1. Merge Sort

Running time: $\Theta(n \log n)$, where n is the number of elements to be sorted.

Apply the Divide & Conquer (& Combine) Principle

```
5 7 3 12 1 7 2 8
split
5 7 3 12
sort
3 5 7 12
merge
1 2 3
1 2 7 8
merge
1 2 3 5 7 7 8 12
```
Merging two sorted lists

specification

function merge L M
TYPE: int list → int list → int list
PRE: L and M are non-decreasingly sorted
POST: a non-decreasingly sorted permutation of the list L@M

Exercise

Redo all the functions in this chapter for α lists.
Construction

Variant: $\text{length}(L) \cdot \text{length}(M)$. (Exercise: try $\text{length}(L) + \text{length}(M)$.)

Base cases
If L is empty, then the result is M.
If M is empty, then the result is L.

General case
Let L be $x::xs$ and let M be $y::ys$.
If $x < y$, then x is the minimum of L and M, and the result is $x::zs$, where zs is $\text{merge} \ xs \ M$.
If $x \geq y$, then y is the minimum of L and M, and the result is $y::zs$, where zs is $\text{merge} \ L \ ys$.

Note that the recursive calls do satisfy the pre-condition, and that the variant does get smaller.

SML program

```sml
fun merge [ ] M = M
| merge L [ ] = L
| merge (L as x::xs) (M as y::ys) =
    if x < y
    then x :: (merge xs M)
    else y :: (merge L ys)
```

Running time: $O(|L| + |M|)$
Splitting a list into two ‘halves’

 Specification

 function split L
 TYPE: α list → (α list * α list)
 PRE: (none)
 POST: (A,B) such that A@B is a permutation of L
 while A and B are of the same length, up to one element

 Note that the order of the elements in A and B is irrelevant!

 Naive SML program

 fun split L =
 let
 val t = (length L) div 2
 in
 (List.take (L,t) , List.drop (L,t))
 end

 • Running time: \(n + \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = \Theta(n) \),
 where \(n \) is the length of \(L \).

 • How to realise \textit{split} with a \textit{single} traversal of \(L \)?!
Merge sort

Specification

function sort L
TYPE: int list → int list
PRE: (none)
POST: a non-decreasingly sorted permutation of L

SML Program

Variant: length(L).

fun sort [] = []
| sort [x] = [x]
| sort xs =
 let
 val (ys,zs) = split xs
 in
 merge (sort ys) (sort zs)
 end

Why is the base case sort [x] indispensable?!
2. Quicksort

A sorting method proposed by C.A.R. Hoare, in 1962. Average-case running time: $\Theta(n \log n)$, where n is the number of elements to be sorted.

Application of the Divide & Conquer Principle

```
5 7 3 12 1 2 7 8
```

```
3 1 2
```

```
7 12 7 8
```

```
1 2 3
```

```
7 7 8 12
```

```
1 2 3 5 7 7 8 12
```
Specification

The same as for merge sort!

SML program

```sml
fun sort [ ] = [ ]
| sort (x::xs) =
    let val (S,B) = partition (x,xs)
    in (sort S) @ (x :: (sort B))
    end
```

- Double recursion and no tail-recursion
- Average-case running time: $\Theta(n \log n)$
- Usage of $X @ Y$ (concatenation), which is $\Theta(|X|)$

Help function: partition

```sml
function partition (p,L)
TYPE: int * int list -> int list * int list
PRE: (none)
POST: (S,B) where S has all $x < p$ of L and B has all $x \geq p$ of L

fun partition (p,[ ]) = ([ ],[ ])
| partition (p,x::xs) =
    let val (S,B) = partition (p,xs)
    in if x < p then (x::S,B)
        else (S,x::B)
    end
```

- Running time: $\Theta(|L|)$
Generalisation

\[\text{sort'} B A \]

\[x :: (\text{sort'} B A) \]

function sort’ L A
TYPE: int list \(\rightarrow\) int list \(\rightarrow\) int list
PRE: (none)
POST: (a non-decreasingly sorted permutation of L) \(\@\) A
(Exercise: try POST: A \(\@\) (a non-decreasingly sorted permutation of L))

local

```
fun sort' [ ] A = A
| sort' (x::xs) A =
  let val (S,B) = partition (x,xs)
  in sort' S (x :: (sort' B A))
  end
in fun sort2 L = sort' L [ ]
end
```

- Double recursion, but one tail-recursion
- No usage of \(\@\) (no concatenation)
- Average-case running time: again \(\Theta(n \log n)\),
 but less space consumption