Exam in Distributed Systems

Justin Pearson

June, 2011

Cover Sheet

This sheet should be handed in together with the exam. Each problem must be solved on a separate sheet. Write your name on each sheet. Indicate below which questions you have answered.

<table>
<thead>
<tr>
<th>Problem no.</th>
<th>Solution provided</th>
<th>Max</th>
<th>Your points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

Name: ...

Anonymous Code: ..
Exam Rubric

A mark of 50% is required for a pass, a 4 and 5 are distributed evenly. Answers can be in English or Swedish.

Each full answer should be started on a separate sheet. Please write your name and personal number on each sheet.

I will not be able to come to the exam. If you are unsure about how to answer a question. Make some reasonable assumptions, state your assumptions and answer the exam.

Hjälpmedel:

Pen, pencil, ruler, rubber (eraser for people from the Antipodes or from across the pond) calculator.
1. General Questions on Distributed Systems.

(a) What problems do networks cause for synchronization in a distributed system? (2 points)

(b) Explain why it might be a problem to detect failure in a distributed system. (1 point)

(c) Give two examples of where replication could be used in a distributed system, explain in each case why replication is a good thing. (4 points)

(d) What is middleware in a distributed system and why is it used? (2 points)

(e) Explain the different types of transparency that are desirable in a distributed system. (2 points)

2. Distributed Programming Patterns.

(a) Describe the client server paradigm. (1 point) Give at least one example. (1 point)

(b) Describe what a remote procedure call is. (1 point) Further, describe in detail the implementation on both the client and server side of a client-server system. (3 points)

(c) When implementing distributed system middleware there are choices of representation for data marshaling. Describe two approaches, and give scenarios where each of your approaches are appropriate. (4 points)

(d) When designing a distributed system why is it often a good idea to avoid central servers? Give examples. (2 points)

(e) Describe the publish subscribe paradigm. (1 point) Give at least one example. (1 point)

(f) How does the implementation of a remote object and a remote procedure call differ, both on the client side and on the server side. (2 points)
3. Global State.

(a) Why is it hard to record the state of a distributed system. Give examples. (4 points)

(b) Define a consistent cut of a distributed system. (2 points) Make sure that you give examples. (1 points). How does a consistent cut help when designing state recording algorithms. (1 points).

4. Clock Synchronization and Timestamps.

(a) Suppose that you have two clocks both with drift $\rho = 10^{-3}$ seconds/seconds. If you want the clocks synchronized within 0.4 of a second, then how often should the clocks be resynchronized to achieve this? (2 points) (Obs. Show your workings, no workings no points for a correct or incorrect answer)

(b) Consider the following three processes p_1, p_2 and p_3 with the following pattern of communication:

```
p_1 ---- a ---- b ---------------------- i
  \      \            \     \         \n  c      d            e     h ---->  \\
\    \     \          \    \          \\
\    \     \          \    \          \\
\    \     \          \    \          \\
\    \     \          \    \          \\
\    \     \          \    \          \\
p_3 ---- f ---------------------- g ----> j
```

Label the each event with a normal scaler value lamport time stamp (2 points) and a vector time stamp (2 points)

(c) What does it mean for two events to be concurrent and what is the relation of the lamport timestamps of the two events. (2 points).

(d) Lamport timestamps can be used to implement mutual exclusion in a distributed system. Describe an algorithm that does this (using Lamport timestamps) and argue for the correctness of the algorithm. (5 points)
5. Transaction and Concurrency Control.

(a) Define what a transaction is. Be sure to give an example (not an example from my slides) (2 points)

(b) A transaction is supposed to satisfy the so called ACID properties. Explain what the ACID properties are. (4 points).

(c) Define what an interleaving of two transactions is. (1 points).

(d) Define what it means for the interleaving of two transaction to be serially equivalent. (2 points).

(e) Give examples (not examples taken from my slides), and explain why it is necessary to require serially equivalent interleaving of transactions. (2 points)

(f) Lamport timestamps can be used for concurrency control of parallel transactions. Describe an algorithm and argue for its correctness. (5 points)