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Abstract
Finite automata with counters are often used to specify families of constraints. The addi-
tion of counters provides more power than membership in regular languages that is pos-
sible with finite automata. All available propagation algorithms for counter automata based 
constraints maintain only bounds consistency on counter variables, and although it is pos-
sible to maintain domain consistency it can be computationally very costly. In this paper 
we give an algorithm that decides when maintaining bounds consistency for an automata 
with a single counter implies domain consistency.

Keywords  Automata · Consistency

1  Introduction

Finite automata have long being used to specify families of constraints: in [1] and [2] a 
decomposition based approach is given where automata augmented with counters are used 
to specify constraints; in [3] a domain consistent propagation algorithm is given for mem-
bership of a regular language as specified by a finite automata; and in [4, 5] an extension 
of the algorithm in [3] is given where transitions of an automaton are augmented with a 
cost that is incurred when a value is assigned. In general an automaton is used to specify 
a constraint on a sequence of variables and possibly extra variables representing counters. 
This allows complex constraints over sequences to be expressed. The example automaton 
in Fig. 1 together with the counter c constrains the number of times the subsequence “aab” 
appears in a sequence. For examples of more complex families of constraints specified by 
automata with counters see [6–8].

This paper builds on the work in [9] where an efficient dynamic programming propaga-
tion algorithm is given for constraints specified by an automaton with a single counter that 
maintains bounds consistency on counter variables and domain consistency on sequence 
variables. It was left as an open question how to extend the propagation algorithm to main-
tain domain consistency for counter variables.
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In this paper we provide a decision procedure that given an automaton with a single 
counter decides if maintaining bounds consistency on the counter variable is sufficient to 
maintain domain consistency, and hence when the algorithm in [9] can be used to main-
tain domain consistency on the counter variable. Knowing when it is sufficient to main-
tain bounds consistency instead of maintaining domain consistency is of practical inter-
est, because in general maintaining bounds consistency for a constraint is computationally 
cheaper than maintaining domain consistency [10].

2 � Background

In this section we give some necessary notation and background on automata with counters 
(Section 2.1), how to use automata to specify constraints (Section 2.2), notions of mixed 
consistency (Section 2.3), and a survey (Section 2.4) of the available propagation methods 
for families of constraints specified by automata.

2.1 � Finite all‑accepting single‑counter automata

Definition 1  An all-accepting single-counter automaton A  is a tuple

 where Q is the set of states, q0 is the initial state, Σ is a set of alphabet symbols, and → is 
the transition relation.

We say that an all-accepting single-counter automaton A  is deterministic if for all states 
q ∈ Q and alphabet symbols σ ∈Σ there exists unique q′ and z such that (q, �, z, q�) belongs 
to the relation →.

We write q
�

→

z
q′ if there is some z ∈ ℤ such that (q, �, z, q�) belongs to →. Given a tran-

sition q
�

→

z
q′ the value z is referred to as the counter change for that transition. Given a 

word � = �1⋯�n ∈ �∗ an accepting sequence is a sequence of states s1,…,sn in Q, and a 
sequence of integers z1,…,zn such that

Given a deterministic all-accepting single-counter automaton A  and a word 
�1⋯�n ∈ �∗ then the cost C(w) of the word is defined to be the cost of the (unique) accept-
ing sequence

(Q,𝛴, q0 ∈ Q,→⊆ Q × 𝛴 × ℤ × Q)

q0
�1
→

z1
s1

�2
→

z2
⋯

�n
→

zn
sn

Fig. 1   An all-accepting single-counter automaton AAB for the constraint NumberWord(N,X, “aab”)
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Example 1  Consider the automaton AAB in Fig. 1 taken from [9]. It represents a deter-
ministic all-accepting single-counter automaton with state set Q = {q0,a,aa} and alphabet 
Σ = {a,b}. The transition relation → is given by the labelled arcs between states. Each 
arc is labelled with its alphabet symbol and an increment {c ← c + z} which is omitted if 
z equals 0. The initial state q0 is denoted by an arc coming from no state. As a result, the 
final cost c of a word is the number of occurrences of the word “aab” within the string.

2.2 � Regular counting constraints

As in [9], a regular counting constraint is defined as a constraint that can be modelled by 
a deterministic all-accepting single-counter automaton. Given a variable c and a sequence 
of variables x = x1,…,xn then the RegCount(c, x,A) constraint is satisfied if the value of 
variable c, called the counter variable, is equal to the final value of the counter after the 
deterministic all-accepting single-counter automaton A  has consumed the values of the 
entire sequence x = x1,…,xn of variables. That is c equals C(x1⋯xn) . It is assumed that 
the domains of the variables x1,…,xn is subsets of the set of symbols Σ of the automa-
ton A  . We refer to the sequence x as the sequence variables. For example, the constraint 
REGCOUNT(c, x,AAB) with the automaton AAB as specified in Fig. 1 holds if c is the 
number of occurrences of the non-empty word aab in the sequence x.

2.3 � Mixed propagation

Domain and bounds consistency are normally defined for a given constraint and the 
domains of all its variables [10]. The domains of the variables of a constraint are said to be 
domain consistent if given any possible value of a variable in a domain there is some solu-
tion to the constraint that takes values from the other domains. For example the domains x 
= {1,3} and y = {3,4} are domain consistent for the constraint x ≤ y. Bounds consistency 
is a little bit more subtle (again see [10]) and instead considers domains as intervals. In 
Definition 2 we will use a variation of bounds-(ℤ ) consistency.

The propagators in [4, 5, 9] maintain mixed consistency on sequence and counter (or 
cost variables). In [10] no formal definition of mixed consistency is given. Here we spe-
cialise (to simplify notation) the definition of mixed consistency, taken from [11], to the 
special case of an arbitrary number of domain consistent sequence variables and a single 
bounds-(ℤ ) variable.

Definition 2  Given any finite subset K of the integers ℤ , let min(K) denote the minimum 
integer in K and max(K) denote the maximum integer in K. Consider a constraint, C, over 
the variables x1,…,xn, and c. Let X1,…,Xn be the domains of the variables x1,…,xn and let K 
be the domain of c, then these domains are domain consistent for x1,…,xn and bounds-(ℤ ) 
consistent for c if the following two conditions are met. First, for all 1 ≤ i ≤ n and all v ∈ 
Xi there exist 〈v1, …vn〉 in X1×⋯× Xn and some value k with min(K) ≤ k ≤ max(K) such 
that 〈v1, …, vn, k〉 is a solution to C and vi = v; and second given some value k that is either 
min(K) or max(K) , then there exist 〈v1, …, vn〉 in X1×⋯× Xn such that 〈v1, …, vn, k〉 is a 
solution to C. This defines mixed consistency specialised to domain consistency for an arbi-
trary number of variables and bounds-(ℤ ) for a single variable.

C

(
q0

�1
→

z1
s1

�2
→

z2
⋯

�n
→

zn
sn

)
= z1 +⋯ + zn.
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2.4 � Propagating regular counting constraints

In [1, 2] a general framework is given for decomposing automata based constraints into 
a combination of element constraints and table constraints. In general this decomposi-
tion is not domain consistent, but for a finite automaton without any counter variables 
the decomposition achieves domain consistency. Domain consistency for automata 
without counters is also achieved with the specialised algorithm in [3] that unfolds an 
automaton over a sequence of length n to a graph representing potential transitions. As 
values are removed from domains, a forward and backward pass of the unfolded graph 
prunes further values from the domain resulting from parts of the unfolded graph that 
are not reachable from either an initial or final state.

In [4, 5] a propagation algorithm is given for automata without counter variables, 
but with costs assigned to the values appearing at positions in the sequence, the total 
cost of a sequence is the sum along the costs that sequence. For each sequence length 
a cost matrix must be given. The algorithms in [4, 5] maintain bounds consistency on 
the cost variable and domain consistency on the sequence variables. In a footnote in [4] 
it is hinted that it is possible to extended the model with costs that depend on not only 
the value and position, but the state of the automaton as well. With such an extension 
to cost regular it would be easy to calculate a cost matrix corresponding to a given all-
accepting single-counter automaton and specified sequence length. One way of view-
ing the difference between cost regular [4] and regular counting constraints [9] is that 
regular counting constraints define a family of cost regular constraints defined by a 
all-accepting single-counter automaton. The algorithm in [9] works directly on a rep-
resentation of an automaton and gives a dynamic programming algorithm that provides 
domain consistency on the sequence variables, but again only provides bounds consist-
ency on the cost variables. When working directly on a representation of an automaton 
the algorithm in [9] is more efficient than computing the cost matrix and using the algo-
rithms in [4, 5].

3 � Deciding when bounds consistency implies domain consistency

Definition 3  Let A  be a deterministic all-accepting single-counter automaton. We call A
blockwise counter-convex if, for all n and all sets Σ1,…,Σi,…Σn, with each Σi ⊆ Σ : when-
ever there are words w1 and w2 of length n from Σ1×⋯ ×Σn with costs C(w1) ≤ C(w2) , 
then, for all C(w1) ≤ k ≤ C(w2) , there is a word wk of length n from Σ1×⋯×Σn with cost 
C(wk) = k.

We now connect the notation of blockwise counter-convex with the mixed consistency 
of Definition 2. When using a blockwise counter-convex automaton to specify a constraint, 
enforcing mixed consistency implies that the counter variable is also domain consistent; 
and further, that any automaton, where enforcing mixed consistency gives domain consist-
ency on the counter variable, is itself blockwise counter-convex.

Lemma 1  Let A  be a deterministic all-accepting single-counter automaton A  that is 
blockwise counter-convex. Given a constraint RegCount(c, x,A) , if the domain of c is 
bounds-(ℤ ) consistent and the domains of the sequence variables x = x1,…,xn are domain 
consistent as in Definition 2, then the domain of c is domain consistent.
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Further, let A′ be some deterministic all-accepting single-counter automaton. If every 
sequence of variables x, and all domains of x and c of the constraint REGCOUNT(c, x,A�

) 
that satisfy Definition 2 (with c being bounds-(ℤ ) consistent) also gives that c is domain 
consistent, then A′ is blockwise counter-convex.

Proof  First we prove that if an automaton A  is blockwise counter-convex then 
bounds-(ℤ ) consistency on the counter variable implies that the counter variable is 
domain consistent. Let K be the domain of the counter variable c and let X1,…,Xn be 
the domains of the sequence. By definition, because K is bounds-(ℤ ) consistent there 
are two sequences �l

1
,… , �l

n
 and �u

1
,… , �u

n
 in X1,…,Xn such that C

(
�l
1
⋯ �l

n

)
= min(K) 

and C
(
�u
1
⋯ �u

n

)
= max(K) . Since A  is blockwise counter-convex, for any k such that 

min(K) ≤ k ≤ max(K) there exists some sequence τ1,…,τn in X1,…,Xn with C(�1⋯�n) = k . 
Hence the domain K of c is also domain consistent because for any k in K we can find a 
satisfying assignment from the domains of the sequence variables to the constraint. Given 
an automaton A′ and a constraint REGCOUNT(c, x,A�

) such that the domains of c and the 
sequence variables satisfy the conditions of Definition 2 (with c being bounds-(ℤ ) consist-
ent) that implies that c is also domain consistent, then A′ is blockwise counter-convex. 
We prove the contrapositive. Assume that A′ is not blockwise counter-convex, and the 
domains of c and x are as above. Then there must be some value k in K such that there is no 
sequence σ1,…,σn in X1,…,Xn with C(�1 ⋯ �n) = k . This contradicts Definition 2. Hence A′ 
is blockwise counter-convex. □

Note that blockwise counter-convex is a strong property. It implies that there can be no 
holes in the domain. Given a constraint REGCOUNT(c, x,A) where A  is blockwise counter-
convex, and x = x1,…,xn, then if the minimum and maximum values of c are supported by 
some assignments to x1,…,xn then all values between the minimum and the maximum are 
also supported by some assignment. Thus if some other propagator removes some value of 
c between the minimum and the maximum giving a hole in the domain, no values from the 
domains of x1,…,xn will be removed.

Blockwise counter-convex is a desirable property of an automaton, because it implies 
that the propagation algorithm in [9] will give domain consistency on the counter variable, 
and there is no need to look for a more complex domain consistent propagator. The fol-
lowing theorem shows that given some deterministic automaton A  it is possible to decide 
if it is blockwise counter-convex. Note that given some constraint RegCount(c, x,A) with 
x = x1,…,xn it is possible to check in polynomial time that the domains of x1,…,xn and the 
domain of c are blockwise counter-convex, but the following theorem is stronger and gives 
a condition for any sequence length that the domains are blockwise counter-convex that 
only depends on the automaton A .

Theorem  1  There is an EXPTIME algorithm to decide whether an all-accepting single-
counter deterministic automaton, A  , is blockwise counter-convex.

Proof  The algorithm works as follows. Given a deterministic all-accepting single-coun-
ter automaton A = (Q,𝛴, q0 ∈ Q,→⊆ Q × 𝛴 × ℤ × Q) , first, it computes which states 
are reachable from the initial state q0. For each of these states q, and all pairs of succes-
sor states q1 and q2 of q, accessible by reading σ1 and σ2, with counter change z1 and z2, 
respectively, we perform the following. For all words x of length 4|Q|2 we run x through the 
automaton starting from q1 as well as q2, obtaining counter change z′

1
 and z′

2
 , respectively. 

If |z1 + z�
1
− z2 − z�

2
| > 1 , then reject. Finally, if the algorithm never rejects, then accept.
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Correctness. Let us first argue that, if the algorithm rejects, with witnesses q,q1,q2,σ1
,σ2, and x as above, then the automaton is not blockwise counter-convex. Let y be some 
word that moves the automaton from its initial state to q. Consider the words y ⋅ σ1 ⋅ x 
and y ⋅ σ2 ⋅ x. Let Σ1,…,Σ|y| be singletons built from the |y| letters of y, in the obvious way. 
Similarly, let Σ|y|+ 2,…,Σ|y|+ 1+|x| be singletons built from the |x| letters of x. Now an obvious 
counterexample exists as

 contains precisely two words whose counts differ by more than one.
It remains to argue that, if the algorithm accepts, the automaton is blockwise counter-

convex. We will proceed with the contrapositive and assume the automaton is not block-
wise counter-convex. Let some words x and y of minimal length n witness this and assume 
that Σ1,…,Σn are given. Now, a certain path can be built between x and y where two words 
are considered adjacent iff their Hamming distance is 1. This path can be chosen to consist 
only of words that are all in Σ1 ×⋯ ×Σn. (Indeed, the shortest path, of length the Hamming 
distance between x and y, will have this property.) At some point along this path, there 
must be words u and u′ , with Hamming distance 1, whose counts are more than 1 apart. 
Otherwise, we would not be witnessing a failure of blockwise counter-convexity. Let us 
decompose u and u′ into v ⋅ σ1 ⋅ w and v ⋅ σ2 ⋅ w, respectively. Suppose that q is the state 
reached from the start state when v is read. Let q0,q1,…,q|w| be the sequence of states in 
which A  progresses while reading σ1 ⋅ w from state q. Let q�

0
, q�

1
,… , q�|w| be the sequence 

of states in which A  progresses while reading σ2 ⋅ w from state q.
Eventually, for some i < j ≤ |Q|2, some pair 

(
qi, q

′
i

)
 repeats, that is 

(
qi, q

�
i

)
=

(
qj, q

�
j

)
 . 

Split w into three words wleft (positions 1 to i inclusive), wmiddle (positions i + 1 to j inclu-
sive) and wright (positions j + 1 to |w| inclusive). Consider what happens to the counter 
when reading σ1 ⋅ wleft and σ2 ⋅ wleft. The counters can not be more than 1 apart, by mini-
mality of n. Now, consider what happens to the counter when reading both σ1 ⋅ w and a2 ⋅ w 
precisely during the interval when wmiddle is read. Suppose the counters did not diverge at 
all in this interval, i.e. they each advanced the same number. Then we again contradict 
minimality of n by considering the words σ1 ⋅ wleft ⋅ wright and σ2 ⋅ wleft ⋅ wright. Thus, the 
counters must have diverged by at least one in this interval and we will find that σ1 ⋅ wleft ⋅ 
wmiddle ⋅ wmiddle ⋅ wmiddle and σ2 ⋅ wleft ⋅ wmiddle ⋅ wmiddle ⋅ wmiddle witness that the automaton 
is not blockwise counter-convex. This implies indeed that one need not look ahead more 
than 4|Q|2 letters, as in our algorithm, and the result follows.

Complexity. The number of words of length 4|Q|2 is |�|4|Q|2 . The outer loops of the algo-
rithm run a total of |Q|3 times. This gives a total time complexity of |Q|3 ⋅ |�|4|Q|2 ⋅ 4|Q|2 
where running a step of the input automaton is considered to be a unit cost. □

4 � Conclusion

In this paper we have shown that it is decidable if bounds consistency implies domain con-
sistency for single counter automata specifying families of constraints. Although the algo-
rithm in Theorem 1 is of exponential complexity it is not intended to run the algorithm 
each time the propagator is called. The algorithm should be run off-line before constraint 
solving begins. Further, because of the power of automata with a single counter the major-
ity of automata used in practice (see [12]) have very few states and alphabet symbols and 

Σ1 ×⋯ × Σ|y| × {�1, �2} × Σ|y|+2 ×⋯ × Σ|y|+1+|x|
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hence the complexity |Q|3 ⋅ |�|4|Q|2 ⋅ 4|Q|2 will be manageable. Throughout the paper it 
has been assumed all automata are all-accepting single-counter. It would be interesting 
to extend the analysis where some states are non-accepting. This would mean that some 
words would not be accepted by an automaton. To understand when bounds consistency 
would imply domain consistency would require an analysis of when an automaton has 
enough accepting states so that there are enough accepting words to support all the values 
of the counter variable between the minimum and the maximum. Understanding what such 
a condition would look like is left as future work.
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