
Constraints (2015) 20:325–345
DOI 10.1007/s10601-015-9184-z

A constraint-based local search backend for MiniZinc

Gustav Björdal · Jean-Noël Monette ·Pierre Flener ·
Justin Pearson

Published online: 7 March 2015
© Springer Science+Business Media New York 2015

Abstract MiniZinc is a modelling language for combinatorial problems, which can then be
solved by a solver provided in a backend. There are many backends, based on technologies
such as constraint programming, integer programming, or Boolean satisfiability solving.
However, to the best of our knowledge, there is currently no constraint-based local search
(CBLS) backend. We discuss the challenges to develop such a backend and give an overview
of the design of a CBLS backend for MiniZinc. Experimental results show that for some
MiniZinc models, our CBLS backend, based on the OscaR/CBLS solver, is able to give
good-quality results in competitive time.

Keywords Constraint-based local search · MiniZinc

1 Introduction

Solving combinatorial problems is a difficult task and no single solver can be universally
better than all other solvers. Hence, when facing a problem, it is useful to be able to model it
once and run several solvers to find the best one. MiniZinc [25] is a technology-independent
modelling language for combinatorial problems, which can then be solved by a solver pro-
vided in a backend. There are many backends, based on technologies such as constraint

G. Björdal · J.-N. Monette (�) · P. Flener · J. Pearson
Department of Information Technology, Uppsala University,
751 05 Uppsala, Sweden
e-mail: jean-noel.monette@it.uu.se

G. Björdal
e-mail: Gustav.Bjordal@gmail.com

P. Flener
e-mail: Pierre.Flener@it.uu.se

J. Pearson
e-mail: Justin.Pearson@it.uu.se

mailto:jean-noel.monette@it.uu.se
mailto:Gustav.Bjordal@gmail.com
mailto:Pierre.Flener@it.uu.se
mailto:Justin.Pearson@it.uu.se


326 Constraints (2015) 20:325–345

programming (CP), integer programming, or Boolean satisfiability solving. However, to the
best of our knowledge, there is currently no constraint-based local search (CBLS) back-
end. While most MiniZinc backends are just a parsing interface in front of the underlying
solver, things are not as straightforward in the case of CBLS. We discuss the challenges to
develop such a CBLS backend and give an overview of the design of a backend based on the
OscaR/CBLS solver [9]. Our backend is hereafter called fzn-oscar-cbls and is pub-
licly available from https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar. A preliminary
version of fzn-oscar-cbls has been developed by the first author [6].

The main contributions of this paper are:

– a description of a CBLS backend for MiniZinc;
– a heuristic to discover the structure of a model that can be used by a black-box local

search procedure;
– a black-box local search procedure making use of constraint-specific neighbourhoods;
– a description of how to adapt MiniZinc models to be more suitable to CBLS.

The paper is organised as follows. We start with a description of both MiniZinc and CBLS
in Section 2. We give an overview of fzn-oscar-cbls in Section 3. We describe the
creation of a good CBLS model from the MiniZinc model in Section 4 and our search
procedure in Section 5. Experimental results in Section 6 show that, for some MiniZinc
models, fzn-oscar-cbls is able to give good-quality results in short time. Then, in
Section 7, we describe discrepancies between the MiniZinc and CBLS worlds, and give
hints on how to write models suitable to CBLS. Related work is discussed in Section 8. We
conclude and discuss future work in Section 9.

2 Background

We only present the aspects of both MiniZinc and CBLS that are relevant to our purpose.
We first recall some basic notions in combinatorial optimisation.

2.1 Problems and constraints

A constrained optimisation problem (COP) is a formal way to describe a combinatorial
optimisation problem. A COP is comprised of a set of decision variables (the unknowns of
the problem), a set of constraints, and an objective variable. Each variable has a domain
in which it can take its value. A solution to a COP is an assignment of each variable to a
value in its domain so that all constraints are satisfied. An optimal solution is a solution
for which the value of the objective variable is optimal (minimal or maximal). A constraint
satisfaction problem (CSP) is a COP where the objective variable is absent (i.e., all solutions
are equally good). Without loss of generality, we only talk of COPs hereafter.

In this paper, we define solving a COP to be the finding of a best possible solution within
a given amount of time. Solving a COP is performed by a solver that receives as input a
model of the COP. Solving is gradual and relative: One can say that a solver A solves a COP
better than a solver B if, for instance, A returns a better solution than B within the time
limit, or if A returns an optimal solution faster than B.

A global constraint is a constraint representing a recurring substructure of COPs (there
is no single definition of a global constraint; see, e.g., [4] for an overview). Beside yielding
more succinct models, the use of global constraints usually improves the solving of a COP
by enabling the use of good decompositions or specialised algorithms inside the solver.

https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar


Constraints (2015) 20:325–345 327

2.2 MiniZinc and its tool chain

In an attempt to have a standard modelling language for combinatorial problems, Mini-
Zinc [25], a solver-independent medium-level modelling language, has been designed.
MiniZinc supports most of the usual modelling constructs, such as sets, arrays, user-defined
constraints and functions, and decision variables of Boolean, integer, float, and integer-
set types. A solve statement defines the type of problem (satisfaction, minimisation,
or maximisation) and the objective variable (if any). MiniZinc comes with a library of
solver-independent declarative decompositions of its global constraints and allows solver-
specific decompositions of those global constraints. MiniZinc allows parametric models
with instance data provided in separate data files. We will talk of a MiniZinc instance
for the combination of a parametric model with an associated data file, as well as for a
non-parametric model. MiniZinc supports annotations of variables, constraints, and solve
statements. The annotations are not part of the model but give extra information that a
solver may exploit or ignore. Predefined annotations are search on a solve statement
to describe a branching strategy, and defines var(x) on a constraint to inform that the
constraint functionally defines the variable x.

Figure 1 presents a MiniZinc model for the classical n-queens problem. The goal is to
place n queens on an n × n chessboard so that no queen can attack another queen. Variable
c[i] denotes the column of the queen in row i. The model makes use of the ALLDIF-
FERENT global constraint, which states that all its argument expressions must take different
values.

2.2.1 FlatZinc

MiniZinc is paired with the low-level language FlatZinc, which is a small subset of MiniZinc
without complex expressions (e.g., loops or function calls). To solve a MiniZinc instance,
it must first be transformed into a FlatZinc model by a process called flattening [24]. The
resulting FlatZinc model is then presented to a backend, which encapsulates a solver. During
flattening, new constraints and (functionally defined) variables can be introduced. Flatten-
ing produces solver-specific models. In particular, each global constraint is replaced by its
decomposition, or is kept as is if it has no decomposition. In the latter case, we talk of a
native global constraint.

Figure 2 presents excerpts of a FlatZinc model obtained by flattening, for n = 8, the
MiniZinc model of Fig. 1 for a backend in which ALLDIFFERENT is a native global con-
straint. The variables X 01 to X 16 in lines 1 to 16 are introduced during flattening to
represent each instance of the expressions c[i] + i and c[i] - i in the MiniZinc
model. The introduced variables are defined by the constraints in lines 21 to 36, as indicated
by the defines var annotations.

Fig. 1 A MiniZinc model for the n-queens problem



328 Constraints (2015) 20:325–345

Fig. 2 Excerpts of a FlatZinc model resulting from flattening, for n = 8, the MiniZinc model of Fig. 1. The
INT LIN EQ([a1, a2], [x1, x2], b) constraint holds if and only if a1 · x1 + a2 · x2 = b, where the ai and b are
constants and the xi are variables

2.2.2 The MiniZinc challenge

Since 2008, solvers can compete in the annual MiniZinc Challenge [34, 35]. For each chal-
lenge, a collection of 100 MiniZinc instances is gathered and used to compare solvers. After
each challenge, the results and the instances are published and can in turn be used to further
benchmark new solvers and solving technologies.

2.2.3 Existing backends

There are many backends for MiniZinc and they use various solving technologies. Some of
them are based on Gecode [16] (CP), OR-Tools [30] (CP), Opturion CPX [29] (CP/lazy-
clause generation), SCIP [1] (mixed integer programming), fzn2smt [7] (SAT modulo
theories), iZplus [15] (a hybrid of CP and local search), and sunny-cp [3] (a portfolio of
solvers). With the exception of sunny-cp, most backends are parsers translating FlatZinc
models into constructs of the underlying solver in a straightforward manner. However,
sunny-cp extracts features of the model to decide which solver(s) to use.

To the best of our knowledge, iZplus [15] is the only MiniZinc backend using some form
of local search: solutions found by its CP solver are modified by some form of local search
to find neighbouring solutions. Unfortunately, very few details are available on this local
search procedure.

2.3 Constraint-based local search

Local search (see, e.g., [21]) is a family of search procedures in which all variables are
assigned from the start and the assignment is iteratively modified until some stopping crite-
rion is met, such as reaching a time or iteration limit. The modification from one assignment
to the next one usually involves only a few variables and is called a move. A move is usually
picked among a set of candidate moves, called a neighbourhood. Some well-known local
search procedures are called tabu search, simulated annealing, and variable neighbourhood
search (see [21] for an overview).

Local search is incomplete, meaning that it is unable to prove unsatisfiability or optimal-
ity, or to conclude having found all solutions to a problem. Instead, local search methods



Constraints (2015) 20:325–345 329

are often able to find good-quality solutions in a short amount of time, including for very
large problem instances that complete methods cannot handle in useful time. Local search
often uses randomisation, hence several executions of the same search procedure on the
same instance can produce different results.

Constraint-based local search (see [40]) adapts ideas of CP to local search: a declara-
tive modelling language allows the programmer to define a problem in terms of variables,
invariants, constraints, and an objective variable. An invariant maintains the value of one
or more variables (the output of the invariant) to be equal to some function of the values
of other variables (the input). Invariants are stated declaratively and the solver takes care of
maintaining them incrementally upon modification of the input variables, say upon a move.
The variables appearing in an invariant need not be decision variables of a COP. They can
also be introduced by the solver to maintain auxiliary information.

As in CP, one can use the constraints to guide the CBLS procedure towards a good solu-
tion. There are however a number of key differences with CP. First, as in local search,
variables are assigned a value at all time. Second, constraints can be handled in three
different ways:

– Implicit constraints are always satisfied during search. An implicit constraint is main-
tained satisfied through the use of a neighbourhood that only contains moves that keep
the constraint satisfied. The initial assignment is also created to satisfy the implicit
constraint.

For example, an ALLDIFFERENT(x) constraint can be made implicit by initially
assigning all variables in x to different values, and, during search, performing moves
on x that either swap the values of two variables or assign a variable to an unused value.
Other neighbourhoods are given in Section 5.1.

– One-way constraints are also always satisfied during search. A one-way constraint
is maintained satisfied by setting one or more of its variables to be the output of an
invariant whose inputs are its other variables. We say that the output variables of the
invariant are defined by the one-way constraint.

For example, the constraint a + b = c can be made a one-way constraint in any one
of three ways. Either c is maintained to be a + b, or a is maintained to be c − b, or b is
maintained to be c − a.

– Soft constraints are constraints that do not have to be satisfied during search. Instead,
the violation of a soft constraint is a constraint-specific measure of how violated it
is. The violation is zero when the constraint is satisfied and positive otherwise. The
violation of a constraint is maintained by an invariant defining an introduced variable.
All soft constraints must be satisfied in any solution.

For example, the violation of the constraint a ≤ b can be defined to be max(0, b−a):
the violation is 0 if a ≤ b and b − a otherwise.

All constraints can be soft but only the ones representing a functional dependency can
be one-way. All constraints can theoretically be made implicit but in practice only a few
implicit constraints can be handled, because designing a neighbourhood of only solutions
would be equivalent to solving the problem.

In addition to the model, CBLS solvers usually require the modeller to write a search
procedure (e.g., a tabu search). To this end, CBLS solvers provide ways to query the values
of variables and the violations associated with constraints and variables, in order to help
drive the search towards (good) solutions.

Figure 3 shows pseudo-code of a CBLS model to solve the n-queens problem with n = 8.
Line 3 creates an array of variables: the constructor Var(d, v) creates a variable with



330 Constraints (2015) 20:325–345

Fig. 3 Pseudo-code of a CBLS model for the 8-queens problem

domain d and initial value v. Lines 4 and 5 introduce sixteen one-way constraints to define
the cpi and cmi variables through invariants (corresponding to the expressions inside the
constraints on lines 5 and 6 of Fig. 1). The constraints on lines 6 and 7 are soft constraints.
The constraint (of line 4 of Fig. 1) stating that all c[i] should take a different value is here
implicit: the initial assignment is a permutation of the values 1 to n (lines 2 and 3), and
the moves are defined to swap the values of two variables c[i] (line 11). A basic search
procedure is given on lines 8 to 12: while the sum of the violations of the two soft constraints
is larger than zero (line 8), two rows are selected randomly (lines 9 and 10) and the columns
of the queens in these rows are swapped (line 11). When given the FlatZinc model of Fig. 2,
our backend creates the same CBLS model as the one in Fig. 3, but with a different search
procedure.

3 Designing a CBLS backend

The implementation of a CBLS backend for MiniZinc presents several challenges. Some
arise because CBLS is a more recent field than, say, constraint programming or integer
programming. Others are caused by implicit assumptions made in the MiniZinc world (be
it by the designers of the language or by its users). In this work, we focus on presenting a
backend that works with existing MiniZinc models without modification. In Section 7, we
will briefly discuss how one can modify MiniZinc models or add annotations that would
help a CBLS backend.

We developed our CBLS backend, fzn-oscar-cbls, on top of the CBLS part of the
OscaR library [9]. OscaR [31] is a collection of open-source software, written in Scala,
for operations research. It includes, among others, a CP solver, a wrapper to linear pro-
gramming solvers, and a CBLS solver here referred to as OscaR/CBLS. Other CBLS
solvers exist, such as Comet [40], Kangaroo [26], and the Adaptive Search library [8].
Oscar/CBLS is, to the best of our knowledge, the only publicly available and actively main-
tained CBLS solver that is complete enough for our purposes. While our code is specific
to OscaR/CBLS, the ideas developed in this paper are generally applicable to other CBLS
solvers.

When given a FlatZinc model, parsed using a parser generated with Antlr [32],
fzn-oscar-cbls performs the following tasks:

1. The FlatZinc model is simplified and variable domains are tightened.
2. Each constraint is classified as soft, implicit, or one-way.



Constraints (2015) 20:325–345 331

3. The actual CBLS model is created.
4. Search is performed on the CBLS model and solutions are printed as they are found.

These tasks are explained in Sections 4 (tasks 1 to 3) and 5 (task 4).
Our backend is accompanied by a library of global constraint decompositions to be

used during flattening to FlatZinc. In particular, a number of global constraints are handled
natively: ALLDIFFERENT, (SUB)CIRCUIT, counting constraints (e.g., GLOBALCARDI-
NALITY, AMONG), INVERSE, MAXIMUM, MINIMUM, and CUMULATIVE. For the other
global constraints, we use the solver-independent decompositions of MiniZinc, some-
times because they are good enough for our purpose, but mainly due to their absence in
OscaR/CBLS. We are currently working on extending OscaR/CBLS to improve the global
constraint support. In its current state, our backend only supports integer and Boolean
variables and constraints. It would be straightforward to extend it to set variables as
OscaR/CBLS supports them.

The source code of fzn-oscar-cbls is available from https://bitbucket.org/oscarlib/
oscar/src/?at=fzn-oscar. The executable is currently available from http://www.it.uu.se/
research/group/astra/software and will be part of the next release of OscaR.

4 Structuring the CBLS model

We now describe how the FlatZinc model is transformed and analysed to obtain a suitable
CBLS model (tasks 1 to 3 of Section 3).

4.1 Simplification

In the first task, unary constraints are propagated, to reduce the domains of their variables,
and removed from the model. Some simple binary constraints are also propagated. This
process can reduce the domains of some variables to singletons, turning them into con-
stants. Hence, more constraints can become unary and the propagation is repeated until no
more de-facto unary constraints can be removed. This task is necessary to avoid unbounded
domains that may appear in naı̈ve models. In the current version of the backend, this propa-
gation is implemented in an ad-hoc way, hence we only implemented propagation for some
constraints that appear often. In future versions of fzn-oscar-cbls, we plan to use the
CP part of OscaR to perform propagation of all constraints until fix-point as this might
drastically reduce the size of the search space.

Figure 4 gives an example a of FlatZinc model where propagation largely reduces the
domains. In this model, the domains of the variables are initially unbounded, as denoted by
the keyword int on lines 1485 to 1487. Using the unary constraints on lines 2990 to 3750,
our current constraint propagation reduces the domains of the bout variables to 0..2500
and the domains of the buf variables to 0..10000. By propagating all constraints until fix-
point, it is in this case also possible to reduce the size of the domain of the c variables by
propagating constraints such as the int lin eq constraint on line 4133. Here the domain
of c[3] can be reduced to −8500..14000.

4.2 Constraint classification

The second task is concerned with the main challenge in implementing a CBLS back-
end, namely to decide how to translate each constraint of the FlatZinc model into a CBLS

https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar
https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar
http://www.it.uu.se/research/group/astra/software
http://www.it.uu.se/research/group/astra/software


332 Constraints (2015) 20:325–345

Fig. 4 Excerpts of the FlatZinc model resulting from flattening the wwtpp.mzn model with the
ex02000 2400 100.dzn data file from the 2010 MiniZinc Challenge

constraint. Indeed, there are up to three possibilities for each constraint. In theory, one could
use only soft constraints, but this generally leads to very poor performance. On the con-
trary, we argue that it is important to have as much structure as possible by using one-way
and implicit constraints. However, there are some limitations of one-way and implicit con-
straints: A variable can only be defined by one one-way constraint; and an implicit constraint
cannot be defined on variables that are defined by a one-way constraint or that appear in
another implicit constraint. When alternatives exist, it is not clear how to choose which con-
straints are made implicit or one-way in order to solve best the FlatZinc model. We describe
here our heuristic approach to this challenge.

First, we try to greedily discover as many one-way constraints as possible. We execute
the following steps in order:

1. All constraints annotated with defines var in the FlatZinc model are made one-way
constraints.

2. Starting from the objective variable, if any, we explore the model to turn as many of the
constraints as possible into one-way constraints, as described in Algorithm 1.

3. For each variable v that is not yet defined by a one-way constraint, by order of decreas-
ing domain size, we pick a constraint c on v in order to make c a one-way constraint
defining v. The constraint c must functionally define a unique variable, namely v. For
instance, the constraint max(x, y) = z only functionally defines z. But the constraint
x + y = z functionally defines each of x, y, and z from the other two variables, and
would not be considered in this step. A variable for which there exists no such constraint
is skipped in this step.

4. For each variable v that is not yet defined by a one-way constraint, by order of decreas-
ing domain size, we pick a constraint c on v in order to make c a one-way constraint
defining v. The constraint c must functionally define v but, in this step, it is not required
to functionally define only v. The constraint c must not have been made one-way yet.
A variable for which there exists no such constraint is skipped in this step.

5. The one-way constraints are topologically sorted based on the following digraph: each
one-way constraint is a node; there is an edge from a constraint a to another constraint
b if the variable defined by a appears in b. For each cycle, one constraint is made
non-one-way. We pick a constraint whose defined variable has the smallest domain, ties



Constraints (2015) 20:325–345 333

Algorithm 1 FINDONEWAYCONSTRAINTSFROMOBJECTIVE

1: Set all variables to non-visited
2: Let Q be a FIFO queue containing initially only the objective variable
3: while Q is not empty do
4: Let v be the first variable in Q and dequeue it
5: if v is not defined and v can be defined by some constraint c then
6: Set c to be a one-way constraint defining v

7: if v is defined by some constraint c then
8: Enqueue all non-visited input variables of c into Q and set them to visited

being broken by taking the constraint with the largest number of input variables being
defined by another invariant. This step ensures that no cycle is formed by the invariants.
While cycles can be accepted in the static graph of invariants as long as they are absent
from the dynamic graph (see [40, page 96] for details), we forbid cycles altogether to
keep things simple. Finding the minimum number of one-way constraints to remove
to make the graph acyclic is known as the minimum feedback arc set problem and is
known to be NP-hard [22]. Hence we do not try and find the smallest number or even
approximate it.

In the current version of fzn-oscar-cbls, we only consider one-way constraints that
define one variable. However, there are constraints that can have several defined variables.
This is for instance the case of the SORT and GLOBALCARDINALITY (with variable car-
dinalities) constraints. Trying to make those constraints one-way requires changes to our
heuristic and is left as future work.

Next, we try and find implicit constraints. We currently only support a small number of
implicit constraints, namely ALLDIFFERENT, GLOBALCARDINALITY with non-variable
cardinalities, LINEAREQUALITY (called int lin eq in FlatZinc, see Fig. 2) with unit
coefficients, CIRCUIT, and SUBCIRCUIT. For each such constraint c, by decreasing order
of its number of variables, if c is not defined over any variable that is defined by a one-way
constraint or that is in another implicit constraint, then c is made implicit. All remaining
constraints are classified as soft.

Our heuristic approach to the classification of constraints gives priority to finding one-
way constraints rather than implicit constraints. Our rationale is that it seems better to reduce
the search space (by defining variables with invariants) than to structure the search space
with specific neighbourhoods.

This greedy heuristic can have negative effects. For instance, considering LINEARE-
QUALITY constraints over Boolean variables as one-way proved to hinder the solving of
some problems (e.g., some vrp instances of the MiniZinc Challenge 2011). Also, in general,
having a greedy approach has the drawback that some bad decisions might remove good
choices later on. However, it has the advantage of being fast and seems to give overall sat-
isfactory results. We plan to study further how other heuristics might have an impact on the
efficiency of fzn-oscar-cbls.

4.3 CBLS model creation

In the third task, the CBLS model is created. It comprises the following elements, which
will be used in the search procedure (see Section 5):

– A collection of neighbourhoods for the implicit constraints.



334 Constraints (2015) 20:325–345

– A collection of invariants that maintain one-way constraints.
– The global violation, which is the sum of the violations of all soft constraints.
– A collection of independent variables, which are the variables that do not appear in an

implicit constraint and are not defined by a one-way constraint.
– Optionally, the objective variable.

In OscaR/CBLS, an invariant does not enforce that its output variable must take a value
in its domain. Hence, when creating the CBLS model, we must add a soft unary constraint
on each variable defined by a one-way constraint to enforce that it takes a value in its
domain.

5 Black-box local search

Another challenge for our CBLS backend is to design a suitable black-box search procedure.
One cannot get the help of the often used search annotation of MiniZinc, as it is specific to
the description of CP branching heuristics. Hence it is necessary to design a general-purpose
and autonomous search procedure, as OscaR/CBLS does not provide one.

Our search procedure (task 4 of Section 3) is based on the elements of the CBLS
model presented in Section 4.3. In Section 5.1, we describe the used neighbourhoods. In
Section 5.2, we explain our search procedure.

5.1 Constraint-based neighbourhoods

Our search procedure makes use of several neighbourhoods: There are two general-purpose
neighbourhoods involving only independent variables, and one specific neighbourhood for
each implicit constraint. By design choice, each variable can be involved in at most one
neighbourhood. The only variables that do not appear in a neighbourhood are the variables
defined by one-way constraints.

Each neighbourhood has two responsibilities: defining possible moves given a current
assignment; and creating a randomised initial assignment. Each constraint-specific neigh-
bourhood is defined such that the associated constraint is satisfied by the initial assignment
and is maintained satisfied by the moves. In our implementation, neighbourhoods do not
return all possible moves to the search procedure but are queried for a (random) best move
(see [6] for details). We now review the moves defined by each neighbourhood.

The first general-purpose neighbourhood defines the moves for all independent integer
variables. Each move of this neighbourhood is the reassignment of a independent integer
variable to another value in its domain. The initial assignment is created by picking a random
value in the domain of each independent integer variable.

The second general-purpose neighbourhood defines the moves for all independent
Boolean variables. It defines two kinds of moves. Moves of the first kind change the value
of one independent Boolean variable; moves of the second kind swap the values of two
independent Boolean variables. The initial assignment is created by picking a random value
in the domain of each independent Boolean variable.

The two general-purpose neighbourhoods are not mutually exclusive: Both can be used
simultaneously during search if the model features both independent integer variables and
independent Boolean variables, as is often the case. Those neighbourhoods are also used
together with the neighbourhoods specific to any constraints that have been made implicit.
We now describe those constraint-specific neighbourhoods.



Constraints (2015) 20:325–345 335

The neighbourhood for ALLDIFFERENT defines two kinds of moves. The first one is a
swap between the values of two variables; the second one is a reassignment of a variable
to an unused value. Those two kinds of moves ensure that the constraint stays satisfied if
it is satisfied initially. The initial assignment is created by picking a random value for each
variable within its domain until all values are different.

The neighbourhood for GLOBALCARDINALITY with upper and lower bounds on the car-
dinalities defines two kinds of moves: A swap between the values of two variables, and a
reassignment of a variable so that all cardinalities are satisfied. Any swap keeps the con-
straint satisfied. A reassignment is part of the neighbourhood only if it violates neither the
lower bound for the old value of the reassigned variable nor the upper bound for the new
value of the reassigned variable. The initial assignment is created by randomly assigning
variables so that all lower and upper bounds are respected.

Each move defined by the neighbourhood for CIRCUIT corresponds to the removal of
one vertex from the circuit and its insertion at some other point. The neighbourhood for
SUBCIRCUIT extends this by also allowing removals without corresponding insertion as
well as insertions of previously removed vertices. The initial assignment is created by setting
the successor of each vertex i to vertex i + 1 modulo the number of vertices.

The neighbourhood for LINEAREQUALITY with unit coefficients defines moves involv-
ing two variables: the value of one variable is decreased by some amount and the value of
the other variable is increased by the same amount in order to keep the sum constant. The
initial assignment is created by first setting each variable to the minimal value of its domain,
then randomly increasing some of them until their weighted sum is equal to the required
sum.

5.2 Search procedure

Our search procedure works in two or three consecutive phases: a greedy local search that
improves the initial assignment (Section 5.2.1); a first tabu search to find a solution (Sec-
tion 5.2.2); if there is an objective variable, a second tabu search to find better solutions
(Section 5.2.3).

The values of all numerical parameters used below have been chosen through preliminary
tests on the MiniZinc Challenge 2010 (see [6] for details). Although our search procedure
is sensitive to the parameter values, it is likely that it is even more sensitive to other factors
(e.g., which constraints are handled natively). As our backend is in its early stages of design,
we consider it to be premature to make a proper sensitivity analysis. In the future, we plan
to use automated algorithm configuration tools (e.g., [20]) to tune properly the parameters
of the search procedure.

5.2.1 Greedy search

The greedy search tries to minimise the global violation. It cycles over all the independent
variables and for each variable reassigns it to a possibly random value that leads to the
smallest global violation. This search stops when either a solution is found, or the overall
time limit is exceeded, or three cycles over all the independent variables did not decrease
the global violation.

This greedy search cannot change the values of variables in implicit constraints and can
be trapped in a local minimum. It nevertheless proved very efficient to decrease initially the
global violation, as the initial assignment is randomly created and usually has a huge global
violation.



336 Constraints (2015) 20:325–345

5.2.2 Tabu search for satisfaction

The first tabu search tries to find a solution disregarding the objective, if there is one. In
tabu search (see, e.g., [17]), each variable that is involved in a move becomes tabu for a
number of iterations, called the tabu tenure. At each iteration, the search procedure queries
each neighbourhood for a random best acceptable move. A move is acceptable if it involves
at least one non-tabu variable or leads to an assignment with a smaller global violation
than the best one encountered so far. A random best move among the ones returned by the
neighbourhoods is then performed. In order to have a single tabu tenure while accounting
for different kinds of moves, we accept moves involving tabu variables as long as one of
them is non-tabu. Otherwise, moves involving several variables would need a shorter tabu
tenure than moves involving one variable.

The tabu tenure is adaptive according to the following scheme. Let t be the current tabu
tenure, allowed to vary between 2 and some maximum m equal to the number of variables
times 0.6. When the search makes no progress for some number of iterations (see [6] for
details), t is incremented by m/10. It is decremented by 1 when an assignment with a smaller
global violation is found. It is reset to its minimum when it has reached m. After reaching m

five times, the search is restarted by creating a new random initial assignment. In addition,
we add some randomisation by making each modified variable tabu for a random number
of iterations between t and t + m/10.

The first tabu search stops when a solution is found or the overall time limit is exceeded.

5.2.3 Tabu search for optimisation

The second tabu search tries to find solutions with a better objective value. It works very
much like the first tabu search, except that it does not try and minimise the global violation,
but an aggregate of the global violation and the objective variable. If v is the global violation
and o the objective variable, it tries to minimise α · v ± β · o, where ± is + if o is to be
minimised and − if o is to be maximised, while α and β are positive integer coefficients.
Initially, α and β are both set to 1. They evolve during search such that α is increased if the
global violation is positive (i.e., there remain unsatisfied constraints) for a large number of
iterations, and β is increased if the global violation is zero (i.e., all constraints are satisfied)
but no better solution is found for a large number of iterations (see [6] for details).

The adaptation of the tabu tenure is slightly adjusted from the first tabu search: in addition
to the scheme above, the tenure is divided by 2 whenever a better solution is found, and the
search is restarted when no better solution is found during a quarter of the overall time limit.

The second tabu search stops when the overall time limit is exceeded or a solution can
be proven optimal. This last case happens when the value of the objective variable reaches
its relevant bound as given in the model or tightened by task 1, but this is very unusual in
practice.

6 Experimental evaluation

Our aim is to show that a CBLS backend is a viable alternative to solve problems modelled
in MiniZinc. We also want to study the effect of using one-way and implicit constraints
instead of only using soft constraints. We claim neither that CBLS is better suited than other
technologies to solve problems modelled in MiniZinc, nor that fzn-oscar-cbls can
win a MiniZinc Challenge, but rather that it is a good complement to other backends.



Constraints (2015) 20:325–345 337

As discussed in Section 5.2, the parameters of our search procedure have not been
set in a systematic way. Although it is expected that our search procedure is sensitive to
the values given to these parameters, we believe that it is premature to study their effect
on the current state of our backend. On the other hand, using one-way and implicit con-
straints is an important feature of our approach, and the effects of these features are studied
here.

We discuss the results of running fzn-oscar-cbls on all models of the MiniZinc
Challenges from 2010 to 2014. This benchmark is made of 500 instances for 59 parametric
models. We ran fzn-oscar-cbls with a time-out of 3 minutes per instance, exclud-
ing flattening time, repeating each run 5 times. We also ran fzn-oscar-cbls without
using one-way constraints, without using implicit constraints, and with neither one-way nor
implicit constraints. Each of those three additional combinations was run once with a time-
out of 3 minutes per instance, excluding flattening time. Experiments were carried out inside
a VirtualBox virtual machine with access to one core of a 64-bit Intel Core i7 at 3 GHz and
2 GB of RAM.

To give a perspective on the results, we compare the results of fzn-oscar-cbls with
the results reported after the five MiniZinc Challenges over all categories. This comparison
is only indicative as the challenges were run on different hardware and with a time limit of
15 minutes per instance, for only one run per instance.

6.1 Results

Table 1 summarises the results for optimisation problems. This table has the following
columns:

– model: The name of the model.
– I : The number of instances of the model used in the MiniZinc Challenges 2010 to 2014.

When the same instance has been used twice, it is counted as two separate instances.
– soft+implicit+1way: The results of fzn-oscar-cbls with soft, implicit, and one-

way constraints, with the following sub-columns:

– sat: The percentage of runs (over 5 · I runs) in which fzn-oscar-cbls
found a solution.

– opt: The percentage of runs (over 5 · I runs) in which fzn-oscar-cbls
found the best solution known from the MiniZinc Challenges (often a proven
optimal one).

– >: The percentage of backends participating in the corresponding MiniZinc
Challenge that performed worse than fzn-oscar-cbls, averaged over all
5 · I runs. We say that a backend X performs worse than another backend Y

when Y finds a solution but not X or when both find a solution but Y finds a
solution with a better objective value than the one found by X. We do not take
into account time and we do not consider that a backend finding an optimal
solution without proving its optimality is worse than a backend proving that
its solution is optimal.

– ≥: The percentage of backends participating in the corresponding MiniZinc
Challenge with respect to which fzn-oscar-cbls did not perform worse,
averaged over all 5 · I runs.

– soft+1way: The results of fzn-oscar-cbls without implicit constraints, hence
using only soft and one-way constraints. The absence of numbers for some lines in



338 Constraints (2015) 20:325–345

Table 1 Results for optimisation problems

soft+implicit+1way soft+1way soft+implicit soft only

Model I sat opt > ≥ sat opt sat opt sat opt

road-cons 5 100 80 72 97 − − 0 0 0 0

on-call-rostering 5 100 80 48 97 − − 0 0 0 0

roster 5 100 80 41 93 − − 0 0 0 0

depot-placement 20 100 79 31 89 100 80 0 0 0 0

open-stacks 5 100 76 48 88 100 40 0 0 0 0

fast-food 10 100 72 13 76 − − 0 0 0 0

mario 10 100 62 40 74 0 0 0 0 0 0

grid-colouring 10 100 60 66 94 − − 100 20 − −
sugiyama 5 100 40 15 49 100 80 0 0 0 0

mspsp 6 100 23 23 42 − − 100 0 − −
filters 20 100 5 34 38 − − 5 0 15 0

celar 5 100 0 69 69 − − 0 0 − −
vrp 15 100 0 50 52 − − 0 0 0 0

mqueens 5 100 0 17 19 − − 0 0 0 0

stochastic-fjsp 5 100 0 0 1 − − 20 0 − −
bacp 20 99 56 20 64 − − 0 0 0 0

project-planning 6 93 0 17 18 − − 0 0 0 0

table-layout 5 92 8 14 21 − − 0 0 0 0

tpp 7 88 2 26 32 0 0 0 0 0 0

league 11 81 0 28 36 − − 0 0 0 0

smelt 5 80 0 25 33 − − 0 0 40 0

radiation 10 72 0 14 31 − − 0 0 0 0

openshop 5 68 0 12 20 − − 40 0 − −
ship-schedule 15 68 0 8 10 − − 0 0 0 0

pattern-set-mining 15 64 0 12 20 − − 0 0 0 0

still-life-wastage 5 60 0 13 21 − − 0 0 0 0

prize-collecting 5 60 0 8 21 − − 0 0 0 0

rcpsp 5 60 0 6 15 − − 60 0 − −
fjsp 5 56 0 17 43 − − 60 0 − −
ghoulomb 15 22 0 9 56 − − 0 0 0 0

parity-learning 7 20 17 5 49 − − 0 0 0 0

liner-sf-reposition. 5 20 0 1 28 20 0 0 0 0 0

train 11 18 0 3 26 − − 0 0 0 0

cyclic-rcpsp 10 18 0 1 8 − − 0 0 0 0

rcpsp-max 10 8 0 3 68 − − 0 0 − −
carpet-cutting 10 8 0 4 65 − − 0 0 0 0

spot5 5 4 0 2 5 − − 0 0 0 0

proteindesign12 5 0 0 0 100 − − 0 0 − −
elitserien 5 0 0 0 62 0 0 0 0 0 0

cargo 5 0 0 0 57 − − 0 0 0 0

l2p 5 0 0 0 25 0 0 0 0 0 0



Constraints (2015) 20:325–345 339

Table 1 (continued)

soft+implicit+1way soft+1way soft+implicit soft only

Model I sat opt > ≥ sat opt sat opt sat opt

javarouting 5 0 0 0 15 0 0 0 0 0 0

traveling-tppv 5 0 0 0 9 0 0 0 0 0 0

jp-encoding 5 0 0 0 4 − − 0 0 − −
stochastic-vrp 5 0 0 0 2 0 0 0 0 0 0

All values except I are given in percent

these columns indicates that the full version of fzn-oscar-cbls did not use any
implicit constraints, so that the results are the same.

– soft+impl: The results of fzn-oscar-cbls without one-way constraints, hence
using only soft and implicit constraints.

– soft only: The results of fzn-oscar-cbls with neither one-way nor implicit con-
straints, hence using only soft constraints. The absence of numbers for some lines in
this column indicates that fzn-oscar-cbls without one-way constraints did not use
any implicit constraints, so that the results are the same.

Table 2 summarises the results for satisfaction problems, with the same columns as Table 1,
minus the opt ones, which have no meaning for satisfaction problems.

Table 2 Results for satisfaction problems

soft+implicit+1way soft+1way soft+implicit soft only

Model I sat > ≥ sat sat sat

multi-knapsack 5 60 13 83 − 60 −
costas-array 10 50 31 88 40 0 0

fillomino 10 12 1 39 − 0 −
wwtpp-random 5 0 0 100 − 0 0

wwtpp-real 10 0 0 81 − 0 0

amaze2 6 0 0 72 − 0 0

solbat 30 0 0 67 − 0 0

pentominoes 10 0 0 51 − 0 −
nmseq 5 0 0 47 − 0 0

nonogram 15 0 0 44 − 0 −
black-hole 10 0 0 37 − 0 0

rubik 5 0 0 37 − 0 −
amaze 11 0 0 30 − 0 0

rectangle-packing 5 0 0 30 − 0 −

All values except I are given in percent



340 Constraints (2015) 20:325–345

For the following 10 optimisation problems, fzn-oscar-cbls produces good
results and is often able to find the optimal or best-known solution: bacp, depot-
placement , fast-food , grid-colouring, mario, on-call-rostering, open-stacks, road-cons, ros-
ter , and sugiyama. In the case of on-call-rostering and road-cons, it finds the known
optimal solutions on all runs, except for the largest instance of each model. Only
4 backends (out of respectively 28 and 30 entries to the MiniZinc Challenges 2013
and 2014) achieved better results than fzn-oscar-cbls on those two problems:
iZplus-free, gurobi-free, mistral-free, and chuffed-free for on-call-
rostering; and iZplus-free, iZplus-par, Choco-par, and OR-Tools-par for
road-cons. On grid-colouring, fzn-oscar-cbls finds an optimal solution on 3 instances
out of 5 on all runs, including on the difficult 12 13 instance, which only chuffed par,
bumblebee-free, g12 lazyfd-free, and smt-free could solve to optimality in
the MiniZinc Challenges 2010 and 2011. Interestingly, on mario, fzn-oscar-cbls finds
and proves, in less than 2 seconds on all runs, optimal solutions to instances annotated as
hard, while only finding suboptimal solutions for the medium instances.

For 6 other optimisation problems, fzn-oscar-cbls is able to find a solution in all
runs, but usually a suboptimal one. This is the case for celar , filters, mqueens, mspsp,
vrp, and stochastic-fjsp. In the case of vrp, it is interesting to note that although the solu-
tions found by fzn-oscar-cbls are suboptimal, only integer programming backends,
iZplus-free, mistral-free, and chuffed-free are able to achieve better results
on most instances. In the case of filters, other backends than fzn-oscar-cbls either find
an optimal solution or do not find any solution.

Regarding satisfaction problems, fzn-oscar-cbls finds solutions to costas-array
instances of size up to 16, 3 multi-knapsack instances out of 5, and one fillomino instance
out of 10. It is unable to find a solution to any of the other satisfaction models within the
time-out of 3 minutes.

For the 40 other models, fzn-oscar-cbls is unable to find any solution or any good
solution within the 3 minute time-out. For four of them, namely league, radiation, smelt ,
and tpp, despite finding suboptimal solutions, fzn-oscar-cbls finds a solution in most
runs within the 3 minute time-out on some instances that many other backends are unable
to solve at all.

Without using one-way constraints, fzn-oscar-cbls is unable to find any solution
for 51 of the 59 models, hence it is clear that using one-way constraints is important. Regard-
ing implicit constraints, using them clearly improves the results for mario and tpp, but they
have little effect for most other models.

The median time to parse each instance is about 0.6 seconds and the median time to
analyse the instance and create the CBLS model (i.e., tasks 1 to 3 from Section 3) is slightly
less than 0.6 seconds. A few instances could not be parsed or analysed at all within the 3
minutes, mainly due to memory problems (e.g., the largest nmseq instances).

6.2 Analysis

Looking closer at the models for which fzn-oscar-cbls does not find any solution or
any good solution, we observe that they usually exhibit one or more of the following features:

– global constraints that are not handled natively by fzn-oscar-cbls or
OscaR/CBLS (e.g., REGULAR, DIFFN);

– very large domains of some decision variables;
– complex logic expressions including disjunctions or implications.



Constraints (2015) 20:325–345 341

It is not surprising that models using global constraints that are not native cannot be solved
well. The obvious solution to this problem is to implement more global constraints in
OscaR/CBLS and fzn-oscar-cbls. Beside implementing the soft versions of such con-
straints, it is also useful to implement them as one-way constraints and implicit constraints.
The good results observed on the mario model are mainly due to the presence in the model
of a SUBCIRCUIT constraint, for which an appropriate neighbourhood exists.

The fact that models with very large domains are not solved well comes from our search
procedure. As each iteration requires evaluating all possible moves to find a best one, very
few iterations can be performed within the time limit. To address this, two aspects have to
be improved. First, using a CP solver to tighten initially the domains of the variables, as
mentioned in Section 4, might actually substantially speed up the search. Second, it might
be necessary, upon large domains, to switch to a search procedure that does not require the
evaluation of all possible moves at each iteration.

Complex logic expressions in MiniZinc models are translated into reified constraints at
the FlatZinc level. A reified constraint is a constraint of the form b ≡ C, where C is a
constraint and b a Boolean decision variable indicating whether C is satisfied or not. Unfor-
tunately, reified constraints are not well-handled in CBLS. Indeed CBLS solvers use the
violation of soft constraints to drive the search towards (good) solutions but reified con-
straints only have a violation of 0 or 1, leading to a very poor discrimination between
assignments. A way to overcome this limitation would be to replace, for each reified con-
straint b ≡ C, the indicator variable b by a variable v equal to the violation of C, and
to replace all constraints on the indicator variables by appropriate constraints on the vio-
lation variables. For instance, a disjunction b1 ∨ b2 would be replaced by the constraint
min(v1, v2) = 0; see [41] for more details.

Nevertheless, we consider the obtained results very promising. Indeed, while
fzn-oscar-cbls is unable to find (good) solutions for many instances, it is able to find
in a short time optimal solutions for instances that are seemingly hard for most other back-
ends (e.g., the hard instances of mario, as well as some grid-colouring instances), showing
that a CBLS backend for MiniZinc has strengths complementary to other backends.

7 Constraint modelling abstractions and annotations

We now argue that the design of abstractions and annotations of constraint modelling lan-
guages has so far been very much geared towards backends performing systematic search,
so that extensions will have to be made to give better support to backends performing local
search.

Search annotations The most notable MiniZinc annotation, search, can be made in an
actually formalised language for prescribing how to perform systematic search in the CP
style, namely as a combination of a variable selection heuristic with a value selection heuris-
tic, so as to prescribe a sequence of branching guesses to perform under backtracking search.
A CBLS backend must ignore such search annotations, as they are incompatible with local
search.

Future work consists of defining another formalised annotation language, namely for pre-
scribing how to perform local search, using abstractions like the ones of Comet/CBLS [37].

Symmetry-breaking constraints A common approach when fine-tuning a constraint model
is to identify and exploit some if not all of the symmetries of the model, namely by adding



342 Constraints (2015) 20:325–345

constraints that prevent the finding of solutions that are symmetric to the kind of solutions
to which the search is geared. This practice is very useful in systematic CP-style search,
often giving orders of magnitude of speed-up, but has often been shown counterproductive
in local search [10, 33], as the presence of symmetric solutions increases the chances of
finding solutions.

It would be helpful if symmetry-breaking constraints were marked as such by model
annotations, so that a CBLS backend (for MiniZinc) can consider discarding these con-
straints.

The tool chain for the Essence constraint modelling language [14], namely solver-
independent model selection with Conjure [2] followed by solver-specific model flattening
with Savile Row [27], features similarities with the MiniZinc tool chain, and Savile Row
can also produce MiniZinc models. This tool chain is also currently biased towards system-
atic CP-style search. Since Conjure can add symmetry-breaking constraints to a model [2],
a natural step is to annotate them as such (when producing a MiniZinc model), so that a
CBLS backend (for MiniZinc) can consider discarding these constraints.

Implied constraints Another common approach when fine-tuning a constraint model is to
infer constraints that are logically implied by those of the model but trigger additional prop-
agation under systematic CP-style search, so that solutions are found faster. The impact of
implied (or: redundant) constraints on local search performance has not been thoroughly
studied yet (to the best of our knowledge), but it has been noted that they can help guide
the search more effectively by increasing some violations, thus for instance distinguishing
variables that would otherwise be equally violated [40, page 73].

It would be helpful if implied constraints were marked as such by model annotations, so
that a CBLS backend (for MiniZinc) can consider discarding these constraints.

Propagation reduction Yet another common way to improve constraint models for system-
atic CP-style search is to replace equality constraints by non-strict inequality constraints or
equivalence by implication (see [12]), when it is safe to do so. However, in local search,
inequality constraints and implications cannot be made into one-way constraints. Hence
such model transformations usually increase artificially the size of the CBLS search space.

Although one cannot expect to use the same model when targeting different underlying
technologies, such model transformations could rather be performed automatically during
flattening.

Scheduling abstractions There are scheduling constraints that can also be used for non-
scheduling problems. For instance, the CUMULATIVE constraint can also be used for
packing problems. While this distinction does not matter for systematic CP-style search, one
solves scheduling problems in local search by reasoning at the abstraction level of tasks and
resources, which is usually much more efficient than reasoning at the level of constraints
and variables (see, e.g., [28]).

Future work consists of adding scheduling abstractions, as in OPL [36] and
Comet/CBLS [38], to MiniZinc, so that a CBLS backend for MiniZinc can more easily
detect what kind of search to use.

The MiniZinc challenge As the MiniZinc Challenge is an important driver in the MiniZinc
community, we believe it should be adapted to accommodate CBLS solvers better. Besides
the points already raised in the previous paragraphs, there are two other kinds of bias specific
to the challenge.



Constraints (2015) 20:325–345 343

First, the scoring mechanism awards more points to backends proving optimality and
unsatisfiability. As pointed out in Section 2, CBLS is an incomplete search method and is
in general unable to prove optimality or unsatisfiability. If more incomplete solvers enter
the challenge, it would be more fair to adapt the scoring mechanism or to create a separate
category for incomplete solvers.

Second, local search procedures are almost always defined using randomisation, as that
helps increase the chances of finding solutions [21]. Actually, CP-style systematic search is
nowadays also increasingly relying on non-deterministic heuristics. However, the MiniZinc
Challenge scores each solver on each instance for only one run (probably for time reasons),
hence a particular solver may score very differently on an instance across different runs. It
would be more fair if the scoring mechanism was based on aggregate statistics over at least
ten, say, runs per instance.

8 Related work

In [39], a way is proposed to exploit the semantics of a Comet/CBLS model to generate
appropriate neighbourhoods. The modeller must explicitly define invariants for one-way
constraints and annotate the other constraints as hard (i.e., implicit) or soft, and can give
weights to soft constraints to guide the search better. As we start from FlatZinc models
without such annotations, we are bound to guess how constraints can be handled (and we
use unit weights for all soft constraints). It is also described how to maintain satisfied some
implicit constraints.

Our use of neighbourhoods to maintain implicit constraints satisfied is very close to the
notion of a solution neighbourhood, which only contains assignments satisfying an associ-
ated constraint [19]. The main difference with our work is that the approach in [19] does not
require the constraint to be always satisfied, but a move will satisfy the constraint associated
with the used solution neighbourhood.

LocalSolver [5] uses a generic black-box local search procedure to solve problems mod-
elled using only Boolean decision variables. Its modelling language also features invariants,
whose output can be an integer variable. The user of LocalSolver must explicitly state
invariants and constraints, while no such distinction exists in a FlatZinc model.

Using the semantics of a model to generate an appropriate search procedure has not
been limited to CBLS. In constraint programming (CP), CP-AS [11] proposes a way to
synthesise a search heuristic from the constraints of the model. For scheduling problems,
AEON [23] recognises the class of the problem to generate an appropriate search procedure
(the modeller specifies the choice of a CP or CBLS search). Several works also integrate
several technologies and base the integration on the structure of the model, e.g., [13, 42].

9 Conclusion and future work

We have discussed the challenges in designing a CBLS backend for MiniZinc and presented
our approach implemented as fzn-oscar-cbls. We have shown that such a backend
gives good-quality results in a short time for some MiniZinc models.

Experimental results also show that there is room for improvement in our black-
box search procedure. The most important task will be to implement additional global
constraints. Our approach presents very basic features of autonomous search (see,
e.g., [18]). For instance, our tabu tenure is a simplistic example of online tuning and



344 Constraints (2015) 20:325–345

the use of constraint-specific neighbourhoods is related to case-based reasoning. However
autonomous solvers go much further in their adaptation to a class of problems or to a
particular problem and we plan to integrate some of those methods in fzn-oscar-cbls.

This work opens interesting research questions at the modelling level. As discussed in
Section 7, existing solver-independent constraint-based modelling languages such as Mini-
Zinc are very much geared towards CP-style solvers. Hence it might be necessary to rethink
or extend such languages in order to use the full potential of other technologies (not only
CBLS) without resorting to procedural languages.

We plan to enter fzn-oscar-cbls in the next MiniZinc Challenge. We hope that
this paper will foster research on other MiniZinc backends based on optimisation technolo-
gies not currently available for MiniZinc, such as, e.g., genetic algorithms or ant colony
optimisation.

Acknowledgements This work is supported by grants 2011-6133 and 2012-4908 of the Swedish Research
Council. We thank R. De Landtsheer for his support on OscaR/CBLS. We thank the reviewers for their
constructive and insightful comments.

References

1. Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Programming Compu-
tation, 1(1), 1–41.

2. Akgün, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I., & Nightingale,
P. (2013). Automated symmetry breaking and model selection in CONJURE. In C. Schulte (Ed.) CP
2013, LNCS, (Vol. 8124 pp. 107–116): Springer.

3. Amadini, R., Gabbrielli, M., & Mauro, J. (2014). Sunny: a lazy portfolio approach for constraint solving.
Theory and Practice of Logic Programming, 14, 509–524.

4. Beldiceanu, N., Carlsson, M., Demassey, S., & Petit, T. (2007). Global constraint catalogue: Past,
present, and future. Constraints, 12(1), 21–62. The catalogue is at http://sofdem.github.io/gccat.

5. Benoist, T., Estellon, B., Gardi, F., Megel, R., & Nouioua, K. (2011). LocalSolver 1.x: a black-box
local-search solver for 0-1 programming. 4OR. A Quarterly Journal of Operations Research, 9(3), 299–
316.

6. Björdal, G. (2014). The first constraint-based local search backend for MiniZinc. Bachelor Thesis in
Computer Science, Report IT 14 066, Faculty of Science and Technology, Uppsala University, Sweden.
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234847.

7. Bofill, M., Palahı́, M., Suy, J., & Villaret, M. fzn2smt, a compiler from the FlatZinc language to the
standard SMT-LIB language. http://ima.udg.edu/Recerca/lap/fzn2smt/.

8. Codognet, P., & Diaz, D. (2001). Yet another local search method for constraint solving. In K.
Steinhöfel (Ed.) SAGA 2001, First International Symposium on Stochastic Algorithms: Foundations and
Applications, LNCS, (Vol. 2264 pp. 73–90): Springer.

9. De Landtsheer, R. (2012). Oscar.cbls: a constraint-based local search engine. https://bitbucket.org/
oscarlib/oscar/downloads/Oscar.cbls.pdf.

10. Dotú, I., & Van Hentenryck, P. (2005). Scheduling social golfers locally. In R. Barták, & M.
Milano (Eds.) CP-AI-OR 2005, LNCS, (Vol. 3524 pp. 155–167): Springer.

11. Elsayed, S.A.M., & Michel, L. (2011). Synthesis of search algorithms from high-level CP models. In J.
Lee (Ed.) CP 2011, LNCS, (Vol. 6876 pp. 256–270): Springer.

12. Feydy, T., Somogyi, Z., & Stuckey, P. (2011). Half-reification and flattening. In J. Lee (Ed.) CP 2011,
LNCS, (Vol. 6876 pp. 286–301): Springer.

13. Fontaine, D., Michel, L., & Van Hentenryck, P. (2013). Model combinators for hybrid optimization. In
C. Schulte (Ed.) CP 2013, LNCS, (Vol. 8124 pp. 299–314): Springer.

14. Frisch, A.M., Grum, M., Jefferson, C., Martinez Hernandez, B., & Miguel, I. (2007). The design of
ESSENCE: A constraint language for specifying combinatorial problems. In M. Veloso (Ed.), IJCAI
2007 (pp. 80–87). AAAI Press.

15. Fujiwara, T. (2014). iZ based solver for MiniZinc Challenge. http://www.minizinc.org/challenge2014/
description izplus.txt.

16. Gecode Team. Gecode/FlatZinc. http://www.gecode.org/flatzinc.html.
17. Glover, F. (1989). Tabu Search Part I. ORSA Journal on Computing, 1(3), 190–206.

http://sofdem.github.io/gccat
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234847
http://ima.udg.edu/Recerca/lap/fzn2smt/
https://bitbucket.org/oscarlib/oscar/downloads/Oscar.cbls.pdf
https://bitbucket.org/oscarlib/oscar/downloads/Oscar.cbls.pdf
http://www.minizinc.org/challenge2014/description_{i}zplus.txt
http://www.minizinc.org/challenge2014/description_{i}zplus.txt
http://www.gecode.org/flatzinc.html


Constraints (2015) 20:325–345 345

18. Y. Hamadi, E. Monfroy, & F. Saubion (Eds.) (2012). Autonomous Search: Springer.
19. He, J., Flener, P., & Pearson, J. (2012). Solution neighbourhoods for constraint-directed local search. In

S. Bistarelli, E. Monfroy, & B. O’Sullivan (Eds.) SAC/CSP 2012 (pp. 74–79): ACM Press.
20. Hoos, H.H. (2012). Automated algorithm configuration and parameter tuning. In Y. Hamadi, E. Monfroy,

& F. Saubion (Eds.) Autonomous Search (pp. 37–71): Springer.
21. Hoos, H.H., & Stützle, T. (2004). Stochastic Local Search: Foundations & Applications: Else-

vier/Morgan Kaufmann.
22. Karp, R.M. (1972). Reducibility among combinatorial problems. In R.E. Miller, & J.W. Thatcher (Eds.)

Complexity of Computer Computations (pp. 85–103): Plenum Press.
23. Monette, J.N., Deville, Y., & Van Hentenryck, P. (2009). Aeon: Synthesizing scheduling algorithms from

high-level models. In J.W. Chinneck, B. Kristjansson, & M.J. Saltzman (Eds.) Operations Research and
Cyber-Infrastructure, Operations Research/Computer Science Interfaces, (Vol. 47 pp. 43–59): Springer.

24. Nethercote, N. Converting MiniZinc to FlatZinc. http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.
pdf.

25. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., & Tack, G. (2007). MiniZinc: Towards
a standard CP modelling language. In C. Bessière (Ed.), CP 2007, LNCS (Vol. 4741, pp. 529–543).
Springer. http://www.minizinc.org/.

26. Newton, M.H., Pham, D.N., Sattar, A., & Maher, M. (2011). Kangaroo: An efficient constraint-based
local search system using lazy propagation. In J. Lee (Ed.) CP 2011, LNCS, (Vol. 6876 pp. 645–659):
Springer.

27. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., & Miguel, I. (2014). Automatically improving con-
straint models in Savile Row through associative-commutative common subexpression elimination. In
B. O’Sullivan (Ed.) CP 2014, LNCS, (Vol. 8656 pp. 590–605): Springer.

28. Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem.
Management Science, 42(6), 797–813.

29. Opturion Pty Ltd. Opturion CPX. http://www.opturion.com/cpx.
30. OR Team at Google. OR-Tools. https://code.google.com/p/or-tools/.
31. OscaR Team (2012). OscaR: Scala in OR. https://bitbucket.org/oscarlib/oscar.
32. Parr, T.J. (2007). The Definitive ANTLR Reference: Building Domain-Specific Languages: The Prag-

matic Bookshelf.
33. Prestwich, S.D. (2002). Supersymmetric modeling for local search. In P. Flener, & J. Pearson (Eds.)

SymCon 2002. http://www.it.uu.se/research/group/astra/SymCon02.
34. Stuckey, P.J., Becket, R., & Fischer, J. (2010). Philosophy of the MiniZinc challenge. Constraints, 15(3),

307–316.
35. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The MiniZinc challenge 2008–2013.

AI Magazine, 35(2), 55–60.
36. Van Hentenryck, P. (1999). The OPL Optimization Programming Language: The MIT Press.
37. Van Hentenryck, P., & Michel, L. (2003). In F. Rossi (Ed.) Control abstractions for local search

(Vol. 2833, pp. 65–80): Springer.
38. Van Hentenryck, P., & Michel, L. (2004). Scheduling abstractions for local search. In J.C. Régin, & M.

Rueher (Eds.) CP-AI-OR 2004, LNCS, (Vol. 3011 pp. 319–334): Springer.
39. Van Hentenryck, P., & Michel, L. (2007). Synthesis of constraint-based local search algorithms from

high-level models. In A. Howe, & R.C. Holte (Eds.) AAAI 2007 (pp. 273–278): AAAI Press.
40. Van Hentenryck, P., & Michel, L. (2009). Constraint-Based Local Search: The MIT Press.
41. Van Hentenryck, P., Michel, L., & Liu, L. (2004). Constraint-based combinators for local search. In M.

Wallace (Ed.) CP 2004, LNCS, (Vol. 3258 pp. 47–61): Springer.
42. Yunes, T.H., Aron, I.D., & Hooker, J.N. (2010). An integrated solver for optimization problems.

Operations Research, 58(2), 342–356.

http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf
http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf
http://www.minizinc.org/
http://www.opturion.com/cpx
https://code.google.com/p/or-tools/
https://bitbucket.org/oscarlib/oscar
http://www.it.uu.se/research/group/astra/SymCon02

	A constraint-based local search backend for MiniZinc
	Abstract
	Introduction
	Background
	Problems and constraints
	MiniZinc and its tool chain
	FlatZinc
	The MiniZinc challenge
	Existing backends

	Constraint-based local search

	Designing a CBLS backend
	Structuring the CBLS model
	Simplification
	Constraint classification
	CBLS model creation

	Black-box local search
	Constraint-based neighbourhoods
	Search procedure
	Greedy search
	Tabu search for satisfaction
	Tabu search for optimisation


	Experimental evaluation
	Results
	Analysis

	Constraint modelling abstractions and annotations
	Search annotations
	Symmetry-breaking constraints
	Implied constraints
	Propagation reduction
	Scheduling abstractions
	The MiniZinc challenge



	Related work
	Conclusion and future work
	Acknowledgements
	References


