
Lecture 1 : Revision on Big-O analysis

Justin Pearson — Based on Slides by Pierre Flener

November 1, 2022

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 1 / 26



Lecture Plan

Revision on Algorithm analysis.

Counting the number of steps
Asymptotic analysis

Big-O, O(f (n)), Big-Theta Θ(f (n)), and big-Omega Ω(f (n)).

Next Lecture:

Some examples:

Merge Sort
Quick Sort

The master theorem.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 2 / 26



The most important take away from this lecture is understanding the
definition of O(f (n)), Θ(f (n)) and Ω(f (n)).

The definition is quite subtle, but once you get the hang of it you will
have a nice way of expressing complexity results.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 3 / 26



Runtime Equations

Consider the following function (defined functionally, but easy to translate
to Python), which returns the sum of the elements of the given integer list:

fun sumList [] = 0

| sumList (x::xs) = x + sumList xs

The runtime T of this function depends on the given list. We will assume
that we are using fixed precision numbers, and so the runtime is a function
of the length of the list.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 4 / 26



Runtime Equations

Assuming that [pattern matching and] the + operation takes the same
time tadd regardless of the two numbers being added, we can see that only
the length n of the list matters to T .

We can express T (n) recursively mirroring the function definition.

T (n) =

{
t0 if n = 0

T (n − 1) + tadd if n > 0

where t0 (the time of [pattern matching and] returning 0) and tadd are
constants (that is, they do not depend on n).

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 5 / 26



Solving Recurrences

The expression for T (n) is called a recurrence. We can use it for
computing runtimes (given actual values of the constants t0 and tadd), but
it is difficult to work with.

For example T (3) = T (2) + tadd = (T (1) + tadd) + tadd =
T (0) + tadd + tadd + tadd = t0 + 3 · tadd

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 6 / 26



Solving Recurrences

We prefer a closed form (that is, a non-recursive equation), if possible.

Equivalent definition of T (n), for all n ≥ 0:

T (n) = n · tadd + t0

Much simpler! But: How do we get there? Can we prove it?

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 7 / 26



Deriving Closed Forms

There is no general way of solving recurrences.
Recommended method:

First guess the answer, and then prove it by induction!

Suggestions for making a good guess:

If the recurrence is similar (upon variable substitution) to one seen
before, then guess a similar closed form.

Expansion Method: Detect a pattern for several values. Example:

T (0) = t0

T (1) = T (0) + tadd = 1 · tadd + t0

T (2) = T (1) + tadd = 2 · tadd + t0

T (3) = T (2) + tadd = 3 · tadd + t0

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 8 / 26



Proof by Induction

Let:

T (n) =

{
t0 if n = 0

T (n − 1) + tadd if n > 0
(1)

Theorem: T (n) = n · tadd + t0, for all n ≥ 0.

Proof

Basis: If n = 0, then T (n) = t0 = 0 · tadd + t0, by the recurrence.

Induction: Assume T (n) = n · tadd + t0 for some n ≥ 0. Then:

T (n + 1) = T (n) + tadd, by the recurrence

= (n · tadd + t0) + tadd, by the assumption above

= (n + 1) · tadd + t0, by arithmetic laws

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 9 / 26



Back to Algorithm Analysis

The equation T (n) = n · tadd + t0 is a useful, but approximate, predictor of
the actual runtime of sumList.

Even if t0 and tadd were measured accurately, the actual runtime would
vary with every change in the hardware or software environment. There
might be effects with due to the cache, there might be other processes
running or whatever.

The actual values of t0 or tadd are not really interesting, we are more
interested in how the function grows with n.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 10 / 26



Back to Algorithm Analysis

Looking at the equation

T (n) = n · tadd + t0

The only interesting part of the equation is the term with n. The runtime
of sumList is (within constant factor tadd) proportional to the length n of
the list.

Calling sumList with a list twice as long will approximately double the
runtime.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 11 / 26



Asymptotic notation

There is a precise mathematical notation for describing how functions
behave up to constant factors and ignoring lower order terms. There are
three definitions to understand (formal definitions soon):

Big-O O(f (n)) is a set of functions that never grow faster than f (n)
up to a constant factor for sufficiently large n.

Big-Omega Ω(f (n)) is a set of functions that always grow faster than
f (n) up to a constant factor for sufficiently large n.

Big-Theta Θ(f (n)) is a set of functions that are bounded above and
below by f (n) by a constant factor for sufficiently large n.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 12 / 26



The O(f (n)) notation

Important: O(f (n)) is a set.

We say that g(n) ∈ O(f (n)) if there exists a positive constant k and n0
such that for all n ≥ n0 we have that:

g(n) ≤ k · f (n)

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 13 / 26



The O(f (n)) notation

Let’s prove that tadd · n + t0 ∈ O(n). The proof strategy is to look at the
definition of O(n) and try to find the relevant constants.

Set n0 = 1, then we need to find a constant k such that for all n ≥ 1 we
have that

tadd · n + t0 ≤ k · n

Set k = tadd + t0 then k · n = tadd · n + t0 · n and

tadd · n + t0 ≤ tadd · n + t0 · n

is true from simple arithmetic.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 14 / 26



General Proof strategy

You need to find values of n0 and k that make the inequality true:

g(n) ≤ k · f (n)

You do not have to find the tightest value of k and the smallest value of
n0.

Anything will do. Sometimes it is good to pick a larger n0, because the
function is a bit too erratic for small values of n.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 15 / 26



The Ω(f (n)) Notation

Important: Ω(f (n)) is a set.

We say that g(n) ∈ Ω(f (n)) if there exists a positive constant k and n0
such that for all n ≥ n0 we have that:

k · f (n) ≤ g(n)

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 16 / 26



The Ω(f (n)) notation

Let’s prove that tadd · n + t0 ∈ Ω(n). The proof strategy is to look at the
definition of Ω(n) and try to find the relevant constants.

Set n0 = 1, then we need to find a constant k such that for all n ≥ 1 we
have that

k · n ≤ tadd · n + t0

This is much easier than before : Set k = tadd then we have that

tadd · n ≤ tadd · n + t0

is true from simple arithmetic.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 17 / 26



The Θ(f (n)) Notation

Important: Θ(f (n)) is a set.

We say that g(n) ∈ Θ(f (n)) if there exists positive constants c1, c2 and n0
such that for all n ≥ n0 we have that

c1f (n) ≤ g(n) ≤ c2f (n)

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 18 / 26



The Θ(f (n)) Notation

Note that

g(n) ∈ Θ(f (n)) ⇔ g(n) ∈ Ω(f (n)) ∧ g(n) ∈ O(f (n))

The definition of Θ(f (n)) requires two constants c1 and c2 (see the
previous slide, you get one constant from your proof of membership in
Ω(f (n)) and one constant from your proof of membership in O(f (n))

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 19 / 26



Illustrating the definitions of Θ,Ω and O

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 20 / 26



Θ(f (n)) Example

To prove that tadd · n+ t0 ∈ Θ(n) set c1 = tadd, c2 = tadd + t0, and n0 = 1
then for all n ≥ n0 we have:

c1n ≤ tadd · n + t0 ≤ c2n

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 21 / 26



Another Example

n2 + 5 · n + 10 ∈ Θ(n2).

Proof: We need to choose constants c1 > 0, c2 > 0,
and n0 > 0 such that

0 ≤ c1 · n2 ≤ n2 + 5 · n + 10 ≤ c2 · n2

for all n ≥ n0. Dividing by n2 (assuming n > 0) gives

0 ≤ c1 ≤ 1 +
5

n
+

10

n2
≤ c2

The “sandwiched” term, 1 + 5
n + 10

n2
, gets smaller as n grows.

It peaks at 16 for n = 1, so we can pick n0 = 1 and c2 = 16.
It drops to 6 for n = 2 and becomes close to 1 for n = 1000.
It never gets less than 1, so we can pick c1 = 1.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 22 / 26



Some observations

f (n) ∈ Θ(f (n)) (why?

Θ(n2 + n) = Θ(n2).

Θ(n3 + n2 + n) = Θ(n3).

You can simplify a Θ, Ω or O set by only considering the dominating term.
It is common practice to state the complexity result as simply as possible
and ignore all the smaller terms.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 23 / 26



Keeping Complexity Functions Simple

We can simplify complexity functions by:

Setting all constant factors to 1.

Dropping all lower-order terms.

Since logb n = 1
logc b

· logc n, where 1
logc b

is a constant factor (when the

bases b and c are constants), it does not matter if we write log n or ln n or
logb n. Computer scientists use log2 while mathematicians use loge = ln.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 24 / 26



Warning

A lot of people write g(n) = Θ(f (n)) were here we write g(n) ∈ Θ(f (n)).
This is fine as long as you know that it is not equality.

If you forget that it is really set membership then you derive all sorts of
contradictions:

n2 + n = Θ(n2 + n) = Θ(n2)

n2 = Θ(n2)

and so
n2 + n = n2

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 25 / 26



Next Lecture

Some examples of recurrence relations from sorting algorithms

Solving recurrence relations and the master theorem.

Justin Pearson Lecture 1 : Revision on Big-O analysis November 1, 2022 26 / 26


	Lecture Plan

