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Abstract. Integer time series are often subject to constraints on the
aggregation of the integer features of all occurrences of some pattern
within the series. For example, the number of inflexions may be con-
strained, or the sum of the peak maxima, or the minimum of the peak
widths. It is currently unknown how to maintain domain consistency
efficiently on such constraints. We propose parametric ways of system-
atically deriving glue constraints, which are a particular kind of implied
constraints, as well as aggregation bounds that can be added to the
decomposition of time-series constraints [5]. We evaluate the beneficial
propagation impact of the derived implied constraints and bounds, both
alone and together.

1 Introduction

A time series is here a sequence of integers, corresponding to measurements taken
over a time interval. Time series are common in many application areas, such
as the output of electric power stations over multiple days [8], or the manpower
required in a call-centre [3].

We showed in [5] that many constraints γ(〈X1, . . . , Xn〉, N) on an unknown
time series X = 〈X1, . . . , Xn〉 of given length n can be specified by a triple
〈σ, f, g〉, where σ is a regular expression over the alphabet Σ = {‘<’, ‘=’, ‘>’}
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(we assume the reader is familiar with regular expressions and automata [12]),
while f ∈ {max, min, one, surface, width} is called a feature, and g ∈
{Max, Min, Sum} is called an aggregator. Let the sequence S = 〈S1, . . . , Sn−1〉,
called the signature and containing signature variables, be linked to X via
the signature constraints (Xi < Xi+1 ⇔ Si = ‘<’) ∧ (Xi = Xi+1 ⇔ Si =
‘=’)∧ (Xi > Xi+1 ⇔ Si = ‘>’) for all i ∈ [1, n−1]. A σ-pattern is a sub-series of
X that corresponds to a maximal occurrence of σ within S. Integer variable N
is constrained to be the aggregation, computed using g, of the list of values of
feature f for all σ-patterns in X. A set of 20 regular expressions is considered.
We name a time-series constraint specified by 〈σ, f, g〉 as g_f_σ.

Example 1. The time series X = 〈4, 4, 0, 0, 2, 4, 4, 7, 4, 0, 0, 2, 2, 2, 2, 2, 2, 0〉 has
the signature S = ‘=>=<<=<>>=<=====>’. Consider the regular expres-
sion Peak = ‘<(<|=)*(>|=)*>’: a Peak-pattern, called a peak, within a time
series corresponds, except for its first and last elements, to a maximal occur-
rence of Peak in the signature, and the width feature value of a peak is its
number of elements. The time series X contains two peaks, namely 〈2, 4, 4, 7, 4〉
and 〈2, 2, 2, 2, 2, 2〉, visible the way X is plotted in Fig. 1, of widths 5 and 6 respec-
tively, hence the minimal-width peak, obtained by using the aggregator Min, has
width N = 5: the underlying constraint is named min_width_peak. ��
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Fig. 1. min_width_peak(5, 〈4, 4, 0, 0, 2, 4, 4, 7, 4, 0, 0, 2, 2, 2, 2, 2, 2, 0〉)

After recalling in Sect. 2 further required background material on time-series
constraints g_f_σ(〈X1, . . . , Xn〉, N), the contributions of this paper are ways
of systematically deriving parametric implied constraints and bounds:
– We show in Sect. 3 how to derive systematically implied constraints, parame-

terised by aggregator g and feature f , for any regular expression σ.
– We give in Sect. 4 a methodology for systematically deriving bounds, para-

metrised by σ, on the variable N , for any pair of g and f , and then we
demonstrate our methodology on the case when g = Max and f = min.

– We evaluate in Sect. 5 the beneficial propagation impact of the derived implied
constraints and bounds, both alone and together.

In Sect. 6, we conclude and discuss other related work. The implied constraints
and bounds for all time-series constraints are in [2].
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2 Background: Automata for Time-Series Constraints

In [5], we showed how to synthesise a deterministic finite automaton, enriched
with accumulators [7], from any triple 〈σ, f, g〉 that specifies a time-series con-
straint. We now discuss the required background concepts using an example,
namely the regular expression Peak = ‘<(<|=)*(>|=)*>’ of Example 1.

Fig. 2. Synthesised automaton for any g_f_Peak constraint

The synthesised automaton for any g_f_peak constraint is in Fig. 2. It
returns the aggregation, using g, of the values of feature f for all Peak-patterns
corresponding to the occurrences of Peak within an input word over the alpha-
bet Σ = {‘<’, ‘=’, ‘>’}. The start state is k, annotated within braces by the
initialisation of three accumulators: at any moment, accumulator c stores the
feature value of the current Peak-pattern while d stores the feature value of a
potential part of a Peak-pattern, and r stores the aggregated result for the fea-
ture values of the already encountered Peak-patterns. A transition is depicted
by an arrow between two states and is annotated by a consumed alphabet sym-
bol and, within braces, an accumulator update. The constants and operators
appearing in the accumulator initialisation and updates are listed in Table 1;
the binary operators φf and φg are used with arbitrary arity throughout this
paper, in order to reduce the amount of parentheses. All states are accepting, an
accepting state being marked by a double circle. Hence this automaton accepts
the language Σ∗, but accepted words may be distinguished by the value of the
returned expression, given within a box linked to all states. Note that the size
of this automaton does not depend on the length of the input word.

In [7], we showed how to use an automaton with accumulators in order to
decompose a constraint such as g_f_peak(〈X1, . . . , Xn〉, N) into signature con-
straints, linking 〈X1, . . . , Xn〉 to introduced signature variables 〈S1, . . . , Sn−1〉,
as well as arithmetic and table constraints, linking 〈S1, . . . , Sn−1〉 and N to
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Table 1. (Left) Features: identity, minimum, and maximum values; operators φf and δi
f

recursively define the feature value vu of a time series 〈X�, . . . , Xu〉 by v� = φf (idf , δ�
f )

and vi = φf (vi−1, δ
i
f ) for i > �, where δi

f is the contribution of Xi to vu. (Right)
Aggregators: operators and identity values relative to a feature f .

f f minf maxf φf δif

one 1 1 1 1 1
width 0 0 +∞ + 1
surface 0 −∞ +∞ + Xi

max −∞ −∞ +∞ max Xi

min +∞ −∞ +∞ min Xi

g φg
f
g

Max max minf

Min min maxf

Sum + 0

introduced state variables Qi and tuples 〈Ci,Di, Ri〉 of accumulator variables,
respectively denoting the automaton state and accumulator values 〈c, d, r〉 after
consuming Si. It is still unknown how to maintain domain consistency efficiently
in general on this decomposition (see [7] for an analysis), hence implied con-
straints can help achieve more propagation, as we already showed in [6,11].

3 Glue Constraints for Time-Series Constraints

In [6] we derived an implied constraint, called a glue constraint, that can be
added to the decomposition of a constraint specified by an automaton with accu-
mulators: the derivation was ad hoc in most cases. In this paper, we introduce
parametric glue constraints and show that they can be derived automatically for
time-series constraints, which we introduced a year later in [5].

Example 2. We can explain the key insight using Example 1. The reverse of
its time series X is X ′ = 〈0, 2, 2, 2, 2, 2, 2, 0, 0, 4, 7, 4, 4, 2, 0, 0, 4, 4〉 and has the
signature Smir = ‘<=====>=<<>=>>=<=’, which we will call the mir-
ror of the original signature S. The automaton of Fig. 2 returns the same
value whether it consumes a signature or its mirror: the peaks of X are the
reverses of the peaks of X ′ and the aggregation of their feature values is the
same because all the operators φf and φg are commutative. We have this prop-
erty for 19 of the 20 regular expressions in [5]. The idea now is to derive an
implied constraint, which we will call a glue constraint, between the three accu-
mulator triples of such an automaton after it has consumed (i) a signature w,
(ii) a prefix w1 of w, and (iii) the mirror of the corresponding suffix w2 of w.
For instance, let us split S into the prefix P = ‘=>=<<=<’ and the suf-
fix T = ‘>>=<=====>’, which has the mirror Tmir = ‘<=====>=<<’.
If we instantiate the automaton A of Fig. 2 for the min_width_peak con-
straint, that is with f = width and g = Min, then A has the accumulator
triples 〈c, d, r〉 = 〈6, 0, 5〉 after consuming S, and 〈c1, d1, r1〉 = 〈+∞, 3,+∞〉
after consuming P , and 〈c2, d2, r2〉 = 〈+∞, 1, 6〉 after consuming Tmir. The value
φg(r, c) = min(5, 6) = 5 returned by A on S can also be computed using the
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formula φg(r1, r2, φf (d1, d2, δi
f )), that is min(+∞, 6, 3 + 1 + 1). That formula

computes the minimum width of the following three peaks:
– the minimum-width peak corresponding to P , which actually has no occur-

rence of Peak = ‘<(<|=)*(>|=)*>’, hence r1 = idf = +∞;
– the minimum-width peak corresponding to Tmir, whose only occurrence of

Peak gives width r2 = 6;
– the peak that is created by concatenating the following two potential peaks:

• the potential occurrence of Peak at the end of P , giving width d1 = 3;
• the potential occurrence of Peak at the end of Tmir, giving d2 = 1; note

that if we feed T rather than Tmir to A, then 〈c2, d2, r2〉 = 〈6, 0,+∞〉
and d2 reflects information about the end of T , rather than its beginning,
hence the created peak is missed;

but the contribution δi
f = 1 (with i = |P | + 1) is required to compensate for

the fact that d1 + d2 = 4 under-measures the width 5 of the created peak. ��
We now formalise this insight, and add scenarios other than creation.

Definition 1 (mirror). The mirror of a language L over Σ = {‘<’, ‘=’, ‘>’},
denoted by Lmir, consists of the mirrors of all the words in L, where the mirror
of a word or regular expression has the reverse order of its symbols and has all
occurrences of the symbol ‘<’ flipped into ‘>’ and vice versa.

We denote by L(σ) the regular language defined by a regular expression σ.

Definition 2 (state language). Let q be a state of an automaton A. The
language accepted by q, denoted by Lq, is the regular language accepted when q
is made to be the only accepting state of A.

Example 3 Consider the automaton in Fig. 2. We have Lk = L((>|=)*), L� =
Σ∗L(<(<|=)*), and Lm = Σ∗L(Peak)L(=*), where Peak = ‘<(<|=)*(>|=)*>’
is the regular expression for peaks. Standard algorithms of automata theory [12]
can be used to compute state languages: we use the FAdo tool [1] to do so, as well
as to check the language equalities stated in the following three examples. ��

We concatenate two words by writing them side by side, with an implicit infix
concatenation operator between them. The concatenation L1L2 of two languages
L1 and L2 is the language of all words w1w2 where w1 ∈ L1 and w2 ∈ L2.

Definition 3 (extension). We say that the concatenation L1L2 extends a reg-
ular expression σ if and only if for any non-empty words w1 ∈ L1 and w2 ∈ L2

there exist a non-empty suffix s of w1 and a non-empty prefix p of w2 such that
sp ∈ L(σ) and either s starts with the last occurrence of σ in w1, where we say
that L1L2 extends the last σ in L1, or p ends with the first occurrence of σ
in w2, where we say that L1L2 extends the first σ in L2, or both.

Example 4. Consider the regular expression Peak = ‘<(<|=)*(>|=)*>’. Every
word w1 in L1 = Σ∗L(Peak)L(=*) has a suffix in L(Peak)L(=*). Every word w2

in L2 = L((>|=)*>)Σ∗ has a prefix p in L((>|=)*>). The concatenation sp is
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in L(Peak)L(=*)L((>|=)*>), which is a subset of L(Peak), hence L1L2 extends
the last Peak in L1. Note that p cannot end with any occurrence of Peak, hence
L1L2 does not extend any Peak in L2. ��
Definition 4 (creation). We say that the concatenation L1L2 creates a regular
expression σ if and only if for any non-empty words w1 ∈ L1 and w2 ∈ L2,
there exist a non-empty suffix s of w1 and a non-empty prefix p of w2 such that
sp ∈ L(σ) but neither does s start with an occurrence of σ in w1 nor does p end
with an occurrence of σ in w2.

Example 5. Consider again the regular expression Peak = ‘<(<|=)*(>|=)*>’.
Every word w3 in L3 = Σ∗L(<(<|=)*), such as P of Example 2, has a suffix in
L(<(<|=)*). Every word w4 in L4 = L((>|=)*>)Σ∗, such as Tmir of Example 2,
has a prefix in L((>|=)*>). The concatenation is in L(<(<|=)*(>|=)*>),
which is equal to L(Peak). However, neither can start with an occurrence of
Peak nor can end with an occurrence of Peak: hence L3L4 does not extend
Peak, but instead creates Peak. ��

We now give the glue constraint for a time-series constraint specified
by 〈σ, f, g〉: it is specific to regular expression σ but generic in f and g. Let
an automaton A for σ reach state

−→
Q and accumulator values 〈−→C ,

−→
D,

−→
R 〉 on a

prefix of a word w, as well as state
←−
Q and accumulator values 〈←−C ,

←−
D,

←−
R 〉 on

the mirror of the corresponding suffix of w. The value N returned by A on the
entire word w is constrained by N = φg(

−→
R,

←−
R,Γ), where Γ is called the glue

expression and is defined as follows:
1. if L−→

Q
Lmir←−

Q
extends σ, then:

(a) if L−→
Q

Lmir←−
Q

extends both the last σ in L−→
Q

and the first σ in Lmir←−
Q

, then

Γ = φf (
−→
C ,

←−
C ,

−→
D,

←−
D, δi

f );
(b) if L−→

Q
Lmir←−

Q
extends only the last σ in L−→

Q
, then Γ = φf (

−→
C ,

−→
D,

←−
D, δi

f );

(c) if L−→
Q

Lmir←−
Q

extends only the first σ in Lmir←−
Q

, then Γ = φf (
←−
C ,

−→
D,

←−
D, δi

f );

2. if L−→
Q

Lmir←−
Q

creates σ, then Γ = φf (
−→
D,

←−
D, δi

f );

3. if L−→
Q

Lmir←−
Q

neither creates nor extends σ, then Γ = φg(
−→
C ,

←−
C ).

Note that these rules are exhaustive and mutually exclusive, because the final
conditions of extension and creation are negations of each other.

Example 6. Consider the regular expression Peak = ‘<(<|=)*(>|=)*>’, the
automaton A in Fig. 2, and the languages in Example 3 for the states of A.
– Consider

−→
Q = m and

←−
Q = �: by Example 4, for L1 = Lm and L2 = Lmir

� , we
know that L−→

Q
Lmir←−

Q
extends only the last Peak in Lm, so rule 1b applies.

– Consider
−→
Q = � and

←−
Q = �: by Example 5, for L3 = L� and L4 = Lmir

� , we
know that L�Lmir

� creates Peak, so rule 2 applies.
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Table 2. Glue expressions for any g_f_peak constraint. A row index refers to the
state of the automaton A in Fig. 2 reached for the prefix, and a column index refers to
the state of A reached for the mirror of the corresponding suffix.

– Consider
−→
Q = m and

←−
Q = m: we have that Lm = Σ∗L(Peak)L(=*) and

Lmir
m = L(=*)L(Peak)Σ∗; note that there does not exist a non-empty suffix

of any word in Lm that, concatenated with a non-empty prefix of any word
in Lmir

m , can form a word in L(Peak), so rule 3 applies.

The other six pairs 〈−→Q,
←−
Q〉 of states are handled similarly. All nine glue expres-

sions are presented in matrix form in Table 2. ��
We derived glue constraints for the covered 19 regular expressions: they can

be shown to be correct. We establish their propagation impact in Sect. 5.
In the next section, in order to exploit glue constraints better, we provide

bounds on their main variables, namely the results of aggregating feature values
on a time series, on a prefix thereof, and on the corresponding suffix thereof.

4 Bounds for Time-Series Constraints

We derive bounds on N for any time-series constraint g_f_σ(〈X1, . . . , Xn〉, N)
from a few general formulae and the structure of ground time series that give
extreme values of N . The bounds are valid regardless of the domain choice,
but their sharpness is guaranteed only if all the Xi are over the same interval
domain [a, b]. A bound is sharp if it equals N for at least one ground time series.

For each regular expression, there exists a necessary condition, based on the
domains and number of the Xi, for it to occur at least once within the signature.

Example 7. An Inflexion-pattern, called an inflexion, within a time series X =
〈X1, . . . , Xn〉 corresponds, except for its first and last elements, to a maximal
occurrence of the regular expression Inflexion = ‘(<(<|=)*>)|(>(>|=)*<)’ in
the signature of X. The necessary condition for having at least one inflexion in
X is b > a ∧ n ≥ 3, where [a, b] is the smallest interval containing the union of
the domains of the Xi. Figure 3a gives an example of inflexion. ��

In Sect. 4.1, we describe a systematic methodology for deriving sharp bounds
on N for any time-series constraint g_f_σ(〈X1, . . . , Xn〉, N), under the assump-
tions that all the Xi have the same interval domain and, without loss of general-
ity, that the underlying necessary condition holds. In Sect. 4.2, we illustrate the
methodology on one family of constraints.
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Fig. 3. (a): A time series with an inflexion of shortest width, namely one. (b): A time
series with six inflexions. (c): A time series with one inflexion.

4.1 Methodology

For any time-series constraint g_f_σ(〈X1, . . . , Xn〉, N), our aim is to derive
formulae for lower and upper bounds on N , parametrised only by n and the
domain bounds of the Xi. We define a time-series structure that depends only
on g and f , in order to build an optimal time series for the upper (resp. lower)
bound, defined as a ground time series where N is equal to that upper (resp.
lower) bound. We use the following non-mutually-exclusive properties, which
were derived manually, all occurrences of ‘maximal’ and ‘minimal’ being over all
time series of length n over [a, b]:
– Property I holds if the number of σ-patterns is maximal.
– Property IIup(resp. IIlow) holds if there is at least one σ-pattern whose length

is maximal (resp. minimal).
– Property IIIupmax (resp. IIIlowmax) holds if there is at least one σ-pattern and the

absolute difference between b (resp. a) and its maximum is minimal.
– Property IIIupmin (resp. IIIlowmin) holds if there is at least one σ-pattern and the

absolute difference between b (resp. a) and its minimum is minimal.
– Property IV holds if there is no σ-pattern.
– Property Vup

max (resp. Vlow
max) holds if the time series is among those where the

sum of the absolute differences between b (resp. a) and the maxima of the
σ-patterns is minimal, and the number of σ-patterns is maximal.

– Property Vup
min (resp. Vlow

min) holds if the time series is among those where the
sum of the absolute differences between b (resp. a) and the minima of the
σ-patterns is minimal, and furthermore the number of σ-patterns is maximal.

– Property VIupmax (resp. VIlowmax) holds if the time series is among those where
the number of σ-patterns is maximal, and the sum of the absolute differences
between b (resp. a) and the maxima of the σ-patterns is minimal.

– Property VIupmin (resp. VIlowmin) holds if the time series is among those where the
number of σ-patterns is maximal, and furthermore the sum of the absolute
differences between b (resp. a) and the minima of the σ-patterns is minimal.

– Property VIIup (resp. VIIlow) holds if there is at least one σ-pattern of maxi-
mal length among those with only non-negative (resp. non-positive) elements
and the sum of the absolute differences between b (resp. a) and all elements
of such a σ-pattern is minimal.

– Property VIIIup (resp. VIIIlow) holds if there is at least one σ-pattern of
minimal length and the sum of the absolute differences between b (resp. a)
and all elements of such a σ-pattern is minimal.
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Table 3. Properties of optimal time series, for feature f and aggregator g.

bound g\f max min one surface width

upper Max IIIupmax IIIupmin VIIup;VIIIup IIup

lower Min IIIlowmax IIIlowmin VIIlow;VIIIlow IIlow

upper Sum IV;Vup
max;VIupmax IV;Vup

min;VIupmin I IV;VIIup;VIIIup I;IIup

lower Sum IV;Vlow
max;VIlowmax IV;Vlow

min;VIlowmin IV;VIIlow;VIIIlow

Twelve constraints have a more involved optimal time-series structure that
is not described in this paper for space reasons. The formulae for these twelve
constraints take time linear in n to evaluate, whereas the formulae for the con-
straints covered by the given methodology take constant time to evaluate.

Table 3 gives for each feature/aggregator pair the set of properties of optimal
time series. An optimal time series for a property P is a ground time series for
g_f_σ(〈X1, . . . , Xn〉, N) where N takes the largest (resp. smallest) value for all
ground time series possessing P . If there are several properties for an 〈f, g〉 pair,
then we first need to identify an optimal time series for each of those properties.
An optimal time series for some property is an optimal time series if it has the
maximal (resp. minimal) value of N among the set of optimal time series for
every property for 〈f, g〉.
Example 8. Consider n = 8 time-series variables over the integer interval [1, 2].
– Consider sum_one_inflexion(〈X1, . . . , X8〉, N), which constrains N to be

the number of inflexions in 〈X1, . . . , X8〉. For an upper bound on N , the time
series in Fig. 3b is optimal, with N = 6 inflexions, and has Property I.

– Consider max_min_inflexion(〈X1, . . . , X8〉, N), which constrains N to be
the maximum of the minima of all inflexions in 〈X1, . . . , X8〉. For an upper
bound on N , the time series in Figs. 3b and c are optimal, both with N =
2, and have Property IIIupmin as both have inflexions whose minima have an
absolute difference with b = 2 that is 0, hence their minima are b.

– Consider max_surface_inflexion(〈X1, . . . , X8〉, N), which constrains N
to be the maximum of the sums of the elements of all inflexions in
〈X1, . . . , X8〉. By Table 3, for an upper bound on N , there exists an optimal
time series for Property VIIup or Property VIIIup or both. The time series
in Fig. 3c is optimal for Property VIIup, with N = 12: there is an inflexion
of maximal length, namely 6, among those with only non-negative elements,
and all elements of this inflexion have an absolute difference with b = 2 that is
minimal, namely 0. The time series in Fig. 3b is optimal for Property VIIIup,
with N = 2: there is an inflexion of minimal length, namely 1, whose elements
all have an absolute difference with b = 2 that is minimal, namely 0. Hence
the upper bound is the maximum of these two values of N , that is 12. ��



22 E. Arafailova et al.

4.2 Bounds for Constraints that Only Have Property IIIupmin

We consider constraints that only have Property IIIupmin, that is with g = Max
and f = min according to Table 3. This pair of feature/aggregator makes sense
for 18 of the 20 regular expressions in [5]. Our goal is to derive an upper bound
on the maximum of the minima of all σ-patterns in a time series, where σ is any
of those regular expressions. According to Property IIIupmin, in an optimal time
series, there is at least one σ-pattern whose minimum is maximal: we use such
a σ-pattern to derive this upper bound. For brevity, we do not derive a lower
bound, because it is almost always possible to have no σ-patterns at all and the
lower bound is then equal to the identity value of g, namely −∞ by Table 1.

Example 9. We can explain the key ideas using Fig. 3b. Consider Inflexion =
‘(<(<|=)*>)|(>(>|=)*<)’ and time series over an integer interval [a, b]. Our
goal is to maximise the maximum of the minima of all inflexions in the time
series: in other words, the difference between b and the minimum of some inflex-
ion should be minimal. The time series t = 〈1, 2, 1, 2, 1, 2, 1, 2〉 in Fig. 3b contains
two types of inflexions: the first (resp. second) type corresponds to the signa-
ture ‘<>’ (resp. ‘><’); the inflexions are highlighted in grey. Assume the domain
is [−1,+2]: the minima of the three ‘<>’-type inflexions equal the domain upper
bound, namely b = 2, hence the difference with b is 0; the minima of the three
‘><’-type inflexions equal 1, that is b−1, hence the difference with b is 1. Hence
the smallest difference between b and the minima of the inflexions of t equals 0.
Regardless of the value of b, we can always construct a time series with some
inflexion that contains b, provided the necessary condition of Example 7 holds. If
we now consider the domain [−1,+5], then every element of t can be increased by
three, giving t′ = 〈4, 5, 4, 5, 4, 5, 4, 5〉, which has the same signature as t. As for t,
the minima of all ‘<>’-type inflexions equal the domain upper bound, namely
b = 5, and the minima of all ‘><’-type inflexions equal 4, that is b−1. Hence the
smallest difference between b and the minima of the inflexions of t′ also equals 0.
We have shown that the smallest difference between b and the minimum of every
inflexion does not depend on b, due to the signature being ground. We need to
compute the minimum, denoted by ΔInflexion, of these smallest differences for
any signature in L(Inflexion). The sharp upper bound on N for the constraint
max_min_inflexion(〈X1, . . . , Xn〉, N) equals b − ΔInflexion. ��

We now formalise these ideas.

Computing the Bounds. Consider a max_min_σ(〈X1, . . . , Xn〉, N) time-
series constraint where all the Xi are over the same interval domain [a, b]. With-
out loss of generality, for determining an upper bound on N , it suffices to restrict
our focus on time series containing just one σ-pattern, because the result of a
Max-aggregation is any of its occurrences of the largest value, whereas smaller
values are absorbed. Let Tω denote the set of ground time series over [a, b] whose
signature is ω ∈ L(σ). For any t in Tω, let t↓ω denote the index set of the σ-
pattern in t. We want to derive a formula that can be used to evaluate in constant
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time the upper bound u = maxω∈L(σ) maxt∈Tω
mini∈t↓ω

ti, which is equal to the
wanted upper bound on N under the stated focus restriction. Since u depends
also on a and b, its direct computation would not take constant time, because
every |Tω| depends on a and b. In order to compute u in constant time, we refor-
mulate it as an arithmetic expression on b and a parameter that only depends
on σ, using the following transformations:

u = b − (b − u) = b − (b − max
ω∈L(σ)

max
t∈Tω

min
i∈t↓ω

ti)

= b − min
ω∈L(σ)

(b − max
t∈Tω

min
i∈t↓ω

ti)

= b − min
ω∈L(σ)

min
t∈Tω

(b − min
i∈t↓ω

ti) (1)

The value of Δω = mint∈Tω
(b−mini∈t↓ω

ti), called the shift of signature ω, does
not depend on a and b: every time series t in Tω that gives this minimum must
contain b, which can thus be replaced by max t; otherwise, every element of t
could be incremented by at least 1, as shown in Example 9, thus reducing the
minimal value of b−mini∈t↓ω

ti and contradicting the optimal choice of t. Hence
Δσ = minω∈L(σ) Δω, called the shift of regular expression σ, does not depend
on a and b either. The upper bound u on N then is b − Δσ by (1). In order to
compute Δσ, we need to compute Δω for each signature ω ∈ L(σ).

We compute each Δω as follows, for a ground signature ω = 〈S1, . . . , S�〉
linked to a time series X = 〈X1, . . . , X�+1〉 by signature constraints. First, we
rewrite Δω as follows:

Δω = min
t∈Tω

(b − min
i∈t↓ω

ti) = min
t∈Tω

max
i∈t↓ω

(b − ti) (2)

Let Δt
i denote b − ti. Note that Δt

i ≥ 0 because we assume ti ≤ b. Hence a
time series that minimises the sum of the Δt

i also minimises each Δt
i, and thus

the maximum of the Δt
i. So a tuple 〈Δt

1, . . . ,Δ
t
�+1〉 that is minimal for the sum∑

i∈[1,�+1] Δ
t
i is also minimal for maxi∈t↓ω

Δt
i and we can solve the following

minimisation problem:

minimise
�+1∑

i=1

Δi

subject to Δi ≥ 0 ∀i ∈ [1, � + 1] (3)
if Si = ‘<’ then Δi > Δi+1 ∀i ∈ [1, �] (4)
if Si = ‘=’ then Δi = Δi+1 ∀i ∈ [1, �] (5)
if Si = ‘>’ then Δi < Δi+1 ∀i ∈ [1, �] (6)

Δi ∈ Z ∀i ∈ [1, � + 1]

The semantics of variable Δi, called the shift of variable Xi, with i ∈ [1, �+1],
is b−Xi. For example, if Si = ‘>’, meaning Xi > Xi+1, then b−Xi < b−Xi+1,
hence Δi < Δi+1. Depending on the value of each Si, which is assumed ground,
we post only one of the constraints (4), (5), or (6) for each pair 〈Δi,Δi+1〉.
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Note that Δt
i corresponds to Δi = b − Xi when Xi = ti: hence constraint (3).

Therefore, in an optimal solution Δ∗ = 〈Δ∗
1, . . . ,Δ

∗
�+1〉, the value of Δ∗

i is the
minimal shift of Xi. Hence Δ∗ is also an optimal solution to the right-hand side
of (2), and so we have Δω = maxi∈X↓ω

Δ∗
i . Note that the optimal value of the

optimisation problem itself is irrelevant.
Since Δω does not depend on a and b, it can be computed once and for all

for any signature ω. Hence it does not matter how much time the minimisation
problems take to solve. We show further that the number of minimisation prob-
lems and their numbers of variables and constraints can be bounded by very
small constants.

Example 10. Consider Inflexion = ‘(<(<|=)*>)|(>(>|=)*<)’ and the sig-
nature ω = 〈S1, S2〉 = 〈‘<’, ‘>’〉 ∈ L(Inflexion), linked to the time series
〈X1,X2,X3〉. We solve the following minimisation problem to compute Δω:

minimise Δ1 + Δ2 + Δ3

subject to Δi ≥ 0 ∀i ∈ [1, 3]
Δ1 > Δ2

Δ2 < Δ3

Δi ∈ Z ∀i ∈ [1, 3]

The unique optimal solution is 〈Δ∗
1,Δ

∗
2,Δ

∗
3〉 = 〈1, 0, 1〉. The inflexion that cor-

responds to 〈S1, S2〉 is 〈X2〉, as exemplified in Fig. 3a, thus Δω = maxi∈{2} Δ∗
i =

Δ∗
2 = 0: this inflexion contains a single element, which can be made to coincide

with the domain upper bound. Figure 3a gives an example of such an inflexion
within a time series of three variables with 2 as domain upper bound. ��

We now state a condition when the computed upper bound is sharp.

Theorem 1. Consider a time-series constraint max_min_σ(〈X1, . . . , Xn〉, N)
where all the Xi are over the same integer interval [a, b]. If at least one word ω
in L(σ) with Δσ = Δω may occur in the signature of 〈X1, . . . , Xn〉, then the
upper bound b − Δσ on N is sharp.

Proof. Suppose there exists a word ω that satisfies the stated assumption. Hence
there exists a ground time series with an occurrence of ω in its signature: the
value of N on such a time series equals b − Δω, so the bound b − Δσ on N is
sharp because Δσ = Δω. ��

For any regular expression σ in [5] and any time series X over some inter-
val, the assumption of Theorem 1 holds if the necessary condition (such as in
Example 7) for having at least one occurrence of σ in the signature of X is met.

Accelerating the Computation of the Shift of a Regular Expression.
For some regular expressions, we do not need to minimise over the entire lan-
guage L(σ) when computing Δσ = minω∈L(σ) Δω. Consider the case when there
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exists a word ω in L(σ)min, which is the set of the shortest words of L(σ), such
that the following equality holds:

Δσ = Δω (7)

We can then replace L(σ) with L(σ)min in the definition of Δσ. This is the case
for all σ in [5], and, additionally, we have

∣
∣L(σ)min

∣
∣ ≤ 2. Hence computing Δσ

requires solving at most two optimisation problems over at most four variables.

Example 11. Since Inflexion = ‘(<(<|=)*>)|(>(>|=)*<)’ contains one dis-
junction at the highest level, every word in L(Inflexion) belongs to either L1 =
L(‘<(<|=)*>’) or L2 = L(‘>(>|=)*<’). Hence L(Inflexion)min is the union
of the two sets Lmin

1 = {‘<>’} and Lmin
2 = {‘><’}. Consider the word ‘<<>’

in L1 obtained from the word ‘<>’ in Lmin
1 by inserting just one ‘<’. In order

to obtain the minimisation problem for computing Δ<<>, we modify the one
of Example 10 for Δ<> = 0 by introducing the new variable Δ4 and replacing
the comparison constraints by the following ones:

Δ1 > Δ2 ∧ Δ2 > Δ3 ∧ Δ3 < Δ4

The unique optimal solution is 〈2, 1, 0, 1〉, giving Δ<<> = 1 > Δ<>. Similarly,
for the word ‘<=>’ obtained from ‘<>’ by inserting just one ‘=’, we have
Δ<=> = Δ<>. Using these base cases, one can prove by induction that the
shift of any word in L1 longer than ‘<>’ is at least Δ<>. Applying the same
reasoning for the language L2, we obtain Δω ≥ Δ>< = 1 for all words ω in L2.
Hence ΔInflexion = min(Δ<>,Δ><) = min(0, 1) = 0 and equality (7) holds, so
we can replace L(Inflexion) by L(Inflexion)min in the definition of Δσ. ��

5 Evaluation

We evaluate the impact of the methods introduced in the previous sections on
both execution time and the number of backtracks (failures) for all the 200
time-series constraints for which the glue constraint exists.

In our first experiment, we consider a single g_f_σ(〈X1,X2, . . . , Xn〉, N)
constraint for which we first enumerate N and then either find solutions by
assigning the Xi or prove infeasibility of the chosen N . For each constraint,
we compare four variants of Automaton, which just states the constraint, using
the automaton of [3]: Glue adds to Automaton the glue constraints of Sect. 3
for all prefixes and corresponding reversed suffixes, which can be done [6] by
just posing one additional constraint, namely g_f_σmir(〈Xn, . . . , X2,X1〉, N);
Bounds adds to Automaton the bound restrictions of Sect. 4; Bounds+Glue uses
both the glue constraints and the bounds; and Combined adds to Bounds+Glue
the bounds for each prefix and corresponding reversed suffix.

In Fig. 4, we show results for two problems that are small enough to perform
all computations for Automaton and all variants within a reasonable time. In
the first problem (first row of plots), we use time series of length 10 over the
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Fig. 4. Comparing backtrack count and runtime for Automaton and its variants for
the first solution (length 10) and all solutions (length 8).

domain [1, 5], and find, for each value of N , the first solution or prove infeasibility.
This would be typical for satisfaction or optimisation problems, where one has to
detect infeasibility quickly. Our static search routine enumerates the time-series
variables Xi from left to right, starting with the smallest value in the domain.
In the case of the initial domains being of the same size, this heuristic typically
works best. In the second problem (second row of plots), we consider time series
of length 8 over the domain [1, 5], and find all solutions for each value of N .
This allows us to verify that no solutions are incorrectly eliminated by any of
the variants, and provides a worst-case scenario exploring the complete search
tree. Results for the backtrack count are on the left, results for the execution
time on the right. We use log scales on both axes, replacing a zero value by one
in order to allow plotting. All experiments were run with SICStus Prolog 4.2.3
on a 2011 MacBook Pro 2.2GHz quadcore Intel Core i7-950 machine with 6MB
cache and 16GB memory using a single core.

We see that Bounds and Glue on their own bring good reductions of the
search space, but their combinations Bounds+Glue and Combined in many cases
reduce the number of backtracks by more than three orders of magnitude. Indeed,
for many constraints, finding the first solution requires no backtracks. On the
other hand, there are a few constraints for which the number of backtracks is not
reduced significantly. These are constraints for which values of N in the middle
of the domain are infeasible, but this is not detected by any of our variants.

The time for finding the first solution or proving infeasibility is also signifi-
cantly reduced by the combinations Bounds+Glue and Combined, even though
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the glue constraints require two time-series constraints. When finding all solu-
tions, this overhead shows in the total time taken for the three variants using the
glue constraints. The bounds on their own reduce the time for many constraints,
but rarely by more than a factor of ten.

In our second experiment, shown in Fig. 5, we want to see whether the Com-
bined variant is scalable. For this, we increase the length of the time series from 10
to 120 over the domain [1, 5]. We enumerate all possible values of N and find
a first solution or prove infeasibility. For each time-series constraint and value
of N , we impose a timeout of 20 s, and we do not consider the constraint if there
is a timeout on some value of N . We plot the percentage of all constraints for
which the average runtime is less than or equal to the value on the horizon-
tal axis. For small time values, there are some quantisation effects due to the
SICStus time resolution of 10ms.
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Fig. 5. Scalability results comparing time for Automaton and Combined on problems
of increasing length.

For length 10, we find solutions for all values of N within the timeout, and our
plots for Automaton (dashed) and Combined (solid) reach 100%, but the average
time of Combined is much smaller. For Automaton, the percentage of constraints
that are solved within the timeout drops to less than 20% for length 20, and
less than 10% for length 40. For Combined, we solve over 75% of all constraints
within the time limit, even for lengths 100 and 120.

The constraints that are not solved by Combined use the feature surface or
the aggregator Sum. The worst performance is observed for constraints combining
both surface and Sum. This is not surprising, as we know that achieving domain
consistency for many of those constraints is NP-hard (encoding of subset-sum).
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6 Conclusion

For the time-series constraints in [5], specified by a triple 〈σ, f, g〉, we showed
in [3] how to generate simplified automata and linear implied constraints.
Here, we further enhance the propagation of time-series constraints by a
systematic generation of bounds and glue constraints. Rather than finding
bounds and glue constraints for each time-series constraint independently, we
introduce the concepts of parametric bounds and parametric glue constraints.
Our approach differs from existing ones, which design dedicated propagation
algorithms [4,14] and reformulations [9,10] for specific constraints, or propose
generic approaches [13,15] that do not focus on the combinatorial aspect of a
constraint.
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