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Abstract. Strings are extensively used in modern programming lan-
guages and constraints over strings of unknown length occur in a wide
range of real-world applications such as software analysis and verifica-
tion, testing, model checking, and web security. Nevertheless, practically
no constraint programming solver natively supports string constraints.
We introduce string variables and a suitable set of string constraints as
builtin features of the MiniZinc modelling language. Furthermore, we
define an interpreter for converting a MiniZinc model with strings into
a FlatZinc instance relying only on integer variables. This conversion
is obtained via rewrite rules, and does not require any extension of the
existing FlatZinc specification. This provides a user-friendly interface for
modelling combinatorial problems with strings, and enables both string
and non-string solvers to actually solve such problems.

1 Introduction

Strings are widely adopted in modern programming languages for representing
input/output data as well as actual commands to be executed dynamically. The
latter is particularly critical for security reasons: consider, e.g., the dynamic
execution of a malicious SQL query that might dump a database or delete entire
tables. Apart from security issues, tracking (an approximation of) the possible
values of a string variable can also help in bug detection and code optimisation.

String analysis — needed in real-life applications such as test-case genera-
tion [13], program analysis [8], model checking [17], web security [5] — is an active
and growing field, [11,25,28], and requires the processing of string constraints
such as string (in-)equality, concatenation, and so on. Nevertheless, in constraint
programming (CP), practically no solver natively supports string constraints.
To our knowledge, the only exception is a new extension [33,36] with bounded-
length string variables of the Gecode solver [18], here called Gecode+S for
convenience, which will become part of the official Gecode release. Empirical
results show that Gecode+S is usually better than dedicated string solvers such
as Hampi [23], Kaluza [32], and Sushi [14].

In this paper we take a further step towards the definition and solving of
string constraints. The three contributions of this paper are as follows.
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First, an extension of the MiniZinc [30] modelling language by string vari-
ables of possibly unknown length. MiniZinc enables the specification of con-
straint problems over (sets of) integers and real numbers, but currently does not
allow models containing string variables. Thanks to the extension we describe, a
MiniZinc user can now naturally define and solve a MiniZinc model containing
string variables and constraints, as well as other constraints on other variable
types.

Second, we provide a solver independent conversion of MiniZinc models
with strings into equivalent FlatZinc instances containing only integer variables.
Thus, every solver supporting FlatZinc can now solve a MiniZinc model with
strings. This conversion follows the padding representation advocated in [21] and
implemented in [35]. However, we underline that our contribution is orthogonal
to [35] and generalises its work (see Sect. 4.2): our MiniZinc formulation does
not impose restrictions on the string length (enabling us to express unbounded-
length strings), and further allows any solver to use its preferred string represen-
tation (e.g., bit vectors or automata), and handles a superset of the constraints
of [35].

Third, we provide an experimental evaluation on the Norn string bench-
mark [1] used in Gecode+S [33,36] and the state-of-the-art constraint solvers
Chuffed [10], Gecode [18], iZplus [15], Picat-SAT [43], MZN/Gurobi [4],
MZN/Yices2 [9] and MZN/OscaR.cbls [7]. Results indicate that native sup-
port for string variables usually pays off, but not always, in which case the
technology of the best solver varies. Indeed, we show that — despite longer
flattening times — sometimes our conversion is more beneficial than using a
dedicated string solver.

Paper Structure. Section 2 gives some background notions about string vari-
ables, MiniZinc and FlatZinc. Sections 3 and 4 describe the string extensions
we implemented for MiniZinc and FlatZinc. Section 5 presents the experimental
results before we discuss related work in Sect. 6 and conclude in Sect. 7.

2 Background

MiniZinc [30] is a flexible and user-friendly modelling language for representing
constraint problems. The motto is model once, solve anywhere: each MiniZinc
model is solver-independent, although it may contain annotations to communi-
cate with the underlying solver.

MiniZinc supports the most common global constraints (constraints defined
over an arbitrary number of variables [3]) and allows the separation between
model and data: a MiniZinc model can be defined as a generic template to be
instantiated by different data.

As an example, consider the n-queens problem, where n ≥ 4 queens have to
be placed on an n×n chessboard in such a way that they do not attack each other.
This problem can be modelled in MiniZinc in terms of an unspecified number n
of queens, and then instantiated by providing the value of parameter n.
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FlatZinc is a solver-specific target language for MiniZinc. Each MiniZinc
model (together with corresponding data, if any) is converted into FlatZinc in the
form required by a solver. In other terms, from the same MiniZinc model different
FlatZinc instances can be derived according to solver-specific redefinitions.

For example, the n-queens problem can be modelled with the well-known
alldifferent([x1, . . . , xn]) global constraint, which holds if and only if all vari-
ables xi take different values. In this case a solver can decide to keep the con-
straint as is or to unfold it into the logical conjunction

∧
1≤i<j≤n xi �= xj .

Following the approach of [23,32,33,35,36] we focus in this work on con-
straint solving over bounded string variables, i.e., string variables x having a
bounded length �, with |x| ≤ � ∈ N. We point out that our MiniZinc language
extension allows us to express problems with unbounded string variables. Note
that, while problems over bounded-length string variables are trivially decidable,
satisfiability with unbounded-length strings is not decidable in general [16].

Notation. Given a fixed alphabet Σ, a string x ∈ Σ∗ is a finite sequence of
|x| ≥ 0 characters of Σ, where |x| is the length of x. Let ASC denote the set of
the ASCII symbols: we define the function I : ASC → [1, 128] such that I(a) = k
if and only if a is the k-th ASCII symbol.

The symbols =, �=, and � respectively denote string equality, inequality, and
lexicographical order on Σ∗. The concatenation of x and y is denoted by x · y,
while xn denotes the iterated concatenation of x for n times; x0 denotes the
empty string ε, while x−1 denotes the reverse of x.

If x is a string (resp., an array), then we denote by x[i] its i-th character
(resp., element) and by x[i..j] the subsequence x[i]x[i + 1] · · · x[j]; indices start
from 1 in both cases. The symbol ∈ is used for both set membership and character
occurrence within a string.

3 MiniZinc with Strings

MiniZinc supports plenty of builtins (e.g., comparisons, basic and advanced
numeric operations, set operations, logical operators, . . . ) and global constraints.
It currently permits four types of variables (i.e., Booleans, integers, floats, and
sets of integers) while strings can only be fixed literals, used for formatting out-
put or defining model annotations.

Our first contribution is introducing string variables, i.e., variables x ∈ Σ∗,
where Σ is a given alphabet. As a first step, we assume that the alphabet Σ is
always the set ASC of ASCII characters. Although we focus on bounded-length
strings, we do not impose any limitation on the maximum string length �.

Figure 1 shows three string variable declarations in a MiniZinc model. Vari-
able x belongs to ASC∗ but its maximum length is not specified: a solver can
choose the preferred upper bound � for its length or consider it unbounded. For
example, a solver using automata for representing strings does not need to set a
maximum length since it can represent strings of arbitrary length. Conversely, a
bounded-length string solver such as Gecode+S has to fix a maximum string
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Fig. 1. Examples of string variable declarations.

Table 1. MiniZinc string constraints, for each x, y, z ∈ ASC∗, a, b ∈ ASC,
n,m, q, q0 ∈ N, S ⊆ ASC, F ⊆ N, D ∈ N

q×|S|, and N ∈ P(N)q×|S|.

Constraint MiniZinc Syntax Description

x = y, x �= y x = y, x != y (in-)equality

x ≺ y, x � y, x � y, x � y x < y, x < = y, x >= y, x > y lexicographic order

x ∈ S∗ x in S character set

x∈S∗ str alphabet(x, S) alphabet

x ∈ [a, b]∗ str range(x, a, b) character range

z = x · y z = x ++ y concatenation

a = x[n] a = x[n] character access

y = x[n..m] y = str sub(x, n, m) sub-string

y = xn y = str pow(x, n) iterated concatenation

y = x−1 y = str rev(x) reverse

n = |x| n = str len(x) length

x ∈ LD(q, S,D, q0, F ) str dfa(x, q, S, D, q0,F) DFA membership

x ∈ LN(q, S,N, q0, F ) str nfa(x, q, S, N, q0,F) NFA membership

GCC(x,A,N) str gcc(x, A, N) global cardinality

length �. This tricky part is analogous to a MiniZinc declaration of the form “var
int: i” for an integer variable i: a finite-domain solver assumes the domain of
i to be finite and chooses its preferred bounds, while for a MIP solver i is
unbounded. The length of y in Fig. 1 can be at most N, where N is an integer
parameter to be initialised within the model or in a separate data file. Variable
z even has a constrained alphabet: z ∈ {w ∈ {"a", "b", "c"}∗ | |w| ≤ 500}.

Given that we now have string variables, inspired by [33,35,36], we introduce
the string constraints specified in Table 1. A constraint for membership in a
context-free language could be added; it was considered in [33,35,36] for inclusion
in Gecode+S, but not implemented for time-reasons as the state-of-the-art
propagator of [21] for fixed-length string variables needs work to be generalised
to bounded-length string variables.

The constraints =, �=,≺,�,	,
 have the semantics of their standard defini-
tions. Given S ⊆ ASC, the semantics of x ∈ S∗ is ∀a : a ∈ x =⇒ a ∈ S, while
x∈ S also enforces the reverse implication, i.e., ∀a : a ∈ x ⇐⇒ a ∈ S.

The constraint str range offers a shortcut for defining a set of strings over
a range of characters: [a, b]∗ = {c ∈ ASC | a ≤ c ≤ b}∗, so for instance
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Fig. 2. A model for finding minimum-odd-length palindromes with the same, positive
number of a’s, b’s, and c’s. An optimal solution must have n = 2 ∧ |x| = 7.

["a", "d"]∗ = {"a", "b", "c", "d"}∗. The function x[i..j] returns the substring
x[n]x[n + 1] · · · x[m], where n = max(1, i) and m = min(j, |x|). In particular,
i > j implies x[i..j] = ε.

The constraint x ∈ LD(q, S,D, q0, F ) constrains x to be accepted by the
deterministic finite automaton (DFA) 〈Q,S, δ, q0, F 〉 where: Q = {1, . . . , q} is
the state set, S = {a1, . . . , a|S|} is the alphabet, δ : Q × S → Q is the tran-
sition function such that D[i, j] = k ⇐⇒ δ(i, aj) = k, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of accepting states. The same applies to the non-
deterministic finite automaton (NFA) constraint x ∈ LN(q, S,N, q0, F ), with the
only difference that, while D[i, j] ∈ Q, in this case N [i, j] ⊆ Q.

Finally, we add a global cardinality constraint GCC(x,A,N) for strings, stating
that each character A[i] ∈ ASC must occur exactly N [i] times in string x.

The constraints in Table 1 express all those used in existing string solvers [1,
14,23,24,32,41] and reflect the most used string operations in modern program-
ming languages. We are not aware of string solvers supporting constraints like
lexicographic ordering and global cardinality, but these are natural for a CP
solver.

Some constraints are redundant. For example we have that x[i] = x[i..i] and
y = x[i..j] ⇐⇒ (∃y1, y2 ∈ ASC∗) x = y1 · y · y2 ∧ |y1| = i − 1 ∧ |y1 · y| = j.
The rationale behind such redundancy is to ease the model writing and to allow
solvers to define a specialised treatment for each constraint in order to optimise
the solving process.

The constraint set we added to MiniZinc is intended to be an extensible
interface for the definition of string problems to be solved by fixed, bounded,
and unbounded-length string solvers.

Consider the MiniZinc model in Fig. 2, encoding the problem of find-
ing a minimum-length palindrome string belonging to {"a", . . . , "z"}∗, hav-
ing an odd length, and containing the same, positive number of occurrences of
"a", "b", and "c". We can see in this example the potential of MiniZinc with
strings: the model is succinct and readable, it allows the specification of optimi-
sation problems and not just of satisfaction problems, it accepts constraints over
different types than just strings, it does not impose any bounds on the lengths
of the strings, and it enables expressing the membership of a string variable to
a context-sensitive language.
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Fig. 3. A model for detecting a possible SQL injection.

A more interesting example is provided in Fig. 3, where we show a simplified
way to detect a potential SQL injection attack in a script. An SQL injection
is a technique where a malicious SQL statement is injected into a regular SQL
command. A well-known example is the injection of the condition "OR 1=1" into
the WHERE clause of an SQL query. Since every Boolean expression containing
such a condition evaluates to true, an SQL injection of this type may cause
the deletion or communication of tables of a database. The model in Fig. 3 is
actually more general, by detecting an injection into the parametric string sql
of a substring of the form expr ·bm = bn ·expr, where expr can be any non-empty
string while bm and bn are arbitrary sequences of m and n blanks respectively,
where m and n are non-negative integer variables. The prefix pref and the suffix
suff of sql can be any string. Clearly, this simplified example is not general
enough to cover all the possible SQL injections. Nonetheless, this MiniZinc model
is strictly more powerful than when using only regular expressions: the constraint
in line 4 cannot be replaced by an equivalent str dfa or str nfa constraint, but
could alternatively be modelled using the mentioned constraint for membership
in a context-free language, which is not considered in this paper.

4 FlatZinc With(out) Strings

MiniZinc is a solver-independent modelling language. In practice, this is achieved
by the MiniZinc compiler, which can translate any MiniZinc model into a spe-
cialised FlatZinc instance for a particular solver, using a solver-specific library
of suitable redefinitions for basic and global constraints.

In order to extend MiniZinc with support for string variables, our second
contribution consists of two redefinition libraries to perform different conversions:

– a string-to-string conversion F str that flattens a model M with string con-
straints into a FlatZinc instance F str(M) with all such constraints preserved;

– a string-to-integers conversion F int that flattens a model M with string con-
straints into a FlatZinc instance F int(M) with string constraints transformed
into integer constraints.

We now discuss these two conversions in turn.
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4.1 The Fstr Conversion

The conversion F str is straightforward and we omit its technical details. Each
string predicate is preserved in the resulting FlatZinc instance, with a few excep-
tions in order to be consistent with the FlatZinc syntax. For example, the con-
straints x = y and x != y are rewritten into str eq(x, y) and str neq(x, y)
respectively. Similarly, a string function is rewritten into a corresponding Flat-
Zinc predicate; e.g., n = str len(x) is translated into str len(x, n), while z
= x ++ y translates into str concat(x, y, z).

Fig. 4. FlatZinc instance resulting from F str applied to the MiniZinc model in Fig. 2.

Figure 4 gives the FlatZinc instance obtained by the F str conversion of the
MiniZinc model in Fig. 2, assuming that the length-bound parameter m is instan-
tiated with value 100 (see line 3).

F str is a straightforward and fast conversion aimed at solvers supporting
(some of) the constraints of Table 1. At present, to the best of our knowledge,
the only CP solver with such a capability is the new Gecode+S [33,36].

4.2 The F int Conversion

When extending MiniZinc with new features, the goal is to be always conser-
vative: the compiler should produce FlatZinc code executable by any current
FlatZinc solver, albeit less efficiently than by a solver with native support for
the new features. Hence we also develop the F int conversion.

The underlying idea of F int is to map each string variable x to an integer
variable �x ∈ [0, n] representing the string length |x| and an array X ∈ [0, 128]n

of n integer variables representing the string itself; we choose n = min
(
|x|, �

)
,

where |x| denotes the upper bound on |x| if it is specified in the model and |x| = �
otherwise, as we cannot exceed the maximum string length �. For i = 1, . . . , n
the invariant i > �x ⇐⇒ X[i] = 0 enforces that the end X[|x| + 1] · · · X[n]
of the array X is padded with trailing zeros. The notation (∀i=1,...,|x|) P (i) is
actually a shortcut for the constraint (∀i∈[1,�x]

) i ≤ |x| → P (i), and similarly
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Fig. 5. Rewrite rules of F int.
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for existential quantification, where �x denotes the current upper bound of the
domain of �x.

The main issue of F int is the maximum size �, since FlatZinc does not allow
dynamic-length arrays. We set � = 1000 by default and issue a warning to the
user if an unbounded string variable is artificially restricted by this transforma-
tion. The user (and in fact each solver) can override this parameter.

The F int conversion follows the padding representation advocated in [21]
and implemented in [35]: it works through the rewrite rules listed in Fig. 5.
This conversion is specified as a library containing the rewrite rules expressed in
the MiniZinc language itself and does not require any extension of the existing
FlatZinc specification.1 Each rewrite rule has one of the following forms:

– P �→ {C1, . . . , Cn}, meaning that predicate P is rewritten into the constraint
conjunction C1 ∧ · · · ∧ Cn; or

– F (x1, . . . , xk) �→ 〈E〉{C1, . . . , Cn}, meaning that function F is rewritten into
expression E subject to constraint C1 ∧ · · · ∧ Cn.

We use a more readable meta-syntax instead of using MiniZinc/FlatZinc directly.
We denote by D(x) ⊆ ASC the auxiliary function that returns the set of charac-
ters that may occur in x, and by I(S) the set {I(a) | a ∈ S} of the ASCII codes
for each character of S. Given D ⊆ N and S ⊆ ASC, the constructs Vint(n,D),
Vstr(x,m, S), and Varr(X,m,D) denote respectively: an integer variable decla-
ration var D: n, a string variable declaration var string(m) of S: x, and an
array of integer variables declaration array[1..m] of var D: X. If a parameter
is omitted, then we assume D = [0, 128], m = �, and S = ASC.

Rule (1) of Fig. 5 transforms a declaration of a string variable x into the
corresponding declaration of an array X of integer variables via the A(x) function
of Rule (2), which enforces the properties of X described above. It is important to
note that this transformation relies on the same array of integer variables being
returned by A(x) for a variable x, even if the function is called multiple times.
This is achieved through the common subexpression elimination mechanism built
into MiniZinc functions [37].

Rules (3) to (9) are examples of predicate rewriting. In particular, the latter
two rules take advantage of MiniZinc expressiveness by rewriting x � y and
GCC(x,A,N) in terms of the lex lesseq and the global cardinality global
constraints over integers. The rewrite rules for predicates ∈, ∈, =, and �= are
intuitive.

Rules (10) to (15) are examples of function rewriting: a string variable is cre-
ated, constrained, and then returned. We can see that dealing with special cases
enables us to reduce the number of generated constraints; e.g., see Rules (14)
and (15).

Rule (16) for str dfa predicate is tricky. Indeed, the regular global con-
straint cannot straightforwardly encode x ∈ LD(q, S,D, q0, F ) since the “empty
character” 0 might occur in A(x). In order to agree with the semantics of

1 This library, called nostrings.mzn, is publicly available at https://bitbucket.org/
jossco/gecode-string.

https://bitbucket.org/jossco/gecode-string
https://bitbucket.org/jossco/gecode-string
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regular, it is necessary to increment the number s of its symbols (so, the i-th
character of S becomes the (i + 1)-st symbol of the DFA encoded by regular),
and to add a column at the head of D for dealing with the 0 character (matrix
D′ is the result of this addition — note that the state 0 is always a failing
state).2 If regular is satisfiable, then the accepted sequence X is re-mapped to
a corresponding string thanks to the auxiliary array T . The rule for str nfa is
analogous.

We remark that the F int converter enables the solving of string problems by
any solver. Clearly, this is achieved at the expense of efficiency. Indeed, several
new constraints and reifications are introduced.

Consider for example the model M of Fig. 2: the F str(M) conversion is instan-
taneous and produces a FlatZinc instance of only 13 lines, regardless of the
maximum length m of string variable x (see Fig. 4). Conversely, the F int(M)
conversion can be considerably less efficient depending on the m parameter. For
example, if m = 100, then F int(M) consists of 4,511 lines; if m = 1000, then a
FlatZinc instance of 45,011 lines is produced.

5 Evaluation

Our third contribution is an evaluation of our framework with different solvers.
We compared the string CP solver Gecode+S [33,36] against various state-of-
the-art constraint solvers, namely:

– Chuffed [10] is a CP solver with lazy clause generation [31];
– Gecode [18] is a CP solver;
– iZplus [15] is a CP solver that also exploits local search;
– Picat-SAT [43] translates a CP problem into a Boolean satisfiability (SAT)

problem, solved by Lingeling;
– MZN/Gurobi [4] translates a MiniZinc (MZN) model into a mixed-integer

linear program, solved by Gurobi Optimizer [20];
– MZN/Yices2 [9] translates a MiniZinc model into a SAT modulo theories

(SMT) model without string variables, solved by Yices2;
– MZN/OscaR.cbls [7] translates a MiniZinc model in a constraint-

based local search model and a black-box search procedure, run by
OscaR.cbls [12].

There is a lack of standardised and challenging string benchmarks [21,33,35,36].
However, we stress that the goal of this paper is not an evaluation of solver
performance, but the introduction of a framework for modelling string prob-
lems easily, with solving by both string and non-string solvers. Moreover, one
of the benefits of introducing string variables and constraints in MiniZinc is the
possibility of designing and comparing challenging and standard benchmarks.

We picked five problems from the Norn benchmark [1]: anbn, ChunkSplit,
HammingDistance, Levenshtein, and StringReplace (we use the same names as

2 Details at http://www.minizinc.org/doc-lib/doc-globals-extensional.html.

http://www.minizinc.org/doc-lib/doc-globals-extensional.html
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in [1]). We also used our Palindrome problem of Fig. 2 and our SQL injection
problem of Fig. 3. All these problems have no parameters, except for the maxi-
mum string length �. For each problem, we:

1. wrote a MiniZinc model M with parametric bound � on string length;
2. obtained FlatZinc instances FM (f, �) by flattening M with f ∈ {F str,F int}

and � ∈ {250, 500, 1000};
3. solved each FM (F str, �) with Gecode+S (we extended the FlatZinc inter-

preter of Gecode for handling F str builtins) and each FM (F int, �) with the
other solvers.

We ran the experiments on Ubuntu 15.10 machines with 16 GB of RAM and
2.60 GHz Intel R© i7 CPU. The source code for Gecode+S and the used MiniZinc
models are available at https://bitbucket.org/jossco/gecode-string. The versions
of the solvers with results in Table 2 are those used by the sunny-cp portfolio
solver [2], version 2.2, in the MiniZinc Challenge 2016.3 We do not compare with
the Norn solver, as our results are incomparable with those of an unbounded-
length solver such as Norn, which generates the language of all satisfying assign-
ments for each string variable.

Table 2. Runtimes of the solvers. Bold font indicates the best performance for each
problem instance.

Chuffed Gecode iZplus MZN/Gurobi Picat-SAT Gecode+S

� 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000

anbn 0.9 2 4.5 2.6 16.8 145.2 2.2 6.8 22.7 9.7 20.7 54.7 2.1 3.9 7.2 0.4 2.7 28.2

Chunk 4.7 14.9 n/a 3.5 8 26 7.2 22.2 24.8 t/o t/o t/o 46.8 152 291.1 1.4 14.2 187.9

Hamm. 25.7 283.6 n/a 84.6 t/o t/o t/o t/o t/o 363.6 t/o t/o 46.8 454 t/o 0.6 3.8 37.4

Leven. 1.3 2.6 6 1.2 2.3 5.4 3.7 19.5 8.1 91 345.7 t/o 1.7 3.8 26.8 0.1 0.1 0.1

Str. Rep. 2.4 6.8 23.2 t/o t/o t/o 3.1 9.7 44.2 264.2 t/o t/o 28.3 148.1 t/o 0.2 0.8 4.7

Palind. 1.6 23.4 90 t/o t/o t/o 0.8 2.3 7.1 119.5 t/o t/o 16.6 93.7 504.5 n/a n/a n/a

SQLInj. 17.9 399.8 n/a 4.6 10.2 396.3 108.9 431.1 617.9 t/o t/o t/o 83.3 148.7 502.6 0.5 0.1 0.1

Table 2 shows the runtimes, in seconds, to conclude the search, i.e., the time
needed by a solver to prove the (un-)satisfiability of a problem (for satisfaction
problems) or to find and prove an optimal solution (for Palindrome, the only
optimisation problem). The ‘t/o’ abbreviation means that the time-out of 600
seconds was reached, while ‘n/a’ means that a solver failed prematurely (e.g.,
due to a segmentation fault) or is not applicable. For instance, Gecode+S is
not applicable to the Palindrome problem since it does not implement the GCC
constraint, which, to the best of our knowledge, has not been proposed before
in the literature. Our MiniZinc extension (see Table 1) covers all the constraints
implemented by Gecode+S.

3 sunny-cp is available at https://github.com/CP-Unibo/sunny-cp. We actually took
advantage of its architecture for running and evaluating the solvers in Table 2.

https://bitbucket.org/jossco/gecode-string
https://github.com/CP-Unibo/sunny-cp
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Fig. 6. Average time (in seconds) taken by F int or F str.

The chosen solvers whose results are not listed in Table 2 were not competitive
on the chosen problems. Local search, performed by MZN/OscaR.cbls, is by
design unable to prove unsatisfiability and thus always times out on the unsat-
isfiable anbn, Hamming, and StringReplace problems. Further, the black-box
local search performed by MZN/OscaR.cbls unfortunately meanders on some
of the chosen satisfiable problems and optimisation problems upon flattening by
the F int conversion: our future work includes integrating the extension [6] for
string variables and constraints of OscaR.cbls [12] into MZN/OscaR.cbls,
so that the F str conversion can be used instead. Similarly, MZN/Yices2 makes
the state-of-the-art SMT solver Yices2 suffer from the result of the composi-
tion of the F int conversion with the FlatZinc-to-SMT-LIB-format conversion [9],
which has not been modernised for a while. We hope that somebody will enable
the use of the F str conversion so that SMT solvers with a string theory — such
as CVC4 [27], S3 [39], and Z3str2 [41] — can be used instead, though not for
optimisation problems.

All the runtimes in Table 2 include the FlatZinc flattening time. As explained
at the end of Sect. 4, this time is far greater when the F int conversion is used.
This is clearly noticeable in Fig. 6, where the average flattening time (in seconds)
taken by F int (for all the solvers except Gecode+S) or F str (for Gecode+S)
is shown.4 As mentioned at the end of Sect. 4, this time is proportional to the
maximum string length �.

While Gecode, Chuffed, Picat-SAT, and iZplus have comparable per-
formance, the flattening time for MZN/Gurobi is remarkably higher. This is
due to the fact that the complex reified expressions created by F str must be lin-
earized for use with MZN/Gurobi and hence this further expands the resulting
FlatZinc. The average percentage of the total solving time (when a problem is

4 We assume a flattening time of T = 600 seconds when the conversion time exceeded
the time limit T . This happened only for MZN/Gurobi.
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solved) taken by F int is 42.41% for iZplus, 47.10% for Chuffed, 55.97% for
Gecode, and 62.36% for MZN/Gurobi. Conversely, the average percentage of
the total solving time taken by F str for Gecode+S is only 6.95%.

The message of this evaluation is twofold. On the one hand, the Gecode+S

CP solver is by far the best solver overall, due to its native string support
and the short flattening times via F str to FlatZinc. On the other hand, solvers
without native string support sometimes benefit from F int for being faster than
Gecode+S despite longer flattening times. This is interesting and should stim-
ulate further development of native string support in CP solvers.

6 Related Work

Gecode+S [33,36] is currently the only CP solver that handles bounded-length
string variables; its representation of string variables improves over the prefix-
suffix pairs representation [34] and the open-sequence representation [35]. Fixed-
length Boolean string variables, that is bit vectors, are handled in a CP fashion
in [29]. Older CP approaches are surveyed in [33].

Apart from these systems, there are a number of string solvers, some custom-
made and some others relying on existing solving technologies such as satisfia-
bility modulo theories (SMT). We now discuss three approaches.

Bit-vector solvers map string constraints into bit-vector constraints. Exam-
ples of solvers using this approach are Hampi [23,24] and Kaluza [32]. The
effectiveness of this approach appears to be limited when compared with other,
more recent string solving techniques [22,41].

Automaton-based solvers rely on regular expressions or (simplified) context-
free grammars in order to represent strings and handle string constraints. Exam-
ples of these approaches are StrSolve [22], Stranger [40], PASS [26], and
PISA [26]. While they can naturally deal with unbounded-length strings, the
main drawback of these solvers is their inability to capture other variable types,
such as integers. For example, as observed in [41], the PISA solver can pro-
vide good performance but cannot model string lengths and symbolic arithmetic
operations.

Word-based string solvers, according to [41], are SMT solvers that treat
strings without abstractions or representation conversions. They take advan-
tage of already defined theories, and enable a precise modelling of unbounded
strings and length constraints. For instance, Z3str [42], Z3str2 [41], and
Z3strBV [38] extend the well-known SMT solver Z3. Other SMT-based string
solvers are Sushi [14], CVC4 [27], and Norn [1]. Although it is out of the
scope of this paper to provide a comparison with all of them, we remark that
Gecode+S provides a better performance than Sushi in the evaluation reported
in [33].

7 Conclusion

We presented an extension of the MiniZinc language that allows users to model
and solve combinatorial problems with strings. The framework we propose is
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expressive enough to encode the most used string operations in modern pro-
gramming languages, and — via proper FlatZinc translations — it also enables
both string and non-string solvers to solve such problems. All the solvers having
a FlatZinc interface can now solve string problems without manual intervention.

We took advantage of our framework for evaluating the state-of-the-art con-
straint solvers — Chuffed, Gecode, iZplus Picat-SAT, MZN/Gurobi,
MZN/Yices2, and MZN/OscaR.cbls — on problems with bounded-length
strings. The results indicate that, despite longer flattening times, sometimes our
FlatZinc decomposition can be more beneficial than using a dedicated string
solver.

We are not aware of similar works in CP, and we see our work as a solid start-
ing point for the handling of string variables and constraints with the MiniZinc
toolchain. We hope our extension encourages the development of further CP
solvers that can natively deal with strings. This will hopefully lead to the cre-
ation of new, challenging string benchmarks, and to the development of dedicated
search heuristics (e.g., heuristics based on character frequencies in a string).

We are planning to enhance our framework by adding new search annotations,
constraints, and features, as well extending the string domain from ASCII to
other alphabets, such as Unicode. In particular, the useful missing constraint for
membership in a context-free language should at least have a default handling
under the F int conversion, if not a propagator in Gecode+S used via the F str

conversion.
Finally, non-character alphabets could be useful, such as for the generation

of protocol logs [19], where the natural model would use strings of timestamps.
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