Chapter 34: P versus NP, A Gentle Introduction (Version of 14th December 2023)

Pierre Flener

Department of Information Technology
Computing Science Division
Uppsala University
Sweden

Course 1DL231:
Algorithms and Data Structures 2 (AD2)

Outline

1. Introduction
2. P and NP
3. Reduction and NP Hardness
4. NP Completeness
5. Relationships
6. What Now?

Outline

1. Introduction

2. P and NP
3. Reduction and NP Hardness
4. NP Completeness
5. Relationships
6. What Now?

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

Informally:
■ P = class of problems that need no search in order to be solved NP = class of problems that might need search in order to be solved
■ $\mathrm{P}=$ class of problems with easy-to-compute solutions NP = class of problems with easy-to-check solutions
Thus: Can search always be avoided ($\mathrm{P}=\mathrm{NP}$), or is search sometimes necessary ($P \neq N P$)?

Computational tasks that are doable in polynomial time (in the input size) are said to be tractable or easy.
Tasks requiring non-polynomial time are said to be intractable or hard.

Introduction

P and NP
Reduction

NP Hardness
NP Completeness

Relationships

What Now?

Outline

1. Introduction

2. P and NP

3. Reduction and NP Hardness
4. NP Completeness
5. Relationships
6. What Now?

P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ time for some fixed k.
Examples: sorting; almost all problems in this course.
■ NP = the class of problems where a witness can be checked in polynomial time when the answer is 'yes'. NP stands not for "non-polynomial time", but for "non-deterministic polynomial time". We trivially have $\mathrm{P} \subseteq$ NP.
Example: Given an n-digit number, does it have a divisor ending in 7 ? Computing such a divisor seems hard, but checking a witness, that is a candidate divisor, is easy.
■ Undecidable problems cannot be solved by any algorithm, no matter how much time is allocated. Examples: halting problem; disjointness of CFLs. So not all problems are in NP, independently of P versus NP.

Introduction

P and NP

Reduction
and NP Hardness

NP Com pleteness

Relationships What Now?

Outline

1. Introduction
2. P and NP
3. Reduction and NP Hardness
4. NP Completeness
5. Relationships
6. What Now?

Informally:

■ A problem Q reduces to a problem R, denoted $Q \leq_{p} R$, if every instance of Q can be transformed in polynomial time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q. Note that \leq_{p} is transitive: $\forall Q, E, R: Q \leq_{\mathrm{p}} E \leq_{\mathrm{p}} R \Rightarrow Q \leq_{\mathrm{p}} R$.

■ Proving that a problem Q is in P can be done by showing that $Q \leq_{\mathrm{P}} E$ for some existing problem E in P .

■ A problem is NP-hard if it is at least as hard as every problem in NP: we have that every problem in NP reduces to an NP-hard problem.

■ On slide 19 is a wider definition of NP hardness.

Introduction

P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships

What Now?

Outline

1. Introduction
2. P and NP
3. Reduction and NP Hardness
4. NP Completeness

5. Relationships

6. What Now?

(Cook, 1971; Levin, 1973)

Formally:
■ A problem is NP-complete if it is in NP and is NP-hard.
If some NP-complete problem is polynomial-time solvable, then every problem in NP is polynomial-time solvable: $P \supseteq N P$ and so $P=N P$.
An NP-complete problem is polynomial-time solvable if and only if $P=N P$. If some problem in NP is not polynomial-time solvable ($\mathrm{P} \neq \mathrm{NP}$), then no NP-complete problem is polynomial-time solvable.
The status of NP-complete problems is currently unknown: No polynomial-time algorithm was found for any of them, and no proof was made that no such algorithm can exist.
Most experts believe NP-complete problems are intractable, as the opposite would be truly amazing.

NP Completeness: Examples

Given a digraph (V, E) and two vertices $u, v \in V$:

Examples

- Finding a shortest path from u to v takes $\mathcal{O}(V \cdot E)$ time and is thus in P .

■ Determining the existence of a simple path (which has distinct vertices) that has at least a given number ℓ of edges is NP-complete. Hence finding a longest path seems hard: increase ℓ starting from a trivial lower bound, until the answer is ' no '.

Examples

■ Finding an Euler tour (which visits each edge once) takes $\mathcal{O}(E)$ time and is thus in P .

- Determining the existence of a Hamiltonian cycle (which visits each vertex once) is NP-complete.

NP Completeness: More Examples

Examples

- 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .

■ 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.
■ SAT: Determining the satisfiability of an arbitrary formula over Boolean literals is NP-complete.
■ Clique: Determining the existence of a clique (= a complete subgraph) of a given size in a graph is NP-complete.
■ Vertex Cover: Determining the existence of a vertex cover (a vertex subset incident to all edges) of a given size in a graph is NP-complete.
■ Subset Sum: Determining the existence of a subset, of a given set, that has a given sum is NP-complete.

Pseudo-Polynomial Algorithms

Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

- A dynamic-programming algorithm takes $\mathcal{O}(n \cdot t)$ time, as each entry in its $n \times t$ table can be computed in $\mathcal{O}(1)$ time.
- This is polynomial in the given size n of S and polynomial in the magnitude of the input t, which can be large depending on n and the numbers in S.
■ This is exponential in the size $\left\lceil\log _{b} t\right\rceil$ of the base- b representation of t, since $t=b^{\log _{b} t}$ (usually: $b=2$).

Definition

An algorithm of complexity polynomial in the magnitude of its input numbers is said to be pseudo-polynomial.

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete can be done by showing that $E s_{\mathrm{p}} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{p}} E$ for every problem Q in NP. If a polynomial-time algorithm for R existed, then we would have a polynomial-time algorithm for E, which would lead to $P=N P$.

Examples (exercises will be given in the AD3 course)

$■$ SAT is NP-complete (Cook, 1971; Levin, 1973).
■ SAT reduces to 3-SAT, but not to 2-SAT.
■ 3-SAT reduces to Clique and to Subset Sum.

- Clique reduces to Vertex Cover, which reduces to Hamiltonian Cycle, which reduces to Travelling Salesperson (TSP), asking if there is a Hamiltonian cycle with cost at most k in a complete weighted graph.

Outline

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships

1. Introduction
2. P and NP
3. Reduction and NP Hardness
4. NP Completeness
5. Relationships
6. What Now?

Relationships

Introduction
P and NP
Reduction
and
NP Hardness
NP Com-
pleteness

■ If $P \neq N P$, then there exist problems in NP that are neither in P nor NP-complete. Artificial such problems can be constructed, but integer factorisation and graph isomorphism are practical problems in NP that are currently not known to be in P and not known to be NP-complete.

■ There exist many other complexity classes, chartering the territory outside NP, some of them overlapping with the NP-hard class, and containing practical problems, such as planning. Determining a precise complexity map is contingent upon settling the P versus NP question.

■ The stable matching problem is believed by many to be hard, but it can be solved in $\mathcal{O}(n)$ time for n hospitals and n students, and is thus in P (Gale and Shapley, 1962). Shapley shared the Nobel Prize in Economics 2012.

Introduction

P and NP
Reduction
NP Hardness
NP Completeness

Relationships

Outline

1. Introduction
2. P and NP
3. Reduction and NP Hardness
4. NP Completeness
5. Relationships
6. What Now?

What Now?

In a satisfaction problem, a 'yes' answer includes a witness.
In an optimisation problem, a 'yes' answer includes an optimal witness according to some cost function.
Satisfaction and optimisation problems with NP-complete decision problems are often also said to be NP-hard.
(Recall the method on slide 11 for finding a longest path.)
Several courses at Uppsala University teach techniques for addressing NP-hard optimisation or satisfaction problems:

■ Algorithms and Datastructures 3 (1DL481) (period 3)

- Continuous Optimisation (1TD184) (period 2)
■ Modelling for Combinatorial Optimisation (1DL451)
- Comb'l Optimisation \& Constraint Programming (1DL442) (periods 1+2) NP completeness is not where the fun ends, but where the fun begins!

