This sheet should be handed in together with the exam. Each problem must be solved on a separate sheet. Write your name on each sheet. Indicate below which questions you have answered.

<table>
<thead>
<tr>
<th>Problem no.</th>
<th>Solution provided</th>
<th>Max</th>
<th>Your points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

Name: ..

Pers.no.: ...
Exam Rubric

All answers should be written in English or Swedish (English is preferred). A mark of 60% is required for a G a mark of 85% is required for a VG.

Hjälpmedel:

Pen, pencil, ruler, rubber, dictionary. You are not allowed a calculator.
1. Simple MIPS coding

(a) Code the following fragment of code in MIPS assembly language (be sure to add in comments):

```plaintext
for(i=0 ; i!=100 ; i++) {
    B[i] = A[i] - B[i+1];
}
```

You should assume that the arrays A and B are integer arrays. In your answer use $s0$ as the base address of the array A and $s1$ as the base address of the array B. (points 4)

(b) Explain how and why you would use the `slt` instruction. (points 2)

(c) Make the following code more efficient by writing it to avoid the use of multiply instructions (you may alter the contents of the register $s0$) and by removing the jump instruction: (points 3)

```plaintext
li $t0,0
li $t1,100
loop: beq $t0,$t1,exit
    muli $t2,$t0,8
    add $t2,$s0,$t2
    sw $0,0($t2)
    addi $t0,$t0,2
    j loop
exit:
```

2. Question on I/O

(a) What is an interrupt? (points 2)

(b) Explain what Polled and Interrupt driven I/O is. (points 2)

(c) Explain the advantages and Disadvantages of Polled and Interrupt driven I/O. (points 2)

3. Processor Implementation

(a) Explain how the longest path in a circuit effects the timing of a circuit. (points 1)

(b) Explain the problems with a single-cycle implementation of a processor. (points 2)
(c) When implementing a processor using the multi-cycle approach a
finite state machine is needed. First explain what a finite state-
machine is, then explain how a finite state machine can be imple-
mented using Microcode. (points 4)

(d) What are the advantages and disadvantages of microcode? (points 2)

4. Pipelines

(a) Explain in detail the principle of pipelining, in particular explain
how it enhances the performance of a processor. (points 6)

(b) What are pipeline stalls and what causes them. (points 4)

(c) Assuming your processor has data-forwarding of arithmetic in-
structions identify all the pipeline stalls in the following piece of
code:

```
lw $t0,4($s0)
sw $t0,0($t0)
lw $t1,0($s0)
addi $t1,$t1,4
lw $t1,0($t1)
```

(1 points)

(d) Rewrite the code to minimise the number of pipeline stalls. (1 points)

5. Caches and Virtual Memory

(a) What it a memory Cache? What principles does it rely on to
increase the performance? (4 points)

(b) Describe the memory access characteristics of programs that per-
form badly on cache based systems. (2 points).

(c) What are multi-level Caches? (1 points)

(d) Given a memory reference a Cache has to determine if the memory
is in the Cache. There are a number of schemes for determining
where a global memory reference should be placed in the cache
memory. Describe the following Schemes: Direct mapped, n-way
associative and fully associative. Describe the advantages and
disadvantages of each different scheme. (4 points)

(e) Explain Virtual memory, explain what is is, the role of a page
table and virtual addresses. (points 4)
(f) With a virtual memory system why is it inefficient to have a small page size in a virtual memory system.

(g) Explain what a Translation look-aside buffer (TLB) is and why it is needed. (points 3).