Introduction to Software Testing
Chapter 3.1, 3.2
Logic Coverage

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/
Ch. 3: Logic Coverage

Four Structures for Modeling Software

- **Graphs**
- **Logic**
- **Input Space**
- **Syntax**

Applied to:
- **Source**
- **Specs**
- **DNF**
- **FSMs**

Applied to:
- **Source**
- **Specs**

Applied to:
- **Source**
- **Models**
- **Integ**
- **Input**

Applied to:
- **Design**
- **Use cases**
Covering Logic Expressions (3.1)

- Logic expressions show up in many situations

- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software

- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements

- Tests are intended to choose some subset of the total number of truth assignments to the expressions
Logic Predicates and Clauses

- A **predicate** is an expression that evaluates to a **boolean** value.
- Predicates can contain:
 - **boolean variables**
 - non-boolean variables that contain $>$, $<$, $==$, $>$=, $<$=, $!=$
 - boolean **function** calls
- Internal structure is created by logical operators:
 - \neg – the *negation* operator
 - \land – the *and* operator
 - \lor – the *or* operator
 - \rightarrow – the *implication* operator
 - \oplus – the *exclusive or* operator
 - \leftrightarrow – the *equivalence* operator
- A **clause** is a predicate with no logical operators.
Examples

• \((a < b) \lor f(z) \land D \land (m \geq n \times o)\)

• Four clauses:
 – \((a < b)\) – relational expression
 – \(f(z)\) – boolean-valued function
 – \(D\) – boolean variable
 – \((m \geq n \times o)\) – relational expression

• Most predicates have few clauses
 – It would be nice to quantify that claim!

• Sources of predicates
 – Decisions in programs
 – Guards in finite state machines
 – Decisions in UML activity graphs
 – Requirements, both formal and informal
 – SQL queries
Translating from English

• “I am interested in SWE 637 and CS 652”
 • \(course = \text{swe637} \text{ OR } course = \text{cs652} \)

• “If you leave before 6:30 AM, take Braddock to 495, if you leave after 7:00 AM, take Prosperity to 50, then 50 to 495”
 • \(time < 6:30 \rightarrow path = \text{Braddock} \lor time > 7:00 \rightarrow path = \text{Prosperity} \)
 • Hmm ... this is incomplete!
 • \(time < 6:30 \rightarrow path = \text{Braddock} \lor time \geq 6:30 \rightarrow path = \text{Prosperity} \)
Testing and Covering Predicates (3.2)

• We use predicates in testing as follows:
 – Developing a model of the software as one or more predicates
 – Requiring tests to satisfy some combination of clauses

• Abbreviations:
 – P is the set of predicates
 – p is a single predicate in P
 – C is the set of clauses in P
 – C_p is the set of clauses in predicate p
 – c is a single clause in C
Predicate and Clause Coverage

• The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC) : For each \(p \) in \(P \), \(TR \) contains two requirements: \(p \) evaluates to true, and \(p \) evaluates to false.

• When predicates come from conditions on edges, this is equivalent to edge coverage

• PC does not evaluate all the clauses, so …

Clause Coverage (CC) : For each \(c \) in \(C \), \(TR \) contains two requirements: \(c \) evaluates to true, and \(c \) evaluates to false.
Predicate Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$

Predicate coverage

Predicate = true

a = 5, b = 10, D = true, m = 1, n = 1, o = 1

$$= (5 < 10) \lor true \land (1 >= 1*1)$$

$$= true \lor true \land TRUE$$

$$= true$$

Predicate = false

a = 10, b = 5, D = false, m = 1, n = 1, o = 1

$$= (10 < 5) \lor false \land (1 >= 1*1)$$

$$= false \lor false \land TRUE$$

$$= false$$
Clause Coverage Example

\(((a < b) \lor D) \land (m \geq n \times o)\)

Clause coverage

<table>
<thead>
<tr>
<th>Condition 1</th>
<th>Condition 2</th>
<th>Condition 3</th>
<th>Condition 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a < b) = true)</td>
<td>((a < b) = false)</td>
<td>(D = true)</td>
<td>(D = false)</td>
</tr>
<tr>
<td>(a = 5, b = 10)</td>
<td>(a = 10, b = 5)</td>
<td>(D = true)</td>
<td>(D = false)</td>
</tr>
<tr>
<td>(m \geq n \times o = true)</td>
<td>(m \geq n \times o = false)</td>
<td>(m = 1, n = 1, o = 1)</td>
<td>(m = 1, n = 2, o = 2)</td>
</tr>
</tbody>
</table>

Two tests

1) \(a = 5, b = 10, D = true, m = 1, n = 1, o = 1\)
2) \(a = 10, b = 5, D = false, m = 1, n = 2, o = 2\)
Problems with PC and CC

• PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation

• CC does not always ensure PC
 – That is, we can satisfy CC without causing the predicate to be both true and false
 – This is definitely not what we want!

• The simplest solution is to test all combinations …
Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each p in P, TR has test requirements for the clauses in C_p to evaluate to each possible combination of truth values.

<table>
<thead>
<tr>
<th></th>
<th>$a < b$</th>
<th>D</th>
<th>$m \geq n^*o$</th>
<th>$(a < b) \lor D \land (m \geq n^*o)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Combinatorial Coverage

- This is simple, neat, clean, and comprehensive …

- But quite expensive!

- \(2^N\) tests, where \(N\) is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses

- The literature has lots of suggestions – some confusing

- The general idea is simple:

 Test each clause independently from the other clauses

- Getting the details right is hard

- What exactly does “independently” mean?

- The book presents this idea as “making clauses active” …
Active Clauses

• Clause coverage has a **weakness**: The values do not always make a difference

• Consider the first test for **clause coverage**, which caused each clause to be true:

 - \((5 < 10) \lor \text{true} \land (1 \geq 1*1)\)

• Only the first clause **counts**!

• To really test the results of a clause, the clause should be the **determining factor** in the value of the predicate

Determination: A clause \(C_i\) in predicate \(p\), called the **major clause**, **determines** \(p\) if and only if the values of the remaining **minor clauses** \(C_j\) are such that changing \(C_i\) changes the value of \(p\)

• This is considered to **make the clause active**
Determining Predicates

- **Goal**: Find tests for each clause when the clause determines the value of the predicate.
- This is formalized in several criteria that have subtle, but very important, differences.

\[
P = A \lor B
\]

- If \(B = \text{true} \), \(p \) is always true.
- So if \(B = \text{false} \), \(A \) determines \(p \).
- If \(A = \text{false} \), \(B \) determines \(p \).

\[
P = A \land B
\]

- If \(B = \text{false} \), \(p \) is always false.
- So if \(B = \text{true} \), \(A \) determines \(p \).
- If \(A = \text{true} \), \(B \) determines \(p \).
Active Clause Coverage (ACC) : For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) determines \(p \). TR has two requirements for each \(c_i : c_i \) evaluates to true and \(c_i \) evaluates to false.

\[
p = a \lor b
\]

1) \(a = \text{true}, b = \text{false} \)
2) \(a = \text{false}, b = \text{false} \)
3) \(a = \text{false}, b = \text{true} \)
4) \(a = \text{false}, b = \text{false} \)

- This is a form of MCDC, which is required by the FAA for safety critical software
- **Ambiguity** : Do the minor clauses have to have the same values when the major clause is true and false?
Resolving the Ambiguity

- This question caused **confusion** among testers for years
- Considering this carefully leads to **three** separate criteria:
 - Minor clauses **do not** need to be the same
 - Minor clauses **do** need to be the same
 - Minor clauses **force the predicate** to become both true and false

\[p = a \lor (b \land c) \]

Major clause:
- \(a = \text{true}, b = \text{false}, c = \text{true} \)
- \(a = \text{false}, b = \text{false}, c = \text{false} \)

Is this allowed?
General Active Clause Coverage (GACC) : For each p in P and each major clause ci in Cp, choose minor clauses $cj, j \neq i$, so that ci determines p. TR has two requirements for each ci: ci evaluates to true and ci evaluates to false. The values chosen for the minor clauses cj do not need to be the same when ci is true as when ci is false, that is, $cj(ci = true) = cj(ci = false)$ for all cj OR $cj(ci = true) \neq cj(ci = false)$ for all cj.

- This is **complicated**!
- It is possible to satisfy GACC **without** satisfying predicate coverage
- We **really want** to cause predicates to be both true and false!
Restricted Active Clause Coverage (RACC) : For each p in P and each major clause ci in Cp, choose minor clauses $cj, j \neq i$, so that ci determines p. TR has two requirements for each ci: ci evaluates to true and ci evaluates to false. The values chosen for the minor clauses cj must be the same when ci is true as when ci is false, that is, it is required that $cj(ci = true) = cj(ci = false)$ for all cj.

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction
Correlated Active Clause Coverage (CACC) : For each p in P and each major clause c_i in C_p, choose minor clauses $c_j, j \neq i$, so that c_i determines p. TR has two requirements for each c_i: c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) \neq p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage
CACC and RACC

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a \land (b \lor c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

major clause

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a \land (b \lor c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

major clause

RACC can only be satisfied by one of the three pairs above
Inactive Clause Coverage

• The active clause coverage criteria ensure that "major" clauses do affect the predicates

• Inactive clause coverage takes the opposite approach – major clauses do not affect the predicates

Inactive Clause Coverage (ICC) : For each p in P and each major clause c_i in C_p, choose minor clauses $c_j, j \neq i$, so that c_i does not determine p. TR has four requirements for each c_i: (1) c_i evaluates to true with p true, (2) c_i evaluates to false with p true, (3) c_i evaluates to true with p false, and (4) c_i evaluates to false with p false.
General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - c_i does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in C_p, choose minor clauses c_j, $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) \neq c_j(c_i = false)$ for all c_j.

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in C_p, choose minor clauses c_j, $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_j(c_i = false)$ for all c_j.
Logic Coverage Criteria Subsumption

- Combinatorial Clause Coverage (COC)
- Restricted Active Clause Coverage (RACC)
- Restricted Inactive Clause Coverage (RICC)
- Correlated Active Clause Coverage (CACC)
- General Active Clause Coverage (GACC)
- Clause Coverage (CC)
- Predicate Coverage (PC)

- General Inactive Clause Coverage (GICC)
Making Clauses Determine a Predicate

- Finding values for minor clauses c_j is easy for simple predicates.
- But how to find values for more complicated predicates?
- Definitional approach:
 - $pc=true$ is predicate p with every occurrence of c replaced by $true$
 - $pc=false$ is predicate p with every occurrence of c replaced by $false$
- To find values for the minor clauses, connect $pc=true$ and $pc=false$ with exclusive OR.

\[pc = pc=true \oplus pc=false \]

- After solving, pc describes exactly the values needed for c to determine p.
Examples

p = a ∨ b

\[
p_a = p_{a=\text{true}} \oplus p_{a=\text{false}} \\
= (\text{true} \lor b) \text{ XOR } (\text{false} \lor b) \\
= \text{true XOR } b \\
= \neg b
\]

p = a ∧ b

\[
p_a = p_{a=\text{true}} \oplus p_{a=\text{false}} \\
= (\text{true} \land b) \text{ XOR } (\text{false} \land b) \\
= b \oplus \text{false} \\
= b
\]

p = a ∨ (b ∧ c)

\[
p_a = p_{a=\text{true}} \oplus p_{a=\text{false}} \\
= (\text{true} \lor (b \land c)) \text{ XOR } (\text{false} \lor (b \land c)) \\
= \text{true XOR } (b \land c) \\
= \neg (b \land c) \\
= \neg b \lor \neg c
\]

- "**NOT b ∨ NOT c**" means either b or c can be false
- **RACC requires the same choice for both values of a**, CACC does not
Repeated Variables

- The definitions in this chapter yield the same tests no matter how the predicate is expressed

- \((a \lor b) \land (c \lor b) == (a \land c) \lor b\)

- \((a \land b) \lor (b \land c) \lor (a \land c)\)
 - Only has 8 possible tests, not 64

- Use the simplest form of the predicate, and ignore contradictory truth table assignments
A More Subtle Example

\[p = (a \land b) \lor (a \land \lnot b) \]

- \(p_a = p_{a=true} \oplus p_{a=false} \)
 - \(= ((true \land b) \lor (true \land \lnot b)) \oplus ((false \land b) \lor (false \land \lnot b)) \)
 - \(= (b \lor \lnot b) \oplus false \)
 - \(= true \oplus false \)
 - \(= true \)

- \(p_b = p_{b=true} \oplus p_{b=false} \)
 - \(= ((a \land true) \lor (a \land \lnot true)) \oplus ((a \land false) \lor (a \land \lnot false)) \)
 - \(= (a \lor false) \oplus (false \lor a) \)
 - \(= a \oplus a \)
 - \(= false \)

- \(a \) always determines the value of this predicate
- \(b \) never determines the value – \(b \) is irrelevant!
Infeasible Test Requirements

- Consider the predicate:
 \[(a > b \land b > c) \lor c > a\]

- \((a > b) = true, (b > c) = true, (c > a) = true\) is **infeasible**

- As with graph-based criteria, infeasible test requirements have to be **recognized** and **ignored**

- Recognizing infeasible test requirements is hard, and in general, **undecidable**

- Software testing is **inexact** – engineering, not science
Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses

- Control software often has many complicated predicates, with lots of clauses

- Question … why don’t complexity metrics count the number of clauses in predicates?