
Lecture 4 : Introduction to Dynamic Programming

Justin Pearson

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 1 / 33

Today’s Topics

Today’s Topics

Overview of different types of algorithm design.

Introduction to Dynamic programming:

Dynamic programming as recursion optimised with caching.
Dynamic programming as dividing a problem into smaller sub problems.

Dynamic programming is a common solution technique, and is often a
quick way to get an efficient algorithm.

Dynamic programming is very often the solution to various difficult coding
interview questions. Often because it is the only thing of substance the
interviewer remembers from their algorithms course.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 2 / 33

Today’s Topics

Three algorithmic paradigms

Greedy Process the input in some order making irreversible decisions
hoping that you get a solution and if you do hoping that it is
a good solution. Later on we’ll see when greed is good.

Divide and Conquer Divide the input into smaller parts, solve on the
smaller parts and then combine the solutions.

Dynamic Programming Breaking a problem into smaller sub-problems
(not the same as dividing the input smaller parts) and
combine them.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 3 / 33

Introduction to Dynamic Programming

Dynamic Programming — Sub-problems

Overlapping Sub-problems This is a rather confusing turn of phrase, but it
means we divide it into sub-problems that we use more than
once. If we only use the results of the sub-problems once,
then it is just divide and conquer.

Optimal Substructure Property A problem has the Optimal Substructure
Property if if an optimal solution can be constructed from
optimal solutions of its sub-problems.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 4 / 33

Introduction to Dynamic Programming

Dynamic Programming — History and Etymology

Invented in the 1950’s by Richard Bellman. It is well worth reading the
original paper.1

Programming — making a schedule not computer programming.

Dynamic — Because Richard Bellman thought it sounded cool. He
used it to disguise that fact that he was doing mathematics from his
Washington paymasters.

Making schedules over time, or solving multi-stage problems over time.

It is best not to get too hung up on terminology.

1Bellman R. The theory of dynamic programming. Bulletin of the American
Mathematical Society. 1954;60(6):503-15.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 5 / 33

https://www.ams.org/journals/bull/1954-60-06/S0002-9904-1954-09848-8/S0002-9904-1954-09848-8.pdf
https://www.ams.org/journals/bull/1954-60-06/S0002-9904-1954-09848-8/S0002-9904-1954-09848-8.pdf

Introduction to Dynamic Programming

Fibonacci numbers

Long history. First appearance around 200BC in Indian mathematics.
Introduced to the west by Leonardo of Pisa, a.k.a Fibonacci in 1202. In
the same book he introduced the numeral zero and positional notation for
numbers.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 6 / 33

Fibonacci Numbers

Fibonacci Numbers

Fibonacci numbers appear in lots of areas of mathematics, art and even
music (Bartok was obsessed with them). They are connected with the
Golden section.

Definition F0 = F1 = 1 and for n > 1

Fn = Fn−1 + Fn−2

This gives the sequence:

1, 1, 2, 3, 5, 8, 13, . . .

Some people start from 1, but starting from 0 makes some of the code
examples easier later.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 7 / 33

Fibonacci Numbers

Closed-form expression

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)

Fn ≈ ϕn

√
5

where

ϕ =
1 +

√
5

2

So Fn ∈ O(2n) since ϕ ≈ 1.6180339887

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 8 / 33

Fibonacci Numbers

Computing Fibonacci numbers

def f i b (n) :
i f n == 0 :

return 1
i f n == 1 :

return 1
return f i b (n−1) + f i b (n−2)

Let Tfib be the number of steps to calculate Fn. Question: What is a
answer to

Tfib(n) ∈ O(???)

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 9 / 33

Fibonacci Numbers

Tfib

Ignoring the base case:

Tfib(n) = Tfib(n − 1) + Tfib(n − 2) = Fn

Computing a Fibonacci number with recursion has the same complexity as
the value of the Fibonacci number. So

Tfib(n) ∈ Θ

(
ϕn

√
5

)

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 10 / 33

Fibonacci Numbers

Doing things more efficiently

Why is this code so inefficient?

def f i b (n) :
i f n == 0 :

return 1
i f n == 1 :

return 1
return f i b (n−1) + f i b (n−2)

What are two strategies for making this faster?

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 11 / 33

Fibonacci Numbers

Doing things more efficiently

It is slow because we keep repeating the same work over and over again.
There are two strategies for making things go faster:

Use caching (often called memoisation or memoization)

Use a loop.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 12 / 33

Fibonacci Numbers

Fibonacci with Caching — without using funtools

cache = {}
def f i b c a c h e (n) :

i f n not in cache . keys () :
cache [n] = f i b c a c h e (n)

return cache [n]

def f i b c a c h e (n) :
i f (n == 0) or (n == 1) :

return 1
e l s e :

return f i b c a c h e (n−1) + f i b c a c h e (n−2)

>>> fib_cache(5)

8

>>> print(cache)

{1: 1, 0: 1, 2: 2, 3: 3, 4: 5, 5: 8}

>>> Justin Pearson Lecture 4 : Introduction to Dynamic Programming 13 / 33

Fibonacci Numbers

The complexity of the Cached Version

Remember I had two functions

fib_cache(n) that checks if we have already computed the number

_fib_cache(n) that does the recursion on fib_cache(n)

Thus to compute say fib_cache(4) for the first time it would call
_fib_cache(4) that calls fib_cache(3) and fib_cache(2) and so on.

When you call fib cache it is either a constant time lookup or a call to
_fib_cache(n)

For each n we only call _fib_cache(n) once. So the complexity of
fib_cache(n) is linear in n.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 14 / 33

Fibonacci Numbers

Computing Fibonacci numbers with a loop

def f i b l o o p (n) :
l o op ca ch e = [1] ∗ (n+1)
f o r i i n range (2 , n+1):
l o op ca ch e [i] =

l o op ca ch e [i −1] + l oop ca ch e [i −2]
return l o op ca ch e [n]

The statement [1]*(n+1) creates a list with (n+ 1) elements all with the
value 1.

Again the complexity of this function is linear in n.

We are assuming that array/list lookup is constant time, and it sort of is in
Python.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 15 / 33

Fibonacci Numbers

Computing Fibonacci numbers with a loop

The function on the previous slide uses an array to store the intermediate
values. So it has a space requirement linear in n.
We can optimise away the space by only storing the numbers we need:

def f i b l o o p o p t i m i s e d (n) :
i f (n ==0) or (n == 1) :

return 1
f n m i nu s 1 = 1
f n m i nu s 2 = 1
f o r i i n range (2 , n+1) :

c u r r e n t = f n m i nu s 1 + f n m i nu s 2
f n m i nu s 2 = f n m i nu s 1
f n m i nu s 1 = cu r r e n t

return c u r r e n t

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 16 / 33

Dynamic Programming Approaches

Dynamic Programming — Approaches

You now know almost everything there is to know about dynamic
programming. There are two approaches:

Bottom Up Compute the smaller sub-problems first and combine the
answers to get the answer to what you are looking for.

Top Down Essentially implement a recursive solution with caching to
reduce the time complexity.

Both bottom up and top down have the same asymptotic time and space
complexity.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 17 / 33

Dynamic Programming Approaches

Dynamic Programming — Top Down

Top down dynamic programming, implement the recursive solution but
using caching.

You either to do this automatically or with some explicit data structure.

Top down uses the stack to do the recursion. In some programming (not
all) languages this can be expensive.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 18 / 33

Dynamic Programming Approaches

Dynamic Programming — Bottom Up

With bottom up there are two strategies:

Be very clever about what order you compute things, and pass the
values on to the next value that needs to be computed. Fibonacci
with a loop and a table or some other data structure. This is often
quite hard to do.

Use some data structure to store intermediate values. Often this is
the same data structure that you would have used in a top down
approach. You still have to compute things in the right order, but you
don’t have to be as careful as when you don’t use a table.

You can think of the first approach as a highly optimised version of the
second approach. Throw away the data that you do not need. So try the
second approach first, and then optimise.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 19 / 33

Dynamic Programming Approaches

Dynamic Programming is not just recursion

So far we have made it look like dynamic programming is just a fancy way
of optimising recursion. In fact there are libraries out there, that with a
minimal amount of effort will do automatic caching of your recursive
functions. You can do it yourself with Python decorators or using the
funtools package.
Remember from before:

Overlapping Sub-problems Solve your problem by using sub-problems.

Optimal Substructure Property A problem has the Optimal Substructure
Property if if an optimal solution can be constructed from
optimal solutions of its sub-problems.

The key thing to remember is that you split a problem into sub-problems.
How you do this depends on the problem.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 20 / 33

Coin Change example

According to Riksbank the currently valid coins are: 1-krona, 2-krona,
5-krona and 10-krona.2

Back in the stone age (when I was young) people used coins and notes. If
you bought something for 87 krona and used a 100 krona note. You
expected to get 13 krona change with the minimal number of coins. So
10 + 1 + 2 rather than 13 1-krona coins.

2Pictures taken from Riksbankens website
Justin Pearson Lecture 4 : Introduction to Dynamic Programming 21 / 33

Coin Change example

Coin Change Example

We are going to write a function, Cmin , that tells you the minimum
number of coins that you need to give change. So for example with
Swedish money we should get

Cmin(13) = 3

If we trying to compute Cmin(n) and we have the information for
Cmin(n− 1) Cmin(n− 2) Cmin(n− 5) and Cmin(n− 10) then you should be
able to work out Cmin(n).

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 22 / 33

Coin Change example

Coin Change Example

Set Cmin(1) = Cmin(2) = Cmin(5) = Cmin(10) = 1 and Cmin(0) = 0. Then
we get

Cmin(n) = min{1 + Cmin(n − k) | n − k ≥ 0, k ∈ {1, 2, 5, 10}}

Note we are using set comprehension here.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 23 / 33

Coin Change example

Coin Change Example

Same formula from the previous slide without the base cases.

Cmin(n) = min{1 + Cmin(n − k) | n − k ≥ 0, k ∈ {1, 2, 5, 10}}

So if we want to work out Cmin(13) we look at Cmin(13− 1),
Cmin(13− 2), Cmin(13− 5) and Cmin(13− 10) pick the one that is
smallest, but we remember to add 1 because we use one more coin.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 24 / 33

Coin Change example

Coin Change : Possible Python implementation

Before you do top-down or bottom up you can come up with an inefficient
recursive solution.

def min co in (n) :
i f (n == 0) :

return 0
i f n i n [1 , 2 , 5 , 1 0] :

return 1
be s t = n
f o r k i n [1 , 2 , 5 , 1 0] :

i f (n − k) >= 0 :
c u r r e n t = 1 + min co i n (n − k)
b e s t = min (cu r r en t , b e s t)

return be s t

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 25 / 33

Coin Change example

Coin change — Optimal Substructure property

You have to argue that the expression

Cmin(n) = min{1 + Cmin(n − k) | n − k ≥ 0, k ∈ {1, 2, 5, 10}}

is correct.

Proving the correctness of the recursive equation means that you are
showing that the solution to Cmin(n) can be computed just by looking at
the sub-problems.

We are trying compute the optimal number of coins, this is why it is called
the optimal sub-structure property. Look at the demo report for an
example and how we expect you to argue the correctness.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 26 / 33

Coin Change example

Coin change — Bottom up implementation

def min co in bot tom up (n) :
i f (n == 0) :

return 0
Change = [s y s . maxs i ze] ∗ (n+1)
Change [0] = 0
f o r i i n range (1 , n+1):

f o r k i n [1 , 2 , 5 , 1 0] :
i f k <= i :

c u r r e n t = Change [i − k] + 1
i f c u r r e n t < Change [i] :

Change [i] = c u r r e n t
return (Change [n])

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 27 / 33

Coin Change example

Bottom up complexity

This is going to be an important theme in dynamic programming.
What is the complexity of the bottom up approach?

There are two nested loops. The inner loop goes through the coins
and the previous entries. This takes constant time (or it takes the
same time for every loop).

The outer loop depends on n the value that we are trying to compute.
So the algorithm has complexity O(n).

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 28 / 33

Coin Change example

Pseudo Polynomial

This value n is not the input size of the problem, but an integer value.
The algorithm is what is known as pseudo-polynomial (more on this later).

The number 256 only needs 8-bits to be represented, so the real input size
for 256 would be 8, if added an extra bit I double the number size.

So the algorithm is sort of exponential in the input size, but for small
values of n the algorithm is sort of polynomial.

More on this later.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 29 / 33

Coin Change example

What coins do I use?

Can you give me an algorithm using dynamic programming to tell me
what coins I actually used?

At first sight this seems a hard problem, but we have solved the easier
problem of computing the minimum number of coins needs.

Once we have computed this number, we can work back from our
array and work out how the value was computed.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 30 / 33

Coin Change example

What coins do I use?

So

Change[13] is 3 because Change[13-1] is 2

Change[12] is 2 because Change[12-2] is 1

Change[10] is 1 because Change[10-10] is 0.

This gives
13 = 10 + 2 + 1

.
You can either add another data structure to keep track of your choices, or
just work backwards from the answer redoing the work.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 31 / 33

Coin Change example

Coin Change

Somethings that I’ve not be totally honest about :

There is more than one solution. Which solution we get depends a bit
on how we implement it.

If you want to generalise to arbitrary coin sets {2, 3, 5} what happens
if you have a number for which you cannot give change say n = 1?

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 32 / 33

Coin Change example

Summary

Dynamic programming is recursion with caching to avoid recomputing
the same solutions over and over again.

Optimal substructure property is the fact that you can compute your
solution by looking at the sub-problems (this is not always true).

Unlike straightforward recursion that you have already met, in
dynamic programming you can split up the problem into smaller
sub-problems indexed by something else. This is often the hardest
part in coming up with a dynamic programming solution.

Justin Pearson Lecture 4 : Introduction to Dynamic Programming 33 / 33

	Today's Topics
	Introduction to Dynamic Programming
	Fibonacci Numbers
	Dynamic Programming Approaches
	Coin Change example

