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P ?
= NP (Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics
Institute (Massachusetts, USA), each worth 1 million US$.

Informally:
P = class of problems that need no search in order to be solved
NP = class of problems that might need search in order to be solved
P = class of problems with easy-to-compute solutions
NP = class of problems with easy-to-check solutions

Thus: Can search always be avoided (P = NP),
or is search sometimes necessary (P ̸= NP)?

Computational tasks that are doable in polynomial time (in the input size)
are said to be tractable or easy.
Tasks requiring non-polynomial time are said to be intractable or hard.
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P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP,
whose answer is ‘yes’ or ‘no’, for inputs of size n:

P = the class of easy problems, whose solutions can be computed in
polynomial time: O(nk ) time for some fixed k .
Examples: sorting; almost all problems in this course.
NP = the class of problems where a witness can be checked in polynomial
time when the answer is ‘yes’. NP stands not for “non-polynomial time”,
but for “non-deterministic polynomial time”. We trivially have P ⊆ NP.
Example: Given an n-digit number, does it have a divisor ending in 7?
Computing such a divisor seems hard, but checking a witness,
that is a candidate divisor, is easy.
Undecidable problems cannot be solved by any algorithm, no matter how
much time is allocated. Examples: halting problem; disjointness of CFLs.

So not all problems are in NP, independently of P versus NP.
AD2 - 6 -
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Reduction and NP Hardness (Karp, 1972)

Informally:

A problem Q reduces to a problem R, denoted Q ≤P R, if every instance
of Q can be transformed in polynomial time into an instance of R that has
the same yes / no answer. We also say that R is at least as hard as Q.
Note that ≤P is transitive: ∀Q,E ,R : Q ≤P E ≤P R ⇒ Q ≤P R.

Proving that a problem Q is in P can be done by showing that Q ≤P E
for some existing problem E in P.

A problem is NP-hard if it is at least as hard as every problem in NP:
we have that every problem in NP reduces to an NP-hard problem.

On slide 19 is a wider definition of NP hardness.
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NP Completeness (Cook, 1971; Levin, 1973)

Formally:
A problem is NP-complete if it is in NP and is NP-hard.

If some NP-complete problem is polynomial-time solvable,
then every problem in NP is polynomial-time solvable: P ⊇ NP and so P = NP.

An NP-complete problem is polynomial-time solvable if and only if P = NP.

If some problem in NP is not polynomial-time solvable (P ̸= NP),
then no NP-complete problem is polynomial-time solvable.

The status of NP-complete problems is currently unknown:
No polynomial-time algorithm was found for any of them,
and no proof was made that no such algorithm can exist.

Most experts believe NP-complete problems are intractable,
as the opposite would be truly amazing.
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NP Completeness: Examples

Given a digraph (V ,E) and two vertices u, v ∈ V :

Examples
Finding a shortest path from u to v takes O(V · E) time and is thus in P.
Determining the existence of a simple path (which has distinct vertices)
that has at least a given number ℓ of edges is NP-complete.
Hence finding a longest path seems hard:
increase ℓ starting from a trivial lower bound, until the answer is ‘no’.

Examples
Finding an Euler tour (which visits each edge once) takes O(E) time
and is thus in P.
Determining the existence of a Hamiltonian cycle
(which visits each vertex once) is NP-complete.
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NP Completeness: More Examples

Examples
2-SAT: Determining the satisfiability of a conjunction of disjunctions of
2 Boolean literals is in P.
3-SAT: Determining the satisfiability of a conjunction of disjunctions of
3 Boolean literals is NP-complete.
SAT: Determining the satisfiability of an arbitrary formula over Boolean
literals is NP-complete.
Clique: Determining the existence of a clique (= a complete subgraph)
of a given size in a graph is NP-complete.
Vertex Cover: Determining the existence of a vertex cover (a vertex
subset incident to all edges) of a given size in a graph is NP-complete.
Subset Sum: Determining the existence of a subset, of a given set, that
has a given sum is NP-complete.
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Pseudo-Polynomial Algorithms

Example (Subset Sum)
Determining the existence of a subset, of a given set S of n numbers,
that has a given sum t is NP-complete:

A dynamic-programming algorithm takes O(n · t) time,
as each entry in its n × t table can be computed in O(1) time.
This is polynomial in the given size n of S and polynomial in the magnitude
of the input t , which can be large depending on n and the numbers in S.
This is exponential in the size ⌈logb t⌉ of the base-b representation of t ,
since t = blogb t (usually: b = 2).

Definition
An algorithm of complexity polynomial in the magnitude of its input numbers
is said to be pseudo-polynomial.
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NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete can be done by showing
that E ≤P R for some existing NP-complete problem E ,
since by definition Q ≤P E for every problem Q in NP.
If a polynomial-time algorithm for R existed, then we would have a
polynomial-time algorithm for E , which would lead to P = NP.

Examples (exercises will be given in the AD3 course)
SAT is NP-complete (Cook, 1971; Levin, 1973).
SAT reduces to 3-SAT, but not to 2-SAT.
3-SAT reduces to Clique and to Subset Sum.
Clique reduces to Vertex Cover, which reduces to Hamiltonian Cycle,
which reduces to Travelling Salesperson (TSP), asking if there is a
Hamiltonian cycle with cost at most k in a complete weighted graph.
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Remarks

If P ̸= NP, then there exist problems in NP that are neither in P nor
NP-complete. Artificial such problems can be constructed, but integer
factorisation and graph isomorphism are practical problems in NP that are
currently not known to be in P and not known to be NP-complete.

There exist many other complexity classes, chartering the territory outside
NP, some of them overlapping with the NP-hard class, and containing
practical problems, such as planning. Determining a precise complexity
map is contingent upon settling the P versus NP question.

The stable matching problem is believed by many to be hard, but it can be
solved in O(n) time for n hospitals and n students, and is thus in P (Gale
and Shapley, 1962). Shapley shared the Nobel Prize in Economics 2012.
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What Now?

In a satisfaction problem, a ‘yes’ answer includes a witness.
In an optimisation problem, a ‘yes’ answer includes an optimal witness
according to some cost function.
Satisfaction and optimisation problems with NP-complete decision problems
are often also said to be NP-hard.
(Recall the method on slide 11 for finding a longest path.)
Several courses at Uppsala University teach techniques for addressing
NP-hard optimisation or satisfaction problems:

Algorithms and Datastructures 3 (1DL481) (period 3)
Continuous Optimisation (1TD184) (period 2)
Modelling for Combinatorial Optimisation (1DL451) (period 1)
Comb’l Optimisation & Constraint Programming (1DL442) (periods 1+2)

☞ NP completeness is not where the fun ends, but where the fun begins!
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