
Automatic Generation of Descriptions
of Time-Series Constraints

María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson
Uppsala University, Department of Information Technology, SE – 751 05 Uppsala, Sweden

{Maria.Andreina.Francisco, Pierre.Flener, Justin.Pearson}@it.uu.se

Abstract—Integer time series are often subject to constraints on
the aggregation of the features of all occurrences of some pattern
within the series. For example, the number of inflexions may be
constrained, or the sum of the peak maxima, or the minimum of
the valley widths. Many time-series constraints can be described
by transducers. The output alphabet of such a transducer consists
of symbols that denote the phases of identifying the maximal
occurrences of a pattern. It was recently shown how to synthesise
automatically a constraint propagator and a constraint checker
from such a transducer, which however has to be designed
manually from a pattern. Here we define a large class of patterns,
present an algorithm for automatically generating a low-level
transducer from such a high-level pattern, and prove it correct.
This class covers all 20 patterns of the Time-Series Constraint
Catalogue, which can now be automatically extended at will.

Index Terms—time-series constraints, automata, transducers.

I. INTRODUCTION

A time series is here a sequence of integers, corresponding

to measurements taken over a time interval. Time series are

common in many application areas, such as the output of

electric power stations over multiple days [1], the manpower

required in a call centre [2], or the daily capacity of a hospital

clinic over a period of years. Time series are often constrained

by physical or organisational limits.

In [3] it was shown that many useful constraints

γ(〈X1, . . . , Xn〉, N) on an unknown time series X =
〈X1, . . . , Xn〉 of given length n can be specified by a triple

〈π, f, g〉, where π is called a pattern and in this introductory

section is a regular expression over the alphabet {‘<’, ‘=’, ‘>’}
(we assume the reader is familiar with regular expressions and

automata [4]), while f ∈ {max, min, one, surface, width} is

called a feature, and g ∈ {Max, Min, Sum} is called an aggre-
gator; integer variable N is constrained to be the aggregation,

computed using g, of the list of values of feature f for all

maximal words matching π in X . We name a time-series

constraint predicate specified by 〈π, f, g〉 as g_f_π.
Let the sequence S = 〈S1, . . . , Sn−1〉, called the sig-

nature and containing signature variables, be linked to a

time series X = 〈X1, . . . , Xn〉 via the signature constraints
(Xi < Xi+1 ⇔ Si = ‘<’) ∧ (Xi = Xi+1 ⇔ Si = ‘=’) ∧
(Xi > Xi+1 ⇔ Si = ‘>’) for all i ∈ [1, n− 1].

Example 1: The time series

X = 〈4, 4, 0, 0, 2, 4, 4, 7, 4, 1, 1, 5, 5, 5, 5, 5, 5, 3〉 has the

signature S = ‘=>=<<=<>>=<=====>’. Consider the regular

expression Peak = ‘<(<|=)*(>|=)*>’: a peak within a time

series corresponds to a maximal word matching Peak

4 4

0 0

2

4 4

7

4

1 1

5 5 5 5 5 5
3

Fig. 1: Visual representation of MIN_MAX_PEAK(X, 5), with

X = 〈4, 4, 0, 0, 2, 4, 4, 7, 4, 1, 1, 5, 5, 5, 5, 5, 5, 3〉.

s

r t

> : out

= : out

< : out

> : found

= : maybeb

< : maybeb

< : outa

> : in

= : maybea

Fig. 2: Transducer for Peak = ‘<(<|=)*(>|=)*>’.

in the signature. The max feature value of a peak is its

highest value. The time series X contains two peaks,

namely 〈0, 2, 4, 4, 7, 4, 1〉 and 〈1, 5, 5, 5, 5, 5, 5, 3〉, visible

in Figure 1, of highest values 7 and 5 respectively. Hence

the lowest peak, obtained by using the aggregator Min,

has as highest value N = 5. The underlying constraint is

MIN_MAX_PEAK(X,N).

In [3] a set of 20 useful patterns was manually converted

into transducers whose input alphabet is {‘<’, ‘=’, ‘>’} and

whose output alphabet consists of symbols that denote the

phases of finding the maximal occurrences of a given pattern.

For example, the transducer for the pattern corresponding to

the regular expression Peak from Example 1 is in Figure 2;

its notation will be explained in Section III. It was also shown

in [3] how to synthesise automatically a constraint propagator

and a constraint checker from such a transducer.

In this paper we show how to synthesise directly from

a high-level pattern instead of a low-level transducer. The

contributions of this paper are:

• We characterise in Section II the class of patterns that

can be handled by the synthesis in [3], which makes it

possible to decide when the synthesiser is applicable.

• We give in Section IV an algorithm for generating a

transducer from such a pattern, and prove its correctness.

In Section V, we conclude and discuss other related work.

102

2017 International Conference on Tools with Artificial Intelligence

2375-0197/17/31.00 ©2017 IEEE
DOI 10.1109/ICTAI.2017.00027

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

II. PATTERNS

Here patterns describe topological aspects of time series, as

adjacent values of a time series are compared within the sig-

nature constraints. We refer to the domain Σ = {‘<’, ‘=’, ‘>’}
of the signature variables as the topological alphabet. Note

that all results are independent of the chosen alphabet.

Definition 1 (regular-expression occurrence): Given a sig-

nature S and a regular expression σ over Σ, a σ-occurrence
in S is a maximal subsignature of S that matches σ.

Example 2: Consider again the time series

X = 〈4, 4, 0, 0, 2, 4, 4, 7, 4, 1, 1, 5, 5, 5, 5, 5, 5, 3〉, its signature

S = ‘=>=<<=<>>=<=====>’, and the regular expression

Peak = ‘<(<|=)*(>|=)*>’ from Example 1. The peak

〈0, 2, 4, 4, 7, 4, 1〉 corresponds to the subsignature ‘<<=<>>’,

which is a Peak-occurrence because it is a maximal word

in S matching Peak. The subsequence 〈4, 7, 4〉 corresponds

to the subsignature ‘<>’, which is not a Peak-occurrence

because it is not a maximal word in S matching Peak.

We first define the general notion of pattern and then define

the specific class of patterns whose transducers can be input to

the synthesiser in [3]. Our formalisation is simpler than the one

in [3], and none of our stated conditions are identified in [3].

A. Definition of a Pattern

For many time-series constraints, one is not interested in

whole occurrences of a regular expression within the signature

of a time series, but instead one wants or has to ignore

prefixes of the occurrences, so that the remaining suffixes

are used when computing the feature values. Before giving a

motivating example, we define the resulting notion of pattern

as a generalisation of a regular expression. We denote by L(σ)
the regular language defined by a regular expression σ.

Definition 2 (pattern, ignore count, and pattern occurrence):
A pattern is a pair π = 〈σ, β〉, where σ is a regular expression

over Σ only matched by non-empty words and β is called

the ignore count, which must be smaller than the length of a

shortest word in L(σ). Given a signature S, a π-occurrence
in S is a σ-occurrence in S except for its first β symbols.

Example 3: Consider again the regular expression

Peak = ‘<(<|=)*(>|=)*>’. The unique shortest word in

L(Peak) is ‘<>’, of length 2. Therefore the ignore count

β must satisfy 0 ≤ β < 2, because otherwise a shortest

Peak-occurrence would become empty after ignoring the first

2 symbols. Under two ways of plotting a time series, as in

Figure 3, the same subsignature ‘<<>>’ can correspond to a

peak of width 5 (left), achieved with β = 0, or a peak of

width 4 (right), achieved with β = 1.
Picking a suitable ignore count for a given regular expres-

sion is left to the modeller of the constraint problem at hand.

B. Recognisable Patterns

We now state two previously unidentified lower bounds on

the ignore count of a pattern, as only transducers for such

patterns can be input to the synthesiser in [3].

First, consider again the signature

S = ‘=>=<<=<>>=<=====>’, but now the regular expression

5

0 1 5 3 2

< < > >

4

0 1 5 3 2

< < > >

Fig. 3: Alternative plots and definitions of peaks: β = 0 (left)

and β = 1 (right).

= > = < < = < > > = < = = = = = >

Fig. 4: Overlapping Inflexion-occurrences (contours) and

non-overlapping 〈Inflexion, 1〉-occurrences (shaded areas).

Inflexion = ‘<(<|=)∗> | >(>|=)∗<’. The four Inflexion-

occurrences in S — namely ‘>=<’, ‘<<=<>’, ‘>>=<’, and

‘<=====>’ — are in Figure 4, surrounded by solid, dotted,

dashed, and dash-dotted lines, respectively. Note that for

any signature with more than one Inflexion-occurrence,

the occurrences are always next to each other and overlap

in one symbol. For the correctness of the synthesised

propagators and checkers, only transducers for patterns that

have non-overlapping pattern occurrences can be input to the

synthesiser in [3]. By ignoring the β = 1 first symbols of

each Inflexion-occurrence, the resulting 〈Inflexion, 1〉-
occurrences, indicated by the four shaded areas in Figure 4,

are forced not to overlap. We now define the resulting first

lower bound on the ignore count of a pattern.

Definition 3 (regular-expression overlap): Given a regular

expression σ and three words w, x, y such that xw ∈ L(σ),
wy ∈ L(σ), and xwy /∈ L(σ), the length of w is called the

word overlap of xw and wy. The maximum word overlap

between all pairs of such words xw and wy in L(σ) is called

the σ-overlap. If the word overlap is never defined for any

pair of words in L(σ), then the σ-overlap is 0.
For example, the Inflexion-overlap is 1, as just seen.

Therefore, a lower bound on the ignore count β of an

〈Inflexion, β〉-pattern is 1, not 0.
Second, consider the regular expression ‘<<=+>>’. The

word w = ‘<<’ can be extended to a word in L(‘<<=+>>’), for
instance the word ‘<<=>>’. But the longer word wz = ‘<<<’,

with z = ‘<’, cannot be extended to a word in L(‘<<=+>>’).
Note that there is a suffix of wz = ‘<<<’ of length 2, namely

‘<<’, that can be extended to a word in L(‘<<=+>>’). For the
correctness of the synthesised propagators and checkers, at

least the first 2 symbols of any occurrence of ‘<<=+>>’ must

be ignored by a transducer that can be input to the synthesiser

in [3]. We now define the resulting second lower bound on

the ignore count of a pattern.

Definition 4 (prefix language): The prefix language Lp(σ)
of a regular expression σ has every word w1 such that

w1w2 ∈ L(σ) for some word w2. The proper-prefix language
Lpp(σ) of a regular expression σ has every word w1 such that

103

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

w1w2 ∈ L(σ) for some non-empty word w2.

Definition 5 (mismatch overlap): Given a regular expres-

sion σ over Σ, a word w ∈ Lpp(σ), and a symbol z ∈ Σ, if

wz /∈ Lp(σ), then the length of the longest suffix in Lp(σ) of

the word wz is called the mismatch overlap of w and z. The
maximum mismatch overlap of all words in Lpp(σ) and all

symbols in Σ is called the mismatch overlap of σ.
Example 4: Consider again the regular expression ‘<<=+>>’.

We have Lp(‘<<=
+>>’) = L(‘<|<<=∗|<<=+>|<<=+>>’) and

Lpp(‘<<=
+>>’) = L(‘<|<<=∗|<<=+>). The word w = ‘<<’

is in Lpp(‘<<=
+>>’), but the word wz = ‘<<<’, with sym-

bol z = ‘<’, is not in Lp(‘<<=
+>>’). The longest suffix of

wz = ‘<<<’ that is in Lp(‘<<=
+>>’) is ‘<<’, of length 2.

Hence the mismatch overlap of wz = ‘<<<’ is 2. If we repeat

this for all words in Lpp(‘<<=
+>>’) and all symbols z in Σ,

then we have that the mismatch overlap of ‘<<=+>>’ is 2.
We now define the class of patterns whose transducers can

be input to the synthesiser in [3].

Definition 6 (Recognisable pattern): A pattern π = 〈σ, β〉
is recognisable if the ignore count β is at least the σ-overlap
and at least the mismatch overlap of σ.

Example 5: Consider again the regular expression

Inflexion = ‘<(<|=)∗> | >(>|=)∗<’. The shortest words in

L(Inflexion) are of length 2, namely ‘<>’ and ‘><’. The

Inflexion-overlap is 1. The mismatch overlap of Inflexion

is 0. Therefore, the pattern 〈Inflexion, β〉 is recognisable if

and only if max(1, 0) ≤ β < 2, that is β = 1.

III. BACKGROUND: TRANSDUCERS

Recall that a deterministic finite transducer [5] is a tuple

〈Q,Γ,Γ′, δ, q0, Qa〉, where Q is the set of states, Γ is the input
alphabet, Γ′ is the output alphabet, δ : Q × Γ → Q × Γ′ is
the transition function, which must be total, q0 ∈ Q is the

initial state, and Qa ⊆ Q is the set of accepting states. When

δ(q, a) = 〈q′, a′〉, there is a transition from state q to state q′

upon reading the input symbol a and producing the output

symbol a′: we write this as q
a : a′
−−−−→ q′. A deterministic finite

automaton (DFA) is a transducer without an output alphabet.

In a graphical representation of a transducer or automaton, the

initial state has an arrow coming from nowhere. A transition is

depicted by an arrow between two states and is annotated by

a consumed input symbol and, in the case of a transducer,

followed by a colon and a sequence of produced output

symbols. Accepting states are denoted by a double circle.

In [3] there are 20 patterns, each represented by what is

called a seed transducer. A seed transducer is a deterministic

finite transducer with only accepting states, whose input al-

phabet is Σ and whose output alphabet, called the semantic
alphabet, consists of symbols that denote the phases of finding

the occurrences of a given pattern. A seed transducer consumes

a signature and produces a sequence of output symbols, whose

purpose is to guide the synthesis of checkers and propagators.

Before giving an example, we introduce the symbols of the

semantic alphabet and their meaning:

• found: the symbol consumed is in a new pattern occur-

rence that may have started before and may be extended.

• foundend: the symbol consumed is the last symbol in a

new pattern occurrence that may have started before.

• maybebefore: the symbol consumed may belong to a pat-

tern occurrence, but this must be confirmed by producing

a found or foundend.

• outreset: the symbol consumed is outside any pattern

occurrence and all the maybebefore produced just before

are outside any pattern occurrence.

• in: the symbol consumed is inside a pattern occurrence

for which a found was already produced and all symbols

between the one producing such a found and the one

being read belong to the pattern occurrence.

• maybeafter: the symbol consumed may belong to a

pattern occurrence for which a found was already pro-

duced, but this must be confirmed by producing in while

consuming the rest of the signature.

• outafter: a pattern occurrence ended at the last found or

in symbol produced.

• out: the symbol consumed is not in a pattern occurrence.

For space reasons, the subscripts after, before, end, and reset

are sometimes abbreviated by their first letters.

Example 6: Consider the transducer in Figure 2

for the pattern 〈Peak, 1〉 and the signature

S = ‘=>=<<=<>>=<=====>’. The transitions are as follows:

s
= : out−−−−−→ s

> : out−−−−−→ s
= : out−−−−−→ s

< : out−−−−−→ r
< : maybeb−−−−−−−−→ r

= : maybeb−−−−−−−−→ r
< : maybeb−−−−−−−−→ r

> : found−−−−−−→ t
> : in−−−−→ t

= : maybea−−−−−−−−→ t
< : outa−−−−−→ r

= : maybeb−−−−−−−−→ r
= : maybeb−−−−−−−−→ r

= : maybeb−−−−−−−−→ r
= : maybeb−−−−−−−−→ r

= : maybeb−−−−−−−−→ r
> : found−−−−−−→ t

The two found correspond to two 〈Peak, 1〉-occurrences: the
first one corresponds to the word from the first maybeb to

the first in (i.e., the word maybe3b found in); the second

one corresponds to the word from just after the last outa to

the last found (i.e., the word maybe5b found).
We refer to seed transducers simply as transducers. In [3],

conditions were given so as to define a correct transducer:

Definition 7 (transducer wellformedness): A transducer is

well-formed with respect to a pattern π if the following con-

ditions hold: 1) its output language is a subset of the language

accepted by the automaton in Figure 5, 2) all π-occurrences
in a signature produce maximal words matching the regular

expression maybe∗b(founde | found(maybe∗a in)
∗).

Example 7: The transducer in Figure 2 for the pattern

〈Peak, 1〉 is well-formed since its output language is a subset

of the language accepted by the automaton in Figure 5, and

all 〈Peak, 1〉-occurrences produce maximal words matching

the regular expression maybe∗b found(maybe∗a in)
∗.

IV. AUTOMATICALLY GENERATING A TRANSDUCER

To automatically generate the minimum-state transducer

from a given recognisable pattern π = 〈σ, β〉, we first

generate a DFA accepting the language L(σ), which can be

obtained using standard techniques [4]. We then describe in

Section IV-A how to transform this DFA, if need be, into

an equivalent non-minimal one that satisfies some additional

104

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

o

b

a

out

founde

m
ay
b
e b

found

maybeb

ou
t r

fo
u
n
d e

found

in

maybea

outa

Fig. 5: Automaton accepting the output language of a well-

formed transducer (taken with permission from [3]).

s r t
< =

<

Fig. 6: The minimum-state automaton accepting L(‘(<=)+’).

necessary conditions so that we can correctly transform it

into a transducer for π. Finally, we give an algorithm in

Section IV-B for transforming such a DFA into a transducer

that produces the phases of detecting all π-occurrences within

a signature.

A. Expanding the Automaton

We describe two potential problems for our transducer gen-

erator when starting from an automaton A = 〈Q,Σ, δ, q0, Qa〉
accepting the language L(σ) and we give algorithms to

solve these problems by duplicating states and adding the

corresponding transitions to A. Note that the minimum-state

automaton accepting L(σ) is enough in most cases.

1) Disjoint sets of states: Consider a recognisable pat-

tern π = 〈σ, β〉. From [3] we know that the transduction

of a single word in L(σ) must match the regular expres-

sion outβmaybe∗b(founde | found(maybe∗a in)
∗). Recall

that a π-occurrence in a signature S is a σ-occurrence in

S except for its first β symbols, and that the transduc-

tion of a π-occurrence must match the regular expression

maybe∗b(founde | found(maybe∗a in)
∗).

In order to properly transduce a word in L(σ), we need

to know at every state if an accepting state has already been

reached and can be reached again, even if we are not at an

accepting state at the moment. This is the case of the words

that transduce into outβmaybe∗b found(maybe∗a in)
∗.

Example 8: Consider the regular expression

IncreasingStairs = ‘(<=)+’. The minimal automaton

accepting L(‘(<=)+’) is in Figure 6. Note that, after

consuming a word w in L(‘(<=)+’), we reach the accepting

state t. Moreover, note that after extending the word w to the

word w1 = w‘<’ we reach the same state as after consuming

the word w2 = ‘<’, namely the state r. From a language

membership point of view, w1 and w2 are equivalent.

Nevertheless, the last symbol of w1 must be transduced into

maybea, while the last (and here only) symbol of w2 must

be transduced into out if β = 1 or into maybeb if β = 0.

s r t

r′

< =

<

=

Fig. 7: Expanded automaton accepting L(‘(<=)+’).

Therefore, w1 and w2 are not equivalent from a transduction

point of view. Hence we must know if a word in L(‘(<=)+’)
has been consumed and is currently being extended.

To solve this issue, after reaching an accepting state, there

should be no transitions leading back to states on a path from

the initial state to an accepting state: it should be made possible

to partition the set of states Q of an automaton into the set

Q− of states reachable from the initial state strictly before

reaching an accepting state, and the set Q+
a of states that can

be reached from the accepting states, including the set Qa of

accepting states. That is, we require Q−∩Q+
a = ∅. Neither Q−

nor Q+
a are empty because q0 ∈ Q−, ∅ ⊂ Qa ⊆ Q+

a , and by

Definition 2 q0 /∈ Qa because the empty word is not in L(σ).
Example 9: Consider again the regular expression

IncreasingStairs = ‘(<=)+’ of Example 8. It is not possi-

ble to partition the states of the minimum-state automaton A
in Figure 6 into disjoint sets Q− and Q+

a because state r is

reachable both from the initial state s and the accepting state

t. To be able to partition the states, it suffices to expand A
by creating a new state r′, redirecting the transition from t
to r so that it goes from t to r′, and copying the only

outgoing transition of r, that is adding a transition from r′

to t consuming the symbol ‘=’. The resulting automaton is in

Figure 7. Now Q− = {s, r} and Q+
a = {t, r′}.

It is possible to calculate both Q− and Q+
a using depth-first

search, so as to check whether they are disjoint. Algorithm 1

expands, if need be, an automaton A following the intuition

in Example 9. The semantics of Qopen is the set of states that

belong to Q+
a but could have transitions to states in Q−. All

states created by Algorithm 1 are non-accepting by definition

of Q− and Q+
a . Note that if Q− and Q+

a are disjoint, the

Algorithm 1 actually does not modify the automaton.

Theorem 1: The expansion of an automatonA achieved with

Algorithm 1 preserves the language of A.

Proof: Without loss of generality, consider a minimal

automaton A and its corresponding expanded automaton A′,
such that a state q has been duplicated creating the state q′. We

show that q and q′ are not differentiable, that is, any automaton

minimisation algorithm would merge them. Consider the par-

tition of the states of A′ such that q and q′ are in one set and

all other states are in one-element sets. For every transition

t leaving q, such that t is not a self-loop, by construction q′

has a corresponding transition consuming the same symbol

and reaching the same state. For every self-loop on q, there
is a corresponding self-loop consuming the same symbol on

q′. In consequence, states q and q′ are not differentiable and

any automaton minimisation algorithm would merge them.

105

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Ensure disjoint sets of states

Data: A DFA A = 〈Q,Σ, δ, q0, Qa〉
use depth-first search to calculate Q−

initialise the sets Qopen := Qa and Q+
a := ∅

while Qopen is not empty do
move a state q from Qopen to Q+

a

foreach transition t = q
a−−→ v in δ do

if v ∈ Q− then
create a state v′ and add it to Qopen

replace t with q
a−−→ v′

foreach transition v
b−−→ x in δ do

if it is not a self-loop then
create a transition v′ b−−→ x

else create a self-loop v′ b−−→ v′

else
if v /∈ Q+

a then add v to Qopen

s r t
> >

=

Fig. 8: The minimum-state automaton accepting L(‘=∗>>’).

Therefore, when minimising A′ we obtain A. Hence, the

language remains unchanged.

2) Enough ignore count transitions: Consider the recog-

nisable pattern π = 〈σ, β〉 where the regular expression σ is

‘=∗>>’. The unique shortest word in the language L(σ) is of

length 2, namely ‘>>’. The mismatch overlap of L(σ) is 1.
Hence, by Definition 6, we must have β = 1. The minimum-

state automaton accepting L(σ) is in Figure 8. Note that it is

not possible to set the output symbols of the transitions in a

way that the β = 1 first symbols are transduced into out. For
example, if we set the output symbol of the self-loop to out,
then all the ‘=’ will be transduced into out.

Given a recognisable pattern 〈σ, β〉, it is always possible to

expand the automaton accepting σ so that all transitions in all

paths from the initial state of length at least the ignore count

β can be used only once because, by Definition 2, β must be

strictly smaller than the length of the shortest words in L(σ),
that is, β must be smaller than the length of the shortest path

from the initial state to an accepting state.

Example 10: Consider the recognisable pattern 〈‘=∗>>’, 1〉.
The minimum-state automaton of Figure 8 accepting the

language L(‘=∗>>’) can be expanded by creating a new state

s′ and unfolding the loop in state s so it is possible to always

know which one was the first symbol consumed. The resulting

automaton is in Figure 9. Note that both transitions leaving the

initial state s can be used at most once and only one of them

can be used on any path to the accepting state t.
To expand an automaton A following the intuition in

Example 10, we use Algorithm 2. Note that all newly created

s r

s′

t
> >

>
=

=

Fig. 9: Expanded automaton accepting L(‘=∗>>’).

Algorithm 2: Ensure enough ignore count transitions

Data: A DFA A = 〈Q,Σ, δ, q0, Qa〉 and ignore count β
initialise the sets Qopen := {q0} and Q−β := ∅
for i := β downto 1 do // invariant: Qopen ∩Qa = ∅

move a state q from Qopen to Q−β
foreach transition t = q

a−−→ v in δ do
if v ∈ Q−β then // expand node

create a state v′ and add it to Qopen

replace t with v
a−−→ v′

foreach transition v
b−−→ x in δ do

if v
= x then create a transition v′ b−−→ x

else create a self-loop v′ b−−→ v′

else if v /∈ Qopen then add v to Qopen

while Qopen is not empty do
move a state q from Qopen to Qclosed

foreach transition q
a−−→ v in δ do

if v ∈ Q−β then . . . // copy of expand node above

else if v /∈ Qclosed then add v to Qopen

states are by definition non-accepting because the ignore count

is strictly smaller than the length of a minimal-length word in

the language accepted by A. The semantics of Q−β is the set of

states in all paths from the initial state q0 of length the ignore

count β such that we know there are no cycles between them.

The semantics of Qopen is the set of states in Q− such that

we do not know if there are any cycles back to states in Q−β .

The semantics of Qclosed is the set of states in Q− such that

we already know that they do not have outgoing transitions

leading back to states in Q−β . At the end of the algorithm we

know that Q−β ∪Qclosed = Q−. Note that Algorithm 2 only

modifies the automaton when needed.

Theorem 2: The expansion of an automaton A achieved with

Algorithm 2 preserves the language of A.

Proof: This proof is similar to that of Theorem 1 and is

omitted for space reasons.

B. Adding the Output Symbols

The concatenation L1L2 of two languages L1 and L2 is the

language of all words w1w2 where w1 ∈ L1 and w2 ∈ L2.

For any recognisable pattern π = 〈σ, β〉, a transducer can

be generated by means of the following algorithm:

1) Build a deterministic finite automaton

A = 〈Q,Σ, δ, q0, Qa〉 that accepts the language L(σ).

106

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

2) Expand A using Algorithm 1 and Algorithm 2.

3) Divide the states of A into three disjoint sets:

• The set Qa of accepting states.

• The set Q− of states reachable from the initial state q0
without passing through an accepting state. Recall that

the empty word cannot be in L(σ), hence q0 ∈ Q−.
• The set Q+ of all states that can be reached from an ac-

cepting state, excluding the accepting states. After ap-

plying Algorithm 1 we know that Q+ = Q \Qa \Q−.
Note that it is possible for Q+ to be empty.

4) Set the output symbol of every transition in A as follows:

a) For each accepting state q: if q has no outgoing

transitions, then set the output symbol of all transitions

from states in Q− to q to foundend.

b) For each accepting state q: if q has outgoing transitions,

then set the output symbol of all transitions from states

in Q− to q to found.
c) Set the output symbol of all transitions from states in

Qa ∪Q+ to states in Qa to in.
d) Set the output symbol of all transitions from states in

Qa ∪Q+ to states in Q+ to maybeafter.

e) For every transition on a path of length β leaving the

initial state: set the output symbol to out. This will

not overwrite the symbols set in Steps 4a–4d, because

of the expansion performed in Step 2 by Algorithm 2.

f) For all remaining transitions in A: set the output

symbol to maybebefore.

5) Using standard transducer concatenation techniques [6],

concatenate A to a transducer for Σ∗ where all the output

labels are set to out. This creates a non-deterministic

finite transducer for Σ∗L(σ). Given a language L, con-
structing an automaton recognising Σ∗L is a common

string searching technique [7].

6) Determinise the transducer for Σ∗L(σ) using the disam-

biguation algorithm in Section IV-C.

7) Replace output symbols so that the transducer is well-

formed using the following rules:

a) For every transition t from a state q in Qa ∪ Q+ to

a state in Q−: if q has incoming transitions with the

output symbols in or maybeafter, then:

• If the output symbol of t is out, then replace it

with outafter.
• If the output symbol of t is maybebefore, then

replace it with outafter maybebefore.

b) For every transition from a state in Qa ∪Q+ with the

output symbol found: replace the output symbol by

outafter found.
c) For every transition t from a state q in Q− with the

output symbol out: if q has incoming transitions with

the output symbol maybebefore, then replace the output

symbol of t by outreset. If t is a self-loop, then expand

the transducer by following Algorithm 3.

8) Mark all states of the transducer as accepting.

9) Minimise the transducer using standard transducer min-

Algorithm 3: Ensure outr is not in a self-loop

Data: A transducer T and a transition t = q
a : outr−−−−−−→ q

replace t with q
a : outr−−−−−−→ q′ for a new state q′

create a self-loop q′ a : out−−−−−−→ q′

foreach transition q
b :c−−−→ v in T do

create a transition q′ b :c−−−→ v

s

r t

u

><

>

<

=

>

=

<

Fig. 10: The minimal automaton recognising L(Inflexion).

imisation techniques [8].

Example 11: Consider again the recognisable pattern

π = 〈Inflexion, 1〉. The minimum-state automaton A ac-

cepting the language L(Inflexion) is in Figure 10. The

expansion algorithms in Step 2 do not modify A. The set

of states Q = {s, r, t, u} of A is divided into the subsets

Qa = {u}, Q− = {s, r, t}, and Q+ = ∅. We then proceed

to set the output symbols of the transitions in order to build

the transducer for π. After Step 4b, we have the transducer in

Figure 11. After Step 4f, we have the transducer in Figure 12.

After concatenating the transducer for Σ∗ in Step 5 we have

the transducer in Figure 13. After determinising the transducer

in Step 6, we have the transducer in Figure 14. Applying Step 7

does not change the transducer in Figure 14. Once all the states

are made accepting and the obtained transducer is minimised,

we have the minimal transducer in Figure 15, which is equal

to transducer for π in [9].

C. Disambiguation Algorithm

Typically, concatenating two transducers results in a trans-

ducer that is ambiguous [6]: it is both non-deterministic, and

non-functional, so it can produce multiple output sequences

for the same input sequence.

Example 12: Consider the pattern 〈Inflexion, 1〉 and the

signature S = ‘=<<=<>’ of length 6. The transducer in Fig-

ure 13, obtained after Step 5 of the algorithm in Section IV-B,

can transduce S into four different sequences: out5foundend,

out4maybebeforefoundend, out3maybe2beforefoundend, and

out2maybe3beforefoundend. Note that the lengths of all pos-

sible transductions of S are the length of S, namely 6.
Disambiguating a non-functional transducer in a way that

preserves the best output symbols is not a trivial task [10],

and this cannot be handled directly by known algorithms

like transducer determinisation [11] and functional trans-

107

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

s

r t

u

><

> : founde

<

=

>

=

< : founde

Fig. 11: Intermediate transducer for 〈Inflexion, 1〉 after

applying Step 4b of the algorithm in Section IV-B.

s

r t

u

> : out< : out

> : founde

< : maybeb

= : maybeb

> : maybeb

= : maybeb

< : founde

Fig. 12: Intermediate transducer for 〈Inflexion, 1〉 after

applying Step 4f of the algorithm in Section IV-B.

ducer disambiguation [12]. In our particular case, we want

to transform the transducer obtained after applying Step 5

into a deterministic transducer that transduces all pattern

occurrences in a signature. The best output symbols are

then those guaranteeing that pattern occurrences are trans-

duced into maximal words matching the regular expression

maybe∗before(foundend | found(maybe∗afterin)
∗).

Example 13: Consider again the recognisable pattern

〈Inflexion, 1〉 and the signature S = ‘=<<=<>’ from Exam-

ple 12. We want to transform the non-deterministic transducer

in Figure 13 into a deterministic transducer that transduces S
into the sequence out2maybe3beforefoundend.

The symbols of the semantic alphabet have the total order

out ≺maybeb ≺ found ≺ founde ≺maybea ≺ in.

Consider a recognisable pattern π = 〈σ, β〉 and

a signature S having a suffix matching σ. In order

to guarantee the whole π-occurrence corresponding to

the longest suffix of S matching σ is transduced into

maybe∗before(foundend | found(maybe∗afterin)
∗), and not

just any suffix matching σ after skipping the first β symbols,

the best output sequence for S corresponds to choosing the

transition with the largest output symbol. The intuition is that,

the larger the symbol in the order, the farther we are inside

an occurrence.

Example 14: Consider again Example 13. Out of the

four possible transductions of the signature S = ‘=<<=<>’

made by the transducer in Figure 13, the transduction

out2maybe3beforefoundend corresponds to always choosing

the largest output symbol among all the possible ones.

s

r t

u

< : out
= : out

> : out

> : out< : out

> : founde

< : maybeb

= : maybeb

> : maybeb

= : maybeb

< : founde

Fig. 13: Nondeterministic transducer for 〈Inflexion, 1〉 after
applying Step 5 of the algorithm in Section IV-B.

{s}

{s, r} {s, t}

{s, t, u} {s, r, u}

> : out

= : out

< : ou
t

> : founde

< : maybeb

= : maybeb

> : maybeb

= : maybeb

>,= : mayb
eb

<,= : maybe
b

< : founde

> : founde

< : founde

Fig. 14: A non-minimal transducer for 〈Inflexion, 1〉.

Our disambiguation algorithm is similar to the powerset

construction [13] used for the determinisation of automata.

In the powerset construction, the states of the DFA are sets

of states of the non-deterministic automaton (NFA). Given

an NFA A = 〈Q,Γ, δ, q0, Qa〉, the equivalent DFA has states

corresponding to subsets of Q. The initial state of the DFA

is {q0}, the (one-element) set of initial states. The transition

function of the DFA maps a state q, which is a subset of Q, and

an input symbol a ∈ Γ to the set δ′(q, a) = {δ(r, a) | r ∈ q},
the set of all states that can be reached by a transition

from a state in q consuming a. A state q of the DFA is

an accepting state if and only if at least one member of

q is an accepting state of the NFA. In the transducer case,

we redefine the transition function so that for any transition

between two states of the deterministic transducer, we keep

only the maximum output symbol among all the possible ones,

that is, δ′(q, a) = 〈{u | 〈u, ∗〉 ∈ T}, (max(b) | 〈∗, b〉 ∈ T)〉,
where T = {δ(r, a) | r ∈ q}.

Example 15: Consider again the non-deterministic trans-

ducer T in Figure 13. From state s with input symbol ‘<’

it is possible to reach both s, with output symbol out, and r,
also with output symbol out. So, there exists a transition in

the deterministic transducer T ′ from state {s} to state {s, r}
with input symbol ‘<’ and output symbol out. From states s
and r in T with input symbol ‘<’, it is possible to reach again

both s and r, but there is a self-loop on r with input symbol

‘<’ and output symbol maybebefore, as well as a self-loop on

s with input symbol ‘<’ and output symbol out. In this case,

108

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

s

r t

< : out

< : maybeb

= : maybeb

= : out

< : founde

> : founde

> : out

> : maybeb

= : maybeb

Fig. 15: Minimal transducer for 〈Inflexion, 1〉.

we keep the maximum symbol between out and maybebefore,

that is we keep the maybebefore and discard the out. So, there
exists a self-loop in T ′ on state {s, r} with input symbol ‘<’

and output symbol maybebefore. Repeating this process for all

input symbols in Γ and all sets of states of T results in the

deterministic transducer T ′ in Figure 14.

We now show that the resulting transducer does not only

transduce the last occurrence of a pattern, but all of them.

Theorem 3: Given a pattern π = 〈σ, β〉, a transducer T1
accepting Σ∗ and producing words matching out∗, and a

transducer T2 accepting L(σ) and producing words matching

γ = outβmaybe∗before(foundend | found(maybe∗afterin)
∗),

the transducer obtained when applying our disambiguation

algorithm to the transducer T1T2 transduces all π-occurrences.
Proof: By the powerset construction, we know that the

resulting transducer T after applying our disambiguation algo-

rithm is deterministic. Consider a signature S1 that is a word

of size m matching σ. S1 is transduced into T1. We know there

is at least one non-deterministic path in T1T2 such that the π-
occurrence in S1 is transduced into a sequence T1 matching the

regular expression maybe∗b(founde | found(maybe∗a in)
∗).

Such a path corresponds to only using the deterministic tran-

sitions in T2. Choosing any other accepting path, if possible,

would lead to a transduction with a longer prefix of out
symbols. Therefore, when given a choice between different

possible output symbols, choosing the largest symbol in the

order guarantees that a longer suffix matches γ. Consider a

signature S2 that is also a word matching σ. S2 is transduced

into T2. Assume that the signature S1S2 contains two disjoint

maximal words matching σ. Given that T is deterministic, we

know that the prefixes of the output sequences do not change.

So, when transducing S1S2, the prefix S1 is transduced into

T1. Given that T , by construction, transduces the longest

possible suffix of S1S2 matching σ into a word matching γ,
T transduces S1S2 into T1T2. The reasoning for other sig-

natures where there are symbols that do not belong to any

π-occurrence is similar and has been omitted for space reasons.

Hence, T transduces all π-occurrences.

V. CONCLUSION

This work contributes, in the context of time-series con-

straints, to the systematic reconstruction of the Global Con-

straint Catalogue that we have previously advocated [14]. Our

setting covers a large class of useful constraints, whether

they are listed in the Time-Series Constraint Catalogue [9]

or not. Our approach differs from existing ones, which design

dedicated propagators [15], [16] and reformulations [17], [18]

for specific constraints.

We have formalised the class of time-series patterns whose

transducers can be handled by the propagator and checker

synthesis in [3] and described a fully automated parametric

tool that generates, in an off-line process, a transducer from

such a pattern. Our tool was implemented in SICStus Pro-

log 4.2 [19] and is available at http://www.it.uu.se/research/

group/astra/software/transducer-generator.zip.

Our tool generates the handcrafted transducers of [3]. By

proving that our tool only generates well-formed transducers,

we also proved that the transducers in [3] are well-formed.

In the future we will extend the semantic alphabet, and in

turn our algorithm, to cover a broader range of patterns.

Acknowledgements: We thank E. Arafailova, N. Beldiceanu,

and the anonymous referees for their helpful comments. The

authors are supported by grants 2012-4908 and 2015-0491 of

the Swedish Research Council (VR).

REFERENCES

[1] N. Beldiceanu, G. Ifrim, A. Lenoir, and H. Simonis, “Describing and
generating solutions for the EDF unit commitment problem with the
ModelSeeker,” in CP 2013, ser. LNCS, vol. 8124. Springer, 2013.

[2] E. Arafailova, N. Beldiceanu, R. Douence, P. Flener, M. A. Fran-
cisco Rodríguez, J. Pearson, and H. Simonis, “Time-series constraints:
Improvements and application in CP and MIP contexts,” in CP-AI-
OR 2016, ser. LNCS, vol. 9676. Springer, 2016, pp. 18–34.

[3] N. Beldiceanu, M. Carlsson, R. Douence, and H. Simonis, “Using
finite transducers for describing and synthesising structural time-series
constraints,” Constraints, vol. 21, no. 1, pp. 22–40, January 2016.

[4] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 3rd ed. Addison-Wesley, 2007.

[5] J. Sakarovitch, Elements of Language Theory. Cambridge University
Press, 2009.

[6] M. Mohri, “Weighted automata algorithms,” in Handbook of Weighted
Automata. Springer, 2009, pp. 213–254.

[7] ——, “String-matching with automata,” Nordic Journal of Computing,
vol. 4, no. 2, pp. 217–231, 1997.

[8] C. Choffrut, “Minimizing subsequential transducers: a survey,” Theoret-
ical Computer Science, vol. 292, no. 1, pp. 131–143, 2003.

[9] E. Arafailova, N. Beldiceanu, R. Douence, M. Carlsson, P. Flener, M. A.
Francisco Rodríguez, J. Pearson, and H. Simonis, “Global Constraint
Catalog, Volume II, Time-Series Constraints,” arXiv:1609.08925, 2016.

[10] G. Iglesias, A. de Gispert, and B. Byrne, “Transducer disambiguation
with sparse topological features,” in EMNLP 2015, 2015, pp. 2275–2280.

[11] M. Mohri, “Finite-state transducers in language and speech processing,”
Computational Linguistics, vol. 23, no. 2, pp. 269–311, 1997.

[12] ——, “A disambiguation algorithm for finite automata and functional
transducers,” in CIAA 2012, ser. LNCS, vol. 7381. Springer, 2012.

[13] M. O. Rabin and D. Scott, “Finite automata and their decision problems,”
IBM J. Res. Dev., vol. 3, no. 2, pp. 114–125, 1959.

[14] N. Beldiceanu, P. Flener, J.-N. Monette, J. Pearson, and H. Simonis, “To-
ward sustainable development in constraint programming,” Constraints,
vol. 19, no. 2, pp. 139–149, 2014.

[15] J.-C. Régin, “A filtering algorithm for constraints of difference in CSPs,”
in AAAI 1994. AAAI Press, 1994, pp. 362–367.

[16] N. Beldiceanu and M. Carlsson, “Sweep as a generic pruning technique
applied to the non-overlapping rectangles constraints,” in CP 2001, ser.
LNCS, vol. 2239. Springer, 2001, pp. 377–391.

[17] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and
T. Walsh, “Reformulating global constraints: The slide and regular
constraints,” in SARA 2007, ser. LNAI, vol. 4612. Springer, 2007.

[18] C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh,
“Decomposition of the NValue constraint,” in CP 2010, ser. LNCS,
D. Cohen, Ed., vol. 6308. Springer, 2010, pp. 114–128.

[19] M. Carlsson, G. Ottosson, and B. Carlson, “An open-ended finite domain
constraint solver,” in PLILP 1997, ser. LNCS, vol. 1292. Springer, 1997.

109

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 16,2020 at 16:06:14 UTC from IEEE Xplore. Restrictions apply.

