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Abstract. Large-neighbourhood search (LNS) improves an initial solu-
tion, hence it is not directly applicable to satisfaction problems. In order
to use LNS in a constraint programming (CP) framework to solve satis-
faction problems, we usually soften some hard-to-satisfy constraints by
replacing them with penalty-function constraints. LNS is then used to
reduce their penalty to zero, thus satisfying the original problem. How-
ever, this can give poor performance as the penalties rarely cause prop-
agation and therefore do not drive each CP search, and by extension
the LNS search, towards satisfying the replaced constraints until very
late. Our key observation is that entirely replacing a constraint is often
overkill, as the propagator for the replaced constraint could have per-
formed some propagation without causing backtracking. We propose the
notion of a non-failing propagator, which is subsumed just before causing
a backtrack. We show that, by only making a few changes to an existing
CP solver, any propagator can be made non-failing without modifying
its code. Experimental evaluation shows that non-failing propagators,
when used in conjunction with penalties, can greatly improve LNS per-
formance compared to just having penalties. This allows us to leverage
the power of the many sophisticated propagators that already exist in
CP solvers, in order to use LNS for solving hard satisfaction problems
and for finding initial solutions to hard-to-satisfy optimisation problems.

1 Introduction

Large-neighbourhood search (LNS) [19] is a popular method for local search.
It often uses constraint programming (CP) for neighbourhood exploration and
has been successfully applied to a vast variety of optimisation problems. LNS
starts from a feasible assignment and explores a large neighbourhood of similar
assignments by forcing most of the variables to take their current values while
performing CP search in order to find better values for the other variables. This
process is repeated in the hope of finding a good enough feasible assignment.
However, as LNS requires a feasible assignment to start from, LNS cannot be
directly applied to satisfaction problems, because the initial feasible assignment
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would be an acceptable solution. Furthermore, an optimisation problem that is
hard to satisfy, that is where finding a feasible assignment is difficult, cannot be
solved by LNS until an initial feasible assignment is obtained. We emphasise that
finding an initial feasible assignment is in fact a satisfaction problem. Therefore,
if we can efficiently solve satisfaction problems using LNS, then we can also solve
hard-to-satisfy optimisation problems using (two rounds of) LNS.

One approach to using LNS for satisfaction problems is to (manually) identify
and soften the constraints that make the problem hard to satisfy. Traditionally,
soft constraints for CP have been investigated mostly for over-constrained prob-
lems [10], that is for problems where not all the constraints can be satisfied.
There is little previous work on softening constraints in order to enable LNS
(see Sect. 6). Still, there are generic methods for softening a constraint, such
as replacing it by using a penalty function and minimising the penalty via the
objective function (see Sect. 2.1 for examples). However, these methods tend to
give poor performance in practice, as they significantly increase the size of the
CP search space and provide little propagation to drive the CP search towards
a zero-penalty solution (as we show in Sect. 3).

In this paper, we argue that entirely replacing constraints by using penalty
functions in order to enable LNS is overkill, because it means that we lose all
their propagation, including the propagation that would not have caused failure
but would have avoided unnecessarily high penalties.

Based on this observation, we propose the notion of a non-failing propaga-
tor : the inconsistent domain values of a variable are only pruned as long as
doing so does not cause a failure. As soon as propagation would cause failure,
the propagator is disabled. This prevents the propagator from directly causing
backtracking and, when used in conjunction with a penalty function, helps the
CP search to quickly reach low-penalty solutions.

After giving some definitions on soft constraints and LNS (Sect. 2) and a
motivating example (Sect. 3), our contributions and impact are as follows:

– the concept and theory of non-failing propagators (Sects. 4.1 and 4.3);
– a recipe for modifying a CP solver so that any propagator can automatically

become non-failing, without modifying its code (Sect. 4.2);
– an empirical evaluation of the often drastic effect of non-failing propagators

on solving satisfaction problems by LNS, as well as of their use when solving
hard-to-satisfy optimisation problems by LNS (Sect. 5).

We discuss related work (Sect. 6) and future work and conclude (Sect. 7).

2 Definitions

A constraint satisfaction problem is a triple 〈X ,D, C〉 where X is a set of vari-
ables, the function D maps each variable x of X to a finite set D(x), called
the current domain of x, and C is a set of constraints. An assignment is a
mapping σ where σ(x) ∈ D(x) for each x of X . A feasible assignment is an
assignment that satisfies all the constraints in C. A constrained optimisation
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problem 〈X ,D, C, o〉 has a designated variable o of X constrained in C to take
the value of an objective function that is to be minimised (without loss of gen-
erality). An optimal assignment is a feasible assignment where o is minimal.

2.1 Soft Constraints

Given a satisfaction problem 〈X ,D, C〉 and an assignment σ, the penalty under σ
of a constraint C(V) in C, where V is an ordered (multi)subset of X , is given by
a function π, called the penalty function, such that π(σ) is 0 if C(V) is satisfied
under σ, and otherwise a positive number proportional to the degree that C(V)
is violated. For example, for the constraint x + y = z, the penalty could be
|σ(x) + σ(y) − σ(z)|, which is the distance between x+y and z under σ. See [20]
for a variety of penalty functions in the context of constraint-based local search.

For a constraint C(V) and a penalty function π, the soft constraint Cπ(V, p)
constrains a new variable p, called the penalty variable, to take the value π takes.

Example 1. In our experiments of Sect. 5, the soft constraint for a linear equality
constraint

∑
i AiVi = c is p = |∑i AiVi − c|, that is p = |x + y − z| for the

unweighted equality constraint x + y = z we considered above. For a linear
inequality constraint

∑
i AiVi ≤ c, we use p = max(0,

∑
i AiVi − c). For a

global cardinality constraint GCC(V,A,L,U), constraining every value Ai to
be taken between Li and Ui times by the variables Vj , which cannot take any
other values, we use p =

∑
i max(0, Li − ∑

j [Vj = Ai],
∑

j [Vj = Ai] − Ui) +∑
d�∈A

∑
j [Vj = d], where [α] denotes value 1 if constraint α holds and value 0

otherwise. ��
We say that we soften a constraint C(V) when we replace it in C by Cπ(V, p)

for some π, with variable p added to X and used in an objective function. We
call C(V) the replaced constraint, not to be mixed up with Cπ(V, p).

We define Soft(〈X ,D, C〉 ,S, π, λ) as the softening of a subset S ⊆ C of n con-
straints in the satisfaction problem 〈X ,D, C〉 into the optimisation problem
〈X ∪{pi | i ∈ 1..n}∪{o},D′, C\S∪{Ci

πi
(V, pi) | Ci(V) ∈ S}∪{o =

∑n
i=1 λipi}, o〉

by using the penalty functions πi and weights λi ≥ 0, where D′ is D extended
to give the initial domain 0 . . ∞ to the introduced objective variable o and each
introduced penalty variable pi.

Definition 1. For any Soft(P,S, π, λ) of a satisfaction problem P, we define:

– a pseudo-solution is a feasible assignment where at least one introduced
penalty variable takes a positive value, and therefore the non-penalty vari-
ables do not form a feasible assignment for P; and

– a solution is a feasible assignment where all penalty variables take the value 0,
and therefore the non-penalty variables do form a feasible assignment for P.

Note that a solution to Soft(P,S, π, λ) is in fact an optimal solution to it,
as the introduced objective variable takes its lower bound 0, no matter what the
weights λi are, and thereby that solution establishes the satisfiability of P.

Consider a soft constraint Cπ(V, p) and a variable v in V: we say that a value d
in D(v) imposes a penalty when min(D(p)) would increase if D(v) became {d}.
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2.2 Large-Neighbourhood Search

Large-neighbourhood search (LNS) [19] is a local-search method for solving an
optimisation problem 〈X ,D, C, o〉. It starts from a feasible assignment σ, which
evolves as what we call the current assignment. At each iteration, an LNS heuris-
tic selects a non-empty strict subset M of the variables X , called the fragment,
where o ∈ M. The optimisation problem 〈X ,D, C ∪ {x = σ(x) | x ∈ X \ M}, o〉,
where all but the variables of the fragment take their current values, is solved,
not necessarily to optimality. If an improving feasible assignment is found, then it
replaces the current assignment, otherwise the current assignment is unchanged.
The search continues from the current assignment by selecting a new fragment.

LNS can in principle be used to solve a satisfaction problem P that has been
softened by some Soft(P,S, π, λ) into an optimisation problem, but we show
in Sects. 3 and 5 that the performance can be poor in practice.

The optimisation problem at each LNS iteration, as well as the satisfaction
problem of finding an initial feasible assignment, can in principle be solved by
using any technology, but we here only consider CP.

There exists extensive literature on the challenge of heuristically selecting a
fragment at each LNS iteration: either by exploiting the structure of the under-
lying problem [19] or by using more generic methods [9,13,14]. Both approaches
can have a significant impact on the performance of LNS.

In this paper, we focus on an orthogonal challenge of LNS, namely efficiently
solving (hard) satisfaction problems (and even optimisation problems that are
hard to satisfy, that is where finding a feasible assignment is difficult), so that
there is a need to improve the propagation in each LNS iteration in a new way.

3 Motivation

To make some motivating observations, we consider as a running example the
satisfaction problem of subset sum, as solved by CP. We then soften the problem
in order to show how it can in principle be solved by LNS.

Example 2. Given an integer set S and an integer t, the subset-sum problem
is to find a subset S ′ ⊆ S such that

∑
s∈S′ s = t. We can express this as a

satisfaction problem using a 0/1 variable xi for each element of S, and a single
constraint, say for S = {11,−3, 2, 5, 9,−6} and t = 1:

11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 = 1 (1)

Using the classical idempotent bounds-consistency propagator in Algorithm1 for
the linear equality (1)—because achieving domain consistency is NP-hard [2]—
and the CP search strategy that branches on the variables in order from x1 to x6,
always with xi = 1 as the left-branch decision, we obtain the following CP search
tree. At the root node, the value 1 is pruned from D(x1). Upon the decision x2 =
1, no value is pruned. Upon the decision x3 = 1, propagation first prunes the
value 1 from both D(x5) and D(x6), but then fails as all values of D(x4) must
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Algorithm 1. Bounds-consistency propagator for
∑

i AiVi = c, where A is an
array of integers, V an equally long array of integer variables, and c an integer;
it updates the domain function D. (Idempotent due to lines 1–3 and 12–13.)
1: done ← false
2: while not done do
3: done ← true // this might be the last iteration

4: � ← ∑|V|
i=1 Ai · min(D(Vi)); u ← ∑|V|

i=1 Ai · max(D(Vi))
5: if � = c = u then
6: return Subsumed
7: else if c < � or u < c then
8: return Failed
9: for i = 1 to |V| do

10: D(Vi) ← D(Vi) ∩
⌈

c−u+max(D(Vi))
Ai

⌉
. . max(D(Vi)) // tighten lower bound

11: D(Vi) ← D(Vi) ∩ min(D(Vi)) . .
⌊

c−�+min(D(Vi))
Ai

⌋
// tighten upper bound

12: if some D(Vi) has changed then
13: done ← false // continue iterating
14: return AtFixpoint

be pruned. The search backtracks, failing at two more nodes, until it finds the
only feasible assignment (namely x1 = x2 = x5 = 0 and x3 = x4 = x6 = 1,
corresponding to S ′ = {2, 5,−6}) upon the decisions x2 �= 1 and x3 = 1. ��

To solve a satisfaction problem with LNS, one must soften some constraints
in order to turn it into an optimisation problem where a zero-penalty solution
corresponds to a feasible assignment to the satisfaction problem. If no such soft-
ening is performed, then the initial feasible assignment will be an acceptable
solution, which means that LNS adds no benefit.

Although constraints can be softened in a generic way by using penalty func-
tions (as explained in Sect. 2.1), softening will in practice significantly increase
the size of the CP search space for each LNS iteration, as soft constraints usu-
ally only cause propagation towards the bottom of the search tree, where most
variables are fixed, and provide little to no propagation that drives the CP search
towards an (optimal) solution, as shown in the following example.

Example 3. In order to solve the subset-sum satisfaction problem of Example 2
by LNS, its constraint (1) must be softened, say as:

p = |11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 − 1| (2)

where p ∈ 0 . . 26, and the objective is to minimise p. By Definition 1, if p = 0 then
the solution corresponds to a feasible assignment to the satisfaction problem.
Consider the CP search tree while finding an initial feasible assignment for LNS,
using the search strategy of Example 2. Since p is essentially unconstrained, there
is no propagation (no matter what consistency is targeted) and search descends
the left branch, arriving at a pseudo-solution where all xi = 1 and p = 17.
Improving it into a solution requires x1 = 0: this was achieved by root-node
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propagation in Example 2, but is here only achievable by x1 being in a fragment.
However, even that may not be enough: if the first fragment is {x1, x3}, then
the next pseudo-solution will have x3 = 0 and p = 15. Clearly, even in a small
instance, early bad decisions severely degrade performance. ��

4 Avoiding Bad CP Search Decisions

We are here concerned with constraints that must be softened to enable the
use of LNS for satisfaction problems. We want to improve the CP search for an
initial (pseudo-) solutions for the first LNS iteration, as well as the CP search
within each LNS iteration for better pseudo-solutions and eventually a solution.

We saw in Example 3 that bad CP search decisions can be made early if the
propagation from the soft constraints does not prune values that impose high
penalties. It could therefore be beneficial to prune some of those values, using
some propagation from the replaced constraints, so that the CP search avoids
those bad decisions. However, it would be counterproductive to prune all values
that impose a penalty, as that would again make the constraints (and by exten-
sion the problem) hard to satisfy, namely by causing significant backtracking.

Still, given the crucial role that propagation plays in the effectiveness of CP
search, we argue that only replacing some constraints by using penalty functions
(and thereby effectively removing all the propagation for those constraints) does
not fully utilise the decades of research on efficient and powerful propagators.

Based on this observation, we propose non-failing propagators (Sect. 4.1),
show how to modify a CP solver such that any propagator can be made non-
failing without modifying its code (Sect. 4.2), and discuss how the scheduling of
non-failing propagators can impact backtracking (Sect. 4.3).

4.1 Non-failing Propagators

We want to extend an optimisation problem Soft(〈X ,D, C〉 ,S, π, λ) by prescrib-
ing additional propagators for S to prune values that would impose a penalty,
but without causing backtracking. For this, we propose non-failing propagators:

Definition 2. For a constraint C(V), a non-failing propagator prunes domain
values that are inconsistent with C(V), but only until the pruning would empty
the domain of some variable v in V; at that point, the propagator is subsumed
instead of pruning the last domain value (or values) of v and being failed, which
would cause backtracking.

For example, the propagator of Algorithm1 can be turned into a non-failing
propagator by rewriting line 8 to return the status Subsumed instead of Failed.
In Sect. 4.2, we achieve this at the solver level instead of the propagator level.

We use the notation C(V) ::NonFailing to indicate that the propagator
used for C(V) should be non-failing.
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A non-failing propagator never causes backtracking itself, but it can do so
indirectly by pruning values that make the normal propagators for the con-
straints C\S be failed. Just like any propagator that is disabled during CP search,
a non-failing propagator is restored upon backtracking and restarts. Non-failing
propagators are safe to use on problems that are satisfiable:

Theorem 1. If a problem is satisfiable, then non-failing propagators for any of
its constraints will never remove any feasible assignments from the search space.

Proof. Consider a feasible assignment σ for a problem. A non-failing propagator
prunes no more than a normal propagator, by Definition 2. Therefore, no prop-
agator for any constraint of the problem can prune a value occurring in σ if all
values in σ are in the domains of the corresponding variables. ��

We define Softnonfail(P,S, π, λ) as the softening of the constraints S in the
satisfaction problem P via Soft(P,S, π, λ) but with the addition of the con-
straints {C(V)::NonFailing | C(V) ∈ S}: that is, the constraints S are imple-
mented both by non-failing propagators for themselves and by normal propaga-
tors (or decompositions) for their soft versions.

Example 4. The application of Softnonfail to the subset-sum problem of Exam-
ple 2 uses both a non-failing propagator for its constraint (1) and normal prop-
agation for its soft constraint from Example 3:

minimise p

such that (11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 = 1)::NonFailing

p = |11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 − 1|
xi ∈ {0, 1}, ∀i ∈ 1 . . 6

Root-node propagation of the non-failing propagator prunes value 1 from D(x1),
as in Example 2 and unlike in Example 3. Given the same CP search strategy as
in Example 2, the first decision, x2 = 1, does not trigger any propagation. The
second decision, x3 = 1, causes the non-failing propagator to first prune value 1
from D(x5), then prune value 1 from D(x6), and then infer failure. However,
rather than failing, the propagator is subsumed. The next decision is then x4 = 1,
at which point the CP search is at a pseudo-solution (namely x1 = x5 = x6 = 0
and x2 = x3 = x4 = 1). The propagator of the soft constraint from Example 3 so
far had no impact on the decisions, but gives p = 3 at this pseudo-solution. Given
this initial LNS assignment, if a fragment consisting of x2 and x6 is selected in the
first LNS iteration, then root-node propagation of the non-failing propagator will
immediate solve the problem by inferring x2 = 0 and x6 = 1, giving p = 0. Unlike
in Example 3, where only the soft constraint is used, we here see how a non-failing
propagator can help the CP searches avoid bad decisions and also allow the LNS
search to quickly arrive at a zero-penalty assignment. While this example was
specifically constructed to showcase this behaviour, our experimental evaluation
in Sect. 5 shows that this seems also to be beneficial in practice, across a variety
of benchmarks. ��
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Algorithm 2. FixPoint(P,Q,D), where P is the set of all non-disabled prop-
agators (initially those for the constraints C of the problem), Q is the priority
queue of propagators not known to be at fixpoint (initially those for C, later those
of a CP search decision), and D is the function giving the current domains.
1: while Q is not empty do
2: p ← Q.dequeue()
3: status ← p.propagate(D) // note that this can enqueue propagators of P
4: if status = Subsumed then
5: p.disable() // this achieves P ← P \ {p}
6: else if status = Failed then
7: return Failure // fail and cause backtracking
8: else
9: . . . // other status messages are not relevant here

10: return AtCommonFixpoint

4.2 Implementation

In principle, any propagator can be made non-failing by modifying its code
(such as in the example after Definition 2). However, this can be both tedious
and error-prone. Fortunately, we can instead modify the propagation engine of
a CP solver to treat as non-failing any propagator tagged as ::NonFailing.

Algorithm 2 shows a typical fixpoint algorithm, based on a queue of propaga-
tors that need to be executed. The only change required to support non-failing
propagators is to replace line 4 by

if status = Subsumed or (non-failing( p) and status = Failed) then

so that when a propagator tagged as non-failing returns the status Failed,
then the status is instead treated as Subsumed. However, in order for this
modification to Algorithm 2 to be correct, the CP solver and its propagators
must guarantee that the domains of the variables are always in a consistent
state: when a propagator returns Failed, the domain of each variable must be
a non-empty subset of the domain before running the propagator.

For our experiments in Sect. 5, we modified Gecode [6] in this way. Domain
updates in Gecode are not guaranteed to leave the domains in a consistent state
after failure: we therefore modified the domain update functions to check whether
an update would result in a domain wipe-out before they modify that domain.

4.3 Scheduling of Non-failing Propagators

Non-failing propagators are non-monotonic: the amount of propagation they
achieve (and whether they propagate or are subsumed) depends on the order
in which all propagators are executed [18]. Many CP solvers order propagators
using a priority queue, for example based on their algorithmic complexity [17].

The priority assigned to non-failing propagators can therefore determine if a
node fails or succeeds. However:
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Theorem 2. There is no static priority order (independent of the internal state
of the fixpoint algorithm) of propagators that guarantees that non-failing propa-
gators only cause failure when failure occurs for all possible priority orders.

Proof. Consider the following problem:

D(x) = D(y) = D(z) = 0 . . 5, D(b0) = D(b1) = D(b2) = 0 . . 1
x + y + z = 5, b1 → x ≥ 2, b1 → y ≥ 2, b2 → x ≤ 1, b2 → y ≤ 1
b0 → b1 ::Nonfailing, b0 → b2 ::Nonfailing

where the non-failing propagators are p1 for b0 → b1 :: Nonfailing and p2
for b0 → b2 ::NonFailing. We assume that both non-failing propagators are
always propagated last, as that decreases the probability of failure.

Upon the initial CP search decision z ≥ 2, we reach the node where D(z) =
2 . . 5 and D(x) = D(y) = 0 . . 3. If we make the decision b0 = 1, then both p1
and p2 are enqueued. If p1 is dequeued first, then we propagate b1 = 1, x ≥ 2,
y ≥ 2, b2 = 0, and then the propagator for x + y + z = 5 is dequeued and fails.
If p2 is dequeued first, then we propagate b2 = 1, x ≤ 1, y ≤ 1, b1 = 0, z ≥ 1,
and then p1 is dequeued and subsumed (because it fails). That is, the node only
succeeds when p2 runs before p1.

Upon the opposite CP search decision z < 2, we reach the node where D(z) =
0 . . 1. If we make the decision b0 = 1, then both p1 and p2 are enqueued. If p1
is dequeued first, then we propagate b1 = 1, x ≥ 2, y ≥ 2, b2 = 0, and then p2
is dequeued and subsumed (because it fails). If p2 is dequeued first, then we
propagate b2 = 1, x ≤ 1, y ≤ 1, b1 = 0, and then the propagator for x+y+z = 5
is dequeued and fails. That is, the node only succeeds when p1 runs before p2.

So, no static priority order can always avoid indirect failures caused by non-
failing propagators, even when the indirect failure could have been avoided. ��

Empirically, we found it beneficial to always run non-failing propagators at
the lowest priority. Intuitively, this makes sense: consider two propagators p1
and p2, where running p1 causes p2 to fail, and vice versa: if only p1 is non-
failing, then backtracking is only avoided when running p1 after p2. We therefore
modified Gecode to schedule all non-failing propagators to run as late as possible,
with a first-in-first-out tie-breaking between non-failing propagators.

5 Experimental Evaluation

This section presents an empirical evaluation of the benefit of non-failing prop-
agators for both satisfaction and optimisation problems.

5.1 Setup

We compare three approaches to finding a solution to a satisfaction problem P:

hard treat all constraints as hard, that is: solve P by CP;
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soft soften some constraints S of P, that is: solve Soft(P,S, π, λ) by LNS;
non-failing soften the same constraints S of P, but also use non-failing propa-

gators for those constraints, that is: solve Softnonfail(P,S, π, λ) by LNS.

For all problems, we used published MiniZinc (version 2.4.3) [12] models.1

We modified Gecode (version 6.2.0) [6] as described in Sects. 4.2 and 4.3.
We modified its MiniZinc interface so that some constraints, when tagged with
a new soften annotation for MiniZinc, are automatically softened under the
soft and non-failing approaches with λ = 1̄ and using the penalty functions π
in Example 1. For the non-failing approach, the soften annotation also tags
the constraint with the ::NonFailing annotation, that is, we have both a soft
version and a non-failing version of the tagged constraint when using the non-
failing approach. To propagate a soft constraint, we use a decomposition of its
penalty function rather than a specialised propagator. We used Gecode’s built-in
LNS via its MiniZinc interface2: it selects a variable not to be in the fragment
under a given probability; we prescribed a probability of 70% or 80%, depending
on the size of the problem instances, (See footnote 1) and used the constant
restart strategy.

For each problem instance, we report the average time for finding a first
solution by LNS, over 10 independent runs, each allocated 10 minutes. The
average was only computed over the runs where a solution was actually found.

We used Linux Ubuntu 18.04 (64 bit) on an Intel Xeon E5520 of 2.27 GHz,
with 4 processors of 4 cores each, with 24 GB RAM and an 8 MB L2 cache. Note
that we only run Gecode on a single core for our experiments.

5.2 Satisfaction Problems

We want to see whether our new generic non-failing approach allows LNS to
outperform the classical generic soft approach to LNS for satisfaction problems,
and whether both beat the hard approach via only CP. We look at instances of
three satisfaction problems that are difficult to solve with Gecode via MiniZinc.

Nurse Rostering. We use the model for a simple nurse rostering problem from
the MiniZinc Handbook3 but modify it by using global-cardinality constraints
on the daily numbers of nurses on each shift. We handcrafted 10 + 10 = 20 sat-
isfiable instances to be either easy (by having many nurses available) or dif-
ficult (by being at the border of unsatisfiability in terms of available nurses),
both for Gecode under the hard approach. We prescribe softening for all the
global-cardinality constraints. In Fig. 1a, we see that soft solves fewer instances
than hard and often needs over an order of magnitude more time (both only solve
the easy instances), while non-failing solves all but one (difficult) instance and
does so with seemingly no overhead compared to hard (on the easy instances).
1 We modified the models in order to deploy more global constraints and better CP

search strategies. Our versions of the MiniZinc models, the instances, and the Gecode
library are available at https://github.com/astra-uu-se/CP2020.

2 See https://www.minizinc.org/doc-latest/en/lib-gecode.html.
3 Section 2.3.1.4 of https://www.minizinc.org/doc-latest/en/predicates.html.

https://github.com/astra-uu-se/CP2020
https://www.minizinc.org/doc-latest/en/lib-gecode.html
https://www.minizinc.org/doc-latest/en/predicates.html
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Fig. 1. Number of instances that are each solved within a given time.

Rotating Workforce. In the rotating workforce problem [11], a roster is to be
built for employees, satisfying complex rules on sequences of shifts. We use the
model and 50 instances in [11]: these are difficult for Gecode under the hard
approach, although not too difficult for mixed-integer-programming and lazy-
clause-generation solvers [11]. We prescribe softening for the global-cardinality
constraints on the daily numbers of assigned shifts. In Fig. 1b, we see that each
approach only solves at most 14 of the 50 instances: soft is slowest but solves as
many instances (though not the same) as non-failing, while hard is arguably
fastest but solves fewer instances than non-failing.

Car Sequencing. In this problem [4], a sequence of cars of various classes, each
class having a set of options, is to be produced, satisfying capacity constraints on
the options over a sliding window on the sequence and occurrence constraints on
the classes. We use the MiniZinc Benchmark model4 and the classic 78 instances
for sequences of 100 to 200 cars.5 We prescribe softening for the capacity con-
straints, which are expressed by linear inequalities. A problem-specific softening,
which does not rely on penalties in the spirit of those in Example 1, was success-
fully used with LNS in [13]: we model it in MiniZinc and solve it by LNS with
Gecode calling this the reformulation approach. In Fig. 2, we see that hard
only solves 4 instances, while soft solves 65 instances but takes an order of mag-
nitude more time than non-failing, which solves 69 of the 78 instances; refor-
mulation solves 67 instances and takes time between soft and non-failing.

5.3 Hard-to-Satisfy Optimisation Problems

For a hard-to-satisfy optimisation problem, we solve the satisfaction problem of
finding a first solution, which enables another round of LNS to find better ones.

4 Available at https://github.com/MiniZinc/minizinc-benchmarks.
5 Available also at http://www.csplib.org/Problems/prob001/data/data.txt.html.

https://github.com/MiniZinc/minizinc-benchmarks
http://www.csplib.org/Problems/prob001/data/data.txt.html
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Fig. 2. Number of car-sequencing instances that are each solved within a given time.

Fig. 3. (a) Number of TSPTW instances that are each satisfied within a given time.
(b) Numbers of TSPTW instances where our best-found minimum is better, the same,
or worse than the best-known one; ‘none’ means we found no feasible assignment.

TSPTW. In the travelling salesperson problem (TSP) with time windows, a
shortest tour visiting all nodes in a graph during their time windows is to be
found. We use the 80 satisfiable n40, n60, and n80 instances of the Gendreau-
DumasExtended benchmark,6 as they are very difficult to satisfy under the hard
approach. We prescribe softening for the linear inequalities that require the
arrival time at a node to be at least the arrival time at its predecessor plus
the travel time in-between. In Fig. 3a, we see that hard only satisfies 1 instance
and soft only 8 instances, while non-failing satisfies 69 of the 80 instances.
When non-failing finds a solution within the allocated 10 minutes, we switch
to hard, but with LNS, in order to try and improve it for the remaining time.
We call this the non-failing+hard approach. In Fig. 3b, we compare the best
solutions found by non-failing+hard to the best known solutions from the lit-
erature. (See footnote 6) Our new approach can improve these bounds for three
instances.

6 Available at http://lopez-ibanez.eu/tsptw-instances.

http://lopez-ibanez.eu/tsptw-instances
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Fig. 4. (a) Number of TDTSP instances that are each satisfied within a given time.
(b) Numbers of satisfied TDTSP instances for the three batches of instances.

TDTSP. In the time-dependent TSP [1], a shortest tour visiting all nodes in a
graph during their time windows is to be found, similarly to TSPTW, but the
travel time between two nodes depends on the arrival time at the first node. We
use the model of the MiniZinc Challenge 2017,7 but modify it to constrain the
tour using successor variables and a circuit global constraint [8]. We prescribe
softening as for TSPTW. By private communication with the author of the
original MiniZinc model, we received 540 generated instances of 10, 20, and 30
nodes, with 180 instances for each batch; some of the size-10 and size-20 instances
were used in the Challenge, but none of the size-30 ones as, for most of them,
no MiniZinc backend ever found a feasible solution so that they were deemed
too hard. In Fig. 4a, we see that soft only satisfies 177 instances and is over
two orders of magnitude slower than the other approaches. Note that hard
satisfies 359 instances about as fast as non-failing, but as the instances become
more difficult to satisfy its runtime quickly increases. In Fig. 4b, we see that soft
only satisfies instances of size 10, whereas hard only satisfies instances of size
at most 20, and non-failing satisfies all the instances.

HRC. For the hospitals/residents matching problem with couples (HRC), we
use the model and 5 instances of the MiniZinc Challenge 2019. (See footnote 7)
We prescribe softening for the linear inequalities on the hospital capacities. In
Table 1, we see that soft satisfies all the instances, whereas non-failing com-
pletely backfires and satisfies no instance (and actually does not even find a
pseudo-solution for any instance). The non-failing propagators prevent the CP
search from reaching a pseudo-solution due to too many indirect failures. Fur-
thermore, since hard can solve 3 instances, it seems that the CP search space
for non-failing is larger than for hard. We describe how to address indirect
failures in Sect. 7.

7 Available at https://www.minizinc.org/challenge.html.

https://www.minizinc.org/challenge.html
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Table 1. Runtimes (in seconds, or ‘–’ if more than 600) to satisfy each HRC instance:
the non-failing approach backfires.

Instance non-failing soft hard

exp1-1-5110 – 83.47 26.96

exp1-1-5425 – 21.98 240.74

exp1-1-5460 – 341.01 40.89

exp2-1-5145 – 65.10 –

exp2-1-5600 – 208.22 –

6 Related Work

We now discuss three areas of related work: soft constraints, variable-objective
LNS, and streamliners.

Traditionally, soft constraints for CP have almost exclusively been researched
in the context of over-constrained problems: see [10] and [16, Chapter 3]
for extensive overviews. In this paper, we assume the problem is not over-
constrained but hard to satisfy and therefore requires softening to enable the
use of LNS. To the best of our knowledge, there exists very little research on
softening problems that are not over-constrained, and replacing constraints by
using penalties seems to originate from the over-constrained setting. The only
other work we found is [5], which generalises Lagrangian relaxations to CP
models.

Variable-objective LNS (VO-LNS) [15] is based on the observation that the
penalty variables introduced by softening are usually connected to the objec-
tive variable by a linear equality and any new bounds on the objective variable
result in little to no propagation on the penalty variables. Therefore, VO-LNS
eagerly bounds penalty variables during branch-and-bound. This achieves more
propagation from the soft constraints. This is conceptually related to our app-
roach: we improve the poor propagation from the soft constraints and reduce
their negative impact on LNS, by pruning more. VO-LNS satisfies Theorem1:
it never removes a solution from the CP search space if the problem is satisfi-
able. But, like our approach, VO-LNS can remove pseudo-solutions from the CP
search space, and might therefore remove all pseudo-solutions with the lowest
positive penalty. VO-LNS and non-failing propagators can be complementary:
first experiments, where both approaches are used together, indicate that there
can be a synergy.

Streamliners [7] are constraints added in order to remove a large portion
of the CP search space while ideally not removing all solutions. Streamliners
are identified by empirically observing structures in solutions to easy instances
and hoping that those structures, and thereby constraints, extend to difficult
instances. However, while streamliners are ideally safe, by not removing non-
dominated solutions, they are not always guaranteed to be safe; their addition
can even make a satisfiable instance unsatisfiable. Non-failing propagators, when
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added to a problem Soft(P,S, π, λ), can be thought of as streamliners since
they remove a large portion of the CP search space. But, unlike streamliners,
non-failing propagators are always safe to use as they never make a satisfiable
instance unsatisfiable, due to Theorem 1, and they are not based on empirical
observation, but rather on the actual constraints of the problem.

7 Conclusion and Future Work

LNS is a powerful approach to solving difficult problems, but is typically only
applied to (easy-to-satisfy) optimisation problems. We show that by using our
non-failing propagators we can apply LNS to effectively tackle hard satisfaction
problems (including those arising from hard-to-satisfy optimisation problems).
Implementing non-failing propagators is not difficult in a CP solver, and can
be done at the engine level with some care. Experimental results show that
non-failing propagators can drastically improve the solving of hard-to-satisfy
problems, although they are not universally beneficial.

Future work includes the design of constraint-specific non-failing propaga-
tors. For example, consider AllDifferent([x1, x2, x3, . . . , xn]): rather than dis-
abling its propagator upon detecting x1 = x2, one can replace it by a propagator
for AllDifferent([x3, . . . , xn]), thereby still avoiding the failure but now with-
out losing the propagation on the remaining variables.

A weakness of non-failing propagators is that they can cause too many indi-
rect failures, via normal propagators, as seen in Table 1. Indirect failures can
sometimes be avoided by giving non-failing propagators the right priority (see
Sect. 4.3). As future work, we can address this weakness with the following two
orthogonal ideas. First, when using a learning CP solver such as Chuffed [3],
which explains failures, we can detect that a failure is indirect and we can iden-
tify a node where a responsible non-failing propagator ran: the CP search can
then backtrack and disable that propagator at that node, thus avoiding the
failure. Second, non-failing propagators can be made more cautious about the
values they prune: for example, rather than eagerly pruning values that impose
a penalty, a non-failing propagator can prune only the values that impose a
penalty above some threshold, which can be adjusted during CP search. Initial
experiments show that these ideas work in principle, but do not yet outper-
form our generic implementation (of Sect. 4.2), as they bring their own sets of
challenges, which require further investigation.
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