional schemes into the class of submodel-interdependent and
submodel-segregated exploration schemes, as done at level 3 of Fig. 4.6. Now the use of dif-
ferent composition schemes allows one to refine these sub-class even further, namely into the
schemes applying activity-synchronization and into schemes joining shared SVs.

Besides the applied composition method, one is enabled to refine the subclass of semi-
symbolic compositional submodel-interdependent symbolic SG generation even further. One
can distinguish between methods employing model-inherent structures and methods using
the user-defined compositional structure for decomposing a high-level model. The methods
of the former class can then be split into the subclass of methods employing Mt-DDs and
symbolic reachability analysis for restricting the set of states to the actual reachable ones
[LS06a, LS06b] and into the subclass of methods employing MDDs or MxDs and making
use of the saturation technique for achieving this [Min04, CY05] (cf. level 6 of Fig. 4.6).

What follows next after this general overview is a profound discussion on the individual
classes of methods, their advantages and disadvantages, as well as a detailed introduction
to the related schemes as found in the literature. However, due to the importance of the
semi-symbolic SG generation schemes and in order to elaborate the differences among the

7 In terms of PNs one may think of a partitioning the overall net into disjoint subnets, where
activities are split accordingly (cf. Sync driven decomposition as illustrated in Sec. 2.5.3, p. 28)
In case of PAs the SGs of the individual processes give the basic partitions a high-level models
SG consists of.

4.7 Related work and own contributions 111

recently proposed schemes the discussion of methods of this subclass is devoted to its own
subsection.

4.7.1 Fully symbolic techniques
The methods listed here require a symbolic realization of the next-state function, which is
directly derived from the high-level model description. Once the symbolic transition rules
are generated, symbolic reachability analysis is carried out in order to obtain the set of
reachable states. Thus fully symbolic methods are highly efficient, since they avoid any
explicit SG exploration, but are limited to some model description methods, e.g. k-bounded
non-stochastic Petri nets [PRCB94, PRC97], a restricted input language of the Tipp-tool as
employed in the tool Caspa [KS02, KSW04], or the input language of the tool Prism [Pri].
The class of fully symbolic techniques can be divided into the class of models employing a
symbolic composition scheme and into the class of methods which treat the model as a flat
non-structured unit.

Monolithic techniques
The method presented in [PRCB94] gives an algorithm for generating the set of reachable
state for a non-stochastic, k-bounded PN on the basis of BDD based state representations.8

Due to its complexity we limit we discussion to the case of 1-bounded PNs.

Basically each state of the PN is represented by the number of tokens each place currently
holds, here at most one. Let the set of states to be explored be represented by a BDD B, i.e.
at the beginning B encodes the initial state of the net. Let the set of activity l’s dependent
SVs be encoded by the sets •Vj and Vj•, so that the variables of the former set encode l’s
input places and the latter l’s output places.

Each individual exploration step consists of three sub-steps:

(1) Extracting the enabling states for an activity j: This is achieved by conjunction of B
and the symbolic representation of the minterm function: B′ :=

∧
•Vj

vi.

(2) Destroying the tokens in the input places: What follow next is the re-movement of those
boolean variable vi ∈ •Vj from the set of variables of B′, which encode the input set of the
current activity j. This can be done either by co-factorization, as proposed in [PRCB94],
or by abstracting from the respective variables (B′′ := pZAbstract(B′, •Vj,+)). A sub-
sequently conjunction of B′′ and the symbolic representation of the minterm function∧

•Vj
¬vi, gives the set of states where the input places of activity j are made empty.

(3) Generate the tokens in the output places: One need to remove the variables vk ∈ Vj•,
which represent the status of the output places of the current activity j from the set
of already preprocessed states. Analogously to the above step, this is either achieved
by co-factorization or by abstraction. A subsequent conjunction with the symbolic rep-
resentation of the minterm function

∧
Vj• vi yields the set of states reachable from the

states of B in one step by executing activity j.

If the activities are all executed in a single step, this gives one the image of B under Act.
This symbolic image computation can be incorporated into a reachability algorithm. This
reachability algorithm is repeated until a fixed point is reached and the set of all reachable
states is generated. The above illustrated approach can be extended to the case of k-bounded
PNs, as already done in the original work [PRCB94]. In a later work this approach was
extended to a more general class of PNs by introducing a symbolic semantics for inhibitor
arcs [PC98]. Since a PN with two inhibitor arcs has ”Turing-power” [Hac76], this approach
can be in principle employed for any model description method, as long as an efficient

8 For generating a symbolic representation of the transition relation, this approach needs to be
extended.

112 4 The Activity/Reward-local Scheme

mapping to a PN exists.9 For complex model description methods this monolithic and pure-
symbolic approach seems to be cumbersome. Furthermore the peak number of BDD-nodes
may also be a problem, since it is known that for (semi-symbolic) monolithic methods
this number tends to explode, so that these approaches are not applicable in practice (cf.
Sec. 5.4.1, p. 137ff).

Compositional techniques
In [Par02] and [KS02] two fully symbolic approaches in the context of stochastic process
algebras were presented.

Caspa
The authors of [KS02] achieve a generation of the potential transition system of the overall
model as follows: By generating and iteratively traversing a parse tree until a fixed point is
reached, each submodel of a high-level model description is translated into its own symbolic
structure. A symbolic representations of the high-level model’s potential SG is than obtained
by employing activity synchronization on the level of the symbolic structures (cf. Sec. 2.5.3
(p. 27ff).

Prism
In contrast the approach implemented in the tool Prism [Pri] employs BDD based algorithms,
which directly implement the operator of the input language on the level of symbolic SG
representation. Each module of the overall model specification is then symbolically explored
until a local fixed-point is reached. A symbolic representation of the high-level model’s po-
tential SG is then also obtained by employing activity synchronization, i.e. a realization of
the KO driven composition scheme illustrated in Sec. 2.5.3 (p. 27ff). However since Prism
[Pri] also employs BDDs and ADDs, the handling of global variables within a composition-
ally constructed high-level models is not problematic.

Irrespective the employed method, both tools carry out the standard bfs based symbolic
reachability analysis, so that unreachable transitions can be removed from the set of tran-
sitions.

4.7.2 Semi-symbolic techniques
Semi-symbolic techniques are characterized by the fact that the symbolic representation of
a model’s SG is obtained by a combination of explicit exploration and symbolic encoding,
making this methods independent of the employed model description method. This class can
further be divided into methods which (a) require to explicitly visit only a fraction of the
overall SG by employing a composition scheme, or (b) monolithic procedures which do not
require compositional models but need to explicitly visit all reachable states.

Non-compositional techniques
These approaches employ a symbolic structure, where traditional SG generation schemes
employed a hash table. Consequently these methods can also be characterized as pseudo
symbolic techniques. I.e. the SG is generated in a step-wise fashion by exploring all at a
time enabled activities in each state explicitly. Consequently methods of this subclass suffer
from tremendous run-times. But besides this, experiments show that also the peak memory
consumption induces a non-tolerable overhead (cf. Sec. 5.4.1, p. 137ff)

9 A non-efficient procedure would simply translate the state graph of a model into a respective
PN, but being already confronted with the SG-explosion problem.

4.7 Related work and own contributions 113

(1) In [DKK02] the reachability set of a stochastic Petri net is generated by successively
firing the enabled transitions, one at a time. Each detected state vector is encoded
as a BDD and inserted via disjunction into the BDD representing the set of states
reached so far. Additional memory savings are achieved in [DKK02] by making use of
P-invariants, which allow to reduce the number of SVs per state descriptor. But their
computation imposes limitations concerning the expressiveness of the employed high-
level model description method, here stochastic Petri nets. [DKK02] developed a BDD-
package for representing the set of generate states. This package does not incorporate
the isomorphism and dnc-reduction rule directly into the node allocating function. In
order to avoid extensive number of calls to the BDD reduction routines, the authors
of [DKK02] only execute them, if a certain memory size is reached. However, the pay-
off for this strategy remains unclear, since when employing unique BDD-nodes their
administration cause in general only little overhead (hash-function + collision resolution
if necessary), but totally avoids the use of computational expensive reduction routines.

(2) In [Web02] a similar approach to the one discussed above was realized. However, in
contrast to [DKK02] the author did not make use of P-invariants and employed MDDs
for representing the set of reachable states.

(3) In order to investigate the disadvantages of such a monolithic semi-symbolic strategy
we also implemented such a method for generating a high-level model’s underlying state
graph.10 The collected runtime data will be presented in Sec. 5.4.1 (p. 137ff).

Compositional techniques (submodel-segregated)
Given a high-level model, it might be possible to decompose it into a set of submodels,
where the individual local SGs can be generated in a conventional, explicit manner. One
may now distinguish between semi-symbolic compositional approaches, which generate lo-
cal SGs in isolation (submodel-segregated exploration scheme), or approaches which follow a
submodel-interdependent explicit exploration strategy. In order to point out the evolution
and differences among the different methods, the discussion will focus for the time being on
the submodel-segregated schemes as well as on the composition method. Due to their impor-
tance, the more sophisticated submodel-interdependent methods will be discussed separately
in the next section (Sec. 4.7.3).

With the developed submodel-segregated semi-symbolic compositional symbolic SG genera-
tion methods the decomposition of a high-level model is driven by the user-defined compo-
sitional structure of the overall model. But nevertheless one ends up with a set of symbolic
representations, one for each of the submodel’s local SGs. What follows next, is the ap-
plication of a symbolic composition scheme. On the level of a high-level model description
method, submodels are composed by either jointly executing sets of activities (synchroniza-
tion) or sharing sets of SVs (join). Realizing such schemes on the level of local SGs requires
then respective operators:

(1) Composition of models via activity-synchronization: On the level of local SGs this is
achieved by applying a realization of the KO based scheme illustrated in Sec. 2.5.3
(p. 27ff). Since in such settings a KO-compliant structure of the overall model is always
present, –the submodels do not share any of their SVs,– also a BDD based composition
scheme realizes a KO based composition (cf. Sec. 3.5.2, p. 62ff). Such a scheme can be
organized as follows:

(1.a) Delayed: A set of Kronecker operations is executed each time an element of the
overall generator matrix is needed [CM99b, CM99a, CLS00, CLS01]. Since the entries

10 The implementation of such a scheme came almost for free, since the existing implementation of
the activity/reward-local scheme could be easily modified to the less complex case of a monolithic
generation procedure.

114 4 The Activity/Reward-local Scheme

of the overall transition rate matrix are computed when need, rather than kept in
memory, one speaks here also of implicit representation methods. Under such implicit
representation methods one must also summarize the MxD based methods [Min01],
where each traversion realizes a set of Kronecker operations.

(1.b) Promptly: One applies a symbolic version of a KO based composition scheme directly
on the symbolic represented local SGs and keeps the symbolic represented transition
rate matrix of the overall model in memory [Sie98, HMKS99, Sie01, Sie02].
Since this strategy stores the transition matrix directly, where each element can be
extracted by BDD-traversion, one may speak of explicit representation.

Since both variants make use of a KO it is clear, that they are in principle equivalent.

(2) For complex models it might not be possible in general to derive an ordering on the
set of SVs, so that the SVs of each submodel appear in a non-interrupted sequence (cf.
Sec. 2.5.6, p. 29f). As proven in Sec. 3.5.2 (p. 62ff), a KO based composition scheme is
not applicable, since the Kronecker product will deliver wrong results. Thus the delayed
(symbolic) methods mentioned above can not be applied at all. Here [LS02] develops
a symbolic Join-operator, which is based on the Apply-algorithm or variants thereof
and gives a symbolic semantics for composing submodels via SV sharing (cf. Sec. 2.5.4,
p. 28). As discussed in Sec. 2.5.6 this scheme is still applicable, where KO-driven schemes
may fail. However, in contrast to the latter it requires an encoding scheme where the
SVs shared among submodels are encoded individually (fine-grained), rather replacing
all SVs of a submodel by a local state counter (coarse encodings) as it is possible under
activity-synchronization. But one may note that such a coarse encoding may also lead
to larger symbolic structures.
Similar to all other symbolic approaches discussed at that time [LS02] advocates the
usage of the user-defined submodels, which may lead to inefficiencies if the sizes of
the local SGs are not well balanced. Furthermore a submodel-segregated explicit SG
generation scheme was assumed, so that apriori knowledge of bounds of SVs must be
available, in order to explore the local SGs in isolation.

4.7.3 Semi-symbolic, compositional and submodel-interdependent techniques
By the end of 2002 different symbolic SG generation schemes had been developed, realizing
either a synchronization Sync or Join on the level of submodels, but leaving two main
problems open:

(1) In general bounds of SVs are not decidable, thus apriori knowledge about them not
available, consequently the generation of local SGs in an isolated or submodel-segregated
fashion is in practice often not feasible.

(2) In order to decompose a high-level model the approaches discussed so far employ the
user-defined compositional structure of the overall model, which may lead to local SGs of
unbalanced size. Given that the partitioning of flat models into (independent) submodels
with finite local SGs of adequate sizes is still an open question the applicability of
the suggested approaches is obviously limited. This situation is even worsen, since in
contrast to the approaches making use of the Apply-algorithm, like [Sie02, LS02] all
other approaches are dependent on a KO compliant structure of the high-level model.

In order to overcome this restriction in 2003 different authors suggested schemes, where
the local SGs were generated in a submodel-interdependent fashion [LS03b, LS03a, CMS03,
DKS03]. As a consequence bounds of SVs do not need to be known apriori nor do the local
SGs need to be finite in isolation. However, the problem of a(n) (automatized) partitioning
driven by model-inherent structures, rather than specified by the modeler, was solely tackled
in [LS03b, LS03a].

[CMS03] employed activity synchronization as method of composition, where the user is

4.7 Related work and own contributions 115

required to decompose an overall model into partitions. Thus the efficient applicability of
the presented method is restricted to models, where a KO compliant partitioning is possible
and the individual partitions yield SGs of similar sizes. On the other hand, the partitioning
of the overall model allows the authors of [CMS03] to employ a very dense encoding scheme,
since on the level of submodels SVs can be replaced by local state counters (cf. to the data
presented in Sec. 5.4.2, p. 140ff).

In contrast [DKS03] suggested a scheme for SV-sharing models and consequently for models
where the KO compliant structure may not be given. The suggested method employs the
user-defined compositional structure of the high-level model, which may yield to local SGs
of unbalanced sizes and / or models where a lot of inter-action among the submodels takes
place. Thus in practice this approach often yields non-acceptable run-times, when generating
a MxD based representation of the overall model transition system, which of course depends
on the employed high-level models (cf. to the data presented in Sec. 5.4.2, p. 138ff).

[LS03b, LS03a] presented an approach, where the problem of unknown bounds of SVs
or the non-finiteness of local SGs in isolation was also solved by applying a submodel-
interdependent SG generation scheme. But in contrast to [CMS03, DKS03], the problem of
partitioning the high-level model was also taken into account by maintaining composition-
ality at the level of individual activities. As a consequence the activity/reward-local scheme,
presented in [LS03b, LS03a] did not require any particular compositional structure of the
high-level model, nor must the high-level model be specified under a specific description
method.11 Until now others also presented approaches, which are capable of dealing with
models, where a KO compliant partitioning is not mandatory:

[Min04] suggests a partitioning of the overall model into submodels, but in contrast to the
activity/reward-local scheme each SV is a submodel, where the connecting activities are
split among the submodels. Each of the resulting event-local structures, which can not be
explored separately, since non-resolvable dependency with other event-local structures ex-
ists, are merged to form a single submodel. Non-resolvable dependency exists if the firing
of an event not solely depends on the submodel-local SVs. As drawback, this strategy may
lead to a partitioning, which does not have a KO compliant structure. Now and in contrast
to his earlier works, the author of [Min04] applies an encoding scheme, where each SV gives
its own MxD-level. This encoding allows the application of the same composition scheme as
in case of the activity/reward-approach, but in the context of MxDs and by making use of
an MxD based variant of the Apply-algorithm. The restriction of the potential SG to the set
of reachable transitions is achieved by employing this composition scheme within the well
known saturation algorithm.[CLS01].

The authors of [CY05] also exploit event-locality, so that in contrast to their earlier works
each SV corresponds to its own MDD level. This allows an arbitrary decomposition of the
high-level model, where SVs belonging to the same event are combined via conjunction. The
disjunctive composition of the event inducing PN transitions gives one a symbolic represen-
tation of the potential SG. In this context it is interesting to note that in [CY05] the same
notion of independence of SVs and activities/events as already employed in [LS03b, LS03a],
is used. Furthermore the authors suggest also the above mentioned partitioning of the set
of activity-dependent SVs into enabling and updating parts. The different symbolic struc-
tures encoding the enabling and updating function of an activity for a given pair of states
as contained within the transition relation of a model are then combined via conjunction.
This is exactly what the explicitly encoding of the individual transitions does in case of
the activity/reward-local scheme, since each symbolically encoded transition gives one a
minterm of the respective boolean variables, let them be partitioned into sets of enabling

11 The approach of [LS03b, LS03a] is then only applicable when independent sequences of activities
do not trigger new model behavior. However, this problem was easily resolved by introducing
a re-initialization routine, so that more rounds of submodel-interdependent SG generation and
transition encoding may follow, if necessary.

116 4 The Activity/Reward-local Scheme

and updated SVs or not. Finally the disjunction over all event-induced transitions is clearly
analogous to the summation in case of the activity/reward-local scheme. However, since
the authors of [CY05] introduce an identity-reduction rule for MDDs, the explicit insertion
of identity structures as in case of the activity/reward-local scheme is unnecessary. As a
result of the disjunctive and conjunctive partitioning and the subsequent composition in
relation with the guarantee of identity-free MDDs, the authors of [CY05] are finally enabled
to present a saturation algorithm, which efficiently handles models with unknown bounds
of SVs and does not require a (KO conforming) user-defined compositional structure as it
was the case in [CMS03].

The above illustrated methods are based on summation of potential submodel-local transi-
tion functions in order to obtain the potential transition function of the overall model. Each
potential submodel-local transition rate function is hereby obtained by cross-product build-
ing of the real submodel-local transition matrix with adequate identity structures, where
in case of identity-free MDDs this step can be omitted. Since the summation as well as
the cross-product building is realized with algorithms, which are in fact variants of the
Apply-algorithm, called with the respective op-function, it is clear that this composition
scheme employed in [Min04] and [CY05] are equivalent to the composition scheme of the
symbolic join as presented in [LS02] and to its more generalized version as employed in the
activity/reward-local scheme [LS03b, LS03a]. Besides the employed data structures and the
chosen partitioning of the model another difference of the activity/reward-local scheme and
the work presented in [Min04] and [CY05] can be revealed: In [LS06b] the local character
of activities is extended to the case of rate - and impulse reward functions, yielding highly
efficient schemes for generating a symbolic representation of user-defined PVs. Since their
symbolic representation not only allows a memory efficient storage, but also an efficient
computation of their moments, the efficient calculation of performance variables is achieved,
where [Min04] and [CY05] are only concerned with symbolic SG generation.

4.7.4 Symbolic algorithms for generating the set of reachable states
The fully symbolic and monolithic approaches organize their reachability analysis on the
level of symbolic structures. This also holds for all compositional schemes, since in contrast
to the (semi-symbolic) non-compositional schemes they generate the potential transition
system and therefore require a scheme for generating the set of actually reachable states.
Besides the different layouts of the various (compositional) schemes discussed so far, another
important difference can be revealed. This difference is related to the employed data types.
Approaches making use of BDDs or variants thereof relay on standard bfs symbolic reach-
ability analysis, whereas MDD or MxD based approaches make use of a technique called
saturation, which was first introduced in [CMS03]. This technique directly manipulates the
node pointers between adjacent MDD, MxD-levels, when exploring local model behavior,
which may lead to run-time advantages for some models. Since for the BDD based composi-
tional schemes symbolic reachability analysis is the main source of CPU-time consumption,
it is clear that from an improvement here, the overall scheme will benefit. In [LS06a] a new
scheme for symbolic reachability analysis was presented. This scheme is based on the idea of
executing the symbolic transition functions in an activity-wise manner, rather than execut-
ing them all at once. Thus similar to the approach of [BCL91] one executes partitions of the
overall transition system sequentially. It seems that the handling of smaller DD-structures
is more efficient than handling huge DD structures once at a time. Furthermore an activity-
wise refinement enables one to employ an early-update strategy on the set of states to be
explored in the next step. As we recently noticed in the technical report [PRC97] also an
activity-wise instead of a “all-at-once” image computation is advocated. Doing so enables
the authors of [PRC97] to use also all newly reached states when symbolically executing
the next activity. This technique, which we denoted as early-update strategy, was denoted
by the author of [PRC97] as greedy chaining, in reminiscence of the greedy heuristic for
algorithms. Thus the proposed scheme in fact turns out to be very similar to our new sym-
bolic reachability scheme as introduced in Sec. 4.3.4. However, [PRC97] is limited to the

4.8 Pre-published material 117

case of k-bounded non-stochastic Petri nets having a symbolic semantics for the individual
firing rules of the activities and does not employ a semi-symbolic compositional scheme.
Furthermore, it is interesting to note that the symbolic reachability analysis as carried out
there relies on the extensive use of BDD-operations. In contrast to this monolithic BDD
based approach, the compositional BDD based approaches, let them be semi- or fully sym-
bolic, generate a symbolic representation of the potential transition system. Consequently
the symbolic next-state function is encoded within a single symbolic structure, or at least a
symbolic structure for each activity, simplifying the process of image computation to a single
conjunction, abstraction and re-labeling operation. Consequently this simplification should
lead to runtime advantages of these methods over the non-compositional and fully symbolic
approaches of [PRCB94, PC98], as far as the symbolic reachability analysis is concerned.

4.8 Pre-published material

[LS02] describes how to construct complex performability models in the context of the
software tool Möbius by hierarchically composing small submodels. In addition to Möbius’
“Join”-operator, a second composition operator ”Sync” is introduced, and it is shown how
both types of composition can be realized on the basis of symbolic, i.e. BDD based data
structures. I.e. in case of the “Join”-operator a respective symbolic composition scheme is
developed, so that one is enabled to combine submodels via matching of the values of the
SVs shared among the submodels. This composition scheme is a prerequisite, when it comes
to the activity/reward-local scheme. Thanks to Bryant’s Apply-algorithm and its variants,
the composed submodels do not need to have a KO compliant structure. However, in [LS02]
it was assumed that the local SGs can be generated in isolation. This assumption turned out
to be not realistic, due to the lack of the apriori knowledge of the bounds of the shared SVs.
In order to solve this problem we designed a scheme, which iteratively and in an interleaved
fashion explicitly explores as few activities as possible. The basic ideas of this scheme,
which we denoted as activity/reward-local SG generation and representation scheme, were
presented in [LS03b, LS03a], but for a limited class of models and with a standard symbolic
reachability analysis. In [LS06a] the basic scheme was extended, so that one is now capable
of handling models, where the combined execution of independent activities triggers new
model behavior. Furthermore [LS06a] introduces the new “quasi”-dfs symbolic reachability
analysis, where partitions of the transition function are executed sequentially rather than
all at once. The generation and handling of reward functions in order to compute complex
performance measures on the basis of a symbolic SG representation was than contributed
in [LS06b].

5

Empirical Evaluation

In this chapter we will assess the major contributions of this thesis by analyzing mod-
els which are well-known from the literature and often employed as benchmarks. For
providing evidence of the usefulness of the newly introduced type of DD (pZDDs)
and the activity/reward-local scheme, this chapter compares also the run-time data
of our implementation to the run-data of other well-known performability tools. For
demonstrating the practical applicability of the developed contributions, we also
present the analysis of a case study. In this study the availability of a telecommuni-
cation service system had to be computed, which required the solution of a MRM
consisting of more than 260 million system states.

5.1 Organization of the chapter

Sec. 5.2 gives details about the implementation and the models used as benchmarks. Fur-
thermore it introduces the different settings, as employed for investigating the performance
of the (p)ZDD based framework for the SG based performability analysis.1 In Sec. 5.3 the
efficiency of the the activity/reward-local SG generation technique is investigated, where
different aspects are considered. At first we compare the performance of ZDDs and ADDs, if
employed within the activity-local scheme. What follows next, is a comparison of the stan-
dard bfs and our new quasi-dfs symbolic reachability algorithm. The assessment is made
complete by investigating the significance of the variable ordering for the efficiency of the
activity/reward-local scheme and its symbolic algorithms.
Sec. 5.4 presents a comparison of our ZDD based activity/reward-local scheme to other
symbolic SG generation techniques. These techniques range from fully symbolic ones as in-
corporated into the tools Caspa [KSW04] and Prism [Pri] over semi-symbolic monolithical
procedures, up to the semi-symbolic submodel interdependent approaches developed recently
and currently incorporated into the tools Möbius [DCC+02] and Smart [Sma].

Sec. 5.5 presents an assessment of the ZDD based hybrid solution method for computing
state probabilities of a MRM. At first a comparison of ADD- and ZDD based hybrid solvers
is carried out. As next the impact of the choice of sparse and block-level on the ZDD based
solvers is investigated. The assessment of the solvers is made complete by investigating the
significance of the variable ordering on the performance of the solvers.
Sec. 5.6 compares the ZDD based solvers to other solvers as realized in the tools Möbius
and Smart. Their memory management for storing matrices range from traditional sparse
matrix layouts over Kronecker operator based sparse matrix representations up to symbolic
formats such as multi-valued multi-terminal decision diagrams (MTMDDs) and the well-
known matrix diagrams (MxDs) of [Min01].

In Sec. 5.7, a case-study of a telecommunication service system will be presented. This case-
study is also fed into the DSPNexpress tool, so that another comparison of our ZDD based
activity/reward-local scheme, and a standard performance evaluation tool is achieved.

Sec. 5.8 will conclude this chapter by indicating our pre-published material.

1 For the time being we simply ignore the fact that the symbolic structures may partially shared
and speak generically of ZDDs.

119

120 5 Empirical Evaluation

5.2 Preliminaries

The algorithms discussed so far constitute a symbolic framework for carrying out the SG
based analysis of high-level MRMs. This framework is capable of either employing ADDs
or ZDDs when generating and analyzing the low-level MRM. Different aspects of an imple-
mentation of this framework within the Möbius modeling tool will be presented now.

Möbius [DCC+02] is highly suited for implementing the activity/reward-local approach for
the following reasons:

(1) The Möbius modeling framework supports several model specification formalisms to be
combined within a single hierarchic overall model. Therefore the application of a purely
symbolic SG generation method seems disadvantageous, since each newly implemented
model-description method would require a new symbolic semantics. Consequently the
employment of a semi-symbolic technique is appropriate.

(2) Due to the nature of the Join and Rep\Join model composition method and the fact
that one cannot calculate the capacities of SVs in advance, the Möbius modeling frame-
work does not support a compositional SG construction, if the submodel-local SGs
are generated in isolation. As a consequence, one has to employ one of the submodel-
interdependent SG generation techniques, since they are capable of handling such situ-
ations.

(3) Within the Möbius modeling framework the modeler builds a (hierarchic) high-level
model from an arbitrary number of submodels, where a submodel is either a hierarchic
model itself or a basic model description, commonly denoted as atomic model. In order
to obtain a hierarchic model, the atomic models are combined via the Join, Rep\Join
or Sync composition operator. The sizes of the local SGs of the atomic models are
not known beforehand. Thus trying to exploit the user-defined compositional model-
structure for constructing the overall SG from the local SGs of the atomic models may
not be efficient at all. In such cases the activity-local method offers the advantage of
being independent of the user-defined compositional model-structures, since it employs
model-inherent structures.

The implementation of our symbolic framework as incorporated into the Möbius modeling
tool consists of four modules:

(1) A module for the explicit generation of transitions, which constitutes the interface be-
tween the symbolic engine and Möbius (ExploreStates, Algo. 4.2.A, p. 88).

(2) The symbolic SG generation engine, providing the following features:
• Symbolic encoding of transitions and generation of the set of activities to be explicitly

executed (EncodeTransitions, Algo. 4.2.B, p. 88),
• the symbolic composition scheme for generating the set of potential transitions (cf.

Sec. 4.3.3, p. 89f),
• the symbolic reachability analysis, in order to obtain the set of reachable states and

transitions (ReachabilityAnalysis, Algo. 4.3, p. 90), and
• the re-initialization scheme, triggering new rounds of the activity/reward-local scheme

(InitNewRound, Algo. 4.4, p. 91).
In combination the above features deliver an Mt-DD based representation of the high-
level model’s underlying (activity/reward-labeled) CTMC.

(3) A Mt-DD-library based on the CUDD package [Som98], providing our implementation
of pZDDs and CUDD’s originary implementation of ADDs. I.e. in case one makes use of
ZDDs, the library provides the C++-class definition of partially shared ZDDs, the new
recursive algorithms for manipulating them, the op-functions and an implementation of
the operator-caches, which are essential for efficiently manipulating pZDDs. In case of

5.2 Preliminaries 121

N states trans transe N states trans transe

FTMP Kanban
2 2.5693E5 1.6978E6 688 5 2.5464E6 2.4460E7 1.860
3 1.2408E8 1.1513E9 1.548 6 1.1261E7 1.1571E8 4.116
4 5.5039E10 6.6113E11 2.752 7 4.1645E7 4.5046E8 8.232
5 2.3549E13 3.4847E14 4.300 8 1.3387E8 1.5079E9 15.192
6 9.9082E15 1.7463E17 6.192 9 3.8439E8 4.4746E9 26.280

10 1.0059E9 1.2032E10 43.120
Courier

4 9.7102E6 5.7005E7 142 FMS
5 3.2405E7 1.9983E8 206 5 1.52712E5 1.1115E6 290
6 9.3302E7 5.9818E8 289 6 5.3777E5 4.2057E6 434
7 2.3965E8 1.5858E9 394 7 1.6394E6 1.3553E7 616
8 5.6182E8 3.8166E9 524 8 4.4595E6 3.8534E7 840

9 1.1058E7 9.9075E7 1.110
TQN 10 2.5398E7 2.3452E8 1.430
63 8.128E3 2.7971E4 8.127E3 12 1.11415E8 1.07892E9 2.236
64 8.385E3 2.8863E4 8.384E3
127 3.2640E4 1.1328E5 3.2640E4 Polling
128 3.3153E4 1.1507E5 3.3153E4 15 7.3728E5 6.144E6 60
255 1.3082E5 4.5594E5 1.3082E5 18 7.0779E6 6.9599E7 72
256 1.3184E5 4.5952E5 1.3184E5 20 3.1457E7 3.4078E8 80
511 5.2378E5 1.8294E6 5.2378E5 21 6.6060E7 7.4868E8 84
512 5.2583E5 1.8365E6 5.2583E5 25 1.2583E9 16.7772E9 100
1023 2.0961E6 7.3288E6 2.0961E6

Table 5.1: Model specific data for the various case studies

ADDs this library employs the original C++-classes, algorithms and caches as provided
by the original CUDD package.2

(4) A library for computing the user-defined PVs (cf. Sec. 4.5, p. 99ff.), implementing func-
tion ComputePV (Algo. 4.5,p. 100) and its employed routines, such as:

(4.a) ComputeStateProbabilities providing the new ZDD based hybrid solvers and a
version of the ADD based hybrid solvers as used within the tool Caspa and Prism,
which enable one to compute steady state or transient state probabilities of the
generated CTMCs.

(4.b) MakeRateRewards and MakeImpulseRewards (Algo. 4.6, p. 101) which efficiently
generate symbolic representations of rate and impulse reward functions, and

(4.c) ComputeRew for computing the first and second moment of each user-defined PV via
Mt-DD-traversal (Algo. 4.7, p. 103).

5.2.1 Employed models for benchmarking
For evaluating the symbolic framework several models, which are commonly employed as
benchmarks in the literature, will be analyzed. Tab. 5.1 gives the sizes of their SGs, i.e.
the number of states (states) and the number of transitions (trans), as well as the number
of transitions explicitly explored by the activity/reward-local scheme (transe). These char-
acteristic dates depend on the respective model scaling parameter N , which is also given.
In the following paragraphs, these models are briefly introduced. Issues related to their SG
based analysis will be already discussed a long the way, so that the data presented later can
be assessed correctly.

2 Currently the implementation of pZDDs within the JINC DD-packages is in progress. In contrast
to the CUDD DD-package [Som98], the JINC package [Oss06] is truly C++-oriented and seems
to be more efficient when it comes to the manipulation of DDs.

122 5 Empirical Evaluation

Kanban Manufacturing System (Kanban) [CT96]
The Kanban model describes a Kanban production system with four cells, where each cell
has a single type of workpiece and Kanban cards. Since the manufactured pieces may not
match their specification, each cell has the possibility to re-work the pieces and re-insert
them into the production cycle. The assembling of parts from the individual workpieces
of the cells is modeled by two complex activities. The number of workpieces and Kanban
cards per cell and per workplace is fixed and adjusted by the model scaling parameter N ,
so that the model can be scaled by changing this value. Workpieces and Kanban cards are
represented by the tokens circulating in a cell, where the places of each cell are N -bounded.
The Kanban model is thus highly suited for being analyzed by making use of the Sync driven
decomposition of the high-level model, where the overall SG is obtained by applying a KO
driven composition scheme to the submodel-local SGs (cf. Sec. 2.5.3, p. 28ff). To do so, the
afore mentioned complex activities, which represent the assembling of parts, are split into
cell-local activities, so that one ends up with four independent submodels, each representing
one single production cell. For obtaining the model’s overall SG from the submodel’s local
SGs, activity synchronization over the previously split activities takes place. The partitioning
of the overall model into four submodels not only allows to construct the submodel-local
SGs in isolation, but also leads to a well balanced partitioning of the overall SG. Thus,
not surprisingly, the Kanban model is highly suited and often used for illustrating the good
performance of compositional symbolic SG generation methods, which employ the Sync
composition method and thus a KO driven composition scheme for constructing a symbolic
representation of an overall model’s transition rate matrix.

Flexible Manufacturing System (FMS) [CT93]
The FMS model specifies a manufacturing system consisting of four machines. Hereby two
machines process only their own workpiece, the third machine processes either its own work-
piece or, if being idle, it processes workpieces of one of the other machines (always of the
same machine). The remaining machine assembles a more complex workpiece, where the
above three basic workpieces are employed. I.e. in total the FMS produces four different
parts, which leave the production process as soon as they are finished. In order to maintain
a constant inventory, the number of rough workpieces entering the system is equal to the
number of finished parts leaving it. Rough workpieces and finished parts are moved between
the machines by employing pallets, where the capacity of the pallets depends on the kind
of the workpieces loaded. The total number of workpieces of the basic kind i ∈ {1, 2, 3} is
specified by Ni = N , where that N is the FMS model’s scaling parameter. The total number
of pallets within the FMS is defined as 3N . In the original model, which will be denoted
as FMS (orig.), the rate of the activities modeling the feeding of rough workpieces into
the respective machine, depends on the number of rough workpieces in their input places,
multiplied with min(1, ratio of number of all pallets and available ones). Since the number of
available pallets is given as the sum of tokens over a set of places, this significantly enlarges
the number of dependent SVs of the afore mentioned activities. As a simplification we will
omit this ratio, so that the rates are solely determined by the number of tokens in the input
place of the respective activity. This simplification was also applied in the work of others,
e.g. [KSW04]. Due to the complex structure of the FMS model the finding of a KO compliant
decomposition is not straight forward. It either requires a re-specification of the model or
clearly decreases the efficiency of the compositional SG construction methods, which are
based on activity synchronization.

Cyclic Polling System (Polling) [IT90]
The Polling model represents a cyclic server-polling system with N stations. A station is
either idle, waiting for processing a service request or, if service is granted by the server,
processing the latter. The Polling model can be modeled as a hierarchic model, where in-
teraction among stations and client is modeled by the Sync or Join-method. In case of

5.2 Preliminaries 123

activity-synchronization, the overall model is built from a set of client stations and a server
station. Service is granted to a client station, if the requesting client and the server are capa-
ble of jointly executing a dedicated activity. In case of the Join-method, there is no need for
modeling the server station explicitly. The granting of service is modeled by a token, which is
handed over from client station to client station. Each client passes the token to its neighbor
(uni-directionally) as soon as its service request is processed or, in case nothing needs to
be done, after an exponentially distributed time delay. In both cases, the Polling model is
one-bounded and produces identical SGs underlying the different model specifications. Both
forms of composition (Sync or Join) allow a very efficient construction of the overall SG.

Tandem Queuing System with Blocking (TQN) [HMKS99]
The TQN model consists of two stations. The first is anM/Cox2/1/N queuing-station which
is coupled in a blocking manner with a second −/M/1/N queuing-station. The input queues
of both stations have the same limited capacity, modeled by parameter N . The arrival at
station 1 is a Poisson stream, where its service is modeled by a Coxian distribution with
two exponentially distributed phases. The second service phase is entered with probability
1 − p, and it is skipped with probability p. After being processed in queuing-station 1, a
served job enters the input queue of the second station. The service duration of this station
is exponentially distributed. In this work, the TQN model was specified as SAN consisting
of 3 places, two places for representing the input queues and one place for storing the job,
which is scheduled to enter service phase two. Consequently, two of the places may contain
the number of tokens specified by the scaling parameter N , and the remaining place contains
either one or zero tokens. In contrast to [HMKS99] station 1 is fully blocked when the input-
queue of station 2 is full. One may note that the TQN model constitutes a worst case scenario
for the activity/reward-local scheme and also for methods based on the Join composition
method. This stems from the circumstance that the high-level model consists of 3 SVs
only, so that a high degree of dependency among the activities or user-defined submodels
exists, yielding a large number of transitions to be explored explicitly. In contrast to this, a
Sync driven decomposition (cf. Sec. 2.5.3, p. 28) enables one to encapsulate the places into
independent submodels, and thus reduce the number of explicit exploration steps clearly,
so that the generation of a symbolic SG representation can be achieved more efficiently. A
solution of this problem will be sketched at the end of this thesis (cf. Sec. 6.3, p. 159)

Fault Tolerant Multi-Processor System (FTMP) [MS92]
The FTMP model consists of a multi-processor system, built from redundant components.
Therefore this model is highly suited for being specified by making use of the Rep\Join
composition method. In contrast to the original model, we did not take advantage of the
fact that components may be identical. Thus we do not take advantage of user-defined
symmetries for generating a reduced SG. In our setting the model consists of N individual
processor systems, each constructed from the following individual components:

• A Memory module consisting of three memory units, where at least two must be opera-
tional. Each memory unit possesses 41 RAM chips, of which at most two may fail, and
two interface chips that must all be operational.

• A processor unit containing three CPUs of which two must be operational.

• An I/O port module containing two ports of which one must be operational. In total,
CPUs and I/O-ports consist of 6 non-redundant chips each.

• A module for error-handling.

A processor system fails, if one of its components fails. The overall system is operational if
at least one processor system is operational.
Since the degree of dependency among the different components, each encapsulated into

124 5 Empirical Evaluation

its own submodel, is very high, one faces a high number of interactions between the latter
when exploring the local SGs in a submodel-interdependent style. Thus symbolic approaches
exploiting the above illustrated user-defined structure, and a Join composition method may
not be very efficient.

Courier Protocol (Courier) [WL91]
The Courier model specifies a parallel communication software system . The model’s scaling
parameter N gives the size of the transport window (TWS), so that the number of packets
simultaneously transmitted between sender and receiver is bounded by this size. In this work,
we employed the model of [DKS03], where the communication software system is constructed
from four submodels: the receiver’s session and transport layer, and the sender’s session and
transport layer. The four submodels are composed via the Join composition method. In
contrast to the FTMP model, the Courier model seems to exhibit more local behavior.
Not surprisingly the symbolic SG generation procedure of [DKS03], which depends on the
user-defined partitioning and the Join composition method, performs here much better.

5.2.2 Layout of presented run-time data
The tables presented in this chapter will always contain the run-time data as gathered for
the different models and for the different experiments. Hereby columns filled with xxx cor-
respond to experiments which could not be carried out by the respective approach, due to
memory and/or run-time restrictions. Columns filled with ??? correspond to data, which
could not be obtained from the specific experiment and for the specific tool employed.

For simplifying the comparison of the different methods, we decided to present not only
the pure run-time data, but to present also ratios, where the respective figures are always
normed to the data as produced by our ZDD based implementation. I.e. ratios > 1 normally
indicate an advantage of the innovations developed in this work, and ratios < 1 indicate
their disadvantage. If this is not the case, it will be stated.

Since the data presented in this chapter was taken at different stages of this project, the
run-times may vary. However, these variation are not only due to improvements of our im-
plementation, but also to the employment of different C++ compilers. But these differences
are of minor importance, since the innovations developed in this work clearly improve sym-
bolic SG based analysis of high-level MRM by reducing run-time and space complexity by
significant factors.

5.2.3 Platform
All benchmarking experiments as carried out with our implementation and with other tools,
were executed on Pentium 4 systems with a Linux OS, where we employed either 3 GHz or
2.88 GHz machines. I.e. the figures of Tab. 5.2 - 5.5, Tab. 5.7 and Tab. 5.14 were produced
on a P4 with 3.0 GHz and 1 GByte of RAM, whereas the figures of all other tables were
produced on a P4 with 2.88 GHz and a maximum of 4 GByte of RAM.

Since the memory space of a 32-bit machine is currently restricted to assigning at most 3
GByte to a single process [Intb], the case study, presented in Sec. 5.7, had to be analyzed on
a 64-bit machine. We employed the computing cluster of the Technical University Munich,
where we used the AMD Opteron 850 with 2.4 GHz, equipped with either 8 or 16 GByte of
RAM and a Linux OS [Inta].

5.2.4 Comparisons
For evaluating the contributions of this work, various comparisons are made.

5.2 Preliminaries 125

Symbolic SG generation approaches
For assessing ZDDs and the activity/reward-local scheme comparisons to other symbolic SG
generation techniques will be carried out. The considered techniques range from the fully
symbolic ones over semi-symbolic monolithical up to the semi-symbolic submodel interde-
pendent techniques developed recently.

Compositional and fully symbolic approaches
The tools Prism [Pri] and Caspa [KSW04] are both based on the CUDD package, which we
also use. This is a very important aspect, since when employing the ADD implementation
of the JINC package [Oss06] instead of the implementation of the CUDD package, the SG
generation times can already be reduced clearly. Thus the run-time reduction stemming
from the implementation of the respective data type is a crucial factor, but often remains
unclear. This is why we only employed the CUDD package in the following.
Since only Prism, similar to our own implementation, individually encodes the different SVs
within the symbolic structures, the focus of the comparison was on Prism rather than Caspa.
This is justified, since symbolic reachability analysis is the dominant run-time factor and
Caspa generates flatter Mt-DD structures, increasing the effectiveness of their manipulation.
A comparison with Prism is one of the most meaningful assessments, since our implementa-
tion and Prism not only employ the CUDD package, but also the ADDs for representing the
set of reachable states and transitions as generated by Prism and our implementation are
isomorphic, as long as the model descriptions and the chosen variable orders match. In con-
trast to Prism, which orders the SVs by the sequences of their occurrence within the model
specification, where global variables come first, our implementation of the activity/reward-
local scheme allows an arbitrary ordering of the Boolean vectors encoding the SVs. This
feature will be important when investigating the influence of the orderings of SVs on the
performance of the symbolic SG techniques.

Monolithic semi-symbolic approaches
As already reported in Sec. 4.7.2 (p. 112) an implementation of a monolithic and semi-
symbolic SG generation procedure within our ZDD based framework came almost for free.
It is highly suited to demonstrate how important compositionality for a SG generation
scheme is, since under the monolithic procedure it turned out, that the peak number of
ZDD-nodes explodes and the explicit encoding of all transitions induces a non-acceptable
run-time overhead. Thus, a comparison of the activity/reward-local scheme and a monolithic
semi-symbolic approach will be presented.

Compositional, semi-symbolic and model-interdependent approaches
We compared our implementation of the activity/reward-local scheme to the MDD based ap-
proach of [DKS03], because our implementation is within Möbius and - similar to [DKS03]
- uses the Möbius high-level model specification and the standard next-state function of
Möbius for explicit exploration. For the sake of completeness we also compared our im-
plementation to the tool Smart. The release of Smart, which we obtained in May 2006,
only contains symbolic SG-generation methods which were published before 2004 (cf.
[CM99b, CM99a, CLS00, CLS01, CMS03]). A comparison to the tool Smart needs to be
considered with care: (a) Since the methods described in [Min04, CY05] are not part of
the release of Smart, which we obtained in May 2006, the comparison is restricted to those
methods, which employ user-defined partitions for generating a symbolic SG representation.
I.e. in contrast to our implementation, the methods implemented in Smart rely on a Sync
driven decomposition of the overall high-level model, so that a symbolic representation of
the high-level model’s SG can be obtained by applying a KO driven composition scheme (cf.
Sec. 2.5.3, p. 28). Therefore the presented run-time data of Smart is highly dependent on the
user-defined partitioning of the overall model, which we will demonstrate by investigating
differently partitioned Kanban models. (b) Furthermore, one needs to take into consideration

126 5 Empirical Evaluation

that there is neither a common implementation framework, nor a common data structure
between our Möbius implementation and the tool Smart, making the comparison of run-
time data for evaluating the symbolic SG generation techniques inaccurate (see discussion
concerning JINC and CUDD from above).

Comparison of solvers
The performance of the solvers for computing steady state and transient state probabilities
is one of the major issues, since in contrast to symbolic SG generation schemes, their compu-
tation may take several hours or even days. For assessing our implementation of the hybrid
ZDD based solvers we compared them to: (a) the hybrid ADD based solvers as included in
the tools Prism and Caspa, (b) the standard sparse matrix solvers of the Möbius tool, and
(c) the non-symbolic and symbolic solvers of the Smart tool. This assessment will round out
the benchmarking of the implemented symbolic framework.

5.3 Assessing the activity-local SG generation scheme

5.3.1 Comparing ADD and ZDD based SG generators
Tab. 5.2 illustrates the different run-time data as measured when generating the SG of the
different benchmark models by employing the activity-local scheme in combination with ei-
ther ZDDs or ADDs. The first column gives the model scaling parameter (N), the second
gives the total number of Boolean variables employed for encoding all SVs, each state respec-
tively (nV). Each SV was hereby encoded by a minimum number of bits, where in practice
such an allocation strategy is not feasible for ADDs, due to the lack of a priori knowledge
of the maximum value Ki taken by SV si. This means that practical figures would be even
more favorable for ZDDs, since under a brute-force strategy, where one allocates as many
ADD variables as possible, a significant increase in memory space and run-time for the ADD
based SG generator would be observable. In contrast to ADDs, pre-allocation of Boolean
variables for ZDDs is almost effortless. Skipped variables are interpreted as being 0-assigned
and thus one only allocates here a node, if the associated bit-position is really needed (cf.
Sec. 3.5.1, p. 58).

Tab. 5.2.A and B give the number of nodes required for representing (a) the set of reachable
states (encoded by ZR or AR), (b) the transition system (encoded by ZT or AT), and (c) the
peak number of nodes allocated during the process of symbolic SG construction (peak). In
our implementation, since we employed the CUDD-package, each node consumes 16 bytes of
memory, where in principle 10 Byte would suffice (2 pointers and one level index counter).
The columns tg contain the SG generation time in seconds. Furthermore we provide the
ratio of the hit rates of the op-cache (rchr), since it is also a good indicator for the efficiency
of the employed type of DD.
In Tab. 5.3 the ZDD based activity-local scheme is directly compared to the ADD based

version, by providing ratios of memory consumption concerning ZR, ZT and the peak number
of nodes (rpk), as well as by also giving the ratio of the CPU times consumed for generating
the symbolic SG representations (rtime). As illustrated by the ratios for the various case
studies, the use of ZDDs reduces memory consumption by a factor between 2 and 3. As a
a consequence of smaller DD sizes, the caching behavior of the ZDD based scheme is much
better. Thus the improvement in run-time is not really surprising.

The TQN model constitutes a very interesting case study, due to the dense enumeration
of the states. As one may recall from the previous section, we specified this model as a
SPN consisting of 3 places, where two may contain the number of tokens specified by the
scaling parameter N , and the remaining place (place 3) contains either one or zero tokens.
Consequently, for N = 2ni − 1 the model uses a very dense Boolean enumeration scheme,
where ni is the number of bits used for encoding place i ∈ {1, 2}. As we expected, and as
supported by the experimental data, in these cases the space requirement of the ADD based

5.3 Assessing the activity-local SG generation scheme 127

(A) ZDD based scheme (B) ADD based scheme
nodes nodes

N nV
ZR Zt peak

tg rchr
AR At peak

tg rchr

Kanban
4 96 116 1,902 45,056 0.17 0.38 261 4,898 124,155 0.427 0.10
5 96 163 2,751 83,250 0.39 0.38 321 6,308 208,257 0.882 0.24
6 96 215 3,704 140,709 0.84 0.38 389 7,876 327,853 1.649 0.24
7 96 273 4,758 222,282 1.66 0.37 458 9,521 488,433 2.951 0.26
8 128 341 6,020 333,193 3.26 0.38 731 14,698 920,520 7.392 0.23
9 128 416 7,414 544,593 6.76 0.38 837 17,196 1,277,106 11.442 0.25
10 128 497 8,933 660,963 9.99 0.38 952 19,877 1,719,826 16.999 0.26

FMS
5 94 391 10784 104218 0.293 0.38 799 26662 265535 0.699 0.14
6 96 559 17557 178566 0.521 0.37 1039 40274 417084 1.159 0.14
7 98 756 26567 284512 0.852 0.37 1298 56853 625228 1.769 0.17
8 118 992 38610 432276 1.409 0.39 2022 96647 1098620 3.155 0.15
9 120 1262 53740 625983 2.062 0.39 2455 129644 1538978 5.395 0.13
10 124 1566 72341 872386 3.067 0.38 2907 167798 2077362 6.942 0.16

Polling
15 120 103 862 19,257 0.059 0.31 205 2,397 41,164 0.079 0.15
20 160 136 1,252 34,961 0.137 0.32 271 3,567 75,563 0.187 0.14
25 200 171 1,557 53,384 0.260 0.32 341 4,427 113,968 0.309 0.14

TQN
63 26 19 173 22,967 0.443 0.21 8 243 38,697 0.546 0.18
64 30 16 174 21,285 0.469 0.23 17 293 47,371 0.681 0.20
127 30 22 204 59,221 2.338 0.21 9 286 115,873 2.671 0.16
128 34 18 201 53,979 2.376 0.22 19 338 140,580 3.169 0.21
255 34 25 235 235,400 12.353 0.20 10 329 374,041 13.699 0.12
256 38 20 228 264,709 12.729 0.22 21 383 454,845 15.030 0.16
511 38 28 266 857,570 61.146 0.20 11 372 1,294,609 64.346 0.138
512 42 22 255 814,303 62.907 0.21 23 428 1,584,854 73.724 0.136

FTMP
2 132 256 5,792 74,834 0.277 0.29 515 13,764 176,259 0.501 0.11
3 196 610 16,225 254,586 1.179 0.29 1213 38,898 588,917 1.874 0.13
4 262 1,044 30,892 620,091 3.268 0.30 2084 74,301 1,433,055 5.897 0.17
5 326 1,556 49,845 974,165 7.257 0.30 3096 119,859 2,824,701 11.087 0.13
6 390 2,146 73,002 2,278,421 14.082 0.30 4269 175,608 5,019,909 20.221 0.12

Courier
4 144 271 3,490 416,832 3.781 0.34 571 9,255 1,166,600 7.665 0.14
5 144 353 4,715 730,288 5.871 0.35 683 11,475 1,952,685 11.589 0.14
6 144 433 5,941 1,211,540 8.778 0.35 788 13,625 3,140,108 18.076 0.17
7 144 515 7,184 1,942,535 13.493 0.35 894 15,770 4,833,001 24.076 0.18
8 166 603 8,487 2,963,864 20.128 0.36 1196 21,019 8,463,862 40.248 0.16

Table 5.2: Run-time data of the activity-local scheme employing ADDs and ZDDs

representation of the reachable states ZR is better (see col. rZR of Tab. 5.3). If N is a power
of two, the enumeration scheme is much sparser and a different picture has to be drawn.
Concerning the symbolic representation of the SG ZT , it is interesting to note that ZDDs
are always more compact (see col. rZT of Tab. 5.3). Furthermore, the ZDD based scheme
maintains its run-time advantage in both cases, which seems to be a consequence of the fact
that for ZDDs one does not need to allocate nodes for 0-assigned bit positions within the
boolean encoded SVs. This is significant, since the TQN-model constitutes a worst case sce-
nario, since the number of transitions to be explicitly explored and encoded is extremely high
(cf. col. transe in Tab. 5.1). Therefore node allocation as executed during explicit encoding

128 5 Empirical Evaluation

N rZR rZT rpk rtg N rZR rZT rpk rtg N rZR rZT rpk rtg

Kanban TQN Courier
4 2.25 2.58 2.76 2.54 63 0.42 1.40 1.68 1.23 3 1.90 2.41 2.49 1.81
5 1.97 2.29 2.5 2.27 64 1.06 1.68 2.23 1.45 4 2,10 2.65 2.8 2.03
6 1.81 2.13 2.33 1.96 127 0.41 1.40 1.96 1.14 5 1.93 2.43 2.67 1.97
7 1.68 2.00 2.20 1.78 128 1.06 1.68 2.6 1.33 6 1.82 2.29 2.59 2.06
8 2.14 2.44 2.76 2.26 255 0.40 1.40 1.59 1.11 7 1.74 2.2 2.49 1.78
9 2.01 2.32 2.35 1.69 256 1.05 1.68 1.72 1.18 8 1.98 2.48 2.86 2.00
10 1.92 2.23 2.60 1.70 511 0.39 1.40 1.51 1.05

512 1.05 1.68 1.95 1.17
FMS
5 2.04 2.47 2.55 2.38 Polling FTMP
6 1.86 2.29 2.34 2.23 15 1.99 2.78 2.14 1.34 2 2.01 2.38 2.36 1.81
7 1.72 2.14 2.20 2.08 18 1.98 2.85 2.26 1.35 3 1.99 2.4 2.31 1.59
8 2.04 2.50 2.54 2.24 20 1.99 2.85 2.16 1.36 4 2.00 2.41 2.31 1.80
9 1.95 2.41 2.46 2.62 21 1.99 2.85 2.25 1.54 5 1.99 2.41 2.90 1.53
10 1.86 2.32 2.38 2.26 25 1.99 2.84 2.13 1.19 6 1.99 2.41 2.20 1.44

Table 5.3: Ratios for comparing ADDs and ZDDs

of the different bit-positions of the generated transition, is much more run-time significant
than in case of other models.

5.3.2 Assessment of the new symbolic reachability analysis algorithm
For most case studies, the number of explicitly explored and encoded transitions (transe)
under the activity-local scheme is very low (see Tab. 5.1). Therefore, under this scheme, sim-
ilar to the fully symbolic approaches, most of the execution time is consumed by symbolic
reachability analysis. The precise portion of time differs, of course, for different models. For
instance, for the Kanban and FTMP models one spends about 70% on symbolic reachability
analysis, whereas for the FMS and Courier models symbolic reachability analysis accounts
for 99% of the run-time. As a consequence, most of the CPU time is spent in routines for
manipulating the DD structures. Profiling reveals that a dominant fraction of the run-time,
between 35% and 68%, is spent in the CUDD-functions UniqueInter and CacheLookup,
where other functions consume less than 10%. UniqueInter delivers either an existing node
found in the “unique table”, or a newly allocated node. The CacheLookup function accesses
the “computed table” in order to fetch results from previous recursions of the pZDD ma-
nipulating algorithms. Tab. 5.4.A shows the run-time data of the standard bfs reachability
algorithm, Tab. 5.4.B, presents the run-time data of the new quasi-dfs variant and Tab. 5.4.C
gives ratios for the run-time (rt) and the peak number of nodes (rpk), where everything was
normed to the figures of the new quasi-dfs reachability analysis algorithm. For evaluating the
different reachability algorithms we measured the run-times (tg), the peak number of nodes
allocated (pk), and the number of calls to UniqueInter (c2ut) and CacheLookup (c2ct) in
millions. As one can read from Tab. 5.4 the new scheme produces fewer calls to UniqueInter
and CacheLookup, making it substantially faster. But on the other hand it consumes more
memory as indicated by rpk. In contrast, using ADDs for SG representation, the new scheme
is not only faster, but also consumes less memory. We can report this result not only for
the ADD based experiments carried out with our Möbius implementation (not shown in the
tables), but also for experiments carried out with the tool Caspa (cf. Tab. 5.5).

Tab. 5.5 shows results as obtained from employing the new quasi-dfs reachability analysis
and the standard bfs reachability analysis within the tool Caspa, which is based on ADDs.
It indicates the peak number of nodes allocated during the SG gen. procedure (peak), the
number of iterations of the outer do-until loops (iter.) (cf. Algo. 4.3.A and B, p. 90) and
the CPU time consumed by the whole process of generating an ADD based SG representa-
tion (tg). For simplifying the comparison, Tab. 5.5 also gives ratios, where everything was

5.3 Assessing the activity-local SG generation scheme 129

(A) Bfs. based RA (B) Quasi-dfs based RA Ratios
N tgen peak c2ut c2cl tgen peak c2ut c2cl rt rpk

Kanban
6 2.91 84,324 4.60 8.98 0.84 140,709 1.01 1.71 3.46 0.60
7 8.62 146,711 13.68 26.45 1.66 222,820 1.93 3.15 5.20 0.66
8 17.60 247,535 24.05 48.59 3.26 333,193 3.44 5.78 5.39 0.74
9 44.17 420,064 58.82 118.78 6.76 544,593 6.06 9.98 6.53 0.77
10 99.68 602,996 136.96 275.64 10.28 660,963 10.11 16.47 9.69 0.91

FMS
6 0.65 50,419 1.09 2.33 0.52 178,566 0.65 1.49 1.25 0.28
7 1.38 76,357 2.32 4.76 0.85 284,512 1.06 2.36 1.63 0.27
8 3.44 112,877 5.06 11.16 1.41 432,276 1.67 4.06 2.44 0.26
9 7.43 158,074 11.18 24.72 2.06 625,983 2.43 5.87 3.60 0.25
10 15.77 213,728 22.66 49.48 3.07 872,386 3.65 8.84 5.14 0.24

Polling
15 0.09 9,068 0.12 0.20 0.06 19,257 0.07 0.13 1.46 0.47
20 0.27 16,118 0.29 0.47 0.14 34,961 0.13 0.24 1.99 0.46
25 0.65 23,337 0.66 1.04 0.26 53,384 0.21 0.39 2.50 0.44

Tandem
64 0.45 10,805 0.82 0.99 0.47 21,285 0.90 1.50 0.96 0.51
128 2.31 31,141 3.57 4.15 2.38 53,979 4.29 4.11 0.97 0.58
256 12.53 161,610 17.68 20.22 12.73 264,709 17.90 19.51 0.98 0.61
512 63.35 710,688 84.21 95.51 62.91 814,303 80.66 89.04 1.01 0.87

FTMP
2 0.20 27,405 0.28 0.45 0.28 74,834 0.37 0.65 0.71 0.37
3 3.15 71,373 4.77 8.36 1.18 254,586 1.34 2.44 2.67 0.28
4 15.91 153,669 21.62 37.93 3.27 620,091 3.20 6.64 4.87 0.25
5 86.70 286,682 126.18 213.23 7.26 974,165 5.72 12.37 11.95 0.29
6 1035.49 495,192 133.02 2330.20 14.08 2,278,421 12.31 229.40 73.53 0.22

Courier
4 8.59 121,458 8.60 24.68 3.78 416,832 3.53 6.57 2.27 0.29
5 14.21 228,243 14.29 39.63 5.87 730,288 5.57 12.85 2.42 0.31
6 23.43 497,443 24.89 65.34 8.78 1,211,540 8.33 18.70 2.67 0.41
7 47.02 967,500 53.38 130.63 13.49 1,942,535 12.17 26.59 3.48 0.50
8 121.12 1,922,300 126.85 326.20 20.13 2,963,864 17.62 40.75 6.02 0.65

Table 5.4: Comparison of the two variants of symbolic reachability analysis as
implemented within the tool Möbius and by employing ZDDs

normed to the figures of the new quasi-dfs algorithm.
Even though the number of iterations of the outer do-until loop of the algorithm
(Fig. 4.3.A) is reduced by a factor of about 4 (cf. riter , Tab. 5.5) under the new scheme, the
run-times only halve, and the peak memory requirement is reduced by a factor of around 2
to 3. The moderate speed-up might be a consequence of the very compact encodings of each
state by Caspa, since it employs a dense enumeration scheme of submodel states, so that
each state requires only a few bits for binary encoding, ultimately leading to “flat” ADD-
structures. Thus, it seems that the quasi-dfs scheme becomes more advantageous concerning
run-time and space complexity, the larger the generated DDs are. This is not only supported
by the figures produced by Caspa, but also by the results obtained under the activity-local
scheme, since for larger scaled models the run-time advantages are increasing.

130 5 Empirical Evaluation

Quasi-dfs scheme Bfs. scheme Ratios
N

peak iter. tgen peak iter. tgen rpk ritr rt

Kanban
5 9,820 16 0.170 25,621 71 0.313 2.61 4.44 1.85
6 14,544 19 0.333 47,538 85 0.690 3.27 4.47 2.07
7 18,439 22 0.531 76,384 99 1.310 4.14 4.5 2.47
8 25,840 25 0.892 116,978 113 2.424 4.53 4.52 2.72
9 34,641 28 1.560 168,921 127 3.870 4.88 4.54 2.48
10 48,034 31 2.570 248,749 141 6.710 5.18 4.55 2.61

FMS
5 33,012 10 0.392 44,854 41 0.617 1.36 4.10 1.58
6 60,337 12 0.948 95,412 49 1.612 1.58 4.08 1.70
7 93,834 14 1.830 167,392 57 3.366 1.78 4.07 1.84
8 136,405 16 3.169 287,628 65 7.299 2.11 4.06 2.3
9 197,777 18 5.700 473,845 73 12.910 2.40 4.06 2.26
10 268,851 20 8.670 728,265 81 23.420 2.71 4.05 2.70

Table 5.5: Comparison of the two variants of symbolic reachability analysis
as implemented within the tool Caspa

5.3.3 Significance of variable ordering
It is known that the size of Mt-DDs depends on the orderings of the Boolean variables over
which the Mt-DD is defined. Therefore also the CPU time consumed for traversing the Mt-
DDs is sensitive to the variable ordering. Thus the variable ordering may severely effect the
time for SG generation. In order to illustrate this relation we investigated the Kanban and
FMS model, where two different variable orderings were assessed:

(1) In the first setting we employed the variable ordering as chosen by the tool Prism, which
basically means that (module)-local variables are grouped together and global variables
appear at first, in the order of their appearance within the model specification (grouped
ordering).

(2) In the second setting we employed a random variable ordering in case of the FMS model,
i.e. the sequence of SVs as produced by the Möbius modeling framework was chosen as
variable ordering (random ordering). For the Kanban model, the variable ordering was
chosen in such a way that SVs, affected by the same activities were not grouped together,
in fact it was tried to put them as far from each other as possible (un-grouped ordering).

Tab. 5.6.A shows the run-time data obtained when generating the SGs for the different or-
derings and the different models. Tab. 5.6.A records the number of nodes for symbolically
representing the set of reachable states and reachable transitions (ZR and ZT), the peak
number of nodes allocated (peak) and the CPU times consumed for generating the symbolic
structures (tg). Additionally Tab. 5.6.B gives the ratios for comparing the figures of the
different orderings to each other, where everything was normed to the figures of the grouped
ordering.
As one can deduce from the figures of Tab. 5.6, the ordering severely affects the performance
of the scheme, where the grouping strategy seems to deliver best results. Given that for the
FMS model the activity-local generation spends ≈ 99% of its CPU time on symbolic reach-
ability analysis and given that for the Kanban model this is only ≈ 75%, it is not surprising
that in case of the FMS model the impact of the variable ordering on the SG generation
time is much larger than in case of the Kanban model. –Concerning the experiments car-
ried out with Prism and Caspa, the following results can be reported: (a) By making all
SVs of a model specification global, one can also choose an arbitrary order in Prism. Not
surprisingly the ungrouped-ordering of the SVs then severely slowed down the performance
of Prism’s SG generation scheme. (b) The Caspa tool also employs a strategy, where the

5.4 Comparison of symbolic SG generation techniques 131

(A) Run-time data for comparing the different orderings

nodes tg in nodes tg in
N nV

ZR ZT peak sec ZR ZT peak sec

Kanban
5 96 163 2,751 243,030 0.49 13,560 260,430 2,038,589 14.91
6 96 215 3,704 506,457 1.09 29,036 581,820 4,888,054 30.46
7 96 273 4,758 976,806 2.18 56,224 1,160,790 10,561,445 87.96

(i) Grouped ordering (ii) Ungrouped ordering

FMS
6 96 559 17,312 195,140 0.29 5,449 153,031 1,161,149 6.23
8 118 992 37,572 436,904 0.78 13,602 469,594 3,774,975 114.70
10 124 1566 69,631 818,852 1.65 27,574 1,125,250 9,405,208 1,105.28

(i) Grouped ordering (ii) Random ordering

(B) Ratios for comparing the different orderings

Kanban FMS
N rR rT rpk rtime N rR rT rpk rtime

5 83.19 94.67 8.39 30.31 6 9.75 8.84 5.95 21.33
6 135.05 157.08 9.65 27.89 8 13.71 12.50 8.64 147.79
7 205.95 243.97 10.81 40.42 10 17.61 16.16 11.49 670.64

Table 5.6: Assessing the significance of the variable orderings

SVs of the submodels are grouped together. Thus Caspa automatically orders the SVs in a
grouped fashion, where SVs affected by the same activities appear close to each other, not
surprisingly Caspa therefore executes the symbolic SG analysis very efficiently.

In total the above discussion allows one to come to the conclusion that an ordering of SVs,
where SVs manipulated by the same activity are grouped together, is a good heuristic. This
was not only confirmed by our Möbius based experiments, but also by the experiments car-
ried out with Prism and Caspa, and as we recently noticed is also reported in [HKN+03] for
being a good strategy.

5.4 Comparison of symbolic SG generation techniques

In this section the activity-local scheme is compared to various other symbolic SG generation
techniques.

5.4.1 Comparison to fully symbolic methods
In this subsection the activity-local scheme is compared to the fully symbolic methods as
incorporated into the Prism and Caspa tool. This comparison makes sense, since both tools
are making use of the CUDD library, which we also use for our implementation of ZDDs.
But in contrast to Caspa and as one may recall from the beginning of this chapter, Prism
also encodes the different SVs of a model specification individually, thus the focus of the
comparison is on PRISM rather than CASPA.

ADD based approach of the tool Caspa
The run-time data as obtained for different benchmark models analyzed with our Möbius
implementation or with the tool Caspa are given in Tab. 5.7. The pure data is given in
subtable (A), containing the SG generation time tg, the peak number of nodes peak, the
number of nodes for representing the SG ZT and the number of boolean variables nV em-
ployed for encoding the SG of the resp. model. Tab. 5.7.B contains ratios, where the data

132 5 Empirical Evaluation

(A) Run-time data
Caspa Act.-local

N # ADD nodes: # ZDD nodes:
tg

peak ZT
nV tg

peak ZT
nV

Kanban
6 0.940 47,395 5,164 56 0.840 140,709 3,704 96
7 1.590 76,230 6,776 56 1.660 222,282 4,758 96
8 3.020 116,785 9,138 64 3.260 333,193 6,020 128
9 4.870 168,694 11,587 64 6.760 544,593 7,414 128
10 8.370 248,461 15,158 72 9.990 660,963 8,933 128

TQN
63 0.090 3,328 235 26 0.443 2,467 173 26
255 1.940 22,967 321 34 12.353 235,400 235 34
511 6.930 24,241 364 38 61.146 85,760 266 38
1023 37.560 47,909 407 42 278.365 368.768 298 42

FMS
6 1.930 95,318 19,534 50 0,521 178,566 17,557 96
7 4.020 167,265 30,670 56 0,852 284,512 26,567 98
8 7.670 289,445 46,892 62 1,409 432,276 38,610 118
9 14.810 469,258 69,006 68 2,062 625,983 53,740 120
10 30.860 735,203 96,216 72 3,067 872,386 72,341 124

Polling
15 0.050 9,844 1,942 40 0.059 19,257 862 120
20 0.170 20,252 3,345 52 0.137 34,961 1,252 160
21 0.210 23,258 3,674 54 0.156 42,150 1,314 168

(B) Ratios
N rtg rpeak rZT rnV N rtg rpeak rZT rnV

Kanban FMS
6 1.119 0.337 1.394 0.583 6 3.707 0.534 1.113 0.521
7 0.958 0.343 1.424 0.583 7 4.720 0.588 1.154 0.571
8 0.926 0.351 1.518 0.500 8 5.442 0.670 1.215 0.525
9 0.720 0.310 1.563 0.500 9 7.181 0.750 1.284 0.567
10 0.838 0.376 1.697 0.563 10 10.061 0.843 1.330 0.581

TQN Polling
63 0.203 1.349 1.358 1.000 15 0.847 0.511 2.253 0.333
255 0.157 0.098 1.366 1.000 20 1.241 0.579 2.672 0.325
511 0.113 0.283 1.368 1.000 21 1.346 0.552 2.796 0.321
1023 0.135 0.130 1.366 1.000

Table 5.7: Comparing the activity-local scheme to Caspa

of the activity-local scheme served as norm.

The run-time data and thus the comparison with Caspa, which employs a fully symbolic SG
generation scheme has to be considered with care, since:

(1) In Caspa the status of a process is recorded by a single SV (denoted as state counter),
rather than a set of SVs, yielding a much denser enumeration scheme of states (cf. nV
in Tab.5.7.A).

5.4 Comparison of symbolic SG generation techniques 133

(2) The ordering of the boolean vectors encoding the individual state counters depends on
the occurrence of the submodel description within the overall model specification, clearly
influencing the efficiency of the SG generation routines (M. Kuntz pers. com.)

(3) Caspa employs ADDs, which are known to be often more memory and run-time con-
suming than our ZDDs. It is surprising to note, that even though Caspa requires fewer
Boolean variables for encoding each state, ZDDs are still more memory efficient (cf. col.
rnV and rZT in Tab. 5.7.B).

(4) Caspa makes use of the standard bfs symbolic reachability analysis, where the activity-
local scheme employs the new quasi-dfs scheme, leading to significant run-time advan-
tages in case of the latter.

(5) Caspa’s input language is a stochastic process algebra emphasizing compositional model
descriptions. On the level of the symbolic representation, the individual SGs of the
processes are composed via synchronization. Thus the efficiency of the SG generation
scheme highly depends on the compositional character of the model description (M.
Kuntz pers. com.). In case one would for instance describe a model as a complex single
process the scheme for generating a symbolic SG representation would turn out to be
not efficient. For exemplification one may refer to the Kanban and FMS model. Since
the Kanban model possesses a nice compositional structure, its SG can be generate very
quickly. In contrast to this, the FMS model does not possess such a nice structure, thus
its SG generation consumes more CPU time.

According to the above points, it is clear that for models incorporating a compositional
structure, Caspa’s fully symbolic SG generation scheme may be more efficient than our
activity-local scheme. However, the new data type in combination with the new algorithm
for symbolic reachability analysis often compensates the disadvantages as arising from the
(sometimes extensive) explicit SG generation as executed by the activity-local scheme. For
exemplification one may refer to the ratios of the Kanban and TQN model in Tab. 5.7.B. The
activity-local scheme requires an extensive explicit exploration of activities, yielding substan-
tially larger run-times for generating a symbolic SG representation. Hereby especially those
activities play a crucial role, which are employed within Caspa for synchronization. This is
because within a monolithic model description, these synchronizing activities are modeled
as a single activity, yielding often large sets of dep. SVs and activities. As a consequence, the
obtained (complex) activity needs to be explored explicitly for all different values its depen-
dent SVs can take. Within a partitioned model, the (complex) activity is distributed among
independent submodels. The sum of the individual executions of the obtained submodel-local
activities within the submodels is then much lower than the total number of executions of
the non-decomposed activity within a monolithical model description.

For the FMS and highly scaled Polling models the situation differs. Here the model can
either not be nicely partitioned and/or activities are only connected to few SVs and all
SVs are one-bounded. Consequently the explicit exploration of activities is limited to a few
transitions and the activity-local scheme leads to much smaller SG generation times than
the purely symbolic approach of the tool Caspa (cf. col. rtg of Tab. 5.7.B).

The above discussion makes clear that a good performance of Caspa is closely related to
well-partitioned models. This is the case not only for the reason that compositionality re-
duces the number of iterations when generating the sub-model-local SG representations. It
also depends on the ordering of the SVs, where a compositional modeling formalism natu-
rally supports a grouped ordering of SVs. In case of unstructured model specification Caspa
does not perform very well and it also does not apply any heuristics for ordering the SVs
appropriately. As a matter of fact, in such settings a good performance is then only a matter
of luck or the know-how of the modeler, who orders the SVs within a model specification in
a grouped fashion.

134 5 Empirical Evaluation

ADD based approach of the tool Prism
Like Caspa, the tool Prism employs (a) an input language supporting the modular specifica-
tion of a system, (b) ADDs for the symbolic SG representation, (c) a fully symbolic method
for generating the SG of a high-level model, and (d) a standard bfs symbolic reachability
analysis for restricting the set of potential transitions to the actually reachable ones.

Tab. 5.8.A gives the basic run-time data of the Kanban, FMS and Polling model, when
analyzed with Prism. It records the number of Boolean variables employed by Prism for
encoding each state (nV), the number of nodes allocated for an ADD based representation
of (a) the set of reachable states (ZR), (b) the set of reachable transitions (ZT), and (c) the
peak number of nodes allocated during the process of SG generation (peak). Furthermore
Tab. 5.8.A gives also the number of iterations (iter) as required by the standard bfs symbolic
reachability analysis (the do-until loop of Algo. 4.3.A) and the CPU time consumed for
generating an ADD based SG representation.

For the comparison of our approach to Prism, we investigate three different settings as shown
in Tab. 5.8.B:

(1) In the first setting we combined the activity-local scheme with ADDs and standard bfs
reachability analysis. (col. 4 - 7 of Tab. 5.8.B).

(2) In the second setting the activity-local scheme was enriched with the new algorithm for
carrying out the symbolic reachability analysis in a quasi-dfs like style (col. 8 and 9 of
Tab. 5.8.B).

(3) In the third setting the standard ADD structure was replaced by the new ZDD data
structure (col. 10-14 of Tab. 5.8.B).

The ratios as obtained when norming the Prism run-time data to the figures as produced by
the different settings are shown in Tab. 5.8.B. Column one gives hereby the model scaling
parameter N , col. 2 contains the number of boolean variables for encoding each transition
when the activity-local scheme was employed. Since in case of the FMS - and Polling model
the specification differed, Tab. 5.8.B also contains the ratio of the number of boolean vari-
ables, where the number of variables as employed by Prism was divided by the number as
employed by the activity-local scheme.

As already reported, Prism, similar to our own implementation, encodes the SVs of a model
specification individually. Consequently the activity-local scheme is capable of generating
isomorphic ADDs to the ones generated by Prism, since the activity-local scheme allows
a freely chosen ordering of the Boolean vectors encoding the different SVs. I.e. employing
the grouped ordering of SVs combined with an ADD based SG representation and an ad-
equate model specification, one ends up with the very same ADDs for representing the set
of reachable states and transitions. This was truly the case for the Kanban - model. How-
ever, in case of the FMS and Polling model slightly different high-level model specifications
were employed, so that the ADD generated were not isomorphic here. In the following the
models will be discussed individually in order to pin-point strength and weakness of the
activity-local scheme if compared to Prism.

Kanban model
As already reported above, the input language of Prism supports a modular description
of a system, where the submodels are composed via activity synchronization. In order to
investigate the sensitivity of the SG generation scheme with respect to a modularity of a
model specification, we also studied a Kanban model specification consisting of a single
partition (Kanban 1-P, grouped). As one can see in Tab. 5.8.A, the re-arrangement of the
Kanban model does not affect the SG generation very much. The consistently better run-
times of the monolithic model description might be due to the circumstance that no activity
synchronization took place and no administering of different partitions had to be done. This

5.4 Comparison of symbolic SG generation techniques 135

(A) Run-time data as produced by the tool Prism

ADD nodes: ADD nodes:
N nV

ZR ZT peak
iter tg N nV

ZR ZT peak
iter tg

Kanban (4 partitions, grouped ordering) FMS
6 96 389 7,876 93,464 85 1.492 6 110 1,383 45,984 211,372 49 2.732
7 96 458 9,521 135,514 99 2.386 7 110 1,731 56,141 330,636 57 5.558
8 128 731 14,702 246,750 113 4.997 8 140 2,770 110,237 643,698 65 22.552
9 128 837 17,196 333,388 127 7.910 9 140 3,308 143,374 929,050 73 33.468
10 128 952 19,877 437,910 141 13.780 10 140 3,900 176,329 1,304,115 81 65.431

Kanban (1-P, grouped ordering) Polling
6 96 389 7,876 93,464 85 1.34 15 40 47 1,942 12,796 31 0.161
8 128 731 14,702 246,750 113 4.255 20 52 63 3,346 27,768 41 0.338
10 128 952 19,877 437,910 141 9.999

Kanban (1-P, ungrouped ordering)
6 96 389 7,876 4,785,597 85 111.14
8 128 ??? ??? ??? 113 863.13

(B) Ratios

ADDs and ADDs and ZDDs and
std. symb. reach. algo. new reach. new symb. reach. algo.

N nV rnV rZR rZT rpeak rtg rpeak rtg rZR rZT rpeak rtg

Kanban (4 partitions, grouped ordering)

6 96 1.00 1.00 1.00 0.05 0.06 0.29 0.90 1.81 2.13 0.66 1.77
7 96 1.00 1.00 1.00 0.04 0.03 0.28 0.81 1.68 2.00 0.61 1.44
8 128 1.00 1.00 1.00 0.04 0.03 0.27 0.68 2.14 2.44 0.74 1.53
9 128 1.00 1.00 1.00 0.03 0.05 0.26 0.69 2.01 2.32 0.61 1.17
10 128 1.00 1.00 1.00 0.03 0.05 0.25 0.81 1.92 2.23 0.73 1.34

FMS

6 96 1.15 1.33 1.14 0.10 0.39 0.51 2.36 2.47 2.62 1.18 5.25
7 98 1.12 1.33 0.99 0.07 0.42 0.53 3.14 2.29 2.11 1.16 6.53
8 118 1.19 1.37 1.14 0.06 0.75 0.59 7.15 2.79 2.86 1.49 16.00
9 120 1.17 1.35 1.11 0.05 0.61 0.60 6.20 2.62 2.67 1.48 16.23
10 124 1.13 1.34 1.05 0.04 0.68 0.63 9.43 2.49 2.44 1.49 21.33

Polling

15 120 0.33 0.23 0.81 0.63 2.12 0.27 1.92 0.45 2.25 0.40 3.66
20 160 0.33 0.23 0.94 0.69 2.06 0.32 1.97 0.46 2.15 0.47 4.02

Table 5.8: Comparing the activity-local scheme to Prism

speaks first of all to the advantage of the Prism tool. However, on the other hand, this
effect has also to do with the fact, that the chosen orderings of the SVs for both model
specification were identical. Since symbolic reachability seems to be the main source of CPU
time consumption for Prism, it is clear that Prism’s SG generation time is highly sensitive
to the chosen ordering of the SVs, especially in the presence of global variables. Thus it is
not very surprising that under an un-grouped ordering the non-partitioned Kanban model
(Kanban 1-P, un-grouped in Tab. 5.8.A) the run-time as well as the peak number of ADD
nodes allocated increases dramatically, making the analysis of the Kanban model for large

136 5 Empirical Evaluation

scaling parameters cumbersome or even not possible. Already for a scaling parameterN := 8,
we can report that Prism failed to count any numbers of nodes allocated, since it simply
crashed after generating a symbolic representation of the SG (cf. Kanban 1-P model in
Tab. 5.8.A). This clearly illustrates why a comparison under a fixed SV ordering is essential.
It furthermore makes clear that the good performance of Prism in case of the Kanban model
stems from the fact that the Kanban model is highly suited for compositional approaches
and that it naturally supports the grouped ordering of SVs. In case of unstructured model
specification and in the presence of global variables Prism does not apply any heuristics
for ordering the SVs. Thus in such cases a good performance when generating a symbolic
representation of a model’s SG is only a matter of luck or the know-how of the modeler,
who orders them in a grouped fashion.

FMS model
The manual elimination of immediate activities within the high-level model description
allowed us to encode each transition with a smaller number of SVs, if compared to the
model analyzed by Prism (col. rnV in Tab. 5.8.B for the FMS model). As a consequence the
obtained ADDs were already slightly smaller than the ones produced by Prism (cf. col. 4
and 5 of Tab. 5.2.B, which contain the ratios for the number of nodes of ZR and ZT). As one
can see, these differences are very small. One may conclude now that the moderately worse
performance of the activity-local scheme is due to the more compact encoding of transitions.
However, this is to be doubted, since if one takes a look at the FMS model, it appears that
the number of dep. SVs of each activity is relatively small. Thus the number of transitions
to be explored explicitly is very low as well (col. transe Tab. 5.1). As a consequence of
this, most of the CPU-time consumed by the activity-local scheme is also spent for symbolic
reachability analysis. This shift towards symbolic reachability analysis decreases the time
advantages of the fully symbolic methods, since for them symbolic reachability analysis is
also the main resource of CPU time consumption. This point of view is also supported by
the run-time data of the Polling model to be discussed next.

Polling model
In contrast to the Kanban and FMS model, the run-time data of the Polling model speaks
solely to the advantage of the activity-local scheme. This is even more remarkable, since (a)
the number of boolean variables for encoding each transition is significantly higher (col. rnV
in Tab. 5.8.B for the Polling model) and (b) the number of ADD nodes is significantly higher,
and (c) the new symbolic reachability algorithm does not improve the run-times. Thus the
better performance of the activity-local scheme might stem from the circumstance that the
Polling model consists of many activities, but each is connected to very few 1-bounded SVs.
The concurrency of the activities is therefore the main source for the SG explosion and not
a large number of tokens appearing in the various places, as in case of the Kanban model.
However, with the activity local scheme concurrency is only extracted on the level of sym-
bolic SG composition, rather than on the level of explicit exploration. As a consequence the
number of transitions to be explicitly explored is very low (transe in Tab. 5.1) so that the
overall SG generation time is highly competitive.

The above discussion allows us to draw the following conclusions: Explicit handling of transi-
tions induces a non-negligible run-time overhead for the activity-local scheme in comparison
to Prism’s fully symbolic method, which does not execute any explicit SG generation (cf.
col. 7 (rtg) of Tab. 5.8.B). However, this overhead is justified by two aspects:

(1) The activity-local approach, in contrast to Prism, is not restricted to any specific model
description method, which is of great importance for tools relying on multiple formalisms
such as Möbius.

(2) Monolithic models or models not suitable for being partitioned and composed via
activity-synchronization (such as the FTMP and the FMS model) can be analyzed very
efficiently, where submodel-oriented approaches are problematic.

5.4 Comparison of symbolic SG generation techniques 137

As shown by the last 6 columns of Tab. 5.8.B, the new scheme for reachability analysis as
well as the use of ZDDs improves the run-time significantly.

As with all symbolic representation techniques, memory space is not an issue. But never-
theless a comparison with Prism shows a significantly large peak number of nodes to the
disadvantage of the activity-local scheme (cf. col. 6 of Tab. 5.8.B). But our implementa-
tion stores redundant Mt-DDs in order to simplify and speed up the whole scheme (cf.
Tab. 5.2.A), if memory was at a premium, the redundancy could easily be eliminated with-
out a dramatic increase in run-time. The storage of the sets of activity-local state markings
which were already tested for new model behavior, is not necessary. Instead this information
could be extracted from the activity-local transition systems. The redundant testing of the
enabledness of activities would hereby induce only a small run-time overhead. But neverthe-
less, even if storing redundant structures, the use of ZDDs already improves the situation
significantly (col. 12 of Tab. 5.8.B).

5.4.2 Comparison to semi-symbolic methods
In this section the activity-local scheme, which belongs to the compositional, semi-symbolic
and sub-model-interdependent schemes, is not only compared to a semi-symbolic, mono-
lithic method, but also to other semi-symbolic, compositional methods, where the more
sophisticated ones are based on the well known saturation technique [CLS01].

Comparison to a non-compositional semi-symbolic method
With a non-compositional semi-symbolic method all transitions are generated and encoded
explicitly. Thus methods of this kind suffer from extremely long run-times and an increase
in the peak memory sizes, where the latter is even worse when ZDDs are employed. Tab. 5.9
illustrates this behavior for different models. As basic data its first seven columns show the
model scaling parameter (N), number of states (states), the number of transitions (trans),
the number of transitions as explored under the activity-local scheme (transe), the number of
boolean variables required for encoding each transition (nV), as well as the number of ZDD-
nodes allocated for representing the set of reachable states (szZR) and the set of reachable
transitions (szZT). For comparing the monolithic generation scheme with the activity-local
approach the last 4 columns of Tab. 5.9.A show the peak number of nodes and CPU times as
consumed by the different approaches during SG generation. For simplification Tab. 5.9.B
gives their ratios, where everything was normed to the data of the activity-local scheme.
The performance of the monolithic procedure is hereby so poor, that the benchmark models
could only be analyzed for very small scaling parameters.

Comparison to other compositional semi-symbolic methods
In the following sections the activity-local scheme is compared to the MDD based approach
of [DKS03], which is also implemented within Möbius. Thus our implementation and the
implementation of [DKS03] uses the same Möbius high-level model specification and the
standard next-state function of Möbius’ interface for explicit SG exploration. The activity-
local scheme will also be compared to the MDD and KO based approach of the tool Smart,
due to the numerous symbolic approaches implemented there [CM99b, CLS01, CMS03] and
due to its broad acceptance. However, one may already note that in both cases and contrary
to the activity-local approach, the effectiveness of the employed compositional semi-symbolic
SG techniques, i.e. the approaches of [DKS03] and [CM99b, CLS01, CMS03] heavily depend
on well partitioned models, where the partitioning needs to be specified by the user.

MDD based approach of [DKS03]
In order to compare the activity-local scheme to the symbolic approach of [DKS03], we an-
alyzed the Courier, Polling and FTMP model, where for both approaches the same Möbius
model specifications were used. We did not analyze the Kanban and FMS model, since in

138 5 Empirical Evaluation

(A) Model statistics and run-time data
Monolithic Act.-local

N states trans. transe nV szZR szZT peak tgen peak tgen

Kanban
3 58,400 446,400 252 64 75 1,176 6,436,298 13.493 39,516 0.036
4 454,475 3,979,850 740 96 116 1,902 71,979,062 177.467 105,621 0.112

FMS
4 35,910 237,120 180 90 252 5,968 4,097,002 8.061 64,971 0.084
5 152,712 1,111,480 94 391 10,707 20,305,487 50.475 118,914 0.160

Polling
10 15,360 89,600 40 80 69 558 1,474,140 2.600 14,479 0.012
14 344,064 2,695,170 60 112 97 802 47,310,670 156.798 32,249 0.028

Courier
1 47,232 206,112 34 71 686 2,640,451 8.913 43,177 0.112
2 434,304 434,304 59 122 126 1,404 40,525,676 147.153 141,585 0.536

FTMP
1 414 1,656 172 66 82 722 90,895 0.112 11,209 0.012
2 256,932 256,932 688 132 257 5,793 93,689,939 442.172 84,012 0.140

(B) Ratios

N rpeak rtgen N rpeak rtgen N rpeak rtgen

Kanban FMS Polling
3 162.88 374.80 4 63.06 95.96 10 101.81 216.68
4 681.48 1,584.39 5 170.76 315.45 14 1,467.04 5,599.93

Courier FTMP
1 61.15 79.57 1 8.11 9.33
2 286.23 274.52 2 1,115.20 3,158.15

Table 5.9: Comparison to a non-compositional semi-symbolic SG gen. scheme

contrast to the three afore mentioned models for these models a(n) (efficient) partitioning
under the Join-composition turned out to be cumbersome and out of scope of this work.

Tab. 5.10 presents the run-time data for the FTMP, Courier and Polling model when employ-
ing the MDD based approach of [DKS03] or the ZDD based activity local scheme. Tab. 5.10
gives the memory required for storing the set of reachable states (memZR), and the tran-
sition rate matrices (memZT) in KBytes, where the peak memory consumption (peak) is
given in MBytes. Since the latter is not reported by the software directly, we employed the
following approximation (S. Derisavi pers. com):

peak := peak num of nodes(ZR) · (memZR/num of nodes(ZR))+
peak num of nodes(ZT) · (memZT /num of nodes(ZT))

Besides the memory consumption, Tab. 5.10 gives also the number of transitions explicitly
explored transe and the overall CPU time consumed for generating a symbolic SG represen-
tation. For simplifying the comparison we also computed ratios, where everything is normed
to the figures of the activity-local scheme. Tab. 5.11 presents the ratios for the memory em-
ployed in case of the set of reachable states (rZR), the transition rate matrices (rZT), and the
peak memory consumption (rpeak). Most important Tab. 5.11 presents also the run-times of
the SG generation schemes (rtg). As an example, the last entry in the last row of Tab. 5.11
states that our activity-local approach is 590.42 times faster. The fact that the activity-local

5.4 Comparison of symbolic SG generation techniques 139

Approach of [DKS03] Act.-local scheme
N

memZR memZT peak transe tg memZR memZT peak transe tg

Courier
4 31.02 97.81 0.821 103,732 3.204 4.13 52.78 9.16 142 2.548
5 67.63 237.93 2.188 312,478 11.261 5.39 71.77 16.17 206 3.952
6 134.57 523.8 5.221 829,495 38.878 6.67 91.28 26.88 289 6.016
7 254.41 1059.39 11.537 1,983,112 123.716 8.00 111.38 43.30 394 8.985
8 452.95 1996.62 23.498 4,806,745 371.795 9.44 132.63 67.61 525 13.789

Polling
15 2.51 14.32 0.029 60 0.012 1.63 13.48 0.49 60 0.032
18 3.02 20.19 0.039 72 0.016 1.92 17.67 0.73 72 0.044
20 3.35 24.67 0.046 80 0.028 2.14 19.58 0.90 80 0.056
21 3.52 27.07 0.050 84 0.036 2.25 20.53 0.99 84 0.072
25 4.17 37.8 0.067 100 0.048 2.69 24.34 1.38 100 0.100

FTMP
2 4.54 5.08 0.109 70,512 1.100 4.02 90.52 1.28 688 0.136
3 10.3 8.12 0.383 601,936 21.505 9.55 253.53 4.65 1,548 0.572
4 17.27 11.16 0.916 2,610,256 166.278 16.33 482.70 11.43 2,752 1.560
5 25.45 14.21 1.770 8,000,496 870.878 24.33 778.84 23.24 4,300 3.276
6 34.84 17.25 3.058 19,847,072 3528.589 33.55 1,140.67 41.50 6,192 5.976

Table 5.10: Comparison to the approach of [DKS03] (run-time data)

approach is significantly faster than the MDD based approach, when analyzing the FTMP
model, shows that the partial-exploration strategy by considering model-inherent structures
only clearly pays off (cf. cols. transe of Tab. 5.10). In contrast, as already mentioned before,
the efficiency of the approach of [DKS03] depends on the compositional structure of the
high-level model specification. Consequently non-structured models or models requiring a
lot of interaction among the submodels, lead to a significant increases in run-time for gen-
erating the underlying SG. Both, the Courier and even more the FTMP model seem to be
models of such a kind, so that the method of [DKS03] requires to explore a large number
of transitions explicitly for generating a symbolic representation of their SGs. Therefore es-
pecially these models nicely illustrate the advantages of the activity-local approach, which
does not require any particular model structure and is still capable of generating their SGs
by consuming considerably less CPU time.
In case of the Polling model a different picture has to be drawn. Here the join based com-
position works very well. A closer look reveals that each component has a one-bounded
input place and output place, where the exchange of tokens only affects the neighboring
components. As a consequence, the method of [DKS03] efficiently saturates the SGs of the
submodels, and thus generates a MDD based representation of the overall SG by consuming
remarkably little CPU time. I.e., as shown by the data of Tab. 5.10, the number of transi-
tions fired is identical for the method of [DKS03] and our activity-local approach. The larger
amount of CPU time for each firing and encoding in case of the activity-local approach is
not surprising, since the dynamic sets of dependent enabled activities and the individual sets
of tested states for each activity need to be updated. In contrast, the method of [DKS03]
employs here the static sets of activities of the submodels and stores reached states in a
submodel-wise and not in an activity-wise manner. Furthermore the activity-local scheme
needs to carry out a symbolic reachability analysis, where [DKS03] generates the set of
reachable states by applying the saturation-technique, which works here very well.

As one can deduce from Tab. 5.11, the memory requirement for storing the set of reachable
states and the transition rate matrix is most of the times better when employing ZDDs.
However, in case of the peak memory requirement it turns out that the method of [DKS03]
is more efficient. But as already discussed above, memory space for the ZDD based method

140 5 Empirical Evaluation

N rZR rZT rpeak rtrans rtg

Courier
4 7.52 1.85 0.09 730.51 1.26
5 12.55 3.32 0.14 1,516.88 2.85
6 20.17 5.74 0.19 2,870.22 6.46
7 31.80 9.51 0.27 5,033.28 13.77
8 48.00 15.05 0.35 9,155.70 26.96

Polling
15 1.54 1.06 0.06 1.00 0.38
18 1.57 1.14 0.05 1.00 0.36
20 1.57 1.26 0.05 1.00 0.50
21 1.56 1.32 0.05 1.00 0.50
25 1.55 1.55 0.05 1.00 0.48

FTMP
2 1.13 0.06 0.09 102.49 8.09
3 1.08 0.03 0.08 388.85 37.59
4 1.06 0.02 0.08 948.49 106.58
5 1.05 0.02 0.08 1,860.58 265.82
6 1.04 0.02 0.07 3,205.28 590.42

Table 5.11: Comparison to the approach of [DKS03] (ratios)

is not an issue, even though our implementation stores redundant structures. If memory was
at a premium, the redundancy could easily be eliminated.

MDD based approaches of Smart
Tab. 5.12 and 5.13 show the run-time data as obtained when generating the SGs for the
Kanban, FMS and Polling model with the Smart tool as well as with the the activity-local
scheme. Since the Smart tool supports the use of various symbolic (saturation based) SG
generation techniques, experiments had to be repeated for the different methods:

(1) saturation un-bounded [CMS03],

(2) saturation based on pre-generation of the local SGs [CLS00] and

(3) pre-generative symbolic approach of [CM99b].

Tab. 5.12 shows the CPU time consumed for generating the SGs of the different models under
the different symbolic methods (tg), it also gives ratios, were the figures of the activity-local
scheme served as norm (rtg). As already pointed out in Sec. 4.7, the methods incorporated
into the Smart tool depend (at least) on a “good” partitioning of the overall model, where
the partitioning must have KO compliant structure. In case one is enabled to find such a
partitioning, the methods show very efficient behavior (cf. runtimes of the Kanban model (4
partitions) as presented in Tab. 5.12). In case one fails to give an adequate partitioning, the
performance of the methods drops dramatically. In order to study this effect in greater detail,
as we already did in case of the Prism tool, we partitioned the Kanban system additionally
into 6 partitions. In this latter case, addressed as Kanban model (6-partitions), the partitions
were chosen in such a way that the SVs connected to one of the two activities, having
more than two dependent SVS, are encapsulated in their own partition. This yields two
extra partitions, each containing one of those two activities, which are normally split when
applying a Sync driven decomposition. As a consequence the remaining four partitions now
contain only one or two local SVs, which decreases the number of partition-local transitions.
Not surprisingly, this procedure dramatically increases the run-times of the SG generation
methods as employed within the Smart tool. As a consequence the activity-local scheme
clearly performs better, where it is also independent of a user-defined partitioning. This

5.4 Comparison of symbolic SG generation techniques 141

Methods incorprated into Smart ZDD based
Saturation. Sat.-PreGen Pregeneration Act.-Local

N tg rtg tg rtg tg rtg tg

Kanban (4 partitions)
6 0.02 0.04 0.02 0.04 0.25 0.45 0.564
7 0.04 0.03 0.04 0.03 0.31 0.27 1.160
8 0.06 0.02 0.05 0.02 0.39 0.14 2.712
9 0.09 0.02 0.07 0.01 0.49 0.09 5.316
10 0.14 0.02 0.1 0.01 0.64 0.07 8.921

Kanban (6 partitions)
6 4.25 7.54 2.17 3.85 161.9 287.04 0.564
7 7.45 6.42 4.84 4.17 334.14 288.04 1.160
8 14.54 5.36 9.89 3.65 675.28 248.98 2.712
9 30.06 5.65 19.72 3.71 1367.37 257.20 5.316
10 54.36 6.09 37.05 4.15 2655.19 297.65 8.921

FMS
6 2.74 9.40 13.99 48.04 6.21 21.32 0.291
8 24.81 31.54 23.58 29.99 42.14 53.58 0.786
10 221.09 133.83 53.96 32.66 xxx xxx 1.652
12 1884.85 561.60 117 34.86 xxx xxx 3.356

Polling
10 0.04 1.52 0.33 11.34 15.86 548.44 0.029
15 0.07 1.79 0.49 12.87 54.24 1430.47 0.038
20 0.09 1.05 0.65 7.77 129.58 1552.79 0.083
25 0.11 0.81 0.81 5.86 249.12 1805.64 0.138

Table 5.12: Comparing activity-local scheme and Smart (run-times)

advantage for the activity-local scheme is even more clear in cases, where the finding of
a KO compliant partitioning is not trivial. In case of the FMS model, we were not able
to find an adequate KO compliant partitioning, yielding better run-time results than the
non-partitioned model, –we did not consider a changing of the high-level model’s structure.
As a consequence the activity-local approach even more clearly outperforms Smart and its
symbolic techniques. In case of the Polling model and the saturation unbounded method,
the situation is once again balanced. For similar reasons as discussed in Sec. 5.4.1, the
activity-local approach can compete even with well-partitioned model descriptions. The bad
performance of the symbolic methods depending on pre-generation of the SGs stems from
the fact that the bounds of the SVs must be modeled by either disconnecting places and
activities if there are enough tokens in the post set or by making use of inhibitor arcs. If
this is not done carefully, the pre-generation techniques will generate local SGs which are
significantly larger than the actually reachable ones, inducing a significant overhead on the
SG generation time. Tab. 5.13 shows the memory consumption when the different symbolic
techniques are employed.3 I.e. it records the peak memory consumption (peak) in MByte,
as well as the number of KBytes required for storing the set of reachable states and the set
of reachable transitions (memZR and memZT). It appears that in case of well partitioned
models, e.g. Kanban and Polling, the symbolic SG generation methods incorporated into
Smart have lower peak memory sizes and require less memory for representing the set of
reachable transitions. This might be due to the compactness of a KO based representation
of the transition rate matrix. In case of the memory required for representing the set of
reachable states MDDs and ZDDs deliver similar results. This good behavior of the KO
based methods of the Smart tool can not be employed for models, where a partitioning is
not feasible. It is therefore not surprising that in case of the FMS model the ZDD based
activity-local scheme delivers much better results.

3 In case of positions filled with question marks, Smart simply did not report the required figure.

142 5 Empirical Evaluation

peak memZR memZT peak memZR memZTN
(MByte) (KByte) (KByte) (MByte) (KByte) (KByte)

Kanban Smart: MDD Sat. (unbounded) Smart: MDD Sat. (PreGen)
7 0.0219 3.19 26.56 0.0429 5.37 25.21
8 0.0345 4.50 37.46 0.0713 7.97 35.41
9 0.0523 6.16 51.02 0.1133 11.43 48.10
10 0.0768 8.25 67.52 0.1732 15.91 63.57

ZDD based act.-local scheme Smart: PreGen of Local SGs
7 14.9049 4.27 74.34 0.0042 0.48 24.47
8 28.5925 5.33 94.06 0.0060 0.62 34.66
9 50.9460 6.5 115.84 0.0084 0.79 47.36
10 85.4268 7.77 139.58 0.0115 0.99 62.83

FMS Smart: MDD Sat. (unbounded) Smart: MDD Sat. (PreGen)
6 0.0742 75.19 1670.69 0.0742 75.19 1670.69
8 0.3796 387.34 9415.43 0.3796 387.34 9415.43
10 1.4705 1503.49 38847.44 1.4705 1503.49 38847.44
12 4.6744 4782.99 129197.53 4.6744 4782.99 129197.53

ZDD based act.-local scheme PreGen of Local SGs
6 2.9776 8.73 270.5 0.0368 ? 1596.09
8 6.6666 15.5 587.06 0.1892 ? 9028.67
10 12.4947 24.47 1087.98 xxx xxx xxx
12 20.9370 35.52 1808.94 xxx xxx xxx

Polling Smart: MDD Sat. (unbounded) Smart: MDD Sat. (PreGen)
10 0.0015 0.83 3.79 0.1091 57.37 482.81
15 0.0023 1.26 5.68 0.1681 87.57 725.39
20 0.0031 1.69 7.58 0.2271 117.76 968.75
25 0.0039 2.12 9.47 0.2860 147.96 1212.89

ZDD based act.-local scheme Smart: PreGen of Local SGs
10 0.2209 1.08 8.72 0.0139 13.46 482.81
15 0.4921 1.63 13.48 0.0422 21.23 725.39
20 0.8974 2.14 19.58 0.0574 29.00 968.75
25 1.3806 2.69 24.34 0.0032 1.62 1198.54

Table 5.13: Comparing activity-local scheme and Smart (memory consumption)

5.5 Assessing the ZDD based solvers

Tab. 5.1 gives the sizes of the CTMCs of the benchmark models. The experiments of
Tab. 5.14.A were carried out on a Pentium IV with 3 GHz, 1 GByte of RAM and a Linux OS.
All other results presented in this section were collected on a Pentium IV 2.88 GHz, equipped
with up to 4 GByte of RAM and a Linux OS, where at most 3 GByte can be assigned to a
single process [Intb]. For this reason current Linux kernels on 32-bit architectures are limited
to solve CTMCs consisting of ≈ 1.2 · 108 states. In such a setting the vector holding the
elements of the matrix diagonal, and the probability vector already consume ≈ 1.84 GByte
of RAM, where at most another ≈ 0.92 GByte must be spent for the iteration vector, de-
pending on the numerical method to be used for computing state probabilities. Consequently
the exact number of states of course depends of the size of the symbolic representation of
the transition rate matrix.

5.5.1 Comparing ADD and ZDD based numerical solvers
In the above section we already reported that the use of ZDDs may reduce space and time
for generating activity-labeled CTMCs for different high-level models by a factor of 2-3, if
compared to ADDs. A similar picture can be drawn when it comes to the computation of
steady state and transient state probabilities.

5.5 Assessing the ZDD based solvers 143

(A) Steady state analysis, b := 0.35 and s := 0.35

FMS
JAC with HO Mt-DDs PGS with BHO Mt-DDs

N titer in sec. titer in sec.
iter

ADD ZDD
riter # iter

ADD ZDD
riter

6 845 0.1878 0.0945 1.99 569 0.2083 0.0753 2.77
8 1,127 1.5520 0.6445 2.41 737 1.6935 0.5439 3.11
10 1,415 8.7106 4.3969 1.98 892 9.6432 3.8183 2.53

Kanban
JOR with HO Mt-DDs PGS with BHO Mt-DDs

N titer in sec. titer in sec.
iter

ADD ZDD
riter # iter

ADD ZDD
riter

5 1,977 0.6849 0.3233 2.12 1,542 0.8345 0.2878 2.90
6 2,785 3.2299 1.4929 2.16 2,176 3.8845 1.3681 2.84
7 3,724 10.9477 5.0642 2.16 2,913 15.0764 5.1502 2.93

(B) Transient analysis, s := 0.7

FMS Kanban
Uniform. with HO Mt-DDs Uniform. with HO Mt-DDs

N tstep in sec. N tstep in sec.
step

ADD ZDD
rstep # step

ADD ZDD
rstep

6 1,508 0.09695 0.0557 1.7406 5 1,157 0.52530 0.3060 1.7167
8 1,864 1.55200 0.8768 1.7701 6 1,157 2.48796 1.4700 1.6925

10 2,217 8.71055 5.3400 1.6312 7 1,157 9.47386 5.5929 1.6939

Table 5.14: ADD and ZDD based solution of CTMCs

Tab. 5.14.A shows the run-time data when computing steady state probabilities for the
FMS and Kanban model with a differing scaling parameter N . Here we restrict ourselves to
the JAC and backward PGS methods, as well as their over-relaxed versions (cf. Sec. 2.2.2,
p. 13ff). Both, the sparse as well as the block level were computed by setting scaling factor
s and b to 0.35, which is the heuristic reported in [Par02]. From Tab. 5.14.A one may
conclude that the employment of ZDDs yields clear runtime advantages, This advantage
stems from the maintenance of their compactness under the offset-labeling scheme. As one
may recall from Sec. 3.5.3 (p. 66), larger choices of s and b reduce the CPU time consumed
per iteration, as well as the number of iterations before reaching steady state. Given now
that the linked list for administering the block-entries of the transition matrix, as well as
the higher sparseness of ZDDs, allows one in principle to choose larger values for s and b
than under the BHO ADD based layout, it is evident that the figures of Tab. 5.14.A are
pessimistic concerning the run-time benefits of ZDDs. I.e. if block and sparse level are chosen
in such a way that ZDD and ADD based BHO Mt-DDs consume almost the same size of
memory, the performance of the ZDD based solver can be increased further, so that the
differences in time becomes even larger. This issue will be discussed in detail in the next
subsection.

Tab. 5.14.B shows the run-time data when computing transient state probabilities, where we
employed the uniformization method and the Fox-Glynn method [FG88] for computing the
values of the Poisson distribution (cf. Sec. 2.2.2, p. 13). Here also an improvement in CPU
time consumption can be observed. However, here ZDDs realize only a speed-up between
1.6 and 1.8. This has to do with the fact that under this setting we decided to set s to 0.7,
since memory space was available and doing so speeds up the numerical computation of the
solution. As a consequence of this, the sparseness of HO ZDDs is less significant over their
ADD based counterparts. Given also the fact that the actual amount of CPU time spent
for computing new vector entries (not traversing the Mt-DD-structures but computing the

144 5 Empirical Evaluation

(A) JAC based solvers

s := 0.35 s := 0.7
MByte for MByte for

Ratios

N niter
titer tg

HO ZDD
titer tg

HO ZDD riter rmem

FMS, JAC with HO ZDDs
6 845 0.13 1.85 0.70 0.05 0.75 4.00 2.45 0.18
8 1,127 0.80 15.04 1.62 0.51 9.50 35.39 1.58 0.05
10 1,415 4.70 110.75 3.33 3.13 73.78 142.15 1.50 0.02

Kanban, JOR with HO ZDDs
5 1,977 0.35 11.56 0.19 0.32 10.46 7.06 1.11 0.03
6 2,785 1.62 75.28 0.31 1.47 68.08 21.50 1.11 0.01
7 3,724 6.20 384.87 0.48 5.66 351.42 57.18 1.10 0.01

(B) pGS based solvers

FMS, PGS with BHO ZDDs
b := 0.3, s := 0.35 b := 0.5, s := 0.2

N niter titer tsol mem. |blk| #blk niter titer tsol mem |blk| #blk
6 575 0.14 1.33 0.72 3,136 1,092 472 0.3 2.39 1.56 336 53,101
8 737 0.87 10.63 1.68 11,340 2,937 598 0.93 9.31 5.23 1080 179,834
10 893 5.03 74.85 3.47 32,670 6,578 714 14.96 178.04 14.67 2112 638,267

b := 0.5, s := 0.4 Ratios
N niter titer tsol mem |blk| #blk rtsol rmem rtsol rmem

6 472 0.08 0.60 1.73 336 53,101 2.21 0.42 3.99 0.9
8 598 0.65 6.48 5.19 1,080 179,834 1.64 0.32 1.44 1.01
10 714 3.77 44.86 15.97 2,112 638,267 1.67 0.22 3.97 0.92

Kanban, BPGS with BHO ZDDs
b := 0.3, s := 0.35 b := 0.5, s := 0.35

N niter titer tsol mem. |blk| #blk niter titer tsol mem |blk| #blk
5 1,542 0.37 9.40 0.24 21,168 2,408 1,346 0.37 8.36 0.6 1,176 20,041
6 2,176 1.73 62.57 0.41 51,744 4,872 1,900 1.72 54.39 1.28 2,352 47,824
7 2,913 6.62 321.45 0.66 112,320 8,808 2,545 6.67 283.13 2.54 4,320 102,096

b := 0.5, s := 0.4 Ratios
N niter titer tsol mem |blk| #blk rtsol rmem rtsol rmem

5 1,346 0.36 7.99 0.84 1,176 20,041 1.18 0.48 1.05 0.72
6 1,900 1.64 52.02 1.81 2,352 47,824 1.20 0.44 1.05 0.71
7 2,545 6.38 270.70 3.6 4,320 102,096 1.19 0.42 1.05 0.71

Table 5.15: HO ZDD based solution for different sparse and block levels

Poisson probabilities) is also higher than in case of the iterative methods for computing
steady state probabilities, it is not surprising that ZDDs realize here smaller speed-ups.

5.5.2 Choice of block and sparse level
As already discussed above, the choice of an adequate sparse-level (lsparse := (1 − s) · 2nV)
severely influences the CPU time consumed per iteration of the numerical method applied
for computing state probabilities. In contrast the choice of an adequate block level (lblck :=
b·2nV) not only interferes with the iteration time, but also influences the number of iterations
in case of computing steady state probabilities by the means of the forward or backward
PGS method. In order to investigate the impact of the size of s and b on the CPU time and
memory consumptions, we analyzed the Kanban - and FMS model in the following settings:

(1) JAC based solvers with two different choices for s:

5.5 Assessing the ZDD based solvers 145

(1.a) scaling factor s = 0.35,
(1.b) scaling factor s = 0.7

(2) pGS based solvers in three different settings:
(2.a) we maintained the sparse level and introduced a block-structure at the top, i.e.

s = 0.35 and b = 0.3.
(2.b) we decreased or maintained the value of the sparse level and increased the block

level. I.e. parameter s was set to 0.2 for the FMS model and to 0.35 for the Kanban
model, where b was set in both cases to a fixed value of 0.5,

(2.c) we maintained the block level and increased the sparse level, i.e. s = 0.4 and b = 0.5.

The above settings allowed us to investigate the following effects: (a) the effect of increasing
and decreasing the sparse level on the time per iteration and (b) the effect of the number of
removed block levels: (i) on the number of iterations and (ii) on the time per iteration.

Tab. 5.15 shows the run-time data when computing steady state probabilities for the FMS
and Kanban model in the above settings and different model scaling parameters (N).

Tab. 5.15.A shows the settings investigated for the JAC and JOR method. It indicates
the number of iterations (niter), the time per iteration titer , the total time for obtaining a
numerical solution (tsol), and the memory required for storing the HO ZDD in MByte (col.
MByte for HO ZDD). Furthermore it also gives ratios for the iteration times (riter) and
ratios for the memory consumption concerning the HO ZDD (rmem), where everything was
normed to the figures obtained for s := 0.7.
Tab. 5.15.B shows the settings investigated for the backward pGS method. For comparison,
the subtable for the different settings also gives the number of iterations (niter), the time per
iteration titer , the total time for obtaining a numerical solution (tsol), the memory required
for storing the BHO ZDD and the iteration vector in MByte (mem), the max. number of
elements of the blocks (|blk|) and the number of blocks (#blk). Furthermore it also give
ratios for the iteration times (riter) and ratios for the memory consumption concerning the
BHO ZDD and iteration vectors (rmem), where the first two settings were normed to the
figures obtained for b := 0.5 and s := 0.4.

Effects on the time per iteration
As one may conclude from Tab. 5.15.A, larger sub-matrices stored in sparse matrix format
may decreases the time per iteration. The decrease in run-time obviously depends on the
structure of the HO ZDD, since in case of the Kanban model the improvement is only around
factor 1

1.11 , whereas in case of the FMS model it varies between 1
2.45 and 1

1.50 . This effect
can be explained as follows: A closer look reveals, that the ZDDs representing the SGs of the
different models vary in the number of nodes consumed, where the FMS model requires a
larger ZDD (cf. Tab. 5.2, p. 127). Given that the recursive traversal, employed for executing
a numerical iteration, stops at each node, it is clear, why the FMS model benefits much
more from increasing the number of sparse levels than the Kanban model does.
Tab. 5.15.B shows the settings investigated for the pGS based method. If one compares now
titer of Tab. 5.15.A and B, it turns out that the introduction of a block-structuring induces
some computational overhead on the time per iteration. However, this effect is only very
small and for larger choices of b even becomes smaller (titer of Kanban model in Tab. 5.15.B
as obtained for s = 0.35 and b = 0.3 or b = 0.5). The results of Tab. 5.15.B furthermore
indicate that larger sizes of s also clearly reduce the CPU time consumed for each iteration
(titer of the FMS model in Tab. 5.15.B as obtained for b = 0.5 and s = 0.2 or s = 0.4).

Effects on the number of iterations
As one can clearly derive from the data of Tab. 5.15.B a larger choice of b significantly
decreases the number of iterations in case of the pGS based methods and thus may severely
influence the total CPU time consumed for computing steady state probabilities.

146 5 Empirical Evaluation

grouped variables random order Ratios
N niter titer tMGen t szM titer tMGen t szM riter rMGen rt rsz

FMS, with s := 0.35
6 845 0.13 0.92 0.03 0.70 0.19 44.44 0.06 5.76 1.41 48.30 1.80 8.23
8 1,127 0.80 2.66 0.25 1.62 2.93 557.89 1.07 21.32 3.66 209.72 4.26 13.16
10 1,415 4.70 7.43 1.85 3.33 16.82 4,011.27 7.72 56.20 3.58 539.70 4.18 16.86

FMS, with s := 0.7
6 845 0.05 0.85 0.01 4.00 0.05 45.19 0.03 41.59 1.00 53.04 1.96 10.40
8 1,127 0.51 2.92 0.16 35.39 0.46 546.70 0.30 304.69 0.91 186.96 1.86 8.61
10 1,415 3.13 8.74 1.23 142.15 2.86 3,773.43 2.17 1580.18 0.92 431.72 1.76 11.12

Kanban, with s := 0.35 ungrouped order
5 1,977 0.35 0.38 0.19 0.19 0.55 147.33 0.34 7.78 1.57 383.66 1.78 40.89
6 2,785 1.62 1.02 1.25 0.31 2.32 0.87 1.79 17.33 1.43 0.85 1.43 56.01
7 3,724 6.20 2.48 6.42 0.48 8.32 3,383.94 9.54 34.50 1.34 1364.41 1.49 72.07

Kanban, with s := 0.7
5 1,977 0.32 0.49 0.17 7.06 0.36 151.59 0.24 145.26 1.12 308.10 1.36 20.56
6 2,785 1.47 1.30 1.14 21.50 1.61 810.17 1.47 590.51 1.10 621.25 1.30 27.47
7 3,724 5.66 3.34 5.86 57.18 xxx xxx xxx xxx xxx xxx xxx xxx

Table 5.16: HO ZDD based solution for different variable orderings

Effects on the consumed memory sizes
Tab. 5.15.A clearly indicates that for larger values of s one has to consider an increase in
the size of memory required for storing the transition rate matrix. This is also supported by
the FMS model as investigated in the settings of Tab. 5.15.B (cf. mem of the FMS model
as obtained for b = 0.5 and s = 0.2 or s = 0.4 and of the Kanban model for b = 0.5 and
s = 0.35 or s = 0.4).
By comparing the memory sizes for s = 0.35 in the settings of Tab. 5.15.A and B, one may
conclude that the replacements of upper levels by a block-administering structure minorily
increases the memory sizes. However, this effect mainly stems from the circumstance that
an increase in b clearly decreases the size of the iteration vector, e.g. for Kanban model
(N = 7, b = 0.5) the iteration vector requires only 4, 320 entries rather than the full state
vector with 4.1645E7 entries. This is also supported by the data of the FMS model presented
in Tab. 5.15.B. For s = 0.35 and an increase of b from 0.3 to 0.5, the number of blocks
decreases by over an order, whereas the overall memory size is only increased by factor
2 − 4.

Thus one may conclude that for large models and adequate choices of s and b, the pGS based
methods are the methods of choice. The choice of s is hereby crucial, since as the data of
the Kanban model indicates minor changes can significantly increases the memory required,
but may have only ancillary effect on the time per iteration (cf. last two col. of the ratios in
Tab. 5.15.B).

5.5.3 Significance of variable orderings
As already pin-pointed in the previous section, the variable ordering is crucial for the per-
formance of the algorithms operating on Mt-DDs. Thus a reordering of the variables not
only affects the performance of the activity-local scheme, but also the computation of state
probabilities. In order to study this circumstance in greater detail, the Kanban and FMS
models were once again analyzed. For computing steady state probabilities for the Kanban
model the JOR method was employed, where in case of the FMS model the standard JAC
method was used. The experiments were carried out in the following settings:

(1) In the first setting the ordering strategy followed the grouping of variables as usual,
where the computation of probabilities was done for different sparse levels (s = 0.35 and
s = 0.7).

(2) In the second setting the random variable ordering for the FMS model was employed once
again. In contrast, the variables of the Kanban model were once again ordered by not

5.6 Comparison with other solvers 147

grouping SVs affected by the same activities together. The computation of probabilities
was here also executed for different sparse levels (s = 0.35 and s = 0.7).

The obtained run-time data is presented in Tab. 5.16. For the evaluation we measured
the number of iterations (niter), the time per iteration (titer), the time required to gener-
ate the required ZDDs and to obtain the HO-ZDD representing the transition rate matrix
(tMGen), the total CPU time in hours required for computing steady state probabilities
(t := 3600−1(niter · titer + tMGen)), and the size of the HO-ZDD representing the transition
rate matrix of the CTMC (szM). Besides the measured data, Tab. 5.16 also gives ratios,
were everything was normed to the run-time data as taken from the experiments with the
grouped SVs. As expected, the grouping strategy turns out to deliver much better run-times
and lower memory consumptions. For the non-grouping ordering scheme as applied in case
of the Kanban model the memory consumption for scaling parameter N = 7 and s = 0.7
was so large, that the computation of steady state probabilities was not possible.4 Therefore
the comparisons to follow, will make use of the grouping strategy for the vectors of boolean
variables encoding the SVs, due to its good results.

5.6 Comparison with other solvers

In this section the ZDD based solvers will be compared to standard sparse matrix technology
as well as to the symbolic solvers as implemented within the tool Smart. Since Caspa and
Prism employ ADDs for carrying out numerical computations, a comparison to their solvers
is not necessary, since the superiority of the ZDD based solvers over their ADD based
counterparts was already pointed out in Sec. 5.5.1 (p. 142).

5.6.1 Comparison to the sparse matrix solvers of Möbius
Tab. 5.17 gives the run-time data as obtained during performance analysis of some of the
benchmark models. Solving the specified high-level MRMs includes CTMC construction,
computation of state probabilities and computation of performance variables. This yields
typical measures such as the mean value of a set of SVs or the mean time of the model
being in a specific state. For solving high-level MRMs the Möbius tool employs its state-
level abstract functional interface (AFI), which makes solver and matrix representation
independent of each other [DCKS02]. However, Möbius’ sparse matrix solvers considered in
this section do not employ this interface, since it induces an additional run-time and memory
overhead.

For obtaining steady state solutions the Gauss-Seidel method for the sparse matrix layouts
and the pGS method for the ZDD based matrix layout were applied. As a consequence, the
ZDD based solver had to execute sometimes a clearly increased number of iterations (factor
1.77 up to 6.23). However, as illustrated by Tab. 5.17, this is justified, since the employment
of a ZDD based engine within the Möbius modeling environment allows the analysis of
models, which were not analyzable under Möbius’ conventional schemes for constructing and
solving MRM. This shortcoming has to do with the fact that Möbius stores the generated
CTMC and its reward information in a non-compact ASCII format on hard disk drive
limiting the size of MRMs to be handled (∼ 5 ∗ 106 states). Not enough, this uncompressed
information must be reloaded into RAM and converted into sparse matrix format before
the solution process can be initiated (cf. col. “file reading” in Tab. 5.17.A, which we did
not include in the CPU time consumed for each iteration as given in col. “each iter.”). In
addition to these tool-specific disadvantages, conventional schemes also have the following
problems:

(1) the sparse matrix format is hampered by its memory requirements as illustrated in col.
“matrix” of Tab. 5.17.B.

4 The vectors for holding the matrix diagonal elements, new state probabilities and the previous
ones consume ≈ 976 MByte.

148 5 Empirical Evaluation

(A) Time consumption of solvers for computing performability measures
Symbolic solver: CPU time Sparse solver: CPU time

N in sec. consumed for in sec. consumed for
ratios for

tMGen each iter. PV calc. file reading each iter. PV calc. iter. time PV time

6 0.29 0.073728 0.11 15.02 0.0562 6.47 1.14 0.76 69.17
8 0.79 0.61602 0.71 137.58 0.509 56.05 15.57 0.83 100.88
10 1.64 3.595877 4.15 xxx xxx xxx xxx xxx xxxF

M
S

12 3.92 16.8645 17.71 xxx xxx xxx xxx xxx xxx

5 0.51 0.347 0.26 102.86 0.249 30.36 5.6 0.718 138.32
6 0.58 1.578 1.22 xxx xxx xxx xxx xxx xxx

K
a
n
b
a
n

7 1.17 6.170 4.27 xxx xxx xxx xxx xxx xxx

3 1.78 0.241 0.18 53.36 0.178 29.33 7.16 0.737 202.70
4 2.92 1.003 0.76 316.53 0.751 118.72 35.11 0.749 202.41
5 4.54 3.415 2.62 xxx xxx xxx xxx xxx xxx

C
o
u
ri

e
r

6 6.61 9.948 7.25 xxx xxx xxx xxx xxx xxx

15 0.03 0.085 0.03 27.21 0.065 8.76 1.5 0.772 341.89
18 0.06 0.937 0.31 xxx xxx xxx xxx xxx xxx
20 0.08 4.445 1.39 xxx xxx xxx xxx xxx xxx

P
o
ll
in

g

21 0.09 9.603 2.91 xxx xxx xxx xxx xxx xxx

(B) Memory consumption of solvers for computing performability measures

Symbolic solver: MByte of Sparse solver: MByte of
N memory consumed for memory consumed for

ratios for

overall exec. matrix rep. overall exec. matrix overall mem. matrices

6 21 1.743 80 56.336 3.810 32.332
8 96 5.248 688 509.032 7.167 96.992
10 458 16.146 xxx xxx xxx xxxF

M
S

12 1876 43.485 xxx xxx xxx xxx

5 49 0.835 451 318.778 9.204 381.657
6 191 1.809 xxx xxx xxx xxx

K
a
n
b
a
n

7 670 3.600 xxx xxx xxx xxx

3 60 1.805 323 186.294 5.383 103.210
4 195 6.581 1190 800.535 6.103 121.640
5 571 13.449 xxx xxx xxx xxx

C
o
u
ri

e
r

6 1551 24.756 xxx xxx xxx xxx

15 16 0.501 121 81.562 7.563 162.640
18 117 1.345 xxx xxx xxx xxx
20 495 3.129 xxx xxx xxx xxx

P
o
ll
in

g

21 1052 3.220 xxx xxx xxx xxx

Table 5.17: Comparison with Möbius’ sparse-matrix based solvers

(2) computation of PVs for each state during SG exploration (cf. left figure of col. “PV calc.”
of Tab. 5.17.A), as well as reading the PVs from an ASCII-file or at least allocating a
respective PV vector of appropriate size and finally computing the moments and variance
of the PV (right figure col. “PV calc.” of Tab. 5.17.A), induces a significant run-time
overhead.

In contrast, the proposed ZDD based scheme generates a symbolic representation of the
MRM each time the solver is started (SG generation + conversion of the ZDD representing
the transition rate matrix into a BHO ZDD). Hereby the times for generating a ZDD based
representation of the CTMC as well as generating ZDD based representations of the reward
functions and computing mean and variance of the user-defined PVs, once steady state or
transient state probabilities have been computed, is obviously negligible (cf. cols. tMGen

and “PV calc.” of Tab. 5.17.A). Furthermore, the compactness of the (B)HO ZDD based
representation speaks to the advantage of our symbolic approach, since it is still superior even
though we employed a setting which improves the CPU time consumption per iteration at
the disadvantage of space complexity, b := 0.5 and s := 0.4. This might explain why the ZDD
based solvers are not significantly slower than the standard sparse matrix ones. Since the
matrix representation under such a choice is still very compact, it is clear that the memory

5.6 Comparison with other solvers 149

Ratios
Runtime data ZDD, s := 0.35 ZDD, s := 0.7

N niter titer tMGen ttotal (h) mem rttotal rmem rttotal rmem

Sparse matrix, plain
5 1,977 0.38 201.85 0.26 196.33 1.34 1031.54 1.48 27.79
6 2,786 1.75 1046.81 1.62 1367.14 1.29 4419.09 1.43 63.59
7 xxx xxx xxx xxx xxx xxx xxx xxx xxx

Sparse matrix, Kronecker
5 1,978 2.02 0.004 1.09 0.01 5.65 0.04 6.25 0.001
6 2,786 9.46 0.004 7.2 0.01 5.74 0.04 6.35 0.001
7 3,726 36.20 0.004 36.84 0.02 5.74 0.04 6.29 0.0003

MxD, Kronecker
5 1978 4.02 13.65 2.18 9.73 11.28 51.13 12.48 1.38
6 2,786 19.90 64.26 15.16 42.98 12.08 138.94 13.36 2.00
7 3,726 85.43 253.78 87.04 158.90 13.57 331.94 14.86 2.78

MTMDD, plain
5 1,977 1.46 135.58 0.82 9.71 4.26 51.04 4.72 1.38
6 2,785 7.33 940.31 5.84 42.96 4.65 138.86 5.14 2.00
7 3,724 30.90 5,154.69 32.84 158.86 5.12 331.87 5.61 2.78

ZDD, s := 0.35 ZDD, s := 0.7
N niter titer tMGen

5 ttotal (h) mem titer tMGen
4 ttotal (h) mem

5 1,977 0.35 0.38 0.19 0.19 0.32 0.49 0.17 7.06
6 2,785 1.62 1.02 1.25 0.31 1.47 1.30 1.14 21.50
7 3,724 6.20 2.48 6.42 0.48 5.66 3.34 5.86 57.18

Table 5.18: Comparison with Smart’s solvers: Run-time data for the Kanban model

space for storing the probability vectors is the limiting factor as the low-level MRMs become
larger. This also exhibits another advantage of the ZDD based scheme. The proposed scheme
for generating and computing PVs (cf. Sec. 4.5), allows not only the efficient construction of
a ZDD based representation and a ZDD based computation of reward functions (col. “PV
calc.” and col. “PV time.” of Tab. 5.17.A), it also avoids to employ additional vectors for
storing the individual reward values of each state as realized by the standard Möbius solver
module. This also explains why Möbius’ sparse matrix solver modules require significantly
more memory for the overall process (cf. columns “overall exec.” of Tab. 5.17.B).

5.6.2 Comparison with the solvers of Smart
As for the SG generation, the tool Smart also offers a wide range of solvers for computing
state probabilities. These solvers are based on standard numerical methods and on different
storage techniques for the transition rate matrix. For comparing our ZDD based solvers to
the Smart tool we employed the following layouts:

(1) a standard sparse matrix format

(2) KO based representation, where the individual sub-matrices are stored in standard sparse
matrix format

(3) KO based representation stored as matrix diagram (MxD),

(4) a Multi-terminal Multi-valued Decision Diagram (MTMDD).

Tab. 5.18 gives the run-time data as collected when computing steady state probabilities for
the Kanban model with different scaling parameters, where as solution method JOR with a

150 5 Empirical Evaluation

Ratios
Runtime data ZDD, s := 0.35 ZDD, s := 0.7

N niter titer tMGen ttotal (h) mem rttotal rmem rttotal rmem

Sparse matrix, plain
6 845 0.07 92.02 0.04 34.14 1.35 48.77 3.28 8.54
8 1,127 0.61 1073.82 0.49 311.00 1.95 191.91 3.08 8.79

Sparse matrix, Kronecker
6 845 0.24 2.93 0.06 1.09 1.77 1.55 4.30 0.27

MxD, Kronecker
6 xxx xxx xxx xxx xxx xxx xxx xxx xxx

MTMDD, plain
6 845 0.26 610.00 0.23 2.05 7.29 2.93 17.69 0.51

ZDD, h := 0.35 ZDD, h := 0.7
N niter titer tMGen

4 ttotal (h) mem titer tMGen
4 ttotal (h) mem

6 845 0.13 0.92 0.03 0.70 0.05 0.85 0.01 4.00
8 1,127 0.80 2.66 0.25 1.62 0.51 2.92 0.16 35.39
10 1,415 4.70 7.43 1.85 3.33 3.13 8.74 1.23 142.15

Table 5.19: Comparison with Smart’s solvers: Run-time data for the FMS model

relative convergence criteria with an accuracy of 10−6 was chosen. In the first two columns,
Tab. 5.18 records the model scaling parameter (N), and the number of iterations (niter)
required for computing steady state probabilities. In the next four columns Tab. 5.18 gives
the time per iteration in seconds (titer), the CPU time in sec. for generating and constructing
the resp. matrix representation (tMGen), the total CPU time in hours consumed for obtaining
a solution (ttotal := 3600−1(niter · titer + tMGen)) and the memory required for storing the
transition rate matrix in MBytes (mem). For comparison, the above system was also solved
by employing our ZDD based framework. In order to make a fair comparison we once solved
the models with a sparse scaling factor of s := 0.35 and once for the sparse scaling factor
s := 0.7. The obtained run-time data is shown at the bottom of Tab. 5.18. The resp. ratios
are shown in col. 7-10 of Tab. 5.18, where everything is normed to the figures of the ZDD
based framework. As one can see, our ZDD based framework clearly outperforms the solvers
of the Smart tool, not only for the solution time, but also for the consumed memory space.
Only the KO based solver with a standard sparse matrix format is clearly more memory
efficient in case of the Kanban model, than our HO ZDD based matrix representations.
From the data presented in Tab. 5.18 one may conclude that KO based solvers in combination
with symbolic data structures are clearly slower than solvers operating on plain matrices
represented by symbolic data structures. This conclusion stems from the fact that our HO
ZDD based solvers clearly outperform Smart’s symbolic KO based solvers (MxD-layout).
The above results are even more remarkable, since the Kanban model is highly suited for
being analyzed under an approach making use of a KO driven composition scheme.

Not surprisingly we had severe problems, when analyzing the FMS model, since we did not
find an adequate partitioning and thus analyzed the un-partitioned model. As a consequence
the solvers, especially the ones making use of a KO based representation, performed poorly
and were capable of analyzing the FMS model for small values of N only. The obtained
run-time data and ratios are given in Tab. 5.19.

5 In case of the ZDD based framework this also includes the time for SG generation

5.7 Case Study: Telecommunication service system 151

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

(HSC 1)

(HSC 2)

rear transition boards

backplane

hot−swap
controller

hot−swap
controller

power supply

power supply

power supply

disc1 disc2
line
E1/T1−

ho
st
−

S
B

C
 (

st
an

db
y)

ho
st
−

S
B

C
 (

ac
tiv

e)

 I/
O

 S
B

C
 (

ac
tiv

e)

 I/
O

 S
B

C
 (

ac
tiv

e)

 I/
O

 S
B

C
 (

ac
tiv

e)

 I/
O

 S
B

C
 (

ac
tiv

e)

 I/
O

 S
B

C
 (

st
an

db
y)

 I/
O

 S
B

C
 (

st
an

db
y)

Figure 5.1: Illustration of the adjunct processor (board) system [GLW00]

5.7 Case Study: Telecommunication service system

For demonstrating the applicability of the presented ZDD based framework in practice an
adjunct processor system (APS) as employed in the telecommunication service industry
was analyzed [GLW00]. However, instead of directly specifying this system as a SAN, it was
specified by a set of “user-friendly” input diagrams as accepted by the availability evaluation
tool OpenSESAME [WT05]. Since OpenSESAME allows a conversion of its input models
into SANs as accepted by the Möbius tool, the APS could be easily made available for being
analyzed by our ZDD based framework. I.e. the numerical solution of the low-level MRM,
as derived from the generated SAN model specification of the APS, gives one the desired
availability measures.

5.7.1 System description
In the digital telephone network APSs are employed for offering specific services to the user
or telephone network, e.g. they translate easy-to-remember, location-independent virtual
phone numbers into their location-dependent physical equivalent. Since APSs play a crucial
role in the network, they must be highly available. Typically, an availability of 99.999% is
demanded for such a system, which corresponds to a mean downtime or unavailability of
less than 5 minutes per year. From a top-level view, an APS is a series system comprising
host units, I/O-units, hot-swap controllers, power supplies, a RAID system and so on (cf.
Fig. 5.7.1), where we will evaluate the I/O-subsystem only, as it is the most complex part
of the system. The other parts can be evaluated in a similar way which is not done here.

The I/O-unit consists of N sub-units, each comprising a single board computer (SBC) and
a so-called rear transition board (RTB). All cabling is connected to the RTB which allows
for a quick replacement of the SBC in case of a failure. We assume that K <= N sub-
units have to be available at the same time to make the I/O-unit available. Furthermore,
we assume that each sub-unit has three states: active, failed, or passive. A passive sub-unit
does not perform any work but waits until an active sub-unit fails. After failure detection
and localization, the I/O-unit is reconfigured which means that one of the passive sub-
units becomes activated (warm standby). The overall time interval between a failure and
the completion of the reconfiguration is called the fail-over-time (FOT). A sub-unit fails, if
either its SBC or RTB fails. This can happen to both the active and the passive sub-units.
From the OpenSESAME model, the SAN as depicted in Fig. 5.2 is derived, where Fig. 5.2
shows only one sixth of the overall SPN structure for the case N = 6. It represents sub-unit 1
which is one of the units which are active after system startup. The remaining five sub-units

152 5 Empirical Evaluation

active

passive

RTB failed

SBC failed

deact.
conf. 1

deact. deact. deact. deact. deact.
conf. 2 conf. 3 conf. 4 conf. 5 conf. 6

FOT: fail−over time
SBC: single board computer

RTB: rear transition board

both failed

MTTF
RTB 1

MTTF
RTB 1

MTTF
RTB 1

MTTF
SBC 1

MTTF
SBC 1

MTTF
SBC 1

SBC 1
MTTR

SBC 1
MTTRMTTR

RTB 1

MTTR
RTB 1

FOT FOT FOT FOT FOT FOT
1 to 1 2 to 1 3 to 1 4 to 1 5 to 1 6 to 1

Figure 5.2: Single sub-unit specified as SAN

are modeled with equivalent submodels, however, all submodels share the six SVs conf.
1-6 deact..
The execution rates of the activities of the model are given by the parameters of Tab. 5.20.A,
where exponentially distributed time intervals are assumed. Since the parameters of the
different sub-units are all identical and so is their structure, the overall model is symmetric,
which in principle allows the usage of state lumping, such that a substantially smaller system
would have had to be analyzed. But modern architectures of highly reliable systems are often
not built from identical sub-components. Thus, all sub-units of a system may have different
failure and repair rates, and FOTs, destroying the symmetry of a overall model. Therefore, we
did not apply state lumping, so that on the level of the MRM a very large transition system
had to be generated and analyzed, illustrating the power of our ZDD based framework.

5.7.2 Model evaluation
The APS was analyzed for varying FOTs and two different settings: (a) In the first setting,
we investigated a “4-out-of-6” system (4/6), i.e. the system works as long as K = 4 from its
N = 6 sub-units are working. (b) In the second setting a “6-out-of-8” system was analyzed
(6/8). The two different settings were analyzed on an AMD Opteron 850 2.4 GHz System
with 8 or 16 GByte of RAM and a Linux OS [Inta]. For demonstrating the effectiveness
of the ZDD based framework we also exported the APS model of OpenSESAME to the
GSPN based tool DSPNexpress [Lin98], where OpenSESAME also automatically generates
the respective model description to be fed into DSPNexpress. As convergence criterion of
the numerical method computing steady state probabilities a relative convergence of 10−6

was chosen. As numerical solution method, the ZDD based framework employed the pGS-
method, whereas DSPNexpress employs the generalized minimal residual method (GMRES).
Tab. 5.20.B shows the size of the (un-lumped) low-level MRMs which had to be constructed
and solved for obtaining the desired unavailability. Tab. 5.20.B contains the number of sys-
tem states (states), the number of transitions among these system states (trans) and the
number of transitions explicitly established by the activity-local ZDD based SG generation
scheme (transe).
Tab. 5.20.C shows the memory and CPU-times consumed by DSPNexpress and the ZDD
based framework when analyzing the high-level MRM as generated by OpenSESAME,
where the FOT was set to 6min, which required the largest number of numerical iterations
for computing steady state probabilities. Tab. 5.20.C gives the peak memory consumption
(mem), and the CPU time in seconds (sec) required for generating the transition rate ma-
trix (tMGen). It also shows the CPU times in sec required for executing a single numerical
iteration, (titer), the total number of numerical iterations executed until the convergence
criterion is satisfied (iter), the CPU time required for constructing and computing the PV

5.7 Case Study: Telecommunication service system 153

(A) Default parameters of the I/O-unit submodel

parameter default value description

N 6 or 8 number of configurations
K 4 or 6 number of initially active configurations

MTTF − SBCi 5E4 hours mean time to failure of SBC i
MTTF −RTBi 1E5 hours mean time to failure of RTB i
MTTR− SBCi 1 hour mean time to repair of SBC i
MTTR−RTBi 1 hour mean time to repair of RTB i

fail-over-time from configuration i
FOTij see Tab. 5.20.D to configuration j

(B) Model specific data

K/N states trans transe

4/6 0.948720 106 1.45607 107 240
6/8 2.61671 108 5.86973 109 544

(C) Solution times

DSPNexpress Symbolic Approach
K/N mem tMGen titer iter ttotal mem tMGen titer iter tPV ttotal

4/6 7.4 G 123.01 0.73 12 131.77 36 M 2.04 0.09 46 0.04 6.22
6/8 xxx xxx xxx xxx xxx 4.1 G 18.14 40.53 49 9.64 2013.75

(D) Model unavailability with respect to FOT

Varying mean values for the FOT
K/N

0 10 sec 1 min 5 min 6 min

4/6 < 5.99 · 10−13 1.67 · 10−7 9.97 · 10−7 4.93 · 10−6 5.91 · 10−6

6/8 < 1.60 · 10−12 2.49 · 10−7 1.49 · 10−6 7.40 · 10−6 8.86 · 10−6

prob. for system being unvailable

Table 5.20: Data as obtained for analyzing the case study

describing the system’s unavailability (tPV), and the total time consumed for analyzing the
high-level MRM (ttotal).
Tab. 5.20.C clearly indicates that the ZDD based framework is much more efficient, when

it comes to the analysis of high-level MRMs. This means in detail: For the 4/6-model the
DSPNexpress-tool requires 123.01 sec, this includes the time for SG generating, construct-
ing the model’s transition rate matrix, stored in a sparse matrix format and the time for
generating the reward measures for each state. In contrast the activity-local scheme requires
2.04 sec for generating the transition rate matrix, stored as BHO ZDD and another 0.04 sec
for generating a ZDD based representation of the reward function describing the systems
unavailability (incl. the time for computing first and second moment of the reward itself).
However, not only for generating the SGs and the PVs the ZDD based framework turns out
to be much more efficient than the traditional approach employed by DSPNexpress. The ex-
tremely high memory consumption of 7.4 GByte of the latter must be due to the hash table
holding the reached states, as well as the generator matrix stored in sparse matrix format,
since each iteration vector of the GMRES-method only requires 948720 · 16/10242 ≈ 14.5
MByte. In contrast, the ZDD based method requires an overall memory consumption of
approx. 36 MByte for analyzing the 4/6-model. A closer look reveals that the BHO ZDD
based representation of the transition rate matrix requires hereby only 0.9 MByte, whereas
the probability vector, the iteration vector and the vector holding the diagonal entries of the
generator matrix require approx. 30 MByte of RAM. Thus, in contrast to the sparse-matrix
technology as employed by DSPNexpress, the bottleneck of the ZDD based framework is
given by the different vectors, rather than the storage of the transition rate matrix. Even

154 5 Empirical Evaluation

in case of the iteration time the ZDD based framework surprisingly exhibits a higher effi-
cency. However, the significantly larger CPU times consumed by DSPNexpress for executing
a single numerical iteration must be due to the GMRES-method, since plain sparse-matrix-
formats usually deliver the lowest times per numerical iteration.
In total, the above features clearly ease the restriction on the numerical analysis of MRMs.
Thus it is not surprising that in case of the 6/8-model, the ZDD based framework is still
capable of computing the desired unavailability where DSPNexpress fails to do so. The fail-
ure of the latter is hereby due to the enormous memory requirements of the sparse matrix
layout. But even if enough memory were available, it is clear that the CPU time required
for generating the SG and generating the reward values for each state explicitly would in-
duce such a high CPU time consumption that an analysis of the 6/8-model by conventional
techniques is not feasible anymore.

Tab. 5.20.D shows the computed results. As values for the time delay of activity executions
the values of Tab. 5.20.A were employed, where the unavailability for varying mean values
of the FOT had to be computed. As it can be seen, the FOT has a significant impact on
the unavailability. I.e. in case of assuming a FOT of 0, as it would be the case when apply-
ing a standard Fault-Tree based analysis method, one would obtain a very low probability
for the system being unavailable. –This case was computed by setting the rate µFOT of
the exponential distribution describing the FOT to 109.– However, for a FOT of ≤ 10 sec
(⇒ µFOT ≤ 360) one obtains probabilities which are at least 6 orders of magnitude larger
than the 0-case.

5.8 Pre-published material

[LS06a] presents the ZDD based activity-local scheme for generating activity-labeled CTMCs.
It shows an empirical comparison of ADDs and ZDDs in case of SG generation and presents
the run-time data and ratios for demonstrating the effectiveness of the new reachability al-
gorithm. Furthermore it also demonstrates the competitiveness of the activity-local scheme
by comparing to the run-time data of the tool Prism, for the FMS and Kanban model. For
the Courier and FTMP models [LS06a] also compared the run-time data as produced by the
activity-local scheme to the figures published in [DKS03] in order to compare to the MDD
based SG generator introduced there.

[LS06b] discussed and presented the ZDD based computation of state probabilities, as well as
the ZDD based computation of PVs. In order to demonstrate the usefulness of the approach,
[LS06b] presented (a) the data for comparing ADD- and ZDD- based solvers for computing
steady and transient state probabilities and (b) the run-time data as obtained when solving
MRMs with Möbius conventional “sparse matrix” based approach and our new ZDD based
framework.

The APS case study as well as the tool chain for its ZDD based analysis was the subject of
[LSW06], where we also presented the comparison with DSPNexpress.

6

Conclusion

6.1 Summary

This thesis not only introduces a new type of decision diagram, but also develops a new
efficient semi-symbolic approach for the analysis of high-level Markov reward models with
very large state graphs. In total this thesis therefore contributes to the alleviation of the
state-space explosion problem, as appearing in the context of high-level Markov reward
models. In the following we will briefly recapitulate different aspects of the presented work.

6.1.1 Zero-suppressed multi-terminal BDDs
Boolean functions with small satisfaction sets, and where the fulfilling assignments possess
many 0-assigned bit positions, may yield large BDD based representations. In such settings
zero-suppressed BDDs (z-BDDs) [Min93] have shown to be very helpful. In this work, z-BDDs
[Min93] are extended to the multi-terminal case, for efficiently representing pseudo-boolean
functions and thus the characteristic functions of stochastic transition relations.

Partially shared ZDDs (pZDDs)
For correctly deducing the (pseudo-) boolean function represented by a z-BDD’s (or ZDD’s)
graph, the set of (function) variables of the represented function matters. As a consequence
a ZDD-node (and its subgraph) not equipped with a set of function variables does not
uniquely represent a pseudo-boolean function, since skipped variables can either belong to
non-decisive or zero-suppressed variables. This is problematic, if one operates in a shared
BDD-environment, so that uniqueness of nodes is not only a requirement, but an essential
pre-condition for efficiency. For solving this problem, this thesis develops the concept of
partially shared ZDDs (pZDDs), which requires to equip each pZDD-node with a set of
function variables, so that (weak) canonicity is guaranteed.

Algorithms for working with pZDDs
This new type of decision diagram requires a re-design of BDD-algorithms [Bry86], where
this thesis developed the respective variants, yielding most importantly the pZApply, pZAnd,
pZRestrict and pZAbstract-algorithm. However, contrary to the theoretical concept these
algorithms allow to implement pZDDs within common shared BDD-environment, where
nodes are in general not equipped with function variables. This strategy yields the main
advantages that one (a) does not need to store the sets of function variables for each node and
(b) increases the sharing among the pZDD-graphs, but at the drawback that the semantic
of a pZDD-node is not unique anymore. This is significant when testing for equivalence,
which in an ordinary shared BDD-environment and standard types of BDDs is reduced to
comparing the memory addresses of nodes. Efficient testing for equivalence is an important
issue, since while manipulating the graphs of ZDDs, it appears extremely often, not only for
testing if the terminal condition for ending a recursion is satisfied, but also when inspecting
the pre-computed table for fetching results as computed during previous recursions. For
solving this problem, this work follows the following strategy: When operating on the graph
of a pZDD Z, one simply passes Z’s set of function variables (VZ) as additional argument
to the graph-manipulating algorithm. Each time a test of equivalence is required, one solely
needs to compare the memory address of the current pZDD nodes, as well as the sets of
function variables. If the respective pairs are identical so are the represented (characteristic)
functions.

155

156 6 Conclusion

6.1.2 Activity/Reward-local scheme
If a high-level model’s formalism lacks a symbolic semantics, the only way of obtaining a
symbolic representation of its underlying Markov Reward Model is to iteratively execute the
high-level model specification and generate the symbolic structures on-the-fly until a fixed
point is reached. However, if this is done explicitly for each state and each transition, time
and peak memory consumption will prevent a successful application of symbolic state graph
representation in practice.

Symbolic state graph generation
For efficiently generating the symbolic representation of a CTMC as described by a high-level
Markov reward model, the activity-local approach, as developed in this thesis, exploit local
information only. I.e. its main idea is the partitioning of the state graph to be generated, into
sets of transitions carrying the same label, where each source and target state of a transition
is reduced to those positions, on which the transition inducing activity depends on, yielding
a transition system for each activity, which we denote as activity-local transition system.
The complete transition relation of the high-level model is then obtained by applying a
symbolic composition scheme to the activity-local transition systems previously generated.
The explicit state graph generation scheme for successively generating the activity-local
transition systems, follows hereby a selective breadth-first-search scheme. Such a search
strategy is achieved by exploiting a dependency relation on the set of activities and only
trying to execute those enabled activities on a newly reached state, which have not already
been tested on it. Contrary to standard search schemes, one does not test here the full state
descriptor for deciding whether a state has been already explored or not, one only tests those
positions of the state descriptor, which are in the dependency set of the respective activity.
Furthermore one also tests not all activities, but only those, which depend on the last
activity executed in the current state. As a consequence, the explicit state graph generation
and encoding of the activity-local scheme is most likely to be partial in practice. If a local
fixed point is reached, i.e. if from a given set of states all sequences of dependent activities
are extracted explicitly, symbolic composition takes place. The symbolic structure obtained
by symbolic composition encodes a set of potential transitions, therefore at this point it
is necessary to perform symbolic reachability analysis. In order to speed up the symbolic
reachability analysis, we employ an improved symbolic algorithm which is organized as a
quasi-depth-first search and works on the activity-local decision diagrams, i.e. on a kind of
partitioned transition relation. After symbolic reachability analysis is terminated, the set
of reachable states generated so far is obtained. Since this might result in states triggering
new (explicit) model behavior, a re-initialization routine is required. If such states exist, this
routine may initiate a new round of explicit state graph exploration, encoding, composition
and symbolic reachability analysis. Several rounds may be required until a global fixed
point is reached and a complete representation of the high-level model underlying CTMC is
constructed.

Generating symbolic representation of reward functions
For describing performability measures of the system under study modeler are enabled to
specify performance variables on the level of the high-level model description. Traditionally
one computes the state and activity dependent values of performance variables, i.e. the val-
ues of their rate and impulse rewards, while generating the low-level representation of the
model. However, with the activity-local scheme only a fraction of states is visited explicitly
during state graph generation. Given that a reward returning function may be of arbitrary
complexity, but solely depends on a subset of state variables, it seems therefore reasonable,
to generate their symbolic representation, once the symbolic representation of the overall
state graph generated. In order to explicitly process as few states as possible, this works once
again exploits local information only. I.e. after computing the reward value of a state, only
those positions within the state descriptor are symbolically encoded, the currently processed

6.1 Summary 157

reward function depends on. This strategies defines once again an equivalence relation on
the set of system states concerning a specific reward function, so that the number of states
that need to be explicitly processed, can be reduced significantly. By simply aggregating the
symbolically represented reward functions according to the user-defined specification, one
obtains symbolic representations of the performance variables. Now the probability distribu-
tion on the set of system states must be computed, since state probabilities in combination
with symbolically represented performance variables can be combined, so that the performa-
bility measures of the system under study are obtained.

6.1.3 Computation of state probabilities
For computing state probabilities, this work presents a ZDD based variant of the hybrid
solution method, as already known for other symbolic data structures. In this approach, the
generator matrix is represented by a decision diagram and the iteration vectors are stored as
ordinary arrays of doubles. If n Boolean variables are used for state encoding, there are 2n

potential states of which only a small fraction may be reachable. Allocating entries for un-
reachable states in the vectors would be a waste of memory space and would severely restrict
the applicability of the systems to be analyzed. E.g. for storing the probabilities of about
134 million states one already requires 1 GByte of RAM. Therefore a dense enumeration
scheme for the reachable states has to be implemented. This is achieved via the concept of
offset-labeling. The offset-labeling of nodes allows to compute row and column index in the
dense enumeration scheme for each matrix element, while traversing the symbolic structure
representing the matrix.
The space efficiency of symbolic matrix representation comes at the cost of computational
overhead, caused by the recursive traversal of the symbolic structure. For that reason one
replaces the lower levels of the symbolic structure by explicit sparse matrix representations,
which works particularly well for block-structured matrices. For exploiting the good conver-
gence of the forward and backward Gauss-Seidel method and its over-relaxed variants it is
furthermore necessary to access the matrix elements in a row or column-wise manner. As a
compromise, we implemented the so-called pseudo Gauss-Seidel iteration scheme as known
for Algebraic Decision Diagram based matrix representations. This schemes partitions the
matrix into blocks, which are processed in an order fashion, where within each block matrix
entries are accessed in arbitrary order. Overall the above approaches, yield a memory struc-
ture in which some levels from the bottom and may be also some levels from the top of the
symbolic matrix representation have been replaced by sparse matrix structures. By applying
an iterative solution method one is then enabled to compute the state probabilities, which
are stored as entries of an array.

6.1.4 Computing performability measures
Given symbolic representations of the performance variables and the state probabilities, one
is enabled to compute the performability measures for the system under study. For doing
this, the thesis introduces a new algorithm, which computes moments of the symbolically
represented performance variables via graph-traversion.

158 6 Conclusion

6.2 Benefits of pZDDs and the activity/reward-local scheme

The advantages of the presented concept of pZDDs can be summarized as follows:

• The concept of pZDDs and its introduced algorithms, allows the efficient allocation and
manipulation of z-BDDs and their multi-terminal extensions within a common BDD-
Package, even though the DDs may not have equal sets of function variables. To the best
of our knowledge this aspect was not subject of previous works.

• In the context of symbolic representation of set of states as derived from high-level model
descriptions, ZDDs showed that they are often the most memory-efficient data type. This
advantage can also often be observed, when it comes to the representation of stochastic
transition systems.

• From the measurements one can conclude that ZDDs perform better then their ADD
based counterparts, if the generation of symbolic SG representations and the hybrid
solution method for solving sets of differential and linear equations is used. Based on
their compactness one may convert larger fractions of the ZDD into sparse matrix layouts
reducing the solution time even more and/or reduce the size of the additional iteration
vector in case of the pseudo Gauss-Seidel method and thus analyze larger systems.

The benefits of the new semi-symbolic, compositional and submodel-interdependent tech-
nique for generating symbolic representations of high-level model’s underlying transition
systems, presented in this thesis, can be summarized as follows:

• In general, only a small fraction of the transitions of the Markov chain needs to be
generated and encoded explicitly, whereas the bulk of the transitions is generated during
symbolic composition.

• The approach is compositional, which contrary to monolithic approaches keeps not only
the run-time at a moderate level, but also the peak memory consumption.

• The reachability analysis of the high-level model is carried out efficiently at the level
of the symbolic data structure. where this work presents a new quasi-depth-first-search
scheme with a convincing efficiency.

• For the generation of symbolic representation of reward functions explicit computation
can also be limited to a small fraction of states. This is much more efficient in compar-
ison to the traditional approaches, where the reward values for each state is explicitly
computed.

• This works suggests a symbolic representation of user-defined performance variables and
a computation of their moments via a new graph-traversing algorithm, which reduces
memory and run-time, if compared to standard approaches.

• Since the activity/reward-local approach depends on an explicit execution of activity and
reward functions, the approach is not limited to a certain high-level model description
technique.

• The model is partitioned automatically at the level of the individual activities, i.e. a
user-defined partitioning as for other symbolic techniques is not necessary.

• The scheme does not require any particular model structure, i.e. contrary to other well
known approaches, the method is not restricted to models that satisfy a KO compliant
structure.

6.3 Future work 159

6.3 Future work

Future steps for improving the approach presented in this thesis, but also symbolic techniques
in the context of performability analysis in general, have different aspects, which will now
be covered individually.

Improving the state graph generation procedure
As illustrated by the TQN-model (Sec. 5.2.1, p. 123), worst case scenarios for the activity/reward-
local scheme exists. Also the performance of the scheme in case of KO compliant models, like
the Kanban-model, seems to be improvable. A closer look at the high-level models reveal,
that some activities contained in the high-level model specification are extensively executed.
On the other hand it is known that the state graph of these models can be efficiently con-
structed when a Sync driven decomposition strategy is applied (cf. Sec. 2.5.3, p. 28). I.e.
in case the user defines such a decomposition (or the overall model was constructed in
a compositional style), the activity/reward-local procedure can be employed for efficiently
generating the local state graphs of the different model partitions. A symbolic representation
of the overall model can then be obtained by applying the KO driven composition scheme
of Eq. 2.19 (p. 28), the required symbolic realization can be found [Sie02].

Symbolic execution of activities
The activity/reward-local scheme is a semi-symbolic and compositional approach for gener-
ating a symbolic representation of a MRM. Thus it requires the use of a symbolic composition
and symbolic reachability scheme. The respective schemes are hereby carried out separately
by making extensively use of DD-manipulating algorithms. A good idea seems therefore to
integrate composition and one-step reachability computation into a single DD based algo-
rithm. This algorithm takes a symbolic representation of an activity-local transition system
and the set of visited states as input and is repetitively executed until a fixed point is
reached and a representation of the set of reachable states is generated. In particular such
a procedure would not require to apply a composition scheme and would combine different
DD-operations in a single algorithm, which in total may yield an improved caching behavior
concerning the pre-computed table.

Dynamically changing structures of high-level models
The activity/reward-local scheme as represented in this thesis was designed on the basis
of statically structured high-level models. However, an interesting class of high-level model
specification techniques, which also allow a mapping of high-level models to finite state
graphs, incorporates mechanisms for process instantiation and process deletion during run-
time, e.g. [CB06]. The activity/reward-local scheme seems to be extendable, so that it is
applicable in such a context. In combination with ZDDs, where the introduction of new
state variables does not causes any significant overhead, this seems very promising.

Parallelization of the activity/reward-local scheme
In [Wei05] we gathered first experience with a parallelization of the activity/reward-local
scheme. It turned out that the mutual exclusion of write-operations on the ZDDs slows down
the overall process of symbolic state graph generation. However, the implementation of a
thread-pool allowed the author of [Wei05] to executed also other steps of the activity/reward-
local scheme in parallel, which seems to be more promising, especially for models, which
require extensive state graph exploration. However, since symbolic reachability analysis is
still the main source of CPU-time consumption, a deeper investigation of how-to parallelize
symbolic algorithms could bring improvements.

160 6 Conclusion

Improving numerical analysis
As pointed out in Sec. 5.5 the major bottle-neck of symbolic approaches for the state graph
based analysis of high-level MRMs is the huge number of states, since the probabilities of
the latter must be computed individually. For improving the current methods a three-fold
strategy can be followed:

(1) Symbolic algorithms for realizing bisimulation: In Sec. 4.6.1 (p. 103ff) a symbolic algo-
rithm for computing a reduced bisimilar CTMC was presented. However, this approach
was limited to the case that user-defined symmetries within the high-level model are
defined. In case a model specification lacks such an explicit definition of symmetries
more general algorithms can be employed. However, these algorithms, those symbolic
variants are introduced in [Sie02] are known to be not very efficient. In [DKS05] an
approach for detecting bisimilar structures on the level of symbolic state graph rep-
resentations was introduced. The suggested procedure seems quite promising, since it
detects submodel imposed symmetries by investigating the symbolic representation of
the state graph. A procedure for detecting submodel imposed symmetries in the context
of the activity/reward-local scheme is straight forward: One solely needs to compose the
activity-local transition systems for each submodel separately and compare them. Such
a comparison could either be realized by a respective symbolic algorithm, or a relabel-
ing of variables the submodel-local transition systems are defined on, and a subsequent
test of equivalence. As result one would immediately know if the submodels referring
to the same specification also exhibit the same (timed) behavior. As major advantage
of such a procedure, the overall model would not need to be composed by employing
the Rep-operator explicitly and thus employ the Join-operator in a more flexible way,
so that a high-level model can have an arbitrary compositional (graph) structure, but
one is still capable of exploiting submodel-imposed symmetries [Oba98]. Going a step
further, it seems also very promising to study the effect of symmetries directly on the
symbolic representation of the state graph. Efficiently identifying such symmetries and
exploiting them, would yield a minimal bisimulation relation, whereas the exploitation
of submodel-imposed symmetries not necessarily does.

(2) Approximative solution methods: The multi-level approach [HL94] is known to be also
efficiently applicable, in situations, where the generator matrices of the aggregated sys-
tems are represented symbolically and/or implicitly. Given that extensive manipula-
tions of large symbolic data structures are computationally expensive, it is clear that
the multi-level approach in the context of symbolic representations is only efficiently
applicable as long as the transition rate matrices of the different aggregation levels are
not generated each time the respective aggregation level is accessed [Buc06]. However,
the multi-level method still needs to allocate a probability vector, its size is bounded
by the number of states. Consequently the applicability of approaches making use of
the multi-level method is still limited in practice. –In [BG05] the authors presented an
approach, which seems to be inspired by the multi-level method, but starting with a
state graph which is already aggregated, so that the number of state probabilities to be
computed is clearly reduced. An approximated result is then obtained, by varying the
aggregation of states, computing state probabilities for each of the aggregated systems
and manipulating the transition rates between the aggregated states. This procedure is
repeated until a fixed-point is reached. It would be interesting, to study the question, if
such a procedure works for any high-level model description technique and for arbitrarily
aggregated system states and how such a procedure can be efficiently executed on the
level of symbolically represented state graphs.

(3) Parallelization: The authors of [BH01] introduce a parallelized numerical solver, which
makes use of standard sparse matrix structures. It is straight-forward to make here also
use of symbolic structures, where the pseudo Gauss-Seidel method seems very promising
for being parallelized.

A

Appendix: Mathematical Background

It is assumed that the reader is familiar with the concept of boolean algebra. In the following
paragraphs we will briefly give some basic definitions and operations as employed in the
concourse of the thesis.

A.1 Boolean functions

A n-ary boolean function f(v1, . . . , vn) is a mapping �n → �, where � := {0, 1}. The set of
variables (v1, . . . , vn) employed in function f is denoted as set of function variables, where
we will use the notation (Vf).

0-maintaining operator
A n-ary operator op is 0-maintaining iff 0 op . . . op 0 = 0 holds.

Decisive variables
A variable vi is decisive for a boolean function if at least for an assignment to the function
variables of f holds that f(v1, . . . , vi−1, 0, vi+1, . . . , vn) 	= f(v1, . . . , vi−1, 1, vi+1, . . . , vn).

Minterm and Monomial
For a boolean n-ary function f a product term is a conjunction of a set of literals from its
set of variables, where a literal is either the boolean variable itself or its negation. A product
term in which each of the n (function) variables appears at most once is called a monomial.
A minterm is a product term, where each of the n (function) variables appear exactly once.

Sum-of-Products
A Boolean function expressed as a disjunction of monomials is commonly known as the sum
of products (SOP). I.e. in this representation product terms may or may not cover the same
minterm. If each product term of the SOP is a minterm one speaks of the canonical SOP or
canonical disjunctive normal form (CDNF). In case no two product terms cover the same
minterm, one speaks of a disjoint sum of products (DSOP). Thus the canonical disjunctive
normal form is the special case of a DSOP.

Canonical representations
Two boolean functions are equivalent, if their function values coincident for all inputs to their
function variables. A representation of a boolean function is called canonical if each function
f has exactly one representation of this type. The representation is denoted universal if
each boolean function possesses a representation of this type. A representation is denoted as
strongly canonical, if two equivalent functions share the same representation. I.e. functions
with identical sets of decisive variables have always the same representation, no matter what
their set of function variables are. If for identical sets of decisive variables and different sets of
function variables the representation of two equivalent function is not the same, we denote
them as weakly canonical. In this sense the canonical disjunctive normal form is a weak
canonical representation.

161

162 A Appendix: Mathematical Background

Expansion
A boolean function defined on a set of boolean variables V can be expanded with respect to
a variable vi by replacing each of its occurrences with the constants 1 and 0. The resulting
functions, which are independent of the vi, need than to be combined via disjunction in
order to substitute f .

Definition A.1: Expansion of Boolean functions

Let f : �n → � be a boolean function and let Vf be the set of f ’s function variables. For
all vi ∈ Vf it holds:

f := vif(v1, . . . , vi−1, 1, vi+1, . . . , vn) + ¬vif(v1, . . . , vi−1, 0, vi+1, . . . , vn)

The expansion can recursively applied until all n variables are made constant. Each of the
terms to be connected via disjunction, gives then a line-entry of the truth table for a specific
assignment�b with respect to the (ordered) function variables �v. In case one discards all terms
where f is evaluated to 0, one ends up with the CDNF for function f .

The above defined expansion of boolean functions is also commonly denoted as Shannon
expansion. In 1938 Shannon introduced this theorem in the context of switching functions,
so that their mapping to a boolean algebra was achieved [Sha00].

Co-factors and sub-functions
If one expands only one variable, e.g. vi one ends up with the two co-factors of f with respect
to vi. In case vi was replaced by the constant 1 one speaks than of the positive - or one co-
factor (f |vi:=1 := f(v1, vi−1, 1, vi+1, . . . vnV)), where in case vi was replaced by the constant
0 one speaks of the negative - or zero co-factor (f |vi:=0 := f(v1, vi−1, 0, vi+1, . . . , vnV)). The
expansion can be applied for an arbitrary subset of V , e.g. V ′, so that the notation f |�v ′:=�b
refers to the co-factor of f for the variables of V ′ and with respect to the assignment �b.

A.2 Pseudo-boolean functions

A n-ary pseudo-boolean function f(v1, . . . , vn) is a mapping �n → �, where � is a finite
set, e.g. � ⊂ �. All results on boolean functions remain valid for pseudo-boolean functions.

A.3 Kronecker operators

(1) The Kronecker product (KP) ⊕ : �n,m ×�k,l → �
nk,ml is defined as follows:

C := A⊗B =

⎡⎢⎢⎢⎢⎣
a1,1B a1,2B · · · a1,mB

a2,1B
. . .

...
...

...
...

. . .
...

an,1B a1,2B · · · an,mB

⎤⎥⎥⎥⎥⎦
As one can see under the KP one combines the matrices A and B in an element-to-
block-wise manner, where each block is equal to matrix B, multiplied with matrix entry
ai,j . This yields:

C((i1, i2), (j1, j2)) = A(i1, j1)B(i2, j2) (A.1)

where C((i1, i2), (j1, j2)) addresses block (i1, j1) and element (i2, j2) within this block.
The KP can be extended to sets of matrices inductively as follows:

C :=
n⊗
i:=0

Ai =

(
n−1⊗
i:=0

Ai

)
⊗An =

n∏
i:=0

1⊥d1i ⊗Ai ⊗ 1⊥d2i

A.5 Pseudo-code and related notation 163

where 1⊥dj
i
is an identity matrices of dimension d1

i :=
∏i−1
x:=1 dim(Ax), d2

i :=
∏n
x:=i+1 dim(Ax)

respectively.

(2) The Kronecker sum (KS) ⊕ : �n,n ×�k,k → �
nk,nk is defined as follows:

C := A⊕B = A⊗ 1⊥k,k + 1⊥n,n ⊗B

This definition can be extended to sets of matrices inductively as follows:

C :=
n⊕
i:=0

Ai =

(
n−1⊕
i:=0

Ai

)
⊕An =

n∑
i:=0

1⊥d1i ⊗Ai ⊗ 1⊥d2i

where 1⊥dj
i

is once again an identity matrices of appropriate dimension.

A.4 Notation of modus ponens

In the style of SOS-semantics of process algebras we will employ the following notation:

premise1; . . . ; premisen
conclusion

side condition1 . . . , side conditionm

The meaning of this notation is as follows: if all side conditions are true the conclusion can be
drawn, given that the premises hold. In case the set of premises and the set side conditions
is empty, the conclusion can always be drawn.

A.5 Pseudo-code and related notation

The pseudo-code presented in this thesis will follow the style of the C-programming language.

(1) Operators of propositional logic:
In case of logic-connectors applied on predicates we will employ the symbols && , for
representing ∧ and the symbol ‖ for representing ∨.

(2) Test of inclusion:
The operation n,m ∈ KT gives true, if {n,m} ⊆ KT holds, otherwise false.

(3) Test of equality:
If two variables are equal is tested with the operator =.

(4) Assignment:
A value is assigned to a variable by employing the operator :=.

(5) Set manipulation:
• Insertion: The operation B ←− a is equal to B := B ∪ {a}.
• Extraction: a ←− B is equal to B := B \ {a}, where the entity a is now accessible

in the context of the respective block executing the extraction. x a←− B refers to the
operation B := B \ {a} and x := a.

B

Appendix: Algorithms for BDDs and
derivatives

Satisfy((b1, . . . , bnV), n,�v)
(0) i := 1;
(1) node k := n;
(2) while k �∈ KT do;
(3) while �v [i] <π var(k) do i++; end
(4) if bi = 1 then k := then(k);
(5) else if bi = 0 then k := else(k);
(6) end
(7) return value(k);

Algorithm B.1: The Satisfy-algorithm for BDTs and BDDs

Satisfy((b1, . . . , bnV), n,�v)
(0) i := 1;
(1) node k := n;
(2) while k �∈ KT do
(3) for �v [i] <π var(n) do
(4) if bi = 0 then i++;
(5) else return 0;
(6) end
(7) if bi = 1 then k := then(k);
(8) else if bi = 0 then k := else(k);
(9) end
(10) return value(k);

Algorithm B.2: The Satisfy-algorithm for z-BDDs

Satisfy((b1, . . . , bnV), n,�v)
(0) i := 1;
(1) node k := n;

(2) while k �∈ KT do
(3) if bi = 1 then
(3) if var(k) <π �v [i] then return 0;
(3) else k := then(k);

(4) else if bi = 0 && var(k) ≤π �v [i] then return 0;
(5) i++
(6) end
(7) return value(k);

Algorithm B.3: The Satisfy-algorithm for pZDDs

164

C

Appendix: Algorithms for handling models
with immediate activities

ExploreStates()
(1) while (StateBuffer �= empty) do

(2) (�s l,FDl

�s l)←− StateBuffer;

/∗ Processing dependent immediate activities ∗/
(3) for k ∈ Acti ∩ FDl

�s l do

(4) �s lk := δk(�s l);

(5) λ := Π(�s l, k, �s lk);

(6) if �s l �= �s lk then TransBuffer ←− (�s l, k, λ,�s lk);
(7) end

/∗ Processing dependent Markovian activities ∗/
(8) for k ∈ Actm ∩ FDl

�s l ; do

(9) �s lk := δk(�s l);

(10) λ := Λ(�s l, k, �s lk);

(11) if �s l �= �s lk then TransBuffer ←− (�s l, k, λ,�s lk);
(12) end
(13) end
(14) return ;

Algorithm C.1: Explicit SG exploration in the presence of immediate activities

EncodeTransitions()
(1) while (TransBuffer �= empty) do;
(2) (�s, l, λ,�s l)←− TransBuffer;

(3) FDl

�s l := ∅;
/∗ Testing all immediate activities for enabledness ∗/
(4) for ∀k ∈ Acti : �s l

Dk
/∈ Ek do

(5) if �s l [> k then FDl

�s l := FDl

�s l ∪ {k};
(6) Ek := Ek + Encode(E(�s l

Dk
), k,VDk

s)
(7) end

/∗ Testing only l’s dependent Markovian activities for enabledness ∗/
(8) for k ∈ ADl ∩Actm do;

(9) if �s l
Dk

/∈ Ek ∧ �s l [> k then FDl

�s l := FDl

�s l ∪ {k};
(10) Ek := Ek + Encode(E(�s l

Dk
), k,VDk

s)

(11) end

/∗ Insert state and activity list into buffer, and transition into act-local symbolic structure ∗/
(12) if FDl

�s l �= ∅ then StateBuffer ←− (�s l,FDl

�s l);

(13) Zl := Zl + Encode(E(�sDl , �s
l
Dl

), λ,VDk);
(14) end
(15) return ;

Algorithm C.2: Encoding state-to-state-transitions and testing for further expolration

165

166 C Appendix: Algorithms for handling models with immediate activities

ReachabilityAnalysis()
(0) ZM :=

P
l∈Actm Zl × 1⊥l;

(1) ZP :=
P

l∈Acti Zl × 1⊥l;
(2) ZR := Encode(E(�s ε), 1,Vt);
(3) ZU := Encode(E(�s ε), 1,Vs);
(4) ZV an, ZTan := ∅;
(5) do
(6) Ztmp := ZP · ZU ;
(7) Ztrans := Ztrans + Ztmp;
(8) Znew := pZAbstract(Ztmp,Vt, +);
(9) ZV an := ZV an + Znew ;
(10) ZU := ZU \ Znew ;
(11) Znew := pZAbstract(Ztmp,Vs, +);
(12) Ztmp := ZU · ZM ;
(13) Ztrans := Ztrans + Ztmp;
(14) ZU := pZAbstract(Ztmp,Vt, +) \ ZR;
(15) ZTan := ZTan + ZU ;
(16) ZU := pZAbstract(Ztmp,Vs, +) \ ZR;
(17) ZR := ZR + ZU ;
(18) ZU := ZU{Vs ← Vt};
(19) ZU := ZU + Znew{Vs ← Vt};
(20) end until ZU = ∅
(21) return ZR;

(A) Breadth-first-search scheme

ReachabilityAnalysis()
(0) ZU , ZV an, ZTan := ∅;
(1) ZR := Encode(E(�s ε), 1,Vs);

(2) for k ∈ Act do fZk := Zk × 1⊥k; end
(3) do
(4) while ZU �= ∅ do
(5) for k ∈ Acti do

(6) Ztrans := fZk · ZU ;
(7) Znew := pZAbstract(Ztrans,Vs, +) \ ZR;
(8) ZU := ZU + Znew{Vs ← Vt};
(9) Znew := pZAbstract(Ztrans,Vt, +) \ ZR;
(10) ZV an := ZV an + Znew ;
(11) end
(12) ZU := ZU \ ZR;
(13) ZR := ZR + ZU ;
(14) end
(15) Ztmp := ZR \ ZV an \ ZTan;
(16) ZTan := ZTan + Ztmp;
(17) for k ∈ Actm do

(18) Znew := pZAbstract(fZk · Ztmp,Vs, +) \ ZR;
(19) ZU := ZU + Znew{Vs ← Vt} \ ZR;
(20) end
(21) ZR := ZR + ZU ;
(22) end until ZU = ∅
(23) return ZR;

(B) Quasi dfs scheme

Algorithm C.3: Symbolic reachability analysis for models with immediate activities

InitNewRound()
(0) ZR := ReachabilityAnalysis()

/∗ Test composed states for triggering new immediate model behaviour ∗/
(1) for k ∈ Acti do
(2) Ztmp := ZR \ Ek;
(3) while Ztmp �= ∅ do

(4) Zs
�s←− Ztmp;

(5) �s := E−1(Encode−1(Zs));

(6) Zs := pZAbstract(Zs,V Ik
s , +);

(7) Ztmp := Ztmp \ Zs;
(8) if �s [> k then S-Buffer←− (�s, {k}); ZV an := ZV an + ZR · Zs;
(9) end
(10) end

/∗ Test composed states for triggering new Markovian model behaviour ∗/
(11) ZTan := ZR \ ZV an

(12) for k ∈ Actm do
(13) Ztmp := ZR \ Ek;
(14) while Ztmp �= ∅ do

(15) Zs
�s←− Ztmp;

(16) �s := E−1(Encode−1(Zs));

(17) Zs := pZAbstract(Zs,V Ik
s , +);

(18) Ztmp := Ztmp \ Zs;
(19) if �s [> k then S-Buffer←− (�s, {k}); ZTan := ZTan + ZR · Zs;

(20) Ek := Ek + Encode(E(�sDl), 1,VDl
s);

(21) end
(22) end
(23) return ;

Algorithm C.4: Re-initialization when immediate activities are present

References

[ADD97] Formal Methods in System Design: Special Issue on Multi-terminal Binary Decision
Diagrams, Volume 10, No. 2-3, April - May 1997.

[Age74] T. Agerwala. A complete model for representing the coordination of asynchronous pro-
cesses. 32, Baltimore: Johns Hopkins University, Hopkins Computer Science Program,
Research, july 1974.

[Ake78] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27(6):509–
516, June 1978.

[AKN+00] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic Model
Checking for Probabilistic Processes using MTBDDs and the Kronecker Representation.
In TACAS’2000, LNCS 1785, pages 395–410, 2000.

[Bai05] Ch. Baier. Binäre Entscheidungsdiagramme, 2005. Skriptum zur Vorlesung im Som-
mersemester 2005.

[BCD+95] G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, M. Ajmone Marsan, and M. Ajmone
Marsan. Modelling with Generalized Stochastic Petri Nets. JOHN WILEY & SONS,
1995.

[BCL91] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic Model Checking with Partitioned
Transition Relations. In A. Halaas and P.B. Denyer, editors, International Confer-
ence on Very Large Scale Integration, pages 49–58, Edinburgh, Scotland, 1991. North-
Holland.

[BFG+93] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic Decision Diagrams and Their Applications. In IEEE /ACM
International Conference on CAD, pages 188–191, Santa Clara, California, 1993. IEEE
Computer Society Press.

[BG05] P. Bazan and R. German. Approximate Analysis of Stochastic Models by Self-
Correcting Aggregation. In QEST’93 [QES05], pages 134–144.

[BH01] A. Bell and B. Haverkort. Serial and Parallel Out-Of-Core Solution of Linear Sys-
tems arising from Generalised Stochastic Petri Nets. In Proc. of High Performance
Computing 2001, Seattle USA, April 2001.

[BHH+04] Ch. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors. Validation
of Stochastic Systems, LNCS 2925, Dagstuhl (Germany), 2004. Springer.

[Boo52] G. Boole. The Mathematical Analysis of Logic. Collected logical works / George Boole.
Open Court Publ. Comp., La Salle, Ill. (USA), 1952. The original appeared 1847.

[Bry86] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[Bry92] R.E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys (CSUR), 24(3):293–318, September 1992.

[Buc91] P. Buchholz. Die strukturierte Analyse Markovscher Modelle. PhD thesis, Universität
Dortmund, Dortmund (Germany), 1991.

[Buc94] P. Buchholz. Exact and ordinary lumpability in finite markov chains. Journal of Applied
Probability, 31(1):59–75, March 1994.

[Buc06] P. Buchholz. Structured Analysis Techniques for Large Markov Chains. In 1’st Work-
shop on Tools for solving structured Markov Chains, New York, NY, USA, 2006. ACM
Press.

167

168 References

[CB06] F. Ciesinski and Ch. Baier. LiQuor: A tool for Qualitative and Quantitative Linear
Time analysis of Reactive Systems. In Proceedings of the 3’rd International Conference
on Quantitative Evaluation of Systems (QEST’06), pages 131–132, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[CBC+93] G. Ciardo, A. Blakemore, P. F. J. Chimento, J. K. Muppala, and K. S. Trivedi. Auto-
mated generation and analysis of Markov reward models using Stochastic Reward Nets.
IMA Volumes in Mathematics and its Applications, 48:145–191, 1993.

[CFM+93] E. M. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. An Efficient Data Structure
for Matrix Representation. In Proc. of the International Workshop on Logic Synthesis
(IWLS), 1993.

[CLS00] G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficient symbolic state-space construction
for asynchronous systems. In M. Nielsen and D. Simpson, editors, Proc. of the 21’st
Int. Conf. on Application and Theory of Petri Nets (ICATPN’00), LNCS 1825, pages
103–122, Aarhus, Denmark, June 2000. Springer.

[CLS01] G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: An efficient iteration strategy
for symbolic state space generation. In T. Margaria and W. Yi, editors, Proc. of the 7’th
Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’01), Genova, (Italy), LNCS 2031, 2001.

[CM99a] G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker solution of
GSPNs. In P. Buchholz, editor, Proc. 8th Int. Workshop on Petri Nets and Performance
Models (PNPM’99), pages 22–31. IEEE Comp. Sc. Press., September 1999.

[CM99b] G. Ciardo and A. S. Miner. Efficient reachability set generation and storage using
decision diagrams. In H. Kleijn and S. Donatelli, editors, Proc. of the 20’th Int. Conf.
on Application and Theory of Petri Nets (ICATPN’99), Williamsburg (VA,USA), LNCS
1639, pages 6–25. Springer, June 1999.

[CMF+93] E. M. Clarke, K.L. McMillian, M. Fujita, J. Yang, and X. Zhao. Spectral Transforms
of Large Boolean Functions with Applications to Technology Mapping. In DAC’93
[DAC93], pages 54–60.

[CMS03] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), LNCS 2619, 2003.

[CT93] G. Ciardo and K. Trivedi. A decomposition approach for stochastic reward net models.
Performance Evaluation, 18(1):37–59, 1993.

[CT96] G. Ciardo and M. Tilgner. On the use of Kronecker operators for the solution of general-
ized stochastic Petri nets. Technical Report 96-35, Institute for Computer Applications
in Science and Engineering, 1996.

[CY05] G. Ciardo and A. Jinqing Yu. Saturation-Based Symbolic Reachability Analysis Using
Conjunctive and Disjunctive Partitioning. In Charme 2005, LNCS 3725, pages 146–161,
2005.

[DAC93] Proc. of the 30th Design Automation Conference (DAC), Dallas (Texas), USA, June
1993. ACM / IEEE.

[DB98] R. Drechsler and B. Becker. Graphen-basierte Funktionendarstellung. Leitfäden der
Informatik. B.G. Teubner, Stuttgart, 1998.

[DCC+02] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle, W.H. Sanders, and
P. Webster. The Moebius Framework and Its Implementation. IEEE Transactions on
Software Engineering, 28(10):956–969, 2002.

[DCKS02] S. Derisavi, T. Courtney, P. Kemper, and W. H. Sanders. The Moebius State-level
Abstract Functional Interface. In Proc. of Performance Tools 2002: 12th Int. Conf.
on Modelling Tools and Techniques for Computer and Communication System Perfor-
mance Evaluation, pages 31–50, 2002.

[DKK02] I. Davies, W.J. Knottenbelt, and P.S. Kritzinger. Symbolic Methods for the State Space
Exploration of GSPN Models. In Proc. of the 12th Int. Conf. on Modelling Techniques
and Tools (TOOLS 2002), pages 188–199. LNCS 2324, 2002.

[DKS03] S. Derisavi, P. Kemper, and W. H. Sanders. Symbolic State-space Exploration and
Numerical Analysis of State-sharing Composed Models. In Proc. Fourth Int. Conf. on
Numerical Solution of Markov Chains, pages 167–189, 2003.

[DKS05] S. Derisavi, P. Kemper, and W. H. Sanders. Lumping Matrix Diagram Representa-
tions of Markov Models. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN 2005), pages 742–751. IEEE Computer Society, 2005.

[EFT93] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking
in CCS. Distributed Computing, 6(3):155–164, 1993.

References 169

[FG88] Bennett L. Fox and Peter W. Glynn. Computing poisson probabilities. Commun. ACM,
31(4):440–445, 1988.

[FM97] M. Fujita and P. McGeer, editors. Formal Methods in System Design: Special Issue on
Multi-terminal Binary Decision Diagrams, 1997. Vol. 10, No. 2/3.

[Fra99] E. Frank. Codierung und numerische Analyse von Transitionssystemen unter Verwen-
dung von MTBDDs, Oktober 1999. Studienarbeit am IMMD VII, Universität Erlangen–
Nürnberg, (Student Thesis).

[Ger00] R. German. Performance Analysis of Communication Systems, Modeling with Non-
Markovian Stochastic Petri Nets. John Wiley & Sons, 2000.

[GLW00] G. Graf, M. Leberecht, and M. Walter. High Availability Commodity Computing -
A CompactPCI-System Evaluation. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, volume 4. CSREA
Press, 2000.

[God95] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems. An
Approach to the State-Explosion Problem. PhD thesis, Université de Liege, 1995.

[Göt94] N. Götz. Stochastische Prozessalgebren – Integration von funktionalem Entwurf und
Leistungsbewertung verteilter Systeme. PhD thesis, Friedrich-Alexander-Universität
Erlangen–Nürnberg, Erlangen (Germany), 1994.

[Hac76] M. Hack. Decidability Questions for Petri Nets. Technical report, Cambridge: Mas-
sachusetts Institute of Technology, 1976.

[Har06] S. Harwarth. Computation of transient state probabilities and implementing Möbius’
“state-level abstract functional interface” for the data structure ZDD, 2006. Master
Thesis. University of the Federal Armed Forces Munich (Germany).

[HBB99] B.R. Haverkort, A. Bell, and H. Bohnenkamp. On the Efficient Sequential and Dis-
tributed Generation of very Large Markov Chains from Stochastic Petri Nets. In Proc.
of IEEE Petri Nets and Performance Models, pages 12–21, 1999.

[Her98] H. Hermanns. Interactive Markov Chains. PhD thesis, Friedrich-Alexander-Universität
Erlangen—Nürnberg, Erlangen (Germany), 1998.

[HHK+98] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Compositional
performance modelling with the TIPPtool. In R. Puigjaner, N. Savino, and B. Serra,
editors, 10’th International Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation (TOOLS’98), LNCS 1469, pages 51–62. Springer Verkag,
September 1998.

[HHM98] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras - Between
LOTOS and Markov Chains. Computer Networks and ISDN Systems, 30 (9-10), pages
901–924, 1998.

[HHMR97] Holger Hermanns, Ulrich Herzog, Vassilis Mertsiotakis, and Michael Rettelbach. Ex-
ploiting stochastic process algebra achievements for generalized stochastic petri nets.
In PNPM ’97: Proceedings of the 6th International Workshop on Petri Nets and Per-
formance Models, page 183, Washington, DC, USA, 1997. IEEE Computer Society.

[Hil94a] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, Univer-
sity of Edinburgh, Edinburgh (UK), 1994.

[Hil94b] J. Hillston. The nature of synchronisation. In U. Herzog and M. Rettelbach, editors,
Proc. of the Second Int. Workshop on Process Algebras and Performance Modelling,
pages 51–70, Erlangen (Germany), 1994.

[HKN+03] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the use of
MTBDDs for performability analysis and verification of stochastic systems. Journal of
Logic and Algebraic Programming, 56(1-2):23–67, 2003.

[HL94] G. Horton and S.T. Leutenegger. A multi-level solution algorithm for steady-state
markov chains. In SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages 191–200, New
York, NY, USA, 1994. ACM Press.

[HMKS99] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary Decision Dia-
grams to Represent and Analyse Continuous Time Markov Chains. In Proc. of 3rd Int.
Workshop on Numerical Solution of Markov Chains, pages 188–207. Prensas Universi-
tarias de Zaragoza, 1999.

[HW06] M. Hammer and M. Weber. To Store or not to Store” Reloaded: Reclaiming Memory
on Demand. In Proceedings of Formal Methods on Industrial Critical Systems 2006,
LNCS 4346, 2006.

170 References

[Inta] Computing cluster at the Technical University Munich.
http://www.lrr.in.tum.de/Par/arch/infiniband/ClusterHW/cluster.html.

[Intb] LinuxRamLimits. http://www.spack.org/wiki/LinuxRamLimits.
[IT90] O. Ibe and K. Trivedi. Stochastic Petri net models of polling systems. IEEE Journal

on Selected Areas in Communications, 8(9):1649–1657, 1990.
[JHK03] David N. Jansen, Holger Hermanns, and Joost-Pieter Katoen. A QoS-Oriented Exten-

sion of UML Statecharts. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,
UML 2003 - The Unified Modeling Language, Modeling Languages and Applications, 6th
International Conference, San Francisco, CA, USA, October 20-24, 2003, Proceedings,
volume 2863 of Lecture Notes in Computer Science, pages 76–91. Springer, 2003.

[KL04] M. Kuntz and K. Lampka. Probabilistic methods in state space analysis. In Baier et al.
[BHH+04], pages 339–383.

[Kno99] W.J. Knottenbelt. Parallel Performance Analysis of Large Markov Models. PhD thesis,
University of London, Imperial College, Dept. of Computing, 1999.

[KS02] M. Kuntz and M. Siegle. Deriving Symbolic Representations from Stochastic Process
Algebras. In Process Algebra and Probabilistic Methods (PAPM-PROBMIV’02), LNCS
2399, pages 1–22, 2002.

[KSW04] M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance and Dependability Evalu-
ation with the Tool CASPA. In Proc. of EPEW, pages 293–307. Springer, LNCS 3236,
2004.

[KVBSV98] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued decision
diagrams: theory and applications. Multiple-Valued Logic, 4(1-2):9–62, 1998.

[Lam00] K. Lampka. A stochastic process algebra interface for DNAmaca, April 2000. Student
Thesis. IMMD VII, Friedrich-Alexander Universität Erlangen–Nürnberg.

[Lee59] C.Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell
Systems Technical Journal, 38:985–999, July 1959.

[Lin98] C. Lindemann. Performance Modelling with Deterministic and Stochastic Petri Nets.
Wiley and Sons, 1998.

[LS02] K. Lampka and M. Siegle. Symbolic Composition within the Moebius Framework. In
Proc. of the 2nd MMB Workshop, pages 63–74, September 2002. Forschungsbericht der
Universität Hamburg Fachbereich Informatik.

[LS03a] K. Lampka and M. Siegle. MTBDD-based activity-local state graph generation. In Sixth
Int. Workshop on Performability Modeling of Computer and Communication Systems
(PMCCS6), pages 15–18, September 2003.

[LS03b] K. Lampka and M. Siegle. Symbolic Activity-Local State Graph Generation in the Con-
text of Moebius. In Proc. of the Satelite Workshop on Stochastic Petri Nets and related
Formalisms at the 30’th Int. Colloquium on Automata, Languages and Programming,
Eindhoven, Netherlands, June 2003.

[LS06a] K. Lampka and M. Siegle. Activity-Local State Graph Generation for High-Level
Stochastic Models. In Meassuring, Modelling, and Evaluation of Systems 2006, pages
245–264, April 2006.

[LS06b] K. Lampka and M. Siegle. Analysis of Markov Reward Models using Zero-supressed
Multi-terminal decision diagramms. In Proceedings of VALUETOOLS 2006 (CD-
edition), October 2006.

[LSW06] K. Lampka, M. Siegle, and M. Walter. An easy-to-use, efficient tool-chain to analyze
the availability of telecommunication equipment. In Proceedings of Formal Methods on
Industrial Critical Systems 2006, LNCS 4346, pages 35–50, 2006.

[Meh04] R. Mehmood. Disk-based techniques for efficient solution of large Markov chains. PhD
thesis, University of Birmingham, University of Birmingham (U.K.), October 2004.

[Min93] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems.
In DAC’93 [DAC93], pages 272–277.

[Min96] S. Minato. Graph-based Representation of discrete Functions, pages 1–28. Volume 1 of
Sasao and Fujita [SF96], 1996.

[Min01] A. Miner. Efficient solution of GSPNs using Canonical Matrix Diagrams. In R. Ger-
man and B. Haverkort, editors, Proc. of the 9’th Int. Workshop on Petri Nets and
Performance Models (PNPM’01), pages 101–110, Aachen, Germany, September 2001.

[Min04] A. Miner. Saturation for a general class of models. In Proc. of the First Int. Conf. on
the Quantitative Evaluation of Systems (QEST’04), pages 282–291. IEEE Computer
Society Press, 2004.

References 171

[MP04] A. Miner and D. Parker. Symbolic Representations and Analysis of Large State Spaces.
In Baier et al. [BHH+04], pages 296–338.

[MS91] J. F. Meyer and W. H. Sanders. A unified Approach for specifying Measures of Per-
formance, Dependability, and Performability. In Dependable Computing for Critical
Applications, Vol. 4, pages 215–237. Springer-Verlag, 1991.

[MS92] L. M. Malhis and W. H. Sanders. Dependability evaluation using composed SAN-based
reward models. Journal of Parallel and Distributed Computing, 15:238–254, 1992.

[MT98] Ch. Meinel and Th. Theobald. Algorithms and Data Structures in VLSI-Design.
Springer, Berlin, New York, et. al., 1998.

[Oba98] W.D. Obal II. Measure-adaptive State-Space Construction Methods. PhD thesis, Uni-
versity of Arizona, Arizona (USA), 1998.

[Oss06] J. Ossowski. The JINC BDD package. September 2006.
[Par02] D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems. PhD

thesis, University of Birmingham, Birmingham (U.K.), 2002.
[PC98] E. Pastor and J. Cortadella. Efficient Encoding Schemes for Symbolic Analysis of Petri

Nets. In In Proc. of Design, Automation and Test in Europe 1998, pages 790–795,
February 1998.

[Pla85] Brigitte Plateau. On the stochastic structure of parallelism and synchronization mod-
els for distributed algorithms. In SIGMETRICS ’85: Proceedings of the 1985 ACM
SIGMETRICS conference on Measurement and modeling of computer systems, pages
147–154, New York, NY, USA, 1985. ACM Press.

[PRC97] E. Pastor, O. Roig, and J. Cortadella. Symbolic Petri Net Analysis using Boolean
Manipulation, 1997. Technical Report of Departament Arquitectura de Computadors
(UPC) DAC/UPC Report No. 97/8.

[PRCB94] E. Pastor, O. Roig, J. Cortadella, and R.M. Badia. Petri Net Analysis Using Boolean
Manipulation. In R. Valette, editor, Proc. of the 15’th Int. Conf. on Application and
Theory of Petri Nets (APN’94), Zaragosa, Spain, LNCS 815, pages 416–435. Springer,
June 1994.

[Pri] PRISM web page. http://www.cs.bham.ac.uk/∼dxp/prism/.
[QES05] Second International Conference on the Quantitative Evaluation of Systems (QEST’05),

Torino (Italy), September 2005. IEEE Computer Society.
[San88] W.H. Sanders. Construction and solution of performability models based on stochastic

activity networks. PhD thesis, University of Michigan, 1988.
[Sas96] T. Sasao. Ternary Decision Diagrams and their Applications, pages 268–292. Volume 1

of Sasao and Fujita [SF96], 1996.
[SF96] T. Sasao and M. Fujita, editors. Representations of Discrete Functions, volume 1.

Kluwer Academic Publishers, Dordrecht The Netherlands, 1996.
[Sha00] C.S. Shannon. Eine symbolische Analyse von Relaisschaltkreisen. Verlag Brinkmann

+ Bose, 2000. The article originally appeared with the title: A Symbolic Analysis of
Switching Circuits in Transactions AIEE, 57 (1938), 713.

[Sie95] M. Siegle. Beschreibung und Analyse von Markovmodellen mit großem Zustandsraum.
PhD thesis, Friedrich-Alexander-Universität Erlangen–Nürnberg, Erlangen (Germany),
1995.

[Sie98] M. Siegle. Compact representation of large performability models based on extended
BDDs. In Fourth Int. Workshop on Performability Modeling of Computer and Com-
munication Systems (PMCCS4), pages 77–80, Williamsburg, VA, September 1998.

[Sie01] M. Siegle. Advances in model representation. In Luca de Alfaro and Stephen Gilmore,
editors, Proc. of the Joint Int. Workshop, PAPM-PROBMIV 2001, Aachen (Germany),
LNCS 2165, pages 1–22. Springer, September 2001.

[Sie02] M. Siegle. Behaviour analysis of communication systems: Compositional modelling,
compact representation and analysis of performability properties. Shaker Verlag,
Aachen, 2002.

[Sma] SMART web page. http://www.cs.ucr.edu/∼ciardo/SMART.
[Som98] F. Somenzi. CUDD: Colorado University Decision Diagram Package, Release 2.3.0.

User’s Manual and Programmer’s Manual, September 1998.
[SS03] R. Sangireddy and A.K. Somani. High-Speed IP Routing With Binary Decision Dia-

grams based HW Address Lookup-Engine. IEEE Journal on Selected Areas in Com-
munications, 21(4):513–521, 2003.

[Ste94] W. J. Stewart. An Introduction to the solution of Markov Chains. Princeton University
Press, Princeton, NJ (USA), 1994.

172 References

[Web02] M. Weber. Eine Komponente zur effizienten Steuerung des reduzierten Erreichbarkeits-
graphen von stochastischen Petrinetzen, 2002. Diplomarbeit angefertigt am IMMD VII,
Friedrich-Alexander Universität Erlangen-Nürnberg, (Master Thesis).

[Wei05] W. Weiss. Parallele Erzeugung symbolischer Repräsentation von Zustandsgraphen auf
der Basis von “Zero-suppressed” Multi-terminalen Binären Entscheidungsdiagrammen,
March 2005. Diplomarbeit angefertigt am IMMD VII, Friedrich-Alexander Universität
Erlangen–Nürnberg (Master Thesis).

[WL91] M. Woodside and Y. Li. Performance Petri net analysis of communications protocol
software by delay-equivalent aggregation. In In Proc. of the 4th Int. Workshop on Petri
Nets and Performance Models (PNPM), pages 64–73, 1991.

[WT05] M. Walter and C. Trinitis. OpenSESAME: Simple but Extensive Structured Availability
Modeling Environment. In QEST’93 [QES05], pages 253– 254.

[Zim05] D. Zimmermann. Implementierung von Verfahren zur Lösung dünn besetzter linearer
Gleichungssysteme auf Basis von Zero-suppressed Multi-terminalen Binären Entschei-
dungsdiagramme, 2005. Diplomarbeit angefertigt an der Universität der Bundeswehr
Neubiberg (Germany) (Master Thesis).

German Translations

173

Ein symbolischer Ansatz für die
Zustandsgraph-basierte Analyse von
hochsprachlichen Markov Reward
Modellen

Deutsche Übersetzung ausgewählter Teile,

gemäss Promotionsordnung der Technischen Fakultät

der Universität Erlangen-Nürnberg

vorgelegt von
Kai Matthias Lampka

Erlangen, März 2007

Inhaltsverzeichnis des deutschsprachigen Teils

1 Übersetzung der Kurzfassung . 1

2 Übersetzung des Inhaltsverzeichnisses . 3

3 Übersetzung des Kapitels “Introduction” (Einführung) 7
3.1 Motivation . 7
3.2 Zustandsraumexplosionsproblem und verwandte Ansätze 8
3.3 Stand der symbolischen Techniken . 11
3.4 Eigener Beitrag . 13
3.5 Aufbau der Arbeit . 14

4 Übersetzung des Kapitels “Conclusion” (Schlussbetrachtung) 15
4.1 Zusammenfassung . 15

4.1.1 Zero-suppressed multi-terminale BDDs . 15
4.1.2 Aktivitäts/Reward-lokales Schema . 16
4.1.3 Berechnung der Zustandswahrscheinlichkeiten . 17
4.1.4 Berechnung der Performabilitätsmaße . 18

4.2 Vorteile von pZDDs und dem Aktivitäts/Reward-lokalen Schema 18
4.3 Zukünftige Arbeiten . 19

I

1

Übersetzung der Kurzfassung

Markov Reward Modelle, wie sie in dieser Arbeit behandelt werden, sind kompakt durch
Markovsche Erweiterungen bekannter hochsprachlicher Modellbeschreibungsformalismen
beschrieben. Um mit numerischen Verfahren die “Performabilitätmaße”, das sind Leistungs-
und Verfügbarkeitsmaße, von hochsprachlich spezifizierten Modellen zu berechnen, müssen
letztere in eine Repräsentationsform niederer Stufe gebracht werden, wobei die im hoch-
sprachlichen Modell enthaltene Nebenläufigkeit explizit ausgedrückt wird. Diese Transfor-
mation, die ein hochsprachliches Modell auf ein Zustands/Transitionssystem abbildet, allg.
auch als Zustandsgraph (ZG) bezeichnet, kann deswegen zu einem exponentiellen Wachstum
in der Anzahl der Systemzustände führen. Dieses Problem ist als das sog. Zustandsraumex-
plosionsproblem wohl bekannt. Entscheidungsdiagramme (DD) haben sich als sehr nützlich
erwiesen, wenn es um die Repräsentation extrem großer ZG geht. Mit ihrer Hilfe lassen
sich nun größere und komplexere Modelle und somit auch Systeme analysieren. Um die
zeitgenössischen symbolischen Techniken jedoch anwenden zu können, müssen die zu analy-
sierenden Modelle entweder eine bestimmte kompositionelle Struktur besitzen und/oder ein
bestimmter Modellbeschreibungsformalismus verwendet worden sein. Diese Einschränkun-
gen werden in dieser Arbeit beseitigt, wobei jedoch die Anzahl der Zustände, deren Wahr-
scheinlichkeit es zu berechnen gilt, der limitierende Faktor bei der Analyse bleibt.

Zur symbolischen Darstellung (stochastischer) ZG erweitert diese Arbeit “zero-suppressed”
binäre Entscheidungsdiagramme zu “zero-suppressed” multi-terminalen binären Entschei-
dungsdiagrammen (ZDD). Um die korrekte Pseudo-Boolesche Funktion, die durch den Gra-
phen eines ZDDs dargestellt werden soll, abzuleiten, muß die Menge der Funktionsvariablen
des ZDDs bekannt sein. Als Konsequenz ergibt sich, dass i. Allg. die innerhalb einer ge-
meinsamen Umgebung, wie sie durch bekannte DD-Programmpakete bereitgestellt werden,
allokierten ZDD-Knoten ihre Eindeutigkeit verlieren. Um dieses Problem zu lösen entwickelt
diese Arbeit das Konzept der partiell gemeinsamen ZDDs (pZDDs), welches ZDD-Knoten um
Funktionsvariablen erweitert. Es wird gezeigt, dass Entscheidungsdiagramme diesen Typs
eine kanonische Form der Darstellung von Pseudo-Booleschen Funktionen sind. Um effizient
mit pZDDs arbeiten zu können, wird ein breites Spektrum an (symbolischen) Algorithmen
entwickelt. Diese Algorithmen sind so konzipiert, dass sie eine Implementierung von pZDDs
in gewöhnlichen, gemeinsamen DD-Umgebungen erlauben.
Besitzt ein Modellbeschreibungsformalismus keine symbolische Semantik, so können symbo-
lische Repräsentationen der annotierten Zustands/Transitionssysteme seiner hochsprachli-
chen Modellbeschreibungen nur dadurch gewonnen werden, dass man die hochsprachlichen
Systemmodelle explizit ausführt. Um dies speicher- und zeiteffizient zu tun, verwendet die-
se Arbeit nur lokale Informationen bzgl. der hochsprachlichen Modellkonstrukte. Der so
neu entstandene semi-symbolische Ansatz, den wir als Aktivitäts/Reward-lokalen Ansatz
bezeichnen, umfasst nun die folgenden vier Schritte: (a) Das Aktivitäts-lokale Schema zur
Generierung der symbolischen Repräsentation des ZG eines hochsprachlichen Modells. Da
dieser Ansatz nicht alle Systemzustände explizit erzeugt, ist die Verwendung eines symboli-
schen Kompositionsschemas nötig. Das hier entwickelte Kompositionsschema erzeugt dabei
den potentiellen ZG, seine Einschränkung auf erreichbare Elemente kann allerdings effizient
mittels einer symbolischen Erreichbarkeitsanalyse herbeigeführt werden, wobei diese Arbeit
einen neuen, “quasi” tiefe-suchenden Algorithmus einführt. (b) Das Reward-lokale Schema
um symbolische Repräsentationen der Rewardfunktionen des jeweiligen hochsprachlichen
Modells zu erzeugen. Analog zur obigen Vorgehensweise werden dabei die Rewardfunktio-
nen explizit ausgeführt, um die Rewardwerte der Zustände und Transitionen zu bestimmen.
Um die Anzahl der expliziten Zustandsbesuche gering zu halten, werden jedoch erneut nur

1

2 1 Übersetzung der Kurzfassung

lokale Informationen verwendet. (c) Zur Berechnung der Zustandswahrscheinlichkeiten führt
diese Arbeit eine ZDD-basierte Variante des hybriden Lösungsverfahrens, wie es im Kon-
text anderer symbolischer Datentypen entwickelt wurde, ein. (d) Auf Basis der symbolisch
dargestellten Rewardfunktionen und den Zustandswahrscheinlichkeiten, ist man nun in der
Lage, die durch den Benutzer spezifizierten Leistungsmaße des hochsprachlichen Modells zu
bestimmen, wobei dies mittels eines neuen symbolischen Algorithmus’ realisiert wird.

Da der Aktivitäts/Reward-lokale Ansatz auf einer expliziten Ausführung des hochsprach-
lichen Modells beruht, die in der Praxis wahrscheinlich nur partiell durchgeführt werden
muss, ist er nicht auf einen bestimmten Modellbeschreibungsformalismus beschränkt. Ba-
sierend auf einem neuen symbolischen Kompositionsschema und im Gegensatz zu anderen
symbolischen Ansätzen, ist er auch dann einsetzbar, wenn die hochsprachlichen Modelle
weder kompositionell konstruiert, noch eine dekomponierbare Struktur bestimmter Art be-
sitzen. Diese Arbeit entwickelt somit nicht nur einen neuen Typ von Entscheidungsdiagramm
und Algorithmen zu seiner effizienten Manipulation, sondern auch einen universellen Ansatz
zur ZG-basierten Analyse von hochsprachlichen Markov Reward Modellen mit sehr großen
ZG.

2

Übersetzung des Inhaltsverzeichnisses

Verzeichnis der Abbildungen . IV

Verzeichnis der Algorithmen . V

Verzeichnis der Tabellen . VI

1 Einleitung . 1
1.1 Motivation . 1
1.2 Zustandsraumexplosionsproblem und verwandte Ansätze 2
1.3 Stand der symbolischen Techniken . 4
1.4 Eigener Beitrag . 7
1.5 Aufbau der Arbeit . 7

2 Hintergrund . 9
2.1 Aufbau des Kapitels . 9
2.2 Markov Theorie . 9

2.2.1 Markov Reward Modelle mit kontinuierlicher Zeit (MRM) 9
2.2.2 Numerische Lösung von MRM . 11
2.2.3 Reduktionstechniken . 16
2.2.4 Zustands/Transitionssysteme . 19

2.3 Hochsprachliche Markov Reward Modelle . 20
2.3.1 Hochsprachliche Modellbeschreibungstechniken . 21
2.3.2 Spezifikation der Performabilitätsmaße . 22
2.3.3 Komposition hochsprachlicher Modellbeschreibungen 23
2.3.4 Abbildung hochsprachlicher Modelle auf MRM . 24

2.4 Nicht-kompositionelle Konstruktion des Zustandsgraphen (ZG) 24
2.5 Kompositionelle Konstruktion des Zustandsgraphen . 25

2.5.1 Grundlagen . 26
2.5.2 Komposition des ZG im Falle der reinen Verschränkung 26
2.5.3 Komposition des ZG im Falle der Aktivitätssynchronisation 27
2.5.4 Komposition des ZG im Falle von gemeinsamen Zustandsvariablen . . . 28
2.5.4 Komposition des ZG im Falle von replizierten Submodellen 29
2.5.5 Beschränkung Kronecker-Operator basierter Kompositionsschemata . . 29

3 Zero-suppressed multi-terminale BDDs:
Konzepte, Algorithmen und Anwendung . 31
3.1 Aufbau des Kapitels . 31
3.2 Binäre Entscheidungsdiagramme und Erweiterungen . 32

3.2.1 Binäre Entscheidungsdiagramme (BDDs) . 32
3.2.2 Zero-suppressed BDDs (z-BDDs) . 37
3.2.3 Multi-terminale BDDs (ADDs) . 38
3.2.4 Zero-suppressed multi-terminale BDDs (ZDDs) . 39

3.3 Partiell gemeinsame ZDDs (pZDDs) . 40
3.3.1 Definitionen . 41
3.3.2 Kanonizität von pZDDs . 43

3.4 Operationen auf pZDDs . 45
3.4.1 Vorbemerkung . 45

3

4 Übersetzung des Inhaltsverzeichnisses

3.4.2 Anwendung binärer Operatoren auf pZDDs . 46
3.4.3 Varianten des pZApply-Algorithmus . 52
3.4.4 Umbenennung von Variablen . 54
3.4.5 Der pZRestrict-Operator . 54
3.4.6 Der pZAbstract-Operator . 54

3.5 Anwendungen . 56
3.5.1 ZDD-basierte Darstellung von Mengen und Relationen 57
3.5.2 ZDD-basierte Darstellung von Matrizen . 59
3.5.3 Erweiterung von ZDDs zur effizienten Berechnung von Matrix-

Vektor-Produkten . 66
3.5.4 Über DD-basierte Matrixdarstellungen hinausgehendes Konzept 69

3.6 Vergleichbare Arbeiten und eigener Beitrag . 69

4 Das Aktivitäts/Reward-lokale Schema: Symbolische, Zustandsgraph-
basierte Analyse von hochsprachlichen Markov Reward Modellen 73
4.1 Aufbau des Kapitels . 73
4.2 Modellwelt . 74

4.2.1 Statische Eigenschaften . 74
4.2.2 Dynamische Eigenschaften . 75
4.2.3 Abgeleitete Eigenschaften . 81
4.2.4 Beschränktheit der Modelle . 86

4.3 Das Aktivitäts-lokale Schema:
Generierung symbolischer Repräsentationen von Zustandsgraphen 86
4.3.1 Hauptroutine . 86
4.3.2 Explizite Zustandsgraphgenerierung und -kodierung 88
4.3.3 Symbolische Zustandsgraphkomposition . 89
4.3.4 Symbolische Erreichbarkeitsanalyse . 89
4.3.5 Re-Initialisierungsschema . 91
4.3.6 Beispiel . 91

4.4 Vollständigkeit und Korrektheit des Schemas . 94
4.4.1 Generierungsschema . 94
4.4.2 Kompositionsschema . 96
4.4.3 Erreichbarkeitsanalyse . 98

4.5 Berechnung der Performabilitätsmaße . 99
4.5.1 Berechnung der Zustandswahrscheinlichkeiten . 100
4.5.2 Das Reward-lokale Schema:

Generierung symbolischer Repräsentationen von Rewardfunktionen . . 100
4.5.3 Berechnung der Momente von Performanzvariablen 102

4.6 Erweiterung des grundlegenden Aktivitäts-lokalen Schemas 103
4.6.1 Behandlung von explizit modellierten Symmetrien 103
4.6.2 Behandlung von instantanen Aktivitäten . 106

4.7 Verwandte Arbeiten und eigener Beitrag . 108
4.7.1 Voll-symbolische Techniken . 111
4.7.2 Semi-symbolische Techniken . 112
4.7.3 Semi-symbolische, kompositionelle

und submodel-interdependente Verfahren . 114
4.7.4 Symbolische Algorithmen zur Generierung der Menge der

erreichbaren Zustände . 116
4.8 Vorab veröffentlichtes Material . 117

Übersetzung des Inhaltsverzeichnisses 5

5 Empirische Bewertung . 119
5.1 Aufbau des Kapitels . 119
5.2 Vorbemerkung . 120

5.2.1 Verwendete “Benchmark”-Modelle . 121
5.2.2 Darstellung der gesammelten Laufzeitdaten . 124
5.2.3 Plattform . 124
5.2.4 Vergleiche . 124

5.3 Bewertung des Aktivitäts-lokalen Zustandsgraph-Generierungsschemas 126
5.3.1 Vergleich von ADD- und ZDD-basierten Zustandsgraph-Generatoren . 126
5.3.2 Bewertung des neuen symbolischen Algorithmus zur

Erreichbarkeitsanalyse . 128
5.3.3 Signifikanz der Variablenordnung . 130

5.4 Vergleich der symbolischen Zustandsgraph-Generierungstechniken 131
5.4.1 Vergleich mit voll-symbolischen Methoden . 131
5.4.2 Vergleich mit anderen semi-symbolischen Methoden 137

5.5 Bewertung der ZDD-basierten Löser . 142
5.5.1 Vergleich ADD- und ZDD-basierter numerischer Löser 142
5.5.2 Wahl der Block- und “Sparse”-Ebene . 144
5.5.3 Signifikanz der Variablenordnung . 146

5.6 Vergleich mit anderen Lösern . 147
5.6.1 Vergleich mit den “Sparse-”Matrix-basierten Lösern von Möbius 147
5.6.2 Vergleich mit den Lösern von Smart . 149

5.7 Fallstudie: Telekommunikations-Diensterbringungssystem 151
5.7.1 Systembeschreibung . 151
5.7.2 Modellbewertung . 152

5.8 Vorab veröffentlichtes Material . 154

6 Schlußbetrachtung . 155
6.1 Zusammenfassung . 155

6.1.1 Zero-suppressed multi-terminale BDDs . 155
6.1.2 Aktivitäts/Reward-lokales Schema . 156
6.1.3 Berechnung der Zustandswahrscheinlichkeiten . 157
6.1.4 Berechnung der Performabilitätsmaße . 157

6.2 Vorteile von pZDDs und dem Aktivitäts/Reward-lokalen Schema 158
6.3 Zukünftige Arbeiten . 159

A Anhang: Mathematischer Hintergrund . 161
A.1 Boolesche Funktionen . 161
A.2 Pseudo-Boolesche Funktionen . 162
A.3 Kronecker-Operatoren . 162
A.4 Notation des Modus ponens . 163
A.5 Pseudo-Code und verwandte Notation . 163

B Anhang: Algorithmen für BDDs und abgeleitete Typen 164

C Anhang: Algorithmen zur Handhabung von
Modellen mit instantanen Aktivitäten . 165

Literaturverzeichnis . 167

Deutsche Übersetzungen . 173

3

Übersetzung des Kapitels “Introduction” (Einführung)

3.1 Motivation

Es ist allgemein bekannt, dass komplexe Hardware- und Softwaresysteme Teil des alltäglichen
Lebens geworden sind. Da man zunehmend von diesen Systemen abhängig wird, ist es wich-
tig sicherzustellen, dass diese korrekt arbeiten und hohen Ansprüchen bzgl. Funktionalität,
Leistung und Verfügbarkeit genügen. Oftmals ist es jedoch schwer oder gar nicht möglich,
die Daten zu erheben, die man zur Bestimmung der Leistungsfähigkeit und Verfügbarkeit
(= Performabilität) eines Systems benötigt, so dass Systemmessungen und das Systemte-
sten als Evaluationsmethode nicht in Betracht gezogen werden können. In solchen Fällen
ist man dann darauf beschränkt, ein (mathematisches) Systemmodell zu analysieren und
nicht das eigentliche System selbst. Der Vorteil einer solchen (formalen) Vorgehensweise ist
leicht ersichtlich: Die modellbasierte Analyse erlaubt es, die Funktionalität und das quanti-
tative Verhalten eines nicht notwendigerweise existierenden Systems zu bestimmen; so dass
Korrektheit und Performabilität eines Systementwurfs bereits in einer frühen (Weiter-) Ent-
wicklungsphase überprüft und somit kostenintensive Fehlentwicklungen vermieden werden
können.

Annotierte Zustands/Transitionssysteme (ST-Systeme) bilden einen adäquaten Rahmen um
komplexes Systemverhalten formal zu beschreiben. Jedoch sind heutige Hard- und Softwa-
resysteme oftmals parallel und sogar verteilt, so dass eine detaillierte Systembeschreibung
als ST-System durch die Größe eines solchen behindert, wenn nicht schlichtweg unmöglich
wird. Formale Beschreibungsmethoden, wie sie in den letzten Dekaden entwickelt wurden,
haben gezeigt, dass sie mächtige Werkzeuge zum Erstellen kompakter Systembeschreibun-
gen sind. Lässt man nun noch ein stochastisches Konzept der Zeit und die Beschreibung
von Kosten und/oder Erträgen in die Modellbeschreibung einfließen, so erhält man das,
was man gemeinhin als stochastisches hochsprachliches Performabilitätsmodell bezeichnet.
In Abhängigkeit des erstellten hochsprachlichen Modells, der verwendeten hochsprachlichen
beschreibungdmethode, und der Wahrscheinlichkeitsverteilung zur Beschreibung der zeitl.
Verzögerung zwischen den Folgezuständen, kann man die gewünschten Maße entweder ana-
lytisch/numerisch oder empirisch bestimmen. Die Bestimmung von Maßen mittels einer
analytischen Herangehensweise, d.h. durch Auswertung eines geschlossenen Ausdrucks, ist
im wesentlichen auf bestimmte Klassen von Warteschlangennetzen beschränkt. Die empi-
rische oder numerische Herangehensweise hingegen, erzwingt die partielle oder komplette
Erzeugung des Zustandsgraphen des zu analysierenden Modells. Im Gegensatz zu der empi-
rischen Methode, wie sie durch die System(modell)simulation verwirklicht wird und bei der
nur Spuren des Systemverhaltens erzeugt werden, erlauben hochsprachliche Markov Reward
Modelle eine exhaustive Analyse des Systemverhaltens. Der Vorteil der exhaustiven Analy-
se durch vollständige Erzeugung des zugrundeliegenden ST-Systems geht jedoch mit dem
Nachteil einher, dass zeitlich verzögert Zustandsübergänge innerhalb des Modells nur nach
Ablauf einer Zeitspanne auftreten können, deren Länge durch eine exponentiell verteilte Zu-
fallsvariable beschrieben wird.

Markov Reward Modelle, wie sie in dieser Arbeit behandelt werden, sind kompakt durch
Markovsche Erweiterungen von bekannten hochsprachlichen Modellbeschreibungsmethoden,
wie bspw. durch stochastische Petri-Netze (SPN), stochastische Aktivitätsnetze (SAN) und
stochastische Prozessalgebren (SPA), um nur einige zu nennen, beschrieben. Um ein beliebi-
ges Modell dieser Art analysieren zu können, muss es zunächst in ein endliches, stochastisches
ST-System transformiert werden, wobei dieses auch als niedere Darstellungsform oder als
Zustandsgraphen bezeichnet wird. Das ST-System kann nun direkt als Markov Reward Mo-

7

8 3 Übersetzung des Kapitels “Introduction” (Einführung)

dell interpretiert werden (im mathematischen Sinne). Die Theorie der Modelle dieser Art ist
wohl bekannt, und sie erlaubt die Verteilung der Wahrscheinlichkeiten auf der Menge von Sy-
stemzuständen numerisch zu berechnen, wobei man die gewünschten Performabilitätsmaße
durch Aggregation der Zustandswahrscheinlichkeiten erhält.

3.2 Zustandsraumexplosionsproblem und verwandte Ansätze

Der erste Schritt zur Analyse eines hochsprachlichen Markov Reward Modells ist die Gene-
rierung des Zustandsgraphen. Bei diesem Schritt ergibt sich das bekannte Zustandsraumex-
plosionsproblem.

Zustandsraumexplosion
Die Nebenläufigkeit von Aktivitäten muss im Fall der Modelltransformation explizit aus-
gedrückt werden. Die sog. “interleaving” Semantik, wie sie im Kontext von hochsprachli-
chen Standardmarkovmodellbeschreibungsmethoden Verwendung findet, ergibt eine expli-
zite Auffaltung aller möglichen Exekutionsfolgen von Aktivitäten, wenn der entsprechende
(stochastische) Zustandsgraph (ZG) erzeugt wird. Dies kann folglich zu einem exponentiel-
len Anwachsen des ZG in der Anzahl der Systemzustände führen. Dieses Phänomen wird
hinlänglich als Zustandsraumexplosionsproblem bezeichnet. Wie unten dargestellt, behin-
dert es oft nicht nur eine Zustandsgraph-basierte Analyse von Systemen, sondern macht
diese schier unmöglich.

Traditionelle Vorgehensweise zur ZG-Exploration
Die traditionelle Technik zur Erzeugung aller erreichbaren Zustände eines modellierten Sy-
stems, nennt man exhaustive Zustandsraumexploration, wobei im Folgendem das Besuchen
einzelner Zustände als explizite Exploration bezeichnet werden soll. Die Zuständsmenge,
deren Elemente man vom initialen Zustand ausgehend besuchen kann, nennt man die Men-
ge der erreichbaren Zustände. Die Datenstrukturen, die man benötigt, um alle erreichba-
ren Zustände zu generieren sind ein Pufferspeicher (Zustandspuffer) und ein strukturierter
Speicherbereich (Zustandstabelle). Letzterer speichert die entdeckten Zustände und ersterer
die entdeckten aber noch nicht explorierten. Ein Zustand wird als exploriert betrachtet, wenn
alle seine Folgezustände bestimmt wurden. Da die Zugriffe auf den Zustandspuffer struktu-
riert erfolgen, können die derzeit nicht benutzten Einträge (Zustände) auf Sekundärspeicher
ausgelagert werden. Somit und im Gegensatz zur Zustandstabelle, ist der Zustandspuffer
nicht der Flaschenhals der exhaustiven und expliziten Zustandsraumexploration. Die Zu-
standstabelle dient als Datenbank, deren Sinn darin besteht zu entscheiden, ob ein Zustand
erstmalig erreicht wurde oder nicht. Da die Zugriffe auf die Zustandstabelle unstrukturiert
erfolgen, und Plattenzugriffe rechenaufwändig sind, ist die Anzahl der zu explorierenden
Zustände durch den verfügbaren RAM-Speicher beschränkt. Als Konsequenz ist die Größe
und Komplexität der zu analysierenden Systeme in der Praxis stark limitiert.
Zur Veranschaulichung denke man bspw. an einen ZG, dessen Zustandsdeskriptoren aus
jeweils 103 Zählern bestehen, wobei ein jeder max. den Wert 256 annehmen kann. Somit
benötigt die Speicherung eines einzigen Zustands ca. 0.977 KByte und man braucht somit
für 106 verschiedene Zustände schon ca. 0.93 GByte an RAM-Speicher. Aber nicht genug,
das Auffinden und evtl. Abspeichern von Zuständen, wobei letzteres auch die Auflösung von
Hashkollisionen beinhaltet, induziert außerdem einen nicht ignorierbaren Laufzeitaufwand.
Zur Veranschaulichung nehme man einmal an, dass es genug Speicher gibt, sagen wir für 108

Zustände. Bei einer durchschnittlichen Verarbeitungszeit von 1.3 · 10−4 Sek.1 pro Zustand,
muss man demnach ca. 3.6 Std. warten, bis der ZG eines hochsprachlichen Modells exploriert
wurde.
1 Dies ist die durchschnittl. CPU-Zeit wie sie bspw. durch das SPN-basierte Tool DSPNexpress,

verbraucht wurde um ca. 106 Systemzustände zu erzeugen und abzuspeichern, wobei eine 64-bit
AMD Opteron Architektur verwendet wurde.

3.2 Zustandsraumexplosionsproblem und verwandte Ansätze 9

Zustandsraumexplosionsproblem
Klassifikation der Ansätze zum

Partielle Speicherung
des Zustandsraumes

raumspeicherung
Volle Zustands−

Exhaustive Exploration Partielle Exploration

Zufällige Selektion Reduktionstechniken

Kompositionalität)

symbolische Datentypen

grosser Zustandsräume
Ansätze zur Generierung Ansätze zur Handhabung

grosser Zustandsgraphen

Reduktionstechniken

HW basierte und/oder
verteilte Methoden

(Ausnutzung von

Techniken, die auf

basieren
symbolischen Datentypen HW basierte und/oder

verteilte Methoden

Prozeduren
semi−symbolische

Prozeduren
voll−symbolische

Prozeduren
Explizit−exhaustive

Implizite Darstellung

Abb. 3.1: Klassifizerungsschema der Ansätze zum Zustandsraumexplosionsproblem

Traditionelle Technik zur Speicherungs des ZG
Sind alle Zustände und alle Transitionen zwischen diesen erzeugt, werden auf Basis der Tran-
sitionsratenmatrix die Zustandswahrscheinlichkeiten numerisch berechnet. Jedoch kann die
Grösse und Struktur des stochastischen ZG, dessen Transitionsratenmatrix im sog. “sparse
matrix” Format abgespeichert wird, einen nicht ignorierbaren Speicherbedarf an den Tag
legen. So verbraucht bspw. der ZG des bekannten “Kanban Manufacturing” Systems und
des “Flexible Manufacturing” Systems (siehe engl. Teil: Kapitel 5) bei ∼ 2.5E6 und ∼ 4.5E6
Systemzuständen schon ∼ 380 und ∼ 500 MBytes zur Abspeicherung der jeweiligen Tran-
sitionsratenmatrix im “sparse matrix” Format.2

Aus diesen Gründen sind derzeitige Systemanalysen unter Verwendung der traditionellen
Techniken auf Modelle mit deutlich weniger als 107 Systemzuständen beschränkt.

Klassifikation der Ansätze
Um das Problem, das sich aus der Zustandsraumexplosion auf der einen Seite und aus der
Beschränkung der Verfügbarkeit von Speicher auf der anderen Seite ergibt, in den Griff zu
bekommen, sind verschiedenste Ansätze entwickelt worden. Eine Klassifikation existierender
Ansätze ist in Abb. 3.1 dargestellt, wobei wir uns auf Ansätze, die im Umfeld von hoch-
sprachlichen Markov Modellen entwickelt wurden, konzentrieren. Auf der obersten Ebene
kann man zwischen Ansätzen unterscheiden, die eine partielle und eine exhaustive Zustands-
raumsuche durchführen. Die Methoden der ersten Klasse sind die sog. partiellen Analyseme-
thoden. Es gibt verschiedene Möglichkeiten eine partielle Analyse zu organisieren. Die zwei
bekanntesten Vertreter dieser Klasse sind die Reduktionstechniken und die probabilistischen
Methoden. Die Reduktionstechniken zielen darauf ab, redundante Aktivitätssequenzen nicht
zu explorieren. Dies kann bspw. durch Ausnutzung einer Äquivalenzrelation, definiert auf
dem Systemverhalten, erzielt werden (siehe bswp. [God95]) oder bspw. durch Ausnutzung
von benutzer-definierten Modellsymmetrien zur Anwendung des “state lumping” Theorems
“on-the-fly” (siehe Abs. 2.4 (S. 24ff) des engl. Teils). Probabilistische Methoden erlauben die
Speicherung große Zustandsräume. Bedingt dadurch, dass Hashkollisionen nicht aufgelösst
2 Die Wert, die hier angegeben sind, erhält man, wenn man diese bekannten “benchmark” Modelle

mittels des Möbius Modellierungswerkzeuges [DCC+02] bzw. mittels dessen Standardmoduls zur
Analyse von Markov Reward Modellen untersucht, Details folgen im Kapitel 5 des engl. Teils,
siehe hierzu Tabelle 5.1 (S. 121) und Tabelle 5.17.B (S. 148) im engl. Teil der Arbeit.

10 3 Übersetzung des Kapitels “Introduction” (Einführung)

und somit verschiedene Zustände fälschlicherweise als identisch betrachtet werden, ergibte
es sich, dass u.U. nur ein Teil aller Zustände erzeugt wird. Daraus ergibt sich, dass evtl.
Zustände vergessen werden und die Wahrscheinlichkeit eines falschen Analyseergebnisses so-
mit größer als Null ist.3

Die Ansätze, die eine exhaustive Zustandsraumsuche durchführen, kann man in zwei Klassen
teilen:

(1) Ansätze, die einen reduzierten ZG speichern: Dies wird dadurch erreicht, dass man
während der Exploration nicht benötigte Zustände nicht (permanent) speichert, z.B.
durch Eliminierung von verschwindenden Zuständen “on-the-fly”.

(2) Bzgl. der exhautiven Ansätze, die den kompletten ZG speichern, kann man nun zwischen
Methoden unterscheiden, die die Generierung sehr grosser Zustandsräume ermöglichen
und zwischen Methoden, die auf eine Speicherung sehr grosser Zustandsgraphen, als
auch auf die Berechnung von deren Perfomabilitätsmaße abzielen:

(2.a) Ansätze zur Generierung sehr großer Zustandsgraphen: Eine exhaustive Exploration
des Zustandsraumes kann effizient durch

i. Verwendung leistungsfähiger HW, d.h. durch Verwendung von Massenspeicher
und/oder verteilter HW (siehe bspw. [Kno99, HW06]), oder durch

ii. Verwendung symbolischer Methoden (siehe deut. Teil: Abs. 3.3) erzielt werden.

(2.b) Die Klasse der Ansätze zur Speicherung und Handhabung sehr grosser Zustandsgra-
phen kann wie folgt weiter unterteilt werden:

i. Methoden die leistungsfähige HW und/oder verteilte HW verwenden (siehe
bspw. [Kno99, HBB99, Meh04]).

ii. Verfahren die den Zustandsgraphen aposteriori zur Generierung, durch Auffinden
und Ausnutzung einer Äquivalenzrelation, reduzieren (siehe engl. Teil: Abs. 2.2.3,
S. 17ff).

iii. Methoden, die durch Verwendung von Kronecker-Operatoren eine implizite Re-
präsentation des ZG des Gesamtmodells erreichen (siehe bspw. [Pla85, Buc91,
Sie95, CT96]), und/oder

iv. Verfahren, die symbolische Datentypen (Entscheidungsdiagramme) verwenden
(siehe deut. Teil: Abs. 3.3)

Wie in Abb. 3.1 dargestellt haben die symbolischen Methoden das besondere Merkmal,
dass sie nicht nur die Generierung von sehr großen ZG unterstützen, sondern auch eine ef-
fiziente Abspeicherung derselbigen, d.h. vielmehr der zugehörigen Transitionsratenmatrix,
erlauben. Darüber hinaus werden sie ausserdem auch im Rahmen anderer Methoden einge-
setzt, um deren Effizenz zu steigern, als Bsp. seien die impliziten Matrixdarstellungstechni-
ken [Sie98, CM99b] und die Reduktionsverfahren auf Basis von Entscheidungsdiagrammen
[Sie02] unter anderem erwähnt. Im Sinne der obigen Klassifizierung ist der Beitrag dieser
Arbeit zur Verminderung des Zustandsraumexplosionsproblem auf Basis eines (neuen) sym-
bolischen Datentyps somit dreigeteilt: (a) Es wird eine Methode zur effizienten Generierung
einer symbolischen Darstellung des ZG eines hochsprachlichen Markov Reward Modells er-
arbeitet. (b) Ein Ansatz zur effizienten Speicherung und Handhabung des erzeugten ZG wird
eingeführt, so dass man die Performabilitätsmaße des zu untersuchenden Systems effizient
berechnen kann. (c) Es wird ein Ansatz vorgestellt, der im Falle von benutzer-definierten
Modellsymmetrien eine Reduktion des ZG realisiert, so dass die numerische Analyse mit

3 Ein Überblick über die probabilistischen Methoden kann in [KL04] gefunden werden.

3.3 Stand der symbolischen Techniken 11

einer geringeren Anzahl von Systemzuständen arbeiten muss. Somit lässt sich das symbo-
lische Rahmenwerk, das im Verlauf dieser Arbeit entwickelt werden wird, anhand der fett
gedruckten Begriffe gemäß der Klassifizierung aus Abb. 3.1 charakterisieren.

3.3 Stand der symbolischen Techniken

Entscheidungsdiagramme ermöglichen die effiziente Speicherung von Funktionstafeln. Somit
ist es nahe liegend, sie auch zur Darstellung der charackteristischen Funktion von endlichen
Mengen und somit zur Repräsentation von Zuständsmengen und/oder Transitionsrelationen
zu benutzen. Ansätze, die solche Methoden der Speicherung benutzen, werden gemeinhin als
symbolische Repräsentationstechniken bezeichnet.

Symbolische Datentypen
Heutzutage ist der Einsatz von Binäre Entscheidungsdiagrammen (BDDs) in CAD-Werk-
zeugen Stand der Technik, da man mit ihnen i. Allg. Boolesche Funktionen besonders ef-
fizient darstellen kann. Darüber hinaus sind effiziente Algorithmen zu ihrer Manipulation
bekannt [Bry86]. Innerhalb der letzten Dekade sind viele abgeleitete Typen entstanden,
um Entscheidungsdiagramme nicht nur innerhalb der HW-Verifikation einzusetzen, sondern
auch in anderen Bereichen, in denen man es mit große Mengen an Zahlensequenzen und
deren Vorhaltung im RAM-Speicher zu tun hat, siehe bspw. [SS03]. Es ist deshalb nicht
überraschend, dass auch der Bereich der stochastischen Modellierung Vorteil aus der sym-
bolischen Darstellung von Mengen und Transitionsrelationen gezogen hat. Im Kontext der
stochastischen Modellierung sind die bekanntesten Typen von Entscheidungsdiagrammen
die Multi-terminalen - oder algebraischen BDDs (ADDs) [FM97], die “multi-valued” Ent-
scheidungsdiagramme (MDDs) [KVBSV98] und Matrixdiagramme (MxD) [Min01].

Da ADDs die multi-terminale Erweiterung der BDDs darstellen, sind die wichtigsten BDD-
Algorithmen i. Allg. direkt auf sie anwendbar und viele verschiedene Implementierungen
existieren. Deswegen ist es auch nicht verwunderlich, dass gerade dieser Typ von Entschei-
dungsdiagramm eine lange Historie hat, wenn es um die Modellierung von Systemen geht.
Jedoch hat sich gezeigt, dass im Kontext der hochsprachlichen Modellenbeschreibungen die
BDD-spezifische “don’t-care” Reduktionsregel i.d.R. von untergeordneter Bedeutung für die
Speichereffizienz ist (zumindest für die Pfade, die zum terminalen 1-Knoten führen) [Par02].

Generierungstechniken
Techniken, die zur Erzeugung von symbolische Darstellung der ZG eines hochsprachlichen
Modells verwendet werden, reichen von der expliziten Generierung aller Zustände (exhau-
stiv) [Web02, DKK02], bis zu den voll-symbolischen Techniken [PC98, KS02, AKN+00]. Bei
letzteren werden die symbolische Darstellung sogar direkt aus der hochsprachlichen Modell-
beschreibung abgeleitet, so dass sich Methoden dieser Klasse durch eine besondere Effizienz
auszeichnen. Jedoch, im Gegensatz zu den Methoden, die eine konventionelle ZG-Exploration
benutzen, verlangen die voll-symbolischen Techniken, dass die hochsprachliche Modellbe-
schreibungsmethode eine symbolische Semantik besitzt. Eine andere wichtige Klasse, deren
Verfahren im Gegensatz zu den voll-symbolischen Verfahren unabhängig vom benutzten
Modellbeschreibungsformalismus sind, ist die Klasse der so genannten semi-symbolischen
Methoden [Sie98, HMKS99, Sie01, CM99b, CLS01]. Die Bezeichnung semi-symbolisch cha-
rakterisiert eine Kombination expliziter Exploration und rein symbolischer Manipulation,
wobei im Gegensatz zu den explizit exhaustiven Methoden ein Kompositionsschema be-
nutzt wird.4 Kompositionalität scheint in diesem Zusammenhang maßgeblich zu sein, nicht
nur für die semi-symbolischen Methoden, denn es reduziert nicht nur die Laufzeit, da nicht

4 Die Anwendung eines Kompositionsschemas bedeutet, dass der ZG des Gesamtmodelles aus
kleineren Komponenten, gewöhnlich aus den ZG der vom Benutzer spezifizierten Submodelle
(submodell-lokalen ZG), aufgebaut wird. Details werden im engl. Teil, Kapitel 2 erörtert.

12 3 Übersetzung des Kapitels “Introduction” (Einführung)

alle Aktivitätssequenzen explizit aufgefaltet werden müssen, sondern induziert auch eine ge-
wisse Regularität und verringert somit den Spitzenspeicherverbrauch.

Der Einsatz der oben diskutierten ZG-Generierungstechniken ist jedoch auf folgende Fälle
beschränkt:

(1) der hochsprachliche Formalismus ist von einer bestimmten Art [PC98, KS02, AKN+00],

(2) Beschränktheit der Komponenten des Zustandsdeskriptors, welcher entweder direkt im
hochsprachlichen Modell spezifiziert ist [KS02, AKN+00] oder mittels einer Invarianten-
analyse berechnet werden kann [PRCB94, DKK02].

(3) Die hochsprachliche Modellbeschreibung besitzt eine kompositionelle oder bestimmte
dekomponierbare Struktur und die ZG der Submodelle können in Isolation generiert
werden [CM99b, CLS01, HMKS99, AKN+00, Sie01, KS02, LS02].

Kürzlich entwickelte semi-symbolische, kompositionelle Methoden, wie in [CMS03, DKS03]
dargestellt, erzeugen die submodell-lokalen ZG in einem Submodell-interdependenten Ver-
fahren, um die oben aufgezählten Einschränkungen zu überwinden. Aus folgenden Gründen
ist ihr Einsatz nichtsdestotrotz immer noch beschränkt:

(1) Die Technik, die in [CMS03] angewandt wird benötigt eine Dekomposition des hoch-
sprachlichen Modells in unabhängige Partitionen, so dass der ZG des Gesamtmodells mit-
tels eines Kronecker-Operator-getriebenen Kompositionsschemas erzeugt werden kann.
(siehe engl. Teil: Abs. 2.5, S. 25ff).

(2) Die Technik, die in [DKS03] angewandt wird, verwendet die benutzerdefinierte modulare
Struktur des Gesamtmodells, so dass Ineffizienzen auftreten, wenn die Interaktionen
zwischen den Submodellen nicht limitiert ist.

(3) Nebenläufigkeit innerhalb der Submodelle wird i. Allg. nicht ausgenutzt. Folglich werden
die verschränkten Sequenzen unabhängiger Aktivitäten auf Ebene der Submodelle voll
expandiert, so dass im Falle von Submodellen mit extrem großen ZG die Methoden i.d.R.
nicht effizient sind.

Die obige Diskussion ergibt folgende zentrale Anforderungen an einen neuen Ansatz:

• Die individuelle Behandlung von Zuständen (Exploration und Kodierung) sollte soweit
wie möglich vermieden werden.

• Der Ansatz sollte sich auf kompositionelle und nicht-kompositionelle Modellwelten an-
wenden lassen, d.h. auf Modelle die modular oder nicht modular (monolithisch) struktu-
riert sind.

• Jedoch sollte der Ansatz auf Ebene des ZG irgendeine Form von Kompositionalität auf-
weisen.

ZG-Reduktionstechniken
Die Anzahl der Systemzustände, für die eine Wahrscheinlichkeit berechnet werden muss, ist
auch unter den symbolischen Verfahren der Engpass der ZG-basierten Analyse von hoch-
sprachlichen Markov Reward Modellen. Unter Umständen ist es möglich den ZG zu reduzie-
ren, so dass für eine kleinere Anzahl von Systemzuständen Performabilitätsmaße berechnet
werden müssen. Folgende Klassen von Ansätzen sind zu unterscheiden:

(1) Transformation des hochsprachlichen Modells:
Durch Anwendung von Transformationsregeln, die abhängig vom verwendeten hoch-
sprachlichen Formalismus sind, ist es u.U. möglich das Ausgangsmodell in ein einfache-
res umzuwandeln, welches die gleichen zeitl. Eigenschaften bzgl. der zu berechnenden
Performabilitätsmaße zeigt. Das vereinfachte Modell kann dann, im Vergleich zum Aus-
gangsmodell, zu einem reduzierten ZG führen.

3.4 Eigener Beitrag 13

(2) “On-the-fly” Strategie:
Diese Techniken generieren von vornherein, also während der ZG-Exploration, einen
reduzierten ZG und erlauben so die Analyse von Systemen, die sich sonst einer solchen
entziehen.

(3) “A-posteriori” zur ZG-Exploration:
Diese Techniken generieren zunächst den kompletten, also nicht reduzierten ZG. Nun
kann durch Anwendung bekannter Verfahren eine ZG-Reduktion erfolgen. Deshalb sind
die Ansätze dieser Klasse auch allgemeiner als die “on-the-fly”-Strategien.

Aus den oben genannten Gründen ist die Entwicklung von ZG-Reduktionstechniken immer
noch ein belebtes Forschungsfeld und hat in den letzten Jahren auch entsprechende symboli-
sche Ansätze hervor gebracht. Jedoch ist bekannt, dass die bisher entwickelten symbolischen
Verfahren, wie ihre expliziten Gegenstücke, nicht sonderlich effizient sind.

Numerische Lösungstechniken
Ist eine symbolische Darstellung des ZG eines hochsprachlichen Modells erst einmal erzeugt,
so folgt als nächstes die Bestimmung der Zustandswahrscheinlichkeiten. Jedoch erscheinen im
Kontext symbolischer ZG-Repräsentation nur der Einsatz iterativer, numerischer Lösungs-
verfahren sinnvoll. Wie aus der Praxis bekannt, sind die voll symbolischen Ansätze, die neben
einer symbolisch repräsentierten Transitionsratenmatrix auch symbolisch repräsentierte Ite-
rationsvektoren verwenden, nicht sehr effizient. Deswegen hat sich derzeit in der Praxis die
sog. hybride Lösungstechnik [Par02] weit verbreitet. Diese Verfahren benutzen symbolisch
dargestellte Transitionsraten- oder Generatormatrizen, die Iterationsvektoren werden hin-
gegen als Arrays gespeichert, was die einzelnen Iterationsschritte wesentlich beschleunigt.
Sind die Zustandswahrscheinlichkeiten bekannt, so müssen im nächsten Schritt die benut-
zerdefinierten Performabilitätsmaße berechnet werden, wobei hierfür die sog. Raten- und
Impuls-Rewards bestimmt und entsprechend aggregiert werden müssen.

3.4 Eigener Beitrag

In dieser Arbeit wird ein symbolischer Rahmen zur Analyse sehr großer, (finiter) Markov Re-
ward Modelle mit kontinuierlicher Zeit vorgestellt. Zur Repräsentation der Markov Reward
Modelle wird ein neuer Typ von Entscheidungsdiagramm vorgestellt, welchen wir als “zero-
suppressed” multi-terminale binäre Entscheidungsdiagramme (ZDD) bezeichnen. Um mit
ZDDs umgehen zu können, werden außerdem die entsprechenden symbolische Algorithmen
entwickelt. Dieser neue Typ einer symbolischen Datenstruktur wird innerhalb eines neuen,
semi-symbolischen Verfahrens zur effizienten Generierung einer symbolischen Repräsentati-
on eines Markov Reward Modells, wie es sich aus einer hochsprachlichen Beschreibungen
ableiten lässt, benutzt. Dieses Schema, welches wir als Aktivitäts/Reward-lokales Schema
bezeichnen, basiert auf einer partiellen expliziten ZG-Exploration, einem neuen symbolischen
Kompositionsschema und einem neuen Algorithmus zur symbolischen Erreichbarkeitsanaly-
se. Im Gegensatz zu bekannten Verfahren benutzt es Modell-inhärente Strukturen und keine
explizit vom Benutzer spezifizierten. Folglich ist das Aktivitäts/Reward-lokale Schema nicht
nur für kompositionelle Modellwelten geeignet, sondern in besonderem Maße für monolithi-
sche, d.h. also auch in den Situationen in denen Modelle weder in eine Kronecker-Operator-
konforme Struktur dekomponiert werden (siehe Abs. 2.5.6, S. 29f). können und/oder die
Submodell-lokalen ZG in disproportionalen Größen vorliegen.

Um den ZG, dessen Zustandswahrscheinlichkeiten berechnet werden müssen, zu reduzieren,
erweitern wir das Aktivitäts/Reward-lokale Schema um einen symbolischen Algorithmus,
der eine ZG-Reduktion durchführt, vorausgesetzt, dass benutzerdefinierte Symmetrien vor-
liegen.

14 3 Übersetzung des Kapitels “Introduction” (Einführung)

Zur Berechnung der Zustandswahrscheinlichkeiten erweitern wir das hybride Lösungsver-
fahren, so dass es auf die hier entwickelten ZDDs anwendbar ist. Da wir auch benutzerdefi-
nierte Performabilitätsmaße behandeln, ergeben die einzelnen Beiträge dieser Arbeit einen
vollständigen Ansatz zur ZG-basierte Analyse von hochsprachlichen Markov Reward Model-
len mit sehr großen Zustands/Transitionssystemen. Um die Anwendbarkeit der entwickel-
ten Konzepte zu bewerten, wurde eine Implementierung innerhalb des Multi-Formalismus-
Leistungsanalyse-Werkzeugs Möbius [DCC+02] realisiert. Diese erlaubt nicht nur die Ana-
lyse bekannter Benchmark-Modelle, sondern auch die Bewertung der Verfügbarkeit eines
“Adjunkten Prozessor-Systems”, wie es in der Telekommunikationsindustrie Verwendung
findet, um die Leistungsfähigkeit des hier präsentierten Ansatzes zu untersuchen.

3.5 Aufbau der Arbeit

Der engl. Teil dieser Arbeit ist wie folgt aufgebaut: Kapitel 2 wiederholt benötigtes, theore-
tisches Hintergrundwissen und führt entsprechende Definitionen ein (siehe hierzu auch An-
hang A). Kapitel 3 präsentiert den neuen Datentyp, und führt die wichtigsten Algorithmen
zu seiner effizienten Manipulation ein. Ein Überblick über ZDD-basierte Repräsentation von
Mengen und Matrizen, sowie eine Einführung in die hybride Lösungsmethode zum Lösen
von linearen und differentialen Gleichungssystemen schließt das Kapitel ab. Kapitel 4 er-
klärt unseren neuen Ansatz zur effizienten Erzeugung von symbolischen Repräsentationen
von Markov Reward Modellen aus ihren hochsprachlichen Spezifikationen. Empirische Er-
gebnisse, einschließlich verschiedener Vergleiche zwischen anderen Werkzeugen und unserer
Implementierung, werden in Kapitel 5 präsentiert. Kapitel 6 schließt diese Arbeit ab, indem
ein Zusammenfassung und ein Überblick über zukünftige Arbeiten gegeben wird.

4

Übersetzung des Kapitels “Conclusion”
(Schlussbetrachtung)

4.1 Zusammenfassung

Diese Arbeit führt nicht nur einen neuen Typ von Entscheidungsdiagramm ein, sondern
entwickelt auch einen neuen semi-symbolischen Ansatz zur Analyse von hochsprachlichen
Markov Reward Modellen mit sehr großen Zustandsgraphen. Insgesamt trägt diese Arbeit
somit zur Abschwächung des Zustandsraumexplosionsproblems, wie es sich im Kontext hoch-
sprachlicher Markov Reward Modelle manifestiert, bei. Im Folgenden sollen einige Aspekte
der präsentierten Arbeit kurz rekapituliert werden.

4.1.1 Zero-suppressed multi-terminale BDDs
Boolesche Funktionen mit kleinen Erfüllbarkeitsmengen, bei denen die erfüllenden Belegun-
gen auch noch viele mit 0 besetzte Positionen beinhalten, führen u.U. zu sehr großen BDD-
basierten Darstellungen. In solch einem Szenario hat sich gezeigt, dass sog. zero-suppressed
BDDs (z-BDDs) [Min93] hilfreich sind. In dieser Arbeit werden z-BDDs um den multi-
terminalen Fall erweitert, um so effizient Pseudo-Boolesche Funktionen und charakteristische
Funktionen stochastischer Transitionsrelationen darzustellen.

Partiell gemeinsame ZDDs (pZDDs)
Um eine Pseudo-Boolesche Funktion aus einem ZDD-Graphen korrekt abzuleiten, muss die
Menge der Funktionsvariablen der repräsentierten Funktion bekannt sein. Als Konsequenz
ergibt sich, dass ein ZDD-Knoten (und der darin verwurzelte Graph), ohne zusätzlich mit
Funktionsvariablen annotiert zu sein, nicht eindeutig eine Pseudo-Boolesche Funktion re-
präsentiert. Dies liegt darin, dass übersprungene Variablen entweder als nicht maßgeblich
oder als zero-suppressed interpretiert werden können. Dies ist insbesondere dann proble-
matisch, wenn man in einer gemeinsamen BDD-Umgebung operiert, da hier Eindeutigkeit
nicht nur eine Grundbedingung, sondern auch in Bezug auf Effizienz unverzichtbar ist. Um
dieses Problem anzugehen entwickelt diese Arbeit das Konzept der partiell gemeinsamen
ZDDs (pZDDs), das verlangt, dass jeder Knoten mit einer Menge an Funktionsvariablen
ausgestattet wird, so dass (schwache) Kanonizität garantiert ist.

Algorithmen zum Umgang mit pZDDs
Dieser neue Typ von Entscheidungsdiagramm verlangt ein Re-Design bekannter BDD-
Algorithmen [Bry86], wobei diese Arbeit die entsprechenden Varianten entwickelt, wie bspw.
den pZApply-, den pZAnd-, den pZRestrict- und pZAbstract-Algorithmus. Im Gegensatz
zum theoretischen Konzept der pZDDs, sind diese Algorithmen so beschaffen, dass sie die
Implementierung von pZDDs innerhalb gewöhnlicher BDD-Umgebung erlauben, obwohl in
diesen die einzelnen DD-Knoten i. Allg. nicht mit Funktionsvariablen ausgestattet werden
können. Diese Strategie hat folgende wesentliche Vorteile: (a) man muss nicht die einzelnen
Mengen der Funktionsvariablen für jeden Knoten abspeichern und (b) die gemeinsame Ver-
wendung von pZDD-Graphen erhöht wird. Jedoch hat eine solche Vorgehensweise auch den
Nachteil, dass die Semantik eines Knotens nicht mehr eindeutig ist. Dies ist insbesondere
dann problematisch, wenn es um das Testen von Äquivalenz geht. Im Falle gewöhnlicher
BDD-Umgebungen muss man dafür nur die Speicheradressen der Wurzelknoten vergleichen.
Dies ist von besonderer Bedeutung, da der Test auf Äquivalenz unzählige Male bei der Ma-
nipulation von ZDDs auftritt, nicht nur um die terminalen Rekusionabbruchsbedingungen

15

16 4 Übersetzung des Kapitels “Conclusion” (Schlussbetrachtung)

zu testen, sondern auch wenn es um das Auffinden von bereits bekannten Ergebnissen in
der Vorberechnungstabelle (pre-computed table) geht. Um dieses Problem zu lösen wird
folgende Strategie verfolgt: Wenn man auf dem Graphen eines pZDDs Z operiert, über-
gibt man einfach die Menge von Zs Funktionsvariablen (VZ) als zusätzliches Argument an
den, den Graphen manipulierenden Algorithmus. Jedes Mal, wenn ein Test auf Äquivalenz
benötigt wird, braucht man nur die Speicheradressen der pZDD-Knoten und die Mengen der
Funktionsvariablen zu vergleichen. Sind die jeweiligen Paare identisch, so sind es auch die
repräsentierten Funktionen.

4.1.2 Aktivitäts/Reward-lokales Schema
Wenn der Formalismus eines hochsprachlichen Modells keine symbolische Semantik hat,
ist der einzige Weg eine symbolische Darstellung des zugrunde liegenden Markov Reward
Modells zu erhalten, indem man das Modell explizit ausführt. Dabei wird die iterativ
Ausführung und die Erzeugung der entsprechenden symbolischen Strukturen solange fort-
gesetzt, bis ein globaler Fixpunkt erreicht ist. Wird dies jedoch für alle Zustände und alle
Transitionen explizit durchgeführt, verhindern der Zeitbedarf und der Spitzenspeicherver-
brauch die Anwendung einer symbolischen Zustandsgraphen-Repräsentationstechnik in der
Praxis.

Symbolische Zustandsgraphen-Generierung
Um effizient eine symbolische Darstellung einer kontinuierlichen Markovkette eines hoch-
sprachlichen Modells zu erzeugen, nutzt das aktivitäts-lokale Schema, das in dieser Arbeit
entwickelt wird, nur lokale Information. D.h. die Grundidee ist eine Partitionierung des
zu generierenden Zustandsgraphen in Mengen von Transitionen, die die gleiche Aktionsbe-
schriftung führen, wobei die Quell- und Zielzustände auf die Positionen reduziert werden,
von denen die transitions-induzierende Aktivität abhängt. Dies ergibt ein Transitionssy-
stem für jede Aktivität, die wir deshalb als aktivitäts-lokale Transitionssysteme bezeichnen.
Die vollständige Transitionsrelation des hochsprachlichen Modells wird dann durch Anwen-
dung eines symbolischen Kompositionsschemas auf Basis der aktivitäts-lokalen Transitions-
systeme erzeugt. Die explizite Explorierung der aktivitäts-lokalen Transitionssysteme folgt
hierbei einer selektiven Breitensuche. Eine solche Suchstrategie erhält man, wenn man ei-
ne Abhängikeitsrelation bei der Auswahl der zu betrachtenden Aktivitäten beachtet und
in jedem neu besuchten Zustand nur versucht jene Aktivitäten auszuführen, die in diesem
Zustand noch nicht getestet wurden. Jedoch im Gegensatz zu Standardverfahren, werden
nicht volle Zustandsdeskriptoren bei diesem Test betrachtet, sondern nur die Werte, die sich
auf Positionen beziehen, von denen die jeweilige Aktivität abhängt. Darüber hinaus testet
man auch nicht alle Aktivitäten, sondern lediglich jene, die von der zuletzt ausgeführten Ak-
tivität bzgl. des momentanen Zustandes abhängen. Als Konsequenz ergibt sich somit ein ex-
plizites Zustandsgraphen-Generierungs- und Zustandsgraphen-Kodierungsverfahren für das
aktivitäts-lokale Schema, das in der Praxis i.d.R. partieller Natur ist. Wird ein lokaler Fix-
punkt erreicht, d.h. sind für eine gegebene Menge von Zuständen alle Sequenzen anhängiger
Aktivitäten erzeugt, so wird ein symbolisches Kompositionsschema angewendet. Die resultie-
rende symbolische Struktur repräsentiert jedoch das potentielle Transitionssystem, so dass
an dieser Stelle eine symbolische Erreichbarkeitsanalyse ausgeführt werden muss. Um die
symbolische Erreichbarkeitsanalyse zu beschleunigen, entwickelt diese Arbeit eine verbes-
serte Version, die nach einer “Quasi”-Tiefensuche vorgeht und mit den aktivitäts-lokalen
Entscheidungsdiagrammen arbeitet, d.h. auf einer partitionierten Transitionsrelation. Nach
Terminierung der symbolische Erreichbarkeitsanalyse hat man nun die Menge der bisher er-
reichbaren Zustände erzeugt. Da dies allerdings in Zustände münden kann, die neues expli-
zites Modellverhalten initiieren könnten, wird eine Re-Initialisierungsroutine benötigt. Exi-
stieren solche Zustände, initiiert die Routine eine neue Runde expliziter Zustandsgraphen-
Exploration, -Kodierung, symbolischer Komposition und symbolischer Erreichbarkeitsana-
lyse. Hierbei können mehrere Runden von Nöten sein bis ein globaler Fixpunkt erreicht

4.1 Zusammenfassung 17

wird und eine vollständige Repräsentation der, dem hochsprachlichen Modell immanenten
zeit-kontinuierlichen Markovkette konstruiert wurde.

Erzeugung symbolischer Repräsentationen von Rewardfunktionen
Um die Performabilitätsmaße des zu analysierenden Systems zu definieren, ist es dem Benut-
zer möglich sog. Performanzvariablen auf Ebene der hochsprachlichen Modellbeschreibung
zu spezifizieren. Traditionell berechnet man die zustands- und aktivitäts-abhängigen Per-
formanzvariablen während der Generierung des Zustandsgraphen. Das Aktivitäts/Reward-
lokale Schema besucht während der Zustandsgraphen-Generierung u.U. nur einen Teil der
Zustände explizit. Unter der Voraussetzung, dass die Rewardfunktionen von beliebiger Kom-
plexität sein können, aber nur von einem Teil der Zustandvariablen abhängen, erscheint es
somit sinnvoll, ihre symbolische Darstellung zu erstellen, wenn die symbolische Repräsen-
tation des Zustandsgraphen vorliegt. Um nun so wenig Zustände als möglich explizit zu
verarbeiten, verwendet diese Arbeit erneut nur lokale Informationen. D.h. nach Berechnung
des Rewardwertes eines Zustandes, werden nur jene Positionen des Zustandsdeskriptors in
der symbolischen Darstellung gespeichert, die sich auf die Variablen der Rewardfunktion
beziehen. Diese Strategie definiert erneut eine Äquivalenzrelation auf der Menge der System-
zustände bzgl. der jeweiligen Rewardfunktion, so dass die Anzahl an Zuständen, die explizit
betrachtet werden muss i. Allg. signifikant reduziert werden kann. Durch Aggregation der
symbolisch dargestellten Rewardfunktionen, entsprechend der vom Benutzer gegebenen De-
finitionen, können symbolisch Darstellungen der Performanzvariablen erzeugt werden. Nun
muss die Wahrscheinlichkeitsverteilung auf der Menge der Systemzustände berechnet wer-
den, da diese in Kombination mit den symbolisch repräsentierten Performanzvariablen zu
den Performabilitätsmaßen des zu analysierenden Systems aggregiert werden können.

4.1.3 Berechnung der Zustandswahrscheinlichkeiten
Um die Zustandswahrscheinlichkeiten zu berechnen, präsentiert diese Arbeit eine Variante
der hybriden Lösungsmethode, wie sie für andere symbolische Datentypen bekannt ist. Bei
diesem Ansatz wird die Generator-Matrix mittels eines Entscheidungsdiagramms dargestellt
und die Iterationsvektoren als einfache Arrays des Datentyps “double” gespeichert. Wenn n
Boolesche Variablen zur Kodierung eines Zustands benötigt werden, dann gibt es 2n potenti-
elle Zustände, von denen allerdings meist nur ein kleiner Teil erreichbar ist. Speichereinträge
für unerreichbare Zustände sind eine Verschwendung von Arbeitsspeicher und würden die
Analysierbarkeit von Systemen stark einschränken; zur Veranschaulichung denke man an 134
Millionen Zustände, für die man schon 1 GByte RAM-Speicher verbraucht, um die Zustands-
wahrscheinlichkeiten im Speicher vorzuhalten. Aus diesem Grund ist es nötig, eine dichte
Nummerierung auf der Menge der erreichbaren Zustände zu realisieren. Dies kann mit dem
Konzept des “offset-labeling” erzielt werden. Das “offset-labeling” von Knoten erlaubt es,
den Zeilen- und Spaltenindex in dem dichten Nummerierungssystem eines Matrixelements
zu berechnen, während man die symbolische Darstellung der Matrix traversiert.
Die Speichereffizienz der symbolischen Matrixrepräsentation geht zu Lasten des Rechenauf-
wand, der durch die rekursive Traversierung der symbolischen Struktur verursacht wird. Aus
diesem Grund ersetzt man die unteren Ebenen der symbolischen Struktur durch sog. “sparse
matrix” Darstellungen, was insbesondere gut für Block-strukturierte Matrizen funktioniert.
Um das gute Konvergenzverhalten der Vorwärts- und Rückwärts-Gauss-Seidel Methode und
ihrer relaxierten Varianten zu verwenden, ist ein reihen- oder spaltenweiser Zugriff auf die
Matrixelemente nötig. Als Kompromiss implementierten wir die sog. Pseudo-Gauss-Seidel
Methode, wie sie aus dem Bereich der algebraischen Entscheidungsdiagramme bekannt ist.
Diese Methode partitioniert die Matrix in Blöcke, welche in einer geordneten Reihenfolge
besucht werden. Innerhalb eines jeden Blocks erfolgt dann der Elementzugriff in beliebiger
Reihenfolge. Insgesamt ergeben die oben dargestellten Verfahren nun ein Entscheidungsdia-
gramm, bei dem die unteren Ebenen und ggf. auch die oberen Ebenen in ein sog. “spar-
se matrix” Format gebracht werden. Unter Verwendung einer entsprechenden iterativen

18 4 Übersetzung des Kapitels “Conclusion” (Schlussbetrachtung)

Lösungsmethode können nun die Zustandswahrscheinlichkeiten berechnet und in einem Ar-
ray abgespeichert werden.

4.1.4 Berechnung der Performabilitätsmaße
Hat man symbolische Darstellungen von Performanzvariablen und die Zustandswahrschein-
lichkeiten gegeben, so ist man in der Lage, die Performabilitätsmaße des zu analysierenden
Systems zu bestimmen. Dafür verwendet diese Arbeit einen neuartigen Algorithmus, der die
Momente der Performanzvariablen mittels Graphtraversierung berechnet.

4.2 Vorteile von pZDDs und dem
Aktivitäts/Reward-lokalen Schema

Die Vorteile der Verwendung von pZDDs können wie folgt zusammengefasst werden:

• Das Konzept der pZDDs und die daraus resultierenden Algorithmen erlauben die effizien-
te Allokation und Manipulation von z-BDDs und deren multi-terminale Erweiterungen
innerhalb der standardmäßigen BDD-Pakete, auch wenn die Entscheidungsdiagramme
unterschiedliche Funktionsvariablen besitzen. Dies wurde nach unserem Kenntnisstand
zuvor nicht wissenschaftlich untersucht.

• Im Zusammenhang mit symbolischen Darstellungen von Zustandsmengen, wie sie im
Bereich der hochsprachlichen Modelle auftreten, haben ZDDs gezeigt, dass sie der oft
speichereffizienteste Datentyp sind. Dieser Vorteil kann auch im Zusammenhang der Dar-
stellung von stochastischen Transitionssystemen beobachtet werden.

• Aus den Messungen dieser Arbeit ergab sich, dass ZDDs als performanter als ihre al-
gebraischen Gegenstücke, die ADDs, einzuschätzen sind, zumindest wenn es um Gene-
rierung von Zustandsgraphen und die Anwendung der hybriden Lösungsmethode zur
Lösung von Linearen- und Differential-Gleichungssystemen geht. Basierend auf ihrer
höheren Kompaktheit, ist man in der Lage größere Anteile des Entscheidungsdiagramms
in ein “sparse matrix” Format umzuwandeln und so weitere Geschwindigkeitsvortei-
le zu realisieren oder eine weitere Reduktion des Blockiterationsvektors im Falle der
Pseudo-Gauss-Seidel Methode zu erzielen, so dass u.U. größere System untersucht wer-
den können.

Die Vorteile des neuen semi-symbolischen Verfahrens zur Generierung einer symbolischen
Darstellung des Transitionssystems eines hochsprachlichen Modells, können wie folgt zu-
sammengefasst werden:

• I. Allg. muss nur ein kleiner Anteil der Transitionen der Markovkette explizit erzeugt
und kodiert werden. Der Großteil wird auf Ebene der symbolischen Darstellung durch
das symbolische Kompositionsschema erzeugt.

• Da der Ansatz kompositioneller Natur ist, ist im Gegensatz zu den monolithischen Ver-
fahren nicht nur der Laufzeitbedarf moderat, sondern auch der Spitzenspeicherverbrauch.

• Die Erreichbarkeitsanalyse wird auf Ebene der symbolischen Datenstrukturen durch-
geführt. Hier schlägt diese Arbeit ein neues “quasi”-tiefe-suchendes Verfahren vor, dass
mit seiner Effizienz überzeugt.

• Zur Generierung der symbolischen Darstellungen von Rewardfunktionen müssen i. Allg.
nur wenige Zustände explizit verarbeitet werden. Dies ist wesentlich effizienter als die
traditionelle Herangehensweise, unter der für jeden Zustand der Rewardwert explizit
berechnet und abgespeichert werden muss.

4.3 Zukünftige Arbeiten 19

• Diese Arbeit schlägt die symbolische Darstellung benutzerdefinierter Performanzvaria-
blen vor, wobei deren Momente mittels eines Graph-traversierenden Algorithmus be-
rechnet werden können. Dies ist im Vergleich mit traditionellen Ansätzen speicher- und
laufzeiteffizient.

• Der Aktivitäts/Reward-lokale Ansatz beruht auf einer expliziten Ausführung von Ak-
tivitäts- und Rewardfunktionen. Somit ist seine Anwendung nicht auf eine bestimmte
hochsprachliche Modellbeschreibungstechnik beschränkt.

• Das Modell wird automatisch auf Ebene der Aktivitäten partitioniert, d.h. die explizite
Angabe einer Partitionierung durch den Benutzer ist nicht nötig.

• Das Schema verlangt keine besondere Modellstruktur. Es ist somit, im Gegensatz zu
anderen bekannten Verfahren, nicht auf Modelle beschränkt, die eine Kroneckerprodukt-
konforme Struktur haben.

4.3 Zukünftige Arbeiten

Zukünftige Schritte, insofern sie eine Verbesserung des in dieser Arbeit präsentierten Ansat-
zes oder der symbolischen Technik im Rahmen der Performabilitätsanalyse i. Allg. betreffen,
handeln von verschiedenen Aspekten. Diese Aspekte sollen nun im einzelnen besprochen wer-
den:

Verbesserung der Zustandsgraphen-Generierungsprozedur
Wie am TQN-Modell dargestellt (siehe engl. Teil: Abs. 5.2.1), existieren für das Akti-
vitäts/Reward-lokale Schema sog. “worst case” Szenarien. Ebenfalls erscheint die Perfor-
manz im Falle von Kroneckerprodukt-konformen Modellen, wie bspw. im Falle des Kanban-
Modells, verbesserungswürdig. Ein genauerer Blick auf das hochsprachliche Modell zeigt,
dass einige Aktivitäten in diesen Modellen extensiv ausgeführt werden. Andererseits ist be-
kannt, dass die Zustandsgraphen dieser Modelle effizient kompositionell aufgebaut werden
können, wobei der Sync-Kompositionsoperator Verwendung findet. D.h. im Falle der Be-
nutzer gibt eine entsprechende Dekomposition des Gesamtmodells an, oder das Modell ist
entsprechend kompositionell aufgebaut, dann können die lokalen Zustandsgraphen der ein-
zelnen Modellpartitionen mittels des aktivitäts-lokalen Schemas effizient erzeugt werden.
Eine symbolische Darstellung des Gesamtsystems kann dann mittels Anwendung des Sync-
Operators (siehe Gl. 2.9) erreicht werden, wobei dessen symbolische Variante bereits in
[Sie02] eingeführt wurde.

Symbolische Ausführung von Aktivitäten
Das Aktivitäts/Reward-lokale Schema ist ein semi-symbolischer, kompositioneller Ansatz,
um die symbolische Darstellung eines Markov Reward Modells zu erzeugen. Somit setzt es
die Anwendung eines symbolischen Kompositionsschemas und einer symbolischen Erreich-
barkeitsanalyse voraus, wobei die entsprechenden Schritte separat, unter massiver Verwen-
dung von DD-Manipulationsalgorithmen stattfinden. Es scheint eine gute Idee zu sein, die
Komposition und Ein-Schritt-Erreichbarkeit in einem einzigen DD-basierten Algorithmus zu
integrieren. Dieser Algorithmus hat hierbei ein aktivitäts-lokales Transitionssystem und die
Menge der bisher erreichten Zustände als Eingabeparameter. Er wird nun solange wieder-
holt, bis ein Fixpunkt erreicht ist und eine Repräsentation der Menge der erreichten Zustände
erzeugt wurde. Insbesondere würde eine solche Vorgehensweise nicht die Anwendung eines
Kompositionsschemas benötigen und würde verschiedene DD-Operationen in einem einzigen
Algorithmus integrieren, so dass u.U. insgesamt ein besseres Cachingverhalten erzielt werden
kann.

20 4 Übersetzung des Kapitels “Conclusion” (Schlussbetrachtung)

Dynamisch variierende hochsprachliche Modellbeschreibungen
Das Aktivitäts/Reward-lokale Schema, wie es in dieser Arbeit eingeführt wurde, ist so kon-
struiert, dass es von statisch strukturierten hochsprachlichen Modellen ausgeht. Eine inter-
essante Klasse von hochsprachlichen Modellspezifiaktionsmethoden, die ebenfalls auf end-
liche Zustandsgraphen abgebildet werden, erlauben jedoch die Prozessallokation und Pro-
zesslöschung zur Modellausführungszeit, siehe bspw. [CB06]. Das Aktivitäts/Reward-lokale
Schema scheint aber so erweiterbar, dass es in einem solchen Kontext eingesetzt werden
kann. Im Zusammenhang mit ZDDs, bei denen die Einführung neuer Variablen keinen si-
gnifikanten Mehraufwand bedeutet, sieht dies sehr vielversprechend aus.

Parallelisierung des Aktivitäts/Reward-lokalen Schemas
In [Wei05] sammelten wir erste Erfahrungen mit der Parallelisierung des Aktivitäts/Reward-
lokalen Schemas. Wie sich zeigte, verlangsamen die Schreiboperationen auf den ZDDs un-
ter gegenseitigem Ausschluß den Prozeß der symbolischen Zustandsgraphen-Generierung.
Jedoch konnte der Autor von [Wei05] durch die Implementierung eines “Thread-Pools”
auch andere vielversprechende Schritte des Aktivitäts/Reward-lokalen Schemas parallel
ausführen. Dies scheint insbesondere dann von Vorteil zu sein, wenn ein Modell extensi-
ve Zustandsgraphen-Exploration verlangt. Da die symbolische Erreichbarkeitsanalyse auch
weiterhin die Hauptursache des CPU-Rechenzeitverbrauchs ist, könnte jedoch eine wei-
terführende Untersuchung, wie man symbolische Algorithmen besser parallelisieren kann,
Verbesserungen bringen.

Verbesserung der numerischen Analyse
Wie im Abs. 5.5 des engl. Teils heraus gestellt wurde, ist der limitierende Faktor der
Zustandsgraphen-basierten Analyse von hochsprachlichen Markov Reward Modellen, die
Anzahl der Zustände, für die Wahrscheinlichkeiten ausgerechnet werden müssen. Um die
derzeitigen Methoden zu verbessern erscheint eine dreiteilige Strategie angebracht:

(1) Symbolische Bisimulations Algorithmen: In Abs. 4.6.1 des engl. Teils wurde ein sym-
bolischer Algorithmus zur Berechnung einer reduzierten bisimularen CTMC angegeben.
Jedoch ist dieser Ansatz darauf beschränkt, dass innerhalb des hochsprachlichen Modells
benutzerdefinierte Symmetrien vorliegen. Im Falle, dass die Spezifikation eine solche
explizite Angabe von Symmetrien nicht beinhaltet, können allgemeinere Algorithmen
eingesetzt werden. Diese Algorithmen, deren symbolische Varianten in [Sie02] eingeführt
werden, sind jedoch dafür bekannt, nicht sonderlich effizient zu sein. In [DKS05] wird ein
Ansatz präsentiert, der die bisimularen Strukturen auf Ebene des symbolisch repräsen-
tierten Zustandsgraphen auffindet. Die vorgeschlagene Prozedur sieht sehr vielverspre-
chend aus, da Submodell-induzierte Symmetrien direkt auf der symbolischen Repräsenta-
tion des Zustandsgraphen aufgespürt werden. Eine Prozedur um Submodell-induzierte
Symmetrien im Rahmen des Aktivitäts/Reward-lokalen Schemas zu erkennen scheint
einfach realisierbar: Man muss lediglich die aktivitäts-lokalen Transitionssysteme für je-
des Submodell separat komponieren und diese dann für die entsprechenden Submodelle
vergleichen. So ein Vergleich könnte entweder mittels eines entsprechenden symbolischen
Algorithmus durchgeführt werden, oder durch Umbenennung der ZDD-Variablen und
einem anschließenden Test auf Äquivalenz. Als Ergebnis wüsste man sofort, ob Submo-
delle mit der gleichen Spezifikation auch wirklich das gleiche zeitl. Verhalten besitzen.
Als wesentlicher Vorteil eines solchen Ansatzes wäre zu nennen, dass man auf den Ein-
satz eines Rep-Operators verzichten und den Join-Operator flexibler benutzen könnte, so
dass beliebige kompositionelle Modellstrukturen spezifiziert, aber dennoch Submodell-
induzierte Symmetrien ausgenutzt werden können [Oba98]. Um noch einen Schritt weiter
zugehen, scheint es außerdem lohnenswert, die Effekte von Symmetrien auf die symboli-
sche Repräsentation des Zustandsgraphen zu studieren. Diese effizient zu erkennen und
auszunutzen, würde dann eine minimale Bisimulationsrelation ergeben, was im Falle des
Ausnutzens von Submodell-induzierter Symmetrie nicht notwendigerweise der Fall sein
muss.

4.3 Zukünftige Arbeiten 21

(2) Approximative Lösungsmethoden: Der “multi-level” Ansatz [HL94] ist dafür bekannt,
dass er auch effizient in den Situationen eingesetzt werden kann, in denen die Genera-
tormatrizen der aggregierten Systeme symbolisch oder implizit dargestellt sind. Jedoch
sind extensive Manipulationen großer symbolischer Datenstrukturen rechenaufwendig,
deswegen ist klar, dass der “multi-level” Ansatz im Zusammenhang symbolischer Dar-
stellungen nur dann effizient realisierbar ist, wenn die Transitionsratenmatrizen der ver-
schiedenen Aggregationsstufen nicht jedes mal erzeugt werden, wenn die jeweilige Ag-
gregationsstufe besucht wird [Buc06]. Jedoch benötigt auch der “multi-level” Ansatz die
Allokation der Wahrscheinlichkeitsvektoren, so dass dadurch die Anzahl der Zustände
beschränkt ist. Somit ist auch die Anwendung der “multi-level” Methode in der Praxis
beschränkt.
In [BG05] präsentieren die Autoren einen Ansatz der durch den “multi-level” Ansatzes
inspiriert zu sein scheint, jedoch ausgehend von einem Zustandsgraphen eines aggregier-
ten Systems, so dass die Anzahl der Zustandswahrscheinlichkeiten, die berechnet werden
müssen, deutlich reduziert ist. Ein approximatives Ergebnis wird dadurch erhalten, dass
man die Aggregation der Zustände variiert, deren Wahrscheinlichkeit berechnet und
die Transitionsraten zwischen den aggregierten Zuständen manipuliert. Diese Prozedur
wird solange wiederholt, bis ein Fixpunkt erreicht wird. Es wäre nun von Interesse zu
untersuchen, ob ein solches Vorgehen für alle hochsprachlichen Modellbeschreibungsme-
thoden funktioniert, ob die Aggregationen des Ausgangssystems beliebig gewählt werden
können, und ob diese Methode effizient auf einer symbolischen Datenstruktur umgesetzt
werden kann.

(3) Parallelisierung: Die Autoren von [BH01] stellen einen parallelisierten numerischen Löser
vor, welcher die standardmäßigen “sparse matrix” Formate benutzt. Es gilt nun zu unter-
suchen, ob man in diesem Kontext nicht auch symbolische Datenstrukturen verwenden
kann, wobei die Parallelisierung der Pseudo-Gauss-Seidel Methode sehr vielversprechend
aussieht.

