
AD1 revision, the graph library, and graph
search

Frej Knutar Lewander

Uppsala University
Sweden

31st October 2023

Outline

1. Python

2. Data Structures revision

3. Graphs

4. Breadth- and Depth-First Search

5. Greedy Algorithms

2 of 27

Why Python

The coding part of the assignments is done in Python. Why have we
decided to use python, when
� other languages are faster (Java, C, C++, etc.),
� you haven’t used Python before,
� Python is not your language of choice, etc.

The ideas and mindset gained from this course are independent of the
programming language they are applied to.

Python is just “a means to an end”.

3 of 27

Why Python

The coding part of the assignments is done in Python. Why have we
decided to use python, when
� other languages are faster (Java, C, C++, etc.),
� you haven’t used Python before,
� Python is not your language of choice, etc.

The ideas and mindset gained from this course are independent of the
programming language they are applied to.

Python is just “a means to an end”.

3 of 27

Arrays

An array A (list in Python) of size n holds n elements:

Ai or A[i] is the element at index i of A.

Given an array A of size n, the average case time complexity for:
� accessing an element at index i (0 ≤ i < n):
� adding an element:
� removing an element:
� checking if A contains the element e:
� adding an element at index n:

4 of 27

Arrays

An array A (list in Python) of size n holds n elements:

Ai or A[i] is the element at index i of A.

Given an array A of size n, the average case time complexity for:
� accessing an element at index i (0 ≤ i < n): Θ(?)

� adding an element: Θ(?)

� removing an element: Θ(?)

� checking if A contains the element e: Θ(?)

� adding an element at index n: Θ(?)

4 of 27

Arrays

An array A (list in Python) of size n holds n elements:

Ai or A[i] is the element at index i of A.

Given an array A of size n, the average case time complexity for:
� accessing an element at index i (0 ≤ i < n): Θ(1)

� adding an element: Θ(n)

� removing an element: Θ(n)

� checking if A contains the element e: Θ(n)

� adding an element at index n: Θ(1)

4 of 27

Arrays

Arrays tend to be the default data structure of choice.
Here are some (non-exhaustive) tips on when to use an array:

� checking if an element exists in the array does not worsen the time
complexity;

� the order of the elements matter; or
� the elements can be accessed by their (distinct) index fast (does not

worsen the time complexity).

5 of 27

Sets

A set S of cardinality n holds n distinct elements:

A set is (typically) unordered.

Given a set S of cardinality n, the average case time complexity for:
� checking if S contains the element e:
� adding an element to S:
� removing an element from S:

6 of 27

Sets

A set S of cardinality n holds n distinct elements:

A set is (typically) unordered.

Given a set S of cardinality n, the average case time complexity for:
� checking if S contains the element e: Θ(?)

� adding an element to S: Θ(?)

� removing an element from S: Θ(?)

6 of 27

Sets

A set S of cardinality n holds n distinct elements:

A set is (typically) unordered.

Given a set S of cardinality n, the average case time complexity for:
� checking if S contains the element e: Θ(1)

� adding an element to S: Θ(1)

� removing an element from S: Θ(1)

6 of 27

Sets

Here are some (non-exhaustive) tips on when to use a set:

� checking if an element exists in the set is integral to the task at hand;
� duplicate elements are not allowed; or
� each element can not be accessed by a (distinct) index.

7 of 27

Comparison (logarithmic)

8 of 27

Hash Tables

A hash table H (dictionary in Python) of cardinality n holds n elements,
each identified by a distinct key:

Hk or H[k] is the element identified by the key k , where k is a key in H.

A hash table is (typically) unordered.

Given a hash table H with cardinality n, the average case time complexity
for:
� accessing an element with key k :
� checking if H contains the key k :
� adding an element to H:
� removing an element from H:

9 of 27

Hash Tables

A hash table H (dictionary in Python) of cardinality n holds n elements,
each identified by a distinct key:

Hk or H[k] is the element identified by the key k , where k is a key in H.

A hash table is (typically) unordered.

Given a hash table H with cardinality n, the average case time complexity
for:
� accessing an element with key k : Θ(?)

� checking if H contains the key k : Θ(?)

� adding an element to H: Θ(?)

� removing an element from H: Θ(?)

9 of 27

Hash Tables

A hash table H (dictionary in Python) of cardinality n holds n elements,
each identified by a distinct key:

Hk or H[k] is the element identified by the key k , where k is a key in H.

A hash table is (typically) unordered.

Given a hash table H with cardinality n, the average case time complexity
for:
� accessing an element with key k : Θ(1)

� checking if H contains the key k : Θ(1)

� adding an element to H: Θ(1)

� removing an element from H: Θ(1)

9 of 27

Hash tables

Hash tables tend to be the data structure of choice for simpler nested data.
Here are some (non-exhaustive) tips on when to use a hash table:

� a set with some extra data is required or
� the data is simple, and creating classes (or other custom data

structures) for the data is “overkill”.

10 of 27

Graphs

11 of 27

The graph.py Library (1)

A graph is represented similarly to the Adjacency list: the edges are
represented as a dictionary with nodes as keys and sets of nodes as
elements.

For a graph G = (V ,E):
� Space complexity: Θ(n + m)

� checking if G contains an edge (u, v): Θ(1)

� Identifying all edges: Θ(m)

12 of 27

The graph.py Library (2)

Given a graph G=(V,E) the properties you need for the first assignment
are:
� G.edges is a (duplicate free) unsorted list containing all edges E and
� G.nodes is a (duplicate free) unsorted list containing all vertices V

13 of 27

The graph.py Library (3)

Some graphs, G = (V ,E), have additional properties for the edges. In the
graph library, an edge (u, v) can have:
� a flow that is integer or None, (typically) denoting the amount of some

commodity that travels over (u, v);
� a capacity that is integer or None, (typically) denoting the maximum

amount of some commodity that can travel over (u, v); and
� a weight that is integer or None, (typically) denoting the cost of including

or traversing (u, v).

14 of 27

The graph.py Library (4)

Given a graph G and an edge (u,v), the flow, capacity, and weight of
(u,v) be accessed or modified by the methods:
� G.flow(u, v) and G.set flow(u, v, f);
� G.capacity(u, v) and G.set capacity(u, v, c); and
� G.weight(u, v) and G.set weight(u, v, w),

respectively for some f,c,w ∈ {None} ∪ Z.

15 of 27

Breadth- and Depth-First Search

Given an unordered graph G = (V ,E), starting at node s, is there a path in
G from s to t?

1

2 3

4 5

6

7

8

16 of 27

BFS – pseudocode

1 algorithm BFS(G, s, t)
2 Visited ← {s}
3 Q ← an empty queue
4 ENQUEUE(Q, s)
5 while |Q| > 0 do // Variant: . . .
6 u ← DEQUEUE(Q)
7 if u = t then
8 return true
9 for each (w , v) ∈ E where w = u do // Variant: . . .

10 if v /∈ Visited then
11 ENQUEUE(Q, v)
12 Visited ← Visited ∪ {v}
13 return false

17 of 27

BFS – pseudocode

1 algorithm BFS(G, s, t)
2 Visited ← {s}
3 Q ← an empty queue
4 ENQUEUE(Q, s)
5 while |Q| > 0 do // Variant: n − |Visited |
6 u ← DEQUEUE(Q)
7 if u = t then
8 return true
9 for each (w , v) ∈ E where w = u do // Variant: degree(u)−#iterations

10 if v /∈ Visited then
11 ENQUEUE(Q, v)
12 Visited ← Visited ∪ {v}
13 return false

17 of 27

BFS – Python code

1 def bfs (graph : Graph , s : s t r , t : s t r) −> bool :
2 v i s i t e d = {s}
3 queue = deque ()
4 queue . append (s)
5 while len (queue) > 0:
6 u = queue . p o p l e f t ()
7 i f u == t :
8 return True
9 for v in graph . neighbors (u) :

10 i f v not in v i s i t e d :
11 queue . append (v)
12 v i s i t e d . add (v)
13 return False

18 of 27

BFS

With s = 1 and t = 6, what set of nodes will be visited during BFS(G, s, t)?
Can the set differ between runs?

1

2 3

4 5

6

7

8

19 of 27

DFS – pseudocode

1 algorithm DFS(G, s, t)
2 Visited ← {s}
3 S ← an empty stack
4 PUSH(S, s)
5 while |S| > 0 do // Variant: n − |Visited |
6 u ← POP(S)
7 if u = t then
8 return true
9 for each (w , v) ∈ E where w = u do // Variant: degree(u)−#iterations

10 if v /∈ Visited then
11 PUSH(S, v)
12 Visited ← Visited ∪ {v}
13 return false

20 of 27

DFS – pseudocode

1 algorithm DFS(G, s, t)
2 Visited ← {s}
3 S ← an empty stack
4 PUSH(S, s)
5 while |S| > 0 do // Variant: n − |Visited |
6 u ← POP(S)
7 if u = t then
8 return true
9 for each (w , v) ∈ E where w = u do // Variant: degree(u)−#iterations

10 if v /∈ Visited then
11 PUSH(S, v)
12 Visited ← Visited ∪ {v}
13 return false

20 of 27

DFS

With s = 1 and t = 6, what set of nodes will be visited during DFS(G, s, t)?
Can the set differ between runs?

1

2 3

4 5

6

7

8

21 of 27

DFS – Python code

1 def dfs (graph : Graph , s : s t r , t : s t r) −> bool :
2 v i s i t e d = {s}
3 stack = []
4 stack . append (s)
5 while len (s tack) > 0:
6 u = stack . pop ()
7 i f u == t :
8 return True
9 for v in graph . neighbors (u) :

10 i f v not in v i s i t e d :
11 stack . append (v)
12 v i s i t e d . add (v)
13 return False

22 of 27

DFS – Python code (contd)

Why can we use a list as a stack without worsening the time complexity?

Adding an element to the end of a list or array has (amortised) time
complexity Θ(1). We discuss amortised time complexity in AD3.

We could also initialize a list with n elements and keep a “stack pointer”:

23 of 27

DFS – Python code (contd)

Why can we use a list as a stack without worsening the time complexity?

Adding an element to the end of a list or array has (amortised) time
complexity Θ(1). We discuss amortised time complexity in AD3.

We could also initialize a list with n elements and keep a “stack pointer”:

23 of 27

DFS with Stack Pointer – Python code

1 def dfs sp (graph : Graph , s : s t r , t : s t r) −> bool :
2 v i s i t e d = {s}
3 stack = [s] + ([None] * (len (graph . nodes) − 1))
4 top = 0 # stack [top] = top element o f s tack
5 while top >= 0:
6 u = stack [top]
7 top −= 1
8 i f u == t :
9 return True

10 for v in graph . neighbors (u) :
11 i f v not in v i s i t e d :
12 top += 1
13 stack [top] = v
14 v i s i t e d . add (v)
15 return False

24 of 27

Greedy Algorithms

A greedy algorithm makes the locally optimal choice in every step.

25 of 27

Greedy Algorithms - Coin Change

We are to return the (cash) change 19 SEK using the fewest amount of
coins (coin denominations are 10 SEK, 5 SEK, 2 SEK, and 1 SEK).

19− 10 = 9 10

9− 5 = 4 10 5

4− 2 = 2 10 5 2

2− 2 = 0 10 5 2 2

26 of 27

Greedy Algorithms - Coin Change

We are to return the (cash) change 19 SEK using the fewest amount of
coins (coin denominations are 10 SEK, 5 SEK, 2 SEK, and 1 SEK).

19− 10 = 9 10

9− 5 = 4 10 5

4− 2 = 2 10 5 2

2− 2 = 0 10 5 2 2

26 of 27

Greedy Algorithms

When are greedy algorithms good?

When selecting the locally optimal choice in every step yields a sufficiently
good global solution.

In the coin example, the global solution was optimal, but that is not
guaranteed.

27 of 27

Greedy Algorithms

When are greedy algorithms good?

When selecting the locally optimal choice in every step yields a sufficiently
good global solution.

In the coin example, the global solution was optimal, but that is not
guaranteed.

27 of 27

	Python
	Data Structures revision
	Graphs
	Breadth- and Depth-First Search
	Greedy Algorithms

