### Chapter 34: P versus NP, A Gentle Introduction (Version of 14th December 2023)

**Pierre Flener** 

Department of Information Technology Computing Science Division Uppsala University Sweden

Course 1DL231: Algorithms and Data Structures 2 (AD2)





#### Introduction P and NP

Reduction and NP Hardness

NP Completeness Relationships

What Now?

#### **1.** Introduction

### 2. P and NP

3. Reduction and NP Hardness

### 4. NP Completeness

#### 5. Relationships



#### Introduction

P and NP

Reduction and NP Hardness

NP Completeness Relationships

What Now?

#### **1. Introduction**

2. P and NP

**3. Reduction and NP Hardness** 

4. NP Completeness

#### **5.** Relationships

UPPSALA UNIVERSITET

Introduction

Reduction

NP Completeness

Relationships

What Now?

and NP Hardness



# (Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

Informally:

- P = class of problems that need no search in order to be solved NP = class of problems that might need search in order to be solved
- P = class of problems with easy-to-compute solutions

NP = class of problems with easy-to-check solutions

Thus: Can search always be avoided (P = NP), or is search sometimes necessary ( $P \neq NP$ )?

Computational tasks that are doable in polynomial time (in the input size) are said to be tractable or easy.

Tasks requiring non-polynomial time are said to be intractable or hard.



#### Introduction

#### P and NP

Reduction and NP Hardness

NP Completeness Relationships What Now?

### **1. Introduction**

#### 2. P and NP

**3. Reduction and NP Hardness** 

4. NP Completeness

#### **5.** Relationships



# P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size *n*:

- P = the class of easy problems, whose solutions can be computed in polynomial time: O(n<sup>k</sup>) time for some fixed k.
   Examples: sorting; almost all problems in this course.
- NP = the class of problems where a witness can be checked in polynomial time when the answer is 'yes'. NP stands not for "*non-p*olynomial time", but for "*non-deterministic polynomial time*". We trivially have P ⊆ NP.
  Example: Given an *n*-digit number, does it have a divisor ending in 7? Computing such a divisor seems hard, but checking a witness, that is a candidate divisor, is easy.
- Undecidable problems cannot be solved by any algorithm, no matter how much time is allocated. Examples: halting problem; disjointness of CFLs.
   So not all problems are in NP, independently of P versus NP.

- P and NP
- Reduction and NP Hardness
- NP Completeness
- Relationships
- What Now?



Introduction

P and NP Reduction

Reduction and NP Hardness

NP Completeness Relationships What Now? **1.** Introduction

2. P and NP

#### 3. Reduction and NP Hardness

4. NP Completeness

**5.** Relationships



## **Reduction and NP Hardness**

Informally:

Introduction

P and NP

Reduction and NP Hardness

NP Completeness Relationships What Now?

A problem Q reduces to a problem R, denoted Q ≤<sub>P</sub> R, if every instance of Q can be transformed in *p*olynomial time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q. Note that ≤<sub>P</sub> is transitive: ∀Q, E, R : Q ≤<sub>P</sub> E ≤<sub>P</sub> R ⇒ Q ≤<sub>P</sub> R.

(Karp, 1972)

- Proving that a problem Q is in P can be done by showing that Q ≤<sub>P</sub> E for some existing problem E in P.
- A problem is NP-hard if it is at least as hard as every problem in NP: we have that every problem in NP reduces to an NP-hard problem.
- On slide 19 is a wider definition of NP hardness.



Introduction P and NP Reduction

and NP Hardness

NP Completeness

Relationships What Now?

#### **1. Introduction**

2. P and NP

3. Reduction and NP Hardness

#### 4. NP Completeness

#### **5.** Relationships



Introduction P and NP

Reduction

NP Completeness

Relationships

What Now?

and NP Hardness

## **NP Completeness**

(Cook, 1971; Levin, 1973)

Formally:

A problem is NP-complete if it is in NP and is NP-hard.

If some NP-complete problem is polynomial-time solvable, then every problem in NP is polynomial-time solvable:  $P \supseteq NP$  and so P = NP.

An NP-complete problem is polynomial-time solvable if and only if P = NP.

If some problem in NP is not polynomial-time solvable (P  $\neq$  NP), then no NP-complete problem is polynomial-time solvable.

The status of NP-complete problems is currently unknown: No polynomial-time algorithm was found for any of them, and no proof was made that no such algorithm can exist.

Most experts believe NP-complete problems are intractable, as the opposite would be truly amazing.



# **NP Completeness: Examples**

Given a digraph (V, E) and two vertices  $u, v \in V$ :

#### Examples

- Finding a shortest path from u to v takes  $\mathcal{O}(V \cdot E)$  time and is thus in P.
- Determining the existence of a simple path (which has distinct vertices) that has at least a given number l of edges is NP-complete. Hence finding a longest path seems hard:

increase  $\ell$  starting from a trivial lower bound, until the answer is 'no'.

#### Examples

- Finding an Euler tour (which visits each *edge* once) takes O(E) time and is thus in P.
- Determining the existence of a Hamiltonian cycle (which visits each vertex once) is NP-complete.

Introduction P and NP

Reduction and NP Hardness

NP Completeness

Relationships What Now?



# **NP Completeness: More Examples**

#### Examples

- 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P.
- 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.
- SAT: Determining the satisfiability of an arbitrary formula over Boolean literals is NP-complete.
- Clique: Determining the existence of a clique (= a complete subgraph) of a given size in a graph is NP-complete.
- Vertex Cover: Determining the existence of a vertex cover (a vertex subset incident to all edges) of a given size in a graph is NP-complete.
- Subset Sum: Determining the existence of a subset, of a given set, that has a given sum is NP-complete.

Introduction

P and NP

NP Completeness

Relationships What Now?



# **Pseudo-Polynomial Algorithms**

#### Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

- A dynamic-programming algorithm takes O(n · t) time, as each entry in its n × t table can be computed in O(1) time.
- This is polynomial in the given size *n* of *S* and polynomial in the magnitude of the input *t*, which can be large depending on *n* and the numbers in *S*.
- This is exponential in the size  $\lceil \log_b t \rceil$  of the base-*b* representation of *t*, since  $t = b^{\log_b t}$  (usually: b = 2).

#### Definition

An algorithm of complexity polynomial in the magnitude of its input numbers is said to be pseudo-polynomial.

Introduction P and NP

Reduction and NP Hardness

NP Completeness

Relationships What Now?



# NP Completeness: Proof by Reduction

Introduction P and NP

Reduction and NP Hardness

NP Completeness

Relationships What Now? Proving that a problem *R* of NP is NP-complete can be done by showing that  $E \leq_P R$  for some existing NP-complete problem *E*, since by definition  $Q \leq_P E$  for every problem *Q* in NP. If a polynomial-time algorithm for *R* existed, then we would have a polynomial-time algorithm for *E*, which would lead to P = NP.

#### Examples (exercises will be given in the AD3 course)

- SAT is NP-complete (Cook, 1971; Levin, 1973).
- SAT reduces to 3-SAT, but not to 2-SAT.
- 3-SAT reduces to Clique and to Subset Sum.
- Clique reduces to Vertex Cover, which reduces to Hamiltonian Cycle, which reduces to Travelling Salesperson (TSP), asking if there is a Hamiltonian cycle with cost at most k in a complete weighted graph.



Introduction P and NP

Reduction and NP Hardness

NP Completeness

Relationships

What Now?

#### 1. Introduction

2. P and NP

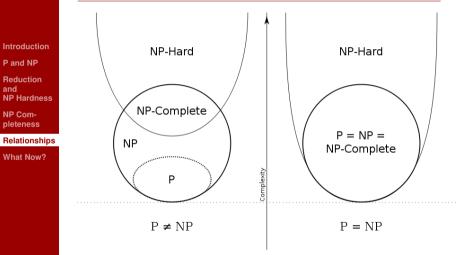
**3. Reduction and NP Hardness** 

4. NP Completeness

### 5. Relationships



### **Relationships**



© Wikimedia Commons



### Remarks

- Introduction
- P and NP
- Reduction and NP Hardness
- NP Completeness
- Relationships
- What Now?

- If P ≠ NP, then there exist problems in NP that are neither in P nor NP-complete. Artificial such problems can be constructed, but integer factorisation and graph isomorphism are practical problems in NP that are currently not known to be in P and not known to be NP-complete.
- There exist many other complexity classes, chartering the territory outside NP, some of them overlapping with the NP-hard class, and containing practical problems, such as planning. Determining a precise complexity map is contingent upon settling the P versus NP question.
- The stable matching problem is believed by many to be hard, but it can be solved in O(n) time for n hospitals and n students, and is thus in P (Gale and Shapley, 1962). Shapley shared the Nobel Prize in Economics 2012.



Introduction P and NP

Reduction and NP Hardness

NP Completeness

Relationships

What Now?

#### 1. Introduction

2. P and NP

**3. Reduction and NP Hardness** 

4. NP Completeness

#### **5.** Relationships



# What Now?

Introduction P and NP

Reduction and NP Hardness

NP Completeness

Relationships

What Now?

In a satisfaction problem, a 'yes' answer includes a witness. In an optimisation problem, a 'yes' answer includes an optimal witness according to some cost function.

Satisfaction and optimisation problems with NP-complete decision problems are often also said to be NP-hard.

(Recall the method on slide 11 for finding a longest path.)

Several courses at Uppsala University teach techniques for addressing NP-hard optimisation or satisfaction problems:

Algorithms and Datastructures 3 (1DL481) (period 3)

(period 2)

(period 1)

- Continuous Optimisation (1TD184)
- Modelling for Combinatorial Optimisation (1DL451)
- Comb'l Optimisation & Constraint Programming (1DL442) (periods 1+2)

INP completeness is not where the fun ends, but where the fun begins!