
Lecture 2 : More examples of big-Oh and the
Master Theorem

Justin Pearson — Based on Slides by Pierre Flener

Overview

▶ Some terminology for function growth and complexity classes.

▶ Some examples of run time analysis

▶ The Master Theorem, how to use it and a hint of the proof.

▶ Revision of some of the assumptions of complexity analysis.

Terminology

Let n denote the input size then we have the following table in
order of complexity.

Function Growth Rate

1 constant
sub-linearlog n logarithmic

log2 n log-squared

n linear

polynomial
n · log n
n2 quadratic
n3 cubic

kn (k ≥ 2) exponential exponential

n!
super-exponential

nn

Comparing functions

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0 log(n)

Comparing functions

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

10

20

30

40

50

60 log(n)
nlog(n)

Comparing functions

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

50

100

150

200

250

300

350

400 log(n)
nlog(n)
n^2

Comparing functions

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1000

2000

3000

4000

5000

6000

7000

8000 log(n)
nlog(n)
n^2
n^3

Comparing functions

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.2

0.4

0.6

0.8

1.0

1e6
log(n)
nlog(n)
n^2
n^3
2^n

Growth

Let n denote the input size then we have the following table in
order of complexity.

Function Growth Rate

1 constant
sub-linearlog n logarithmic

log2 n log-squared

n linear

polynomial
n · log n
n2 quadratic
n3 cubic

kn (k ≥ 2) exponential exponential

n!
super-exponential

nn

Even for small values of n, n3 can grow quite fast, if you algorithm
has the worst time complexity of 2n then you are in trouble.

Example: Towers of Hanoi

Many legends, origins in India.
Initial state: Tower A has n disks stacked by decreasing diameter.
Towers B and C are empty.

A B C

Rules
– Only move one disk at a time.
– Only move the top-most disk of a tower.
– Only move a disk onto a larger disk (if any).
Objective and final state: Move all the disks from tower A to tower
C , using tower B, without violating any rules.
Problem: What is a (minimal) sequence of moves to be made for
reaching the final state from the initial state, without violating any
rules.

Hanoi: Strategy

B CA

A B C

A B C

A B C

1. Recursively move n − 1
disks from
tower A to tower B,
using tower C .

2. Move one disk from
tower A to tower C .

3. Recursively move n − 1
disks from
tower B to tower C ,
using tower A.

Hanoi: Specification and Program

--- hanoi (n, from, via, to)

fun hanoi (0, from, via, to) = ""

| hanoi (n, from, via, to) =

hanoi (n-1, from, to, via) ^ from ^ "->" ^ to ^ " " ^

hanoi (n-1, via, from, to)

Will the end of the world be provoked by the call
hanoi (64, "A", "B", "C")

even on the fastest computer of 20 years from now?!

Hanoi: Analysis

Let M(n) be the number of moves that must be made for solving
the problem of the Towers of Hanoi with n disks.

From the program, we get the recurrence:

M(n) =

{
0 if n = 0

2 ·M(n − 1) + 1 if n > 0
(1)

How to solve this recurrence?
Guess the closed form and prove it!

▶ Guessing: By expansion method, iterative / substitution
method, or recursion-tree method.

▶ Proving: By induction,
or by application of a pre-established formula.

Hanoi: Iterative / Substitution Method

M(n) = 2 ·M(n − 1) + 1, by the recurrence (1)

= 2 · (2 ·M(n − 2) + 1) + 1, by the recurrence (1)

= 4 ·M(n − 2) + 3, by arithmetic laws

= 8 ·M(n − 3) + 7, by the recurrence (1) and arithm.

= 23 ·M(n − 3) + (23 − 1), by arithmetic laws

= · · ·
= 2k ·M(n − k) + (2k − 1), by generalisation 3⇝ k

= · · ·
= 2n ·M(0) + (2n − 1), when k = n

= 2n − 1, by the recurrence (1)

Hanoi: Proof by Induction

Theorem: M(n) = 2n − 1, for all n ≥ 0.

Proof:

Basis: If n = 0, then M(n) = 0 = 20 − 1, by (1).

Induction:
Assume the theorem holds for n − 1, for some n > 0. Then:

M(n) = 2 ·M(n − 1) + 1, by the recurrence (1)

= 2 · (2n−1 − 1) + 1, by the assumption above

= 2n − 1, by arithmetic laws

Hence: The move complexity of hanoi(n,...) is Θ(2n).

Note that 264 − 1 ≈ 18.5 · 1018 moves will take 580 billion years at
1 move / second, but the Big Bang is was only only about 14
billion years ago.

Insertion Sort
Assume we want to sort an array of n elements by non-decreasing
order.
The idea of the insertion sort algorithm is the same as many
people use when sorting a hand of playing cards:

Example and Invariant

Example

At any moment of insertion sorting, the array is divided into:

▶ The sorted section (here at the lower indices).

▶ The section not looked at yet.

Example

Before step (b) above: 2 5 4 6 1 3

Algorithm

Initially place the dividing line between the first two elements (as a
one-element array is always sorted).

While the dividing line is not after the last element:
Advance the dividing line one notch to the right, and insert the
newly encountered element into the sorted section.

Example

Before:

1 4 5 3 6 2

After:

1 3 4 5 6 2

Analysis

Insertion sort is implemented by two functions:

▶ The main function, called sort, processes each element,
inserting it into the sorted section.

▶ The help function, called ins, is called by sort to insert one
element into the sorted section.

The amount of work done by ins depends on how many larger
elements are in the sorted section:

▶ If none, then a single comparison is performed.

▶ If several, then each of them is compared and moved.

▶ At worst, every element is larger than the inserted one.

The runtime for the help function ins, denoted by Tins, depends
thus on the size i of the sorted section:

Tins(i) = Θ(i) at worst

Analysis

The runtime for the main function sort, denoted by Tisort, is the
sum of the runtimes of the help function ins:

Tisort(n) =

{
Θ(1) if n ≤ 1

Tins(1) + Tins(2) + · · ·+ Tins(n − 1) if n > 1

where n is the number of elements.

Equivalently, and as a recurrence:

Tisort(n) =

{
Θ(1) if n ≤ 1

Tisort(n − 1) + Tins(n − 1) if n > 1
(2)

Analysis
If Tins(i) = T≤ = Θ(1) for all i (the best case: the elements are
initially already in sorted order), then:

Tisort(n) = (n − 1) ·Θ(1) = Θ(n)

If Tins(i) = i · (T≤ + Tmove) = i ·Θ(1) for all i (the worst case:
the elements are initially in reverse-sorted order), then:

Tisort(n) =
n−1∑
j=1

(j ·Θ(1)) = Θ(1) · n · (n − 1)

2
= Θ(n2)

If Tins(i) =
i
2 · (T≤ + Tmove) = i ·Θ(1) on average for all i (the

average case: the elements are moved on average half-way into the
sorted section), then:

Tisort(n) = Θ(n2)

Overall, we say that insertion sort runs in Θ(n) time at best, and
in Θ(n2) time on average and at worst.

Merge Sort (John von Neumann, 1945)

Runtime: Always Θ(n · log n) for n elements.
Apply the divide & conquer (& combine) principle:

3 12

8 123 5

split

1 87 25

7 3 12 1

123 5 7

85 7 2

7

1 2 7 8

merge

mergesort mergesort

1 2 7 7

Splitting a List Into Two ‘Halves’

The order of the elements inside A and B is irrelevant!

Näıve program:

fun split L =

let val t = (length L) div 2

in (List.take (L, t), List.drop (L, t)) end

split L always takes |L|+ 2 ·
⌊
|L|
2

⌋
= Θ(|L|) time.

Merging Two Sorted Lists

merge (L, M)

EXAMPLE: merge ([3,5,7,12],[1,2,7,8,13]) = [1,2,3,5,7,7,8,12,13]

fun merge ([], M) = M

| merge (L, []) = L

| merge (L as x::xs, M as y::ys) =

if x > y then

y :: merge (L, ys)

else

x :: merge (xs, M)

Merge Sort Program

sort L

ALGORITHM: merge sort

fun sort [] = []

| sort [x] = [x]

| sort xs =

let

val (ys, zs) = split xs

in

merge (sort ys, sort zs)

end

Analysis — Base Case

Tmsort(n) is the time of running sort on n elements:

Base cases: (n ≤ 1):
Constructing a list of 0 or 1 element takes Θ(1) time.

Analysis — Recursive Case

Recursive case: (n > 1):

▶ Divide: split xs takes Θ(|xs|) = Θ(n) time, by split.

▶ Conquer: The recursive calls sort ys and sort zs take
Tmsort

(
n
2

)
time each, because |ys|+ |zs| = n and

||ys| − |zs|| ≤ 1, by the post-condition of split.
(If n is odd, then n

2 is not an integer, but this does not matter
asymptotically.)

▶ Combine: merge(sort ys, sort zs) takes Θ(n) time, by
merge, since |sort L| = |L|
(by the post-condition of sort)
and thus |sort ys|+ |sort zs| = |ys|+ |zs| = n
(by the post-condition of split).

Analysis (continued)

Hence the runtime recurrence:

Tmsort(n) =

{
Θ(1) if n ≤ 1

Θ(n) + 2 · Tmsort(n/2) + Θ(n) if n > 1

which simplifies into:

Tmsort(n) =

{
Θ(1) if n ≤ 1

2 · Tmsort(n/2) + Θ(n) if n > 1
(3)

where Θ(n) is the total time of dividing and combining.

The closed form is Tmsort(n) = Θ(n · log n), in all cases. We’ll see
later why this is true.

Merge sort is better than insertion sort in the average and worst
cases; insertion sort is better for nearly-sorted data.

The Recursion-Tree Method

You can visualise the running of recursive algorithm as a tree
(often called a recursion tree). The recursion tree for the merge
sort recurrence is:

n/2 n/2

n

n/4n/4 n/4 n/4

lg n

n

n

n

O(n lg n)

Elementary Mathematics Revision

log2 x = y ⇔ 2y = x

Hence
log2 2

k = k

This is why if you keep dividing a number n by 2 you will get to a
number close to 1 in approximately log2 n steps. This is the key to
a lot of algorithm analysis and clever algorithms that run in nlog2n
steps.

The Recursion-Tree Method

n/2 n/2

n

n/4n/4 n/4 n/4

lg n

n

n

n

O(n lg n)

Why does the tree have height log2(n)?
Why does each level sum to n?

The Recursion-Tree Method

n/2 n/2

n

n/4n/4 n/4 n/4

lg n

n

n

n

O(n lg n)

The total complexity is the height log2(n) times the amount of
work done at each level n, this gives the n log2(n) bound for
sorting.

Types of Recurrences

We have already observed that a recurrence of the form

▶ T (n) = T (n − 1) + Θ(1) gives Θ(n)

▶ T (n) = T (n − 1) + Θ(n) gives Θ(n2)

Types of Recurrences

Divide-and-conquer algorithms give recurrences of the form

T (n) = a · T (n/b) + f (n)

where a sub-problems are produced, each of size n/b, and f (n) is
the total time of dividing the input and combining the sub-results.

The recursion tree for an algorithm gives an idea of how much
work is done. It is all a question of the relationship between the
work done at each level f (n) and how many sub problems you
have. If f (n) is too big then it dominates the complexity. The
relationship is captured by the master theorem (see later).

Proof of the Merge-Sort Recurrence

This proof gives the general flavour of solving divide-and-conquer
recurrences.
The formal proof is complicated by technical details, such as when
n is not an integer power of b.
We ignore such issues in this proof sketch.

Theorem: If (compare with recurrence (3) three pages ago)

T (n) =

{
2 if n = 2 = 2k for k = 1

2 · T (n/2) + Θ(n) if n = 2k for k > 1
(4)

then T (n) = Θ(n · log n), for all n = 2k with k ≥ 1.

Proof by Induction

Proof: For n = 2k with k ≥ 1, the closed form T (n) = Θ(n · log n)
becomes T (2k) = 2k · log 2k .

Basis: If k = 1 (and hence n = 2), then T (n) = 2 = 2 · log 2.

Induction: Assume the theorem holds for some k ≥ 1. Then:

T (2k+1) = 2 · T (2k+1/2) + 2k+1, by the recurrence (4)

= 2 · T (2k) + 2k+1, by arithmetic laws

= 2 · (2k · log 2k) + 2k+1, by the assumption

= 2k+1 · (log 2k + 1), by arithmetic laws

= 2k+1 · (log 2k + log 21), by arithmetic laws

= 2k+1 · log 2k+1, by arithmetic laws

The Master Method and Master Theorem

The closed form for a recurrence T (n) = a · T (n/b) + f (n) reflects
the battle between the two terms in the sum. Think of a · T (n/b)
as the process of “distributing the work out” to f (n), where the
actual work is done.

Theorem :

1. If f (n) is dominated by nlogb a (see the next page),
then T (n) = Θ(nlogb a).

2. If f (n) and nlogb a are balanced (if f (n) = Θ(nlogba)),
then T (n) = Θ(nlogba · lg n).

3. If f (n) dominates nlogb a and if the regularity condition (see
the next page) holds, then T (n) = Θ(f (n)).

Dominance and the Regularity Condition

The three cases of the Master Theorem depend on comparing f (n)
to nlogb a. However, it is not sufficient for f (n) to be “just a bit”
smaller or bigger than nlogb a. Cases 1 and 3 only apply when there
is a polynomial difference between these functions, that is when
the ratio between the dominator and the dominee is asymptotically
larger than the polynomial nϵ for some constant ϵ > 0.

Dominance and the Regularity Condition

Example: n2 is polynomially larger than both n1.5 and lg n.

Counter-Example: n · lg n is not polynomially larger than n.

In Case 3, a regularity condition requires a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n.
(All the f functions in this course will satisfy this condition.)

Proof of the Master Theorem

The proof is quite involved and technical.

▶ In case 2 the tree and the work is balanced the height is given
by nlogb a, and there is not too much work combining the
sub-problems. Further, you are splitting enough to not to do
too much work in each sub-branch. In merge sort we divided
into k/2 parts.

▶ In case 1 when you split, there is not much work in combining
the sub-problems, and so the complexity is dominated by the
height of the tree.

▶ In case 3 the combining of the sub-problems dominates the
work.

Gaps in the Master Theorem

The Master Theorem does not cover all possible recurrences of the
form T (n) = a · T (n/b) + f (n):

▶ Cases 1 and 3: The difference between f (n) and nlogba might
not be polynomial.
Counter-Example: The Master Theorem does not apply to the
recurrence T (n) = 2 · T (n/2) + n · lg n, despite it having the
proper form. We have a = 2 = b, so we need to compare
f (n) = n · lg n to nlogb a = n1 = n. Clearly, f (n) = n · lg n > n
for large enough n, but the ratio f (n)/n is lg n, which is
asymptotically less than the polynomial nϵ for any constant
ϵ > 0, so we are not in Case 3.

▶ Case 3: The regularity condition might not hold.

Common Cases of the Master Theorem

a b nlogb a f (n) Case T (n)

1 2 n0

Θ(1) 2 Θ(lg n)
Θ(lg n) none Θ(?)
Θ(n · lg n) 3 Θ(n · lg n)
Θ(nk), with k > 0 3 Θ(nk)

2 2 n1

Θ(1) 1 Θ(n)
Θ(lg n) 1 Θ(n)
Θ(n) 2 Θ(n · lg n)
Θ(n · lg n) none Θ(?)
Θ(nk), with k > 1 3 Θ(nk)

What is n?

Complexity theory is a complex and fascinating subject.

We have and will writte expressions such as T (n):

▶ Sorting a list of n elements.

▶ Given a graph with n nodes find the shortest path.

The Tower of Hannoi example is a bit complicated, so don’t think
about it here.

What is n?

Complexity theory is formally defined in terms of an abstract
computer that uses a tape as a memory. This is called a Turing
machine.

The question you need to ask yourself, how many bits or bytes do I
need to represent something?

What is n?

So a list of n elements will need n · w bytes where w is the word
size of your computer.

A graph of n nodes might be represented by a n · n table of single
bits.

Assumption in complexity theory all equivalent representations
differ by a constant factor. A number could be represented in
binary, or unary or whatever. In big-O analysis constant factors go
away.

What is n?

Always think about the input size. Your time complexity is in
terms of the input size.

Constant factors go away. So a list of length n takes n · w bytes,
but you state the complexity in terms of n.

Be careful with the parameters of your algorithm. Try to
understand how the affect the input size. This will become
important later when we look at dynamic programming.

What is n?

You can assume that the word size is always big enough to handle
the numbers that you need. This is because we can just increase
the word size (on our abstract computer) to accommodate the
numbers that we need to handle.

Thus you can assume arithmetic operations take constant time.

If this never worried you, then don’t worry. If it worries you and it
makes your head hurt, then don’t worry and just assume things
take constant time. If it has worried you, and you have worked out
why, then be happy.

	Introduction
	Tower of Hanoi Example
	Insertion Sort
	Merge Sort
	Recursion Trees
	Merge sort proof
	Master Method

