
EPiC Series in Computer Science

Volume 36, 2015, Pages 113–126

GCAI 2015. Global Conference on Artificial Intelligence

Implied Constraints for Automaton Constraints
María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson

Uppsala University, Department of Information Technology, SE – 751 05 Uppsala, Sweden
{Maria.Andreina.Francisco, Pierre.Flener, Justin.Pearson}@it.uu.se

Abstract
Automata allow many constraints on sequences of variables to be specified in a high-level way for con-
straint programming solvers. An automaton with accumulators induces a decomposition of the specified
constraint into a conjunction of constraints with existing inference algorithms, called propagators. To-
wards improving propagation, we design a fully automated tool that selects, in an off-line process,
constraints that are implied by such a decomposition. We show that a suitable problem-specific choice
among the tool-selected implied constraints can considerably improve solving time and propagation,
both on a decomposition in isolation and on entire constraint problems containing the decomposition.

1 Introduction
In constraint programming (CP) [20], frameworks are given in [2, 7, 18] for specifying a con-
straint on a sequence of variables in a high-level way by means of a finite automaton, possibly
augmented with accumulators in the framework of [7]. An automaton can be seen as a checker
for ground instances of the specified constraint. For example, in a nonogram puzzle, a row
constrained to contain two stretches of black cells, of lengths 4 and 3 in this order, separated
by at least one white cell but preceded and followed by any amounts of white cells, can be
checked by an automaton equivalent to the regular expression w∗b4w+b3w∗, where the row is
represented by an array of variables, whose domain value ‘w’ stands for white and ‘b’ for black.

The framework of [18] lifts an automaton without accumulators into a propagator for the
specified constraint. It maintains hyper-arc consistency [20], here called domain consistency :
all infeasible values are removed from the domains of all variables. The more general framework
of [7] lifts an automaton with accumulators into a decomposition of the specified constraint in
terms of constraints with existing propagators (we will see the details in Section 2.3).

In this paper, we focus on the more general framework of [7], where accumulators were
motivated by the need to specify a constraint C on a sequenceX of variables using an automaton
whose size does not depend on the length of X: accumulators are initialised at the start state
and evolve through the transitions; upon acceptance, the accumulators are usually linked to a
result variable of C via an arithmetic constraint. The Global Constraint Catalogue [4] gives very
compact automata with accumulators and at most five states for 59 constraints (and some will
be given in Section 2). However, maintaining domain consistency for Automaton is in general
NP-hard [9]. Getting close to domain consistency is the challenge we tackle in this paper.

We continue our earlier work [17], where we added constraints implied by the decomposition
in order to improve propagation: we manually translated an automaton with accumulators into

G.Gottlob, G.Sutcliffe and A.Voronkov (eds.), GCAI 2015 (EPiC Series in Computer Science, vol. 36),
pp. 113–126



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

an imperative checker, with a loop iterating over the input symbols, fed the checker into an
off-the-shelf automated loop-invariant generator, and manually translated each loop invariant
into an implied constraint. We did so for two particular constraints, but we proved for one of
them that domain consistency is maintained at no asymptotic overhead for the decomposition
extended by a manual choice of implied constraints. We experimentally studied the impact of
the implied constraints only on the decompositions, but not on entire constraint problems.

After a summary of the background material in Section 2, enabling us to make a very precise
formulation of our objective in Section 2.4, the contributions and impact of Sections 3 and 4
of this paper are as follows:

• We design a fully automated tool (at http://www.it.uu.se/research/group/astra/
software/impGen.zip) that reads any automaton, in the SICStus Prolog syntax, of a
large subclass of those in the Global Constraint Catalogue and selects a set of constraints
that are implied by the decomposition of the constraint specified by the automaton.

• Our tool is not based on an off-the-shelf loop-invariant generator. For better control,
we design our own generator, which works directly on the automaton (rather than on its
translation into an imperative program) and directly generates implied constraints (rather
than loop invariants that have to be translated into implied constraints). Our tool is based
on Farkas’ lemma and has parameters for controlling the quality of its results.

• Our tool eliminates uninteresting and propagation-redundant constraints from the gener-
ated set of implied constraints, so as to ease the user’s choice of implied constraints that
are actually added to the decomposition. The latter choice is problem-specific and beyond
the scope of our tool.

• We experimentally show that a suitable choice of implied constraints can improve propa-
gation on the decomposition. We do not aim at maintaining domain consistency for the
decomposition. On entire constraint problems, solving time can be reduced despite the
overhead in running more propagators for the decomposition.

• Since our implied constraints are linear, we strongly believe they are also relevant in the
context of integer-programming decompositions, such as in [16] for Regular, of con-
straints specified by automata with accumulators: first experiments [1] confirm this.

In Section 5, we conclude and discuss other related work as well as future work.

2 Background: Constraints on Automata

We define background concepts that are not commonly known. We add running examples for
the rest of this paper, and precisely state its objective.

2.1 Automata, the Regular and Automaton Constraints

Recall that a deterministic finite automaton (DFA) is a tuple 〈Q,Σ, δ, q0, A〉, where Q is the
set of states, Σ the alphabet, δ : Q × Σ → Q the transition function, q0 ∈ Q the start state,
and A ⊆ Q the set of accepting states. When δ(q, σ) = q′, there is a transition from state q to
state q′ upon consuming alphabet symbol σ in the word given to the DFA. Let Σ∗ denote the
infinite set of words built from Σ, including the empty word, denoted ε. The extended transition
function δ̂ : Q × Σ∗ → Q for words (instead of symbols) is recursively defined by δ̂(q, ε) = q

and δ̂(q, wσ) = δ(δ̂(q, w), σ) for a word w and symbol σ. Note that δ and δ̂ are total functions.

114

http://www.it.uu.se/research/group/astra/software/impGen.zip
http://www.it.uu.se/research/group/astra/software/impGen.zip


Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

A word w is accepted if δ̂(q0, w) ∈ A. An example will be given soon, but first we argue for
augmenting DFAs with a memory, in the spirit of [7], to encode compactly many constraints.

A DFA is useful for encoding a constraint on a sequence X of variables: the Regular(D, X)
constraint [18] holds if the word represented by X is accepted by DFA D. There are propa-
gators achieving domain consistency for Regular in time polynomial in the DFA size [18].
DFAs augmented with a memory [7] were motivated by the need to encode a constraint on a
sequence X using an automaton whose size does not depend on the length of X.

Example 1. In a sequence, a group [4] is a maximal contiguous subsequence with values
from a given set. The nGroup(X,W,N) constraint [4] holds if there are N groups of values
from the given set W in the possibly empty sequence X of variables. The ground instance
nGroup([a, d, d, b, e, a, b], {a, e}, 2) holds since there are 2 groups of occurrences of ‘a’ and ‘e’
in the sequence [a, d, d, b, e, a, b], namely [a] and [e, a]. This constraint of the CHIP solver is
useful in staff rostering, where counting constraints on a sequence (the shift assignments of an
employee over a planning horizon, say) are frequent. It has no known propagator, and encoding
it using Regular requires designing a DFA whose size depends on the length of X.

We here define a memory-DFA (mDFA) with a memory of k ≥ 0 integer accumulators as a
tuple 〈Q,Σ, δ, q0, I, A, α〉, where Q, Σ, q0, and A are as in a DFA, while the transition function
δ has signature (Q × Zk) × Σ → Q × Zk, and similarly for its extended version δ̂. Further, I
is the k-tuple of initial values of the accumulators in the memory. Finally, α : A× Zk → Z is a
total function called the acceptance function and transforms the memory of an accepting state
into an integer. Given a word w, the mDFA returns α(δ̂(〈q0, I〉, w)) if w is accepted.

Example 2. Consider the mDFA N in Figure 1a. It returns the number of groups of ‘∈’ within
a word over the alphabet Σ = {∈, 6∈}. It uses k = 1 accumulator: at any moment, accumulator
c stores the number of groups seen so far. The state set Q is {s, t}. The start state q0 is s, and
is indicated by an arrow coming from nowhere, annotated within braces by the initialisation to
zero of c, hence I = 〈0〉. A transition δ(〈q, 〈c〉〉, σ) = 〈q′, 〈c′〉〉, where c′ is a functional expression
in terms of c, is depicted by an arrow going from state q to state q′, annotated by symbol σ
and, within braces, the memory update 〈c〉 := 〈c′〉. For instance, the arc from s to t depicts
that δ(〈s, 〈c〉〉,∈) = 〈t, 〈c+ 1〉〉 for all c. If an update corresponds to the identity function, then
we do not depict it; for instance, both self-loops have no depicted updates, as 〈c〉 := 〈c〉. All
states are accepting, hence A = Q. The acceptance function α transforms a memory 〈c〉 at
both states into c, and is depicted by a box linked to both states by a dotted line. Note how
the size of N does not depend on the length of the word it consumes.

The Automaton(M, X,R) constraint [7] holds if the word represented by the sequence X
of variables is accepted by mDFA M and variable R is the integer returned by M, that is
R = α(δ̂(〈q0, I〉, X)). IfM has k = 0 accumulators (and hence there are no α and R), then this
constraint specialises to Regular(M, X). The feasibility test of Automaton is NP-hard [9].
The decomposition of [7] will be given in Section 2.3, but we first need to make an observation.

2.2 Signature Variables and Signature Constraints

A constraint C on a sequence X of variables can often be encoded with the help of a DFA
or mDFA that operates not on X, but on a sequence S of variables that are called signature
variables, each depending via a signature constraint [7] on a sliding window of a consecutive
variables within X. The constant a ≥ 1 is called the arity of the signature constraints.

115



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

return c

s{c := 0}

t

6∈

∈
{c := c+ 1}

∈

6∈

(a)

s{〈c, `〉 := 〈0, 0〉}

return c

t u

∈

6∈

∈
{` := `+ 1}

6∈

6∈
{〈c, `〉 := 〈c+ `, 0〉}

∈
{` := `+ 1}

(b)

Figure 1: (a) Memory-DFA N with one accumulator for nGroup(X,W,N).
(b) Memory-DFA F with two accumulators for FullGroupNval(X,W, T ).

Example 3. Consider the nGroup([X1, . . . , Xn],W,N) constraint of Example 1. We constrain
a sequence [S1, . . . , Sm] of m = n signature variables Si with domain {∈, 6∈} by the signature
constraints (Xi ∈W ⇔ Si = 8∈′)∧ (Xi 6∈W ⇔ Si = 86∈′) for all 1 ≤ i ≤ n: we have a = 1 since
each signature constraint is on a single Xi. Using the mDFA N of Example 2 and Figure 1a we
encode nGroup([X1, . . . , Xn],W,N) by Automaton(N , [S1, . . . , Sn], N) and these signature
constraints. For the ground instance nGroup([a,d, d, b, e, a, b], {a, e}, 2), the mDFA N returns
c = 2 on the signature sequence [∈, 6∈, 6∈, 6∈,∈,∈, 6∈].

Example 4. In a sequence, a full group [4] is a group that does not include the first or last ele-
ment of the sequence. The FullGroupNval(X,W, T ) constraint [4] holds if the full groups for
the setW in the possibly empty sequenceX of variables have T elements in total. The ground in-
stance FullGroupNval([a, d,d, b, e, a, b], {a, e}, 2) holds since there is one full group of occur-
rences of ‘a’ and ‘e’ in the sequence [a, d, d, b, e, a, b], namely [e, a], with 2 elements, but not the
group [a]. Using the mDFA F of Figure 1b, we encode FullGroupNval([X1, . . . , Xn],W, T )
by Automaton(F , [S1, . . . , Sn], T ) and the signature constraints of Example 3. Note that ac-
cumulator `, which denotes the length of the current group, is reset to zero in the transition
from state u to state t, when the previous group is detected to have been a full group.

Example 5. In an integer sequence [X1, . . . , Xn], an inflexion [10] is a maximal contiguous sub-
sequence [Xi, . . . , Xj ] with Xi ≤ Xi+1 ≤ · · · ≤ Xj−1 > Xj or Xi ≥ Xi+1 ≥ · · · ≥ Xj−1 < Xj ,
where j ≥ i + 2. The Inflexion(X,N) constraint [10] holds if there are N inflexions in the
non-empty sequence X of integer variables. The ground instance Inflexion([1, 1, 4, 8, 2, 7, 1], 3)
holds since there are 3 inflexions in the sequence [1, 1, 4, 8, 2, 7, 1], namely [1, 1, 4, 8, 2], [8, 2, 7],
and [2, 7, 1]. Using the mDFA I of Figure 2, we encode Inflexion([X1, . . . , Xn], N) by
Automaton(I, [S1, . . . , Sn−1], N) and the signature constraints (Xi < Xi+1 ⇔ Si = ‘<’) ∧
(Xi = Xi+1 ⇔ Si = ‘=’) ∧ (Xi > Xi+1 ⇔ Si = ‘>’) for all 1 ≤ i < n, with arity a = 2.

The Global Constraint Catalogue gives very compact memory-DFAs, with accumulators and
at most 5 states, for currently 59 constraints.

116



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

s{c := 0}

return c

i d

=

< >

<

=
>

{c := c+ 1} =

>
<

{c := c+ 1}

Figure 2: Memory-DFA I with one accumulator for Inflexion(X,N).

2.3 Decomposition of the Automaton Constraint

Consider a constraint C([X1, . . . , Xn], R) encoded by an Automaton(M, [S1, . . . , Sm], R) con-
straint and signature constraints channelling between the variables Xi and the signature
variables Si. In the absence of signature constraints and signature variables, we consider
S1 = X1 ∧ S2 = X2 ∧ · · · ∧ Sm = Xn, with m = n, to be the signature constraints, as
this simplifies the discussion. Let the mDFA M = 〈Q,Σ, δ, q0, I, A, α〉 have k accumulators.
The Automaton(M, [S1, . . . , Sm], R) constraint has the following decomposition [7, 3]:

Q0 = q0 ∧ 〈C0
1 , . . . , C

0
k〉 = I ∧Qm ∈ A ∧ α(〈Cm

1 , . . . , C
m
k 〉) = R ∧∧m

i=1 Trans(Qi−1, 〈Ci−1
1 , . . . , Ci−1

k 〉, Si, Q
i, 〈Ci

1, . . . , C
i
k〉)

(1)

where:

• Each Qi is a new variable, called a state variable, with domain Q: it denotes the state ofM
after the values of the signature variables S1, . . . , Si have been consumed, with 0 ≤ i ≤ m.

• Each Ci
j is a new integer variable, called an accumulator variable: it denotes the value of

the jth accumulator ofM after S1, . . . , Si have been consumed, with 0 ≤ i ≤ m.

• The ground instance Trans(q, 〈c1, . . . , ck〉, σ, q′, 〈c′1, . . . , c′k〉) holds if δ transits from state
q to state q′ for symbol σ ∈ Σ and updates the tuple of k accumulators from the values
〈c1, . . . , ck〉 to the arithmetic expressions 〈c′1, . . . , c′k〉; it is called a transition constraint.

The Automaton constraint of SICStus Prolog [15] is implemented as (1), with Trans encoded
via Table and arithmetic constraints for the accumulator updates. Even if domain consistency
were maintainable efficiently for Trans, maintaining domain consistency for Automaton is
in general NP-hard [9]: encoding the potential accumulator values in the automaton states to
enjoy the polynomial-time domain consistency of Regular leads to combinatorial explosion.

2.4 Precise Statement of Our Objective

We are now able to state precisely our objective. We aim at automatically generating implied
constraints that can improve propagation for the decomposition of an Automaton(M, S,R)
constraint where M has at least one accumulator. The generation is specific to M but not
to S and is done off-line. It is very important to understand that we do not aim at maintaining
domain consistency for the decomposition extended by the implied constraints: our tool cannot

117



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

make any such guarantees. If one experimentally observes that domain consistency is achieved
for all tried instances in the presence of implied constraints, then one has to make a custom
proof that domain consistency is actually maintained in general in their presence: such a proof
can be very involved, witness [17, section III.C] for a constraint not discussed here.

We focus on memory-DFAs where every accumulator update is a linear expression on the
accumulators. This includes increments and decrements by constant amounts (as in c := c+ 1)
or by other accumulators (as in c := c+ `), resets (as in Example 4), etc. This excludes updates
using the ‘max’ and ‘min’ operators, for instance. We will revisit this issue in the conclusion.
In the Global Constraint Catalogue, 12 of the mentioned 59 constraints with memory-DFAs are
within our scope, including those of Examples 3 to 5, but hundreds more are given in [5].

Further, we focus on implied constraints that are linear inequalities on the accumulator and
state variables (upon numbering the states ofM). We will revisit this issue in the conclusion.

3 Generation of Linear Implied Constraints
Our approach to inferring constraints implied by the decomposition of an Automaton(M, S,R)
constraint consists of three steps. First, using one half of Farkas’ lemma and a linear template T
for implied constraints, we set up a system N of non-linear constraints that model T being true
at every state of the memory-DFA M (Section 3.1). Second, we solve N , each solution pro-
viding an instantiation of T into a particular linear implied constraint (Section 3.2). Third,
we eliminate uninteresting and propagation-redundant constraints from the generated set of
implied constraints (Section 3.3). We consider the user’s choice of implied constraints that are
actually added to the decomposition to be a problem-specific rather than constraint-specific
task, so our tool offers no help in that choice, as it focusses on suggesting implied constraints.

3.1 Implied Constraints: Template and Set-Up of the System N

We adapt the recipe of [21] for linear transition systems. A linear transition system does not
have notions of consumption and acceptance of words, but is otherwise like a memory-DFA if
every accumulator update of the latter is a linear expression on the accumulators. Everything
that follows requires linearity, also of the implied constraints, so we now make that restriction.

One half of Farkas’ lemma (e.g., [14]) says that a system of e linear inequalities ai1y1 + · · ·+
aikyk+bi ≥ 0 over k real-valued variables yj has another linear inequality α1y1+· · ·+αkyk+β ≥
0 over the same variables as a logical consequence if the latter is equal to a linear combination
of the former, that is, if there exist e real numbers λi ≥ 0 such that αj =

∑e
i=1 λiaij , for

1 ≤ j ≤ k, and β ≥∑e
i=1 λibi. The following representation helps to see this:

λ1 a11y1 + · · ·+ a1kyk + b1 ≥ 0
...

...
...

...
...

λe ae1y1 + · · ·+ aekyk + be ≥ 0
α1y1 + · · ·+ αkyk + β ≥ 0

If the ith linear constraint is an equality, then the requirement λi ≥ 0 is dropped. The other
half of Farkas’ lemma gives a necessary and sufficient condition for a linear inequality to be a
logical consequence of a system of linear inequalities. We do not need it as we do not aim at
completeness and thus need not prove that a set of generated implied constraints is complete.

Let variable yj denote the jth accumulator of M, with 1 ≤ j ≤ k. Our linear template T
for implied constraints for now is α1y1 + · · ·+αkyk +β ≥ 0, where the Greek letters denote the

118



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

variables for which we will solve constraints. An instance of template T is true at every state
ofM if it is true at the start state ofM and if its truth is preserved by every transition ofM.
We now show how to encode this using Farkas’ lemma. For the start state, we encode using
Farkas’ lemma that the point-wise initialisation equalities behind 〈y1, . . . , yk〉 = I have T as a
logical consequence, where I is the k-tuple of initial values of the accumulators ofM.

Example 6. Recall the mDFA in Figure 1b for the FullGroupNval constraint of Example 4.
There are k = 2 accumulators, called c and `, both initialised to 0. So the template for implied
constraints is α1c+α2`+ β ≥ 0 and it must be a logical consequence of the e = k initialisation
equalities c = 0 and ` = 0, with a11 = 1 = a22, a12 = 0 = a21, and b1 = 0 = b2. Using Farkas’
lemma, we get the constraints ∃λ1, λ2 : α1 = λ1 ∧ α2 = λ2 ∧ β ≥ 0 of N . Some instances of the
template for implied constraints that fulfil those constraints are c ≥ 0 and c+ 2`+ 1 ≥ 0.

For each transition δ(〈q, 〈y1, . . . , yk〉〉, σ) = 〈q′, 〈y′1, . . . , y′k〉〉 ofM, where each y′j is a linear
functional expression in terms of all the yj , we encode using Farkas’ lemma that template T has
T [y/y′] as a template logical consequence, where T [y/y′] denotes T with every yj substituted
by y′j . The resulting constraints are in general non-linear.

Example 7. Continuing from Example 6, first consider the two transitions to state u, upon
which accumulator ` is incremented by 1. The desired template logical consequence T [y/y′]
of T is α1c + α2(` + 1) + β ≥ 0. Using Farkas’ lemma and rearranging, we get for each of
these transitions the non-linear constraints ∃λ3 ≥ 0 : α1 = λ3α1 ∧ α2 = λ3α2 ∧ α2 + β ≥ λ3β
of N . Second, consider the transition from u to t, upon which accumulator c is incremented
by ` and accumulator ` is then reset to zero. The desired template logical consequence T [y/y′]
of T is α1(c + `) + α20 + β ≥ 0. Using Farkas’ lemma and rearranging, we get the non-
linear constraints ∃λ4 ≥ 0 : α1 = λ4α1 ∧ α1 = λ4α2 ∧ β ≥ λ4β of N . Finally, for the self-
loop on state t, upon which there is no accumulator update, we get the non-linear constraints
∃λ5 ≥ 0 : α1 = λ5α1 ∧ α2 = λ5α2 ∧ β ≥ λ5β of N .

We now go beyond adapting the recipe of [21], by discussing three refinements of the ideas
seen so far. First, many implied constraints that provide extra propagation are expressed
not only on the current values of the accumulators, but also on their values upon previous
transitions. For example, only implied constraints that provide no extra propagation, such
as c ≥ 0 and ` ≥ 0, result from the solutions to the constraint system N we have set up in
Examples 6 and 7: those examples were simple enough to explain all features of the procedure,
but simpler than practical applications thereof. The following other example is enlightening.

Example 8. Recall the mDFA in Figure 1a for the nGroup constraint of Example 1: it
has one accumulator, called c, and c ≤ c2 + 1 does provide extra propagation [17], where
the new accumulator c2 denotes the value of c two transitions ago. We say that the history
length is 2. Let another new accumulator c1 denote the value of c one transition ago. Upon
adding the initialisation 〈c2, c1〉 := 〈0, 0〉 to the start state, and adding the accumulator update
〈c2, c1〉 := 〈c1, c〉 to each transition, we get the template α1c2 +α2c1 +α3c+ β ≥ 0, so that the
desired implied constraint c ≤ c2 + 1 corresponds to α1 = 1 = β ∧ α2 = 0 ∧ α3 = −1.

Our tool allows the user to indicate the history length h, so that appropriate accumulator
terms are added to the template T . Things scale when h · k grows, since the process is off-line.

Second, the template T can be extended by adding a term ρq for the state q at which the
automaton is. This requires numbering the states. For example, this extension is actually
necessary for generating the implied constraint c ≤ c2 + 1 of Example 8, as we will see in
Example 9. Our tool allows the user to switch on this option.

119



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

Third, we have so far described how to generate implied constraints that are true at every
state of M. We can also make as many copies of the template as there are states in M, so
as to aim at generating state-specific implied constraints. We must then use the appropriate
template copies each time we apply Farkas’ lemma for the start state or a transition. For
example, an implied constraint specific to the start state s of the mDFA in Figure 1a for the
nGroup constraint is c1 = c, inferred from the invariants c1 ≤ c and c1 ≥ c; we will see in
Example 9 an encoding of this implied constraint when a term on the state variable q is added
to the template. Our tool allows the user to switch on this option.

3.2 Implied Constraints: Generation by Solving the System N

So far, we have shown how to set up a system N of non-linear constraints that are on the
variables denoted by Greek letters in the template α1y1 + · · ·+ αkyk + ρq + β ≥ 0 for implied
constraints, but not on its accumulator variables yj and state variable q. We now show how
to solve N so that each solution provides an instantiation of the variables αj , ρ, and β of the
template, yielding an implied constraint on the accumulator variables yj and state variable q.

Memory-DFAs are defined for integer accumulators, so we solve the non-linear constraint
system N for integer values of the variables αj , ρ, β, and λi: this is our second deliberate relax-
ation of completeness. Further, we reckon that for each variable a small finite integer interval
centred on zero, such as from −5 to +5, suffices for finding many useful implied constraints:
this is our last deliberate relaxation of completeness. Since our tool is written in SICStus Prolog
and reads automata in the SICStus Prolog syntax used in the Global Constraint Catalogue,
we use the finite-domain CP solver of SICStus Prolog [15], although we could have used any
integer programming solver: we solve upon linearising N by branching on values for the λi.

Many implied constraints that provide extra propagation are not generated in one go, even
if all options are switched on.

Example 9. Consider the implied constraint c ≤ c2 + 1 of Example 8. Let us number state s
of the mDFA in Figure 1a as 0 and state t as 1. Generating this implied constraint requires the
prior knowledge that c− c1 ≤ q, meaning that c and c1 are equal at the start state s and apart
by at most one unit at state t. It turns out that c − c1 ≤ q actually is an implied constraint.
So let us add this implied constraint to the top side of each application of Farkas’ lemma, with
its own multiplier λp, and set up a second non-linear system N2. It turns out that c ≤ c2 + 1
is now an implied constraint, generated from a solution to N2.

Our tool allows the user to indicate an upper bound u on the number of non-linear systems
it will set up and solve; it will finish earlier if no new implied constraints are generated at some
iteration. Recall that the whole generation process is specific to an automaton but not to the
constrained sequence, so that it is off-line and can take an arbitrary amount of time. Our tool
takes from seconds to days, depending on the parameters, especially u and the history length h.

3.3 Implied Constraints: Redundancy Elimination and Selection

Some generated implied constraints are useless. For example, when ρ and all the αj are zero,
we can get an implied constraint like 5 ≥ 0, which is vacuously true and cannot improve
propagation, but will slow it down. Other generated implied constraints are propagation-
redundant. For example, the implied constraint c ≤ c2 + 1 of Example 9 is redundant with
3c ≤ 3c2 + 3, and the former will give better propagation than the latter. As another example,
the implied constraint c+ ` ≥ 0 is redundant with the implied constraints c ≥ 0 and ` ≥ 0 that

120



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

result from the solutions to the constraint system N we have set up in Examples 6 and 7. Such
redundancies stem from our not finding generators for the solutions to N .

Our tool automatically eliminates useless and redundant constraints. The remaining implied
constraints are suggested to the user, who can experimentally choose a suitable problem-specific
subset that provides a good speed-up for the problem at hand.

As the decomposition (1) of Automaton(M, [S1, . . . , Sm], R) reveals accumulator and state
variables Ci

j and Qi for every prefix [S1, . . . , Si], with 0 ≤ i ≤ m, we post an implied constraint
α1y1 + · · ·+αkyk + ρq+ β ≥ 0 as α1C

i
1 + · · ·+αkC

i
k + ρQi + β ≥ 0 for every 0 ≤ i ≤ m rather

than just for i = m. An implied constraint γ specific to state q is posted as (Qi = q)⇒ γ.

4 Results

To assess the generated implied constraints, we experimented on decompositions in isolation
(Section 4.1) and in the context of entire constrained optimisation problems (Section 4.2).
These experiments were run for the constraints of Examples 3 to 5, for which no dedicated
propagators are known. Our tool may select hundreds of implied constraints and some of them
may not improve propagation. So we first tested individually all the implied constraints that
were selected by our tool in less than a minute for u = 3, and then chose a small subset of those
that provided the greater time or failure reduction on the decomposition in isolation: c ≥ c2 and
c2 + 1 ≥ c for nGroup (h = 2), c ≥ c1 and c4 + `4 + 4 ≥ c+ ` for FullGroupNval (h = 4),
as well as c1 + 1 ≥ c and c2 + 2 ≥ c for Inflexion (h = 2). Note that, in the presence
of the signature constraints, generating random initial domains for the signature variables
[S1, . . . , Sm] is equivalent to generating random initial domains for the variables [X1, . . . , Xn].
All experiments were run in SICStus Prolog 4.2 [15] on a quad core 3.07 GHz Intel Core i7-950
machine with 8 MB cache, running openSUSE 13.1.

4.1 Experiments on Decompositions in Isolation

We generated instances with sequences [S1, . . . , Sm] of m signature variables as well as random
initial domains for the result variable R (one value, two values, and intervals of length 2 or 3) and
the Si (one or two values for nGroup and FullGroupNval, where the signature constraints
have arity a = 2; one to three values for Inflexion, where a = 3). Unless otherwise indicated,
the instances for nGroup have sequences of length m = 100, those for FullGroupNval
have m = 50, and those for Inflexion have m = 15: the length m varies for each constraint
in order to make the sequences long enough so that it takes at least 0.01 seconds to find all
solutions, if any, to most instances. We generated a set of 1,500 satisfiable instances and a set
of 1,500 unsatisfiable instances for each constraint in order to show that the implied constraints
have different effects on each of the sets. For each constraint, the decomposition alone and the
decomposition with implied constraints are tested on the same two sets of instances. The default
search strategy is used: leftmost variable first (R before the Si), lower value first. However, our
purpose is orthogonal to picking a search strategy: the implied constraints do not introduce
new variables and would thus not affect many search strategies, and we obtained similar results
with other search strategies, as we will show in Section 4.2.

The results on the sets of satisfiable instances are shown in Figure 3. The decomposition of
nGroup (left column) with the implied constraints is almost always faster than the decompo-
sition alone, is about 30% faster on average, and has about 60% fewer failures on average. The
decomposition of FullGroupNval (centre column) with the implied constraints is sometimes
faster than the decomposition alone, but is about 20% slower on average, and has about 50%

121



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

0 0.2 0.4 0.6
0

0.2

0.4

0.6

equal time

30% faster

0 0.5 1
0

0.5

1

equal time

20% slower

0 5 10 15 20
0

5

10

15

20

equal time

35% faster

0 5,000 10,000
0

5,000

10,000

equal failure counts

60% fewer failures

0 5,000 10,000
0

5,000

10,000

equal failure counts

50% fewer failures

0 2.5 · 105 5 · 105
0

2.5 · 105

5 · 105

equal failure counts

95% fewer failures

Figure 3: Seconds (top row) and failures (bottom row) to find all solutions to satisfiable instances
of nGroup (left column), FullGroupNval (middle), and Inflexion (right). The x-axis is
for the presence of implied constraints and the y-axis is for the decomposition alone.

fewer failures on average. The decomposition of Inflexion (right column) with the implied
constraints is always faster than the decomposition alone, is about 35% faster on average, and
has almost 100% fewer failures on average: failures are not always equal to zero, since these
implied constraints do not guarantee domain consistency.

The results on the sets of unsatisfiable instances are shown in Figure 4. The decomposition
of nGroup (left column) with the implied constraints is almost always faster than the decompo-
sition alone, is about 50% faster on average, and has about 75% fewer failures on average, even
for instances of up to m = 500 signature variables. The decomposition of FullGroupNval
(centre column) with the implied constraints is almost always faster than the decomposition
alone, is about 40% faster on average, and has about 85% fewer failures on average. The decom-
position of Inflexion (right column) with the implied constraints is almost always faster than
the decomposition alone, is about 60% faster on average, and has about 50% fewer failures on
average. For Inflexion, all unsatisfiable instances are detected as unsatisfiable by the decom-
positions with and without the implied constraints either at the root of the search tree or after
failing only once, even for instances of up to m = 200 signature variables, that is over 10 times
longer than for our experiments on satisfiable instances. For Inflexion, about 50% of the
unsatisfiable instances are not detected as unsatisfiable at the root by the decomposition alone,
but are detected as unsatisfiable at the root by the decomposition with the implied constraints.

4.2 Experiments on Entire Constraint Problems

In order to test the implied constraints also in the context of entire constraint problems in-
volving Automaton constraints, we generated hard random constrained optimisation problem
instances, inspired by the schemes in [22]. The generated instances have the following features:

• A set S of s = 15 variables, with domain {0, 1, 2}.

122



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

0 0.1

0

0.1

equal time

50% faster

0 0.1 0.2 0.3
0

0.1

0.2

0.3

equal time

40% faster

0 0.01 0.02 0.03

0

0.01

0.02

0.03

equal time

60% faster

0 200 400 600
0

200

400

600

equal failure counts

75% fewer failures

0 5,000 10,000
0

5,000

10,000

equal failure counts

85% fewer failures

0 1 2

0

1

2

equal failure counts

50% fewer failures

Figure 4: Seconds (top row) and failures (bottom row) to prove unsatisfiability of instances of
nGroup (left column), FullGroupNval (middle), and Inflexion (right). The x-axis is for
the presence of implied constraints and the y-axis is for the decomposition alone. Note that
there really are 1,500 data points in each plot: many of them coincide.

• A sequence R of r = 5 variables with domain {0, 1, . . . , s}.
• A system of b0.5 · r · ln rc = 4 constraints, divided as follows: two constraints of the kind

that is being tested (i.e., two FullGroupNval constraints, two nGroup constraints, or
two Inflexion constraints), and two randomly picked constraints among AllDifferent,
linear equalities, linear inequalities, nGroup, FullGroupNval, and Inflexion.

• Each nGroup, FullGroupNval, and Inflexion constraint is on a randomly picked sub-
set of S and a randomly picked Ri as the result variable. An AllDifferent constraint
is on a randomly picked subsequence of R. A linear equality constraint

∑r
i=1 di ·Ri = 0 is

on R, with randomly picked coefficients di ∈ {−1, 0, 1}. A linear inequality constraint is
of the form Ri > Rj or Ri > 2 ·Rj +R`, for randomly picked elements of R, possibly with
repetition. There is no guarantee that all variables of R and S participate in some con-
straint. The implied constraints are added only to the decomposition of every occurrence
of the constraint that is being tested.

• The cost to be maximised is the sum of the variables Ri.
• The search strategy is leftmost variable first (the Ri before the Si), domain splitting, lower

half first. Again, our purpose is orthogonal to picking a search strategy: the implied con-
straints do not introduce new variables and would thus not affect many search strategies,
and we obtained similar results with other search strategies, as seen in Section 4.1.

We consider optimisation problems instead of finding first or all solutions to satisfaction prob-
lems because, in our particular case, when maximising the sum of the Ri, the result variables N
of nGroup and T of FullGroupNval are conflicting objectives: if N is maximal, then T is
at most half the sequence length (groups of length 1); conversely, if T is maximal, then N = 1.
However, similar results were obtained for finding all solutions to hard satisfaction problems.

123



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

0 50 100 150
0

50

100

150

equal time

80% faster

0 20 40
0

20

40

equal time

95% faster

0 100 200 300 400
0

100

200

300

400

equal time

50% faster

0 2.5 · 106 5 · 106
0

5 · 106

equal failure counts

80% fewer failures

0 1 · 106 2 · 106 3 · 106
0

1 · 106

2 · 106

3 · 106

equal failure counts

95% fewer failures

0 4 · 106 8 · 106 1.2 · 107
0

4 · 106

8 · 106

1.2 · 107

equal failure counts

50% fewer failures

Figure 5: Seconds (top row) and failures (bottom row) to maximise a sum in problems involving
nGroup (left column), FullGroupNval (middle), or Inflexion (right). The x-axis is for
the decomposition with implied constraints and the y-axis is for the decomposition alone.

The results on 1,000 optimisation instances are shown in Figure 5: when the implied con-
straints are added to the decompositions, both time and failures are always reduced. This is
observed even for the FullGroupNval constraint, on which the implied constraints increase
the average time for satisfiable instances, as seen in Figure 3. The extra propagation provided
by the implied constraints has a positive effect as the time to prove optimality is reduced,
despite the potential overhead in computing the propagator fixpoint at each search tree node.

5 Conclusion, Related Work, and Future Work

We have described a fully automated parametric tool that selects, in an off-line process, a set of
non-redundant linear constraints that are implied by the decomposition in [7] of a constraint on
a sequence of variables, the constraint being specified by a checker provided as an automaton
with linearly updated accumulators. This setting covers a large class of useful constraints. We
have shown that a suitable choice, by the user, among the selected implied constraints can
considerably improve solving time and propagation, both on a decomposition in isolation and
on entire constraint problems containing the decomposition. With the extra propagators for the
implied constraints, it potentially takes more time to compute the fixpoint of the propagators
at each node of the search tree: this may backfire on the decomposition alone, but usually pays
off on entire constraint problems containing the decomposition, due to the extra propagation.

The closest related work is [6], where we generate constraints implied by the decomposition
of an Automaton(M, X,R) constraint when the variable R takes the same value whether the
automatonM consumes the sequence X or its reverse. Like here, the implied constraints are
on the accumulator variables and state variables, but they need not be linear. Unlike here, the
generation is limited to the indicated particular case and is manual in most sub-cases.

124



Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

Graph invariants are used in [8] to generate implied constraints automatically. In contrast,
our approach does not require a database of precomputed invariants. There is also a large
body of related work (e.g., [11, 12, 13, 19]) on decomposing constraints manually in order to
maintain domain consistency on the decomposition. In contrast, we offer an automatic approach
to improving the level of consistency on constraint decompositions.

In the future, we want to use a richer template than linear inequalities for implied con-
straints, generated in this paper by exploiting Farkas’ Lemma. For instance, a non-linear
template can be used by exploiting Gröbner bases. Also, disjunction enables the generation of
implicative implied constraints; a motivating example is our manual derivation in [17] of such
implied constraints for a constraint not discussed here, so as to achieve domain consistency
actually. This will enable us to handle the full language of SICStus Prolog for accumulator up-
dates, including the use of the ‘max’ and ‘min’ operators, thereby covering all the (currently 59)
memory-DFAs with accumulators in the Global Constraint Catalogue.

Despite the prospects of such extensions, we have shown that even a linear template can
already lead to considerable acceleration of the constraint solving process.

References
[1] E. Arafailova. Reformulation of automata for time series constraints as linear programs. Master’s

thesis, Mines Nantes, France, 2015.
[2] R. Barták. Modelling resource transitions in constraint-based scheduling. In W. I. Grosky and

F. Plášil, editors, SOFSEM 2002, volume 2540 of LNCS, pages 186–194. Springer, 2002.
[3] N. Beldiceanu, M. Carlsson, R. Debruyne, and T. Petit. Reformulation of global constraints based

on constraints checkers. Constraints, 10(4):339–362, 2005.
[4] N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint catalogue: Past, present,

and future. Constraints, 12(1):21–62, March 2007. Catalogue at http://sofdem.github.io/gccat.
[5] N. Beldiceanu, M. Carlsson, R. Douence, and H. Simonis. Using finite transducers for describing

and synthesising structural time-series constraints. In G. Pesant, editor, CP 2015, LNCS. Springer,
2015, forthcoming.

[6] N. Beldiceanu, M. Carlsson, P. Flener, M. A. Francisco Rodríguez, and J. Pearson. Linking prefixes
and suffixes for constraints encoded using automata with accumulators. In B. O’Sullivan, editor,
CP 2014, volume 8656 of LNCS, pages 142–157. Springer, 2014.

[7] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from constraint checkers.
In M. Wallace, editor, CP 2004, volume 3258 of LNCS, pages 107–122. Springer, 2004.

[8] N. Beldiceanu, M. Carlsson, J.-X. Rampon, and C. Truchet. Graph invariants as necessary condi-
tions for global constraints. In P. van Beek, editor, CP 2005, volume 3709 of LNCS, pages 92–106.
Springer, 2005.

[9] N. Beldiceanu, P. Flener, J. Pearson, and P. Van Hentenryck. Propagating regular counting
constraints. In C. E. Brodley and P. Stone, editors, AAAI 2014, pages 2616–2622. AAAI Press,
2014.

[10] N. Beldiceanu, G. Ifrim, A. Lenoir, and H. Simonis. Describing and generating solutions for the
EDF unit commitment problem with the ModelSeeker. In C. Schulte, editor, CP 2013, volume
8124 of LNCS, pages 733–748. Springer, 2013.

[11] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and T. Walsh. Reformulating
global constraints: The slide and regular constraints. In SARA 2007, volume 4612 of LNAI, pages
80–92. Springer, 2007.

[12] C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. Decomposition of the
NValue constraint. In D. Cohen, editor, CP 2010, volume 6308 of LNCS, pages 114–128. Springer,
2010.

125

http://sofdem.github.io/gccat


Implied Constraints for Automaton Constraints Francisco Rodríguez, Flener, and Pearson

[13] C. Bessière, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit complexity and decompositions
of global constraints. In C. Boutilier, editor, IJCAI 2009, pages 412–418. AAAI Press, 2009.

[14] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[15] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver. In

H. Glaser, P. Hartel, and H. Kuchen, editors, PLILP 1997, volume 1292 of LNCS, pages 191–206.
Springer, 1997. SICStus Prolog is available at http://sicstus.sics.se.

[16] M.-C. Côté, B. Gendron, and L.-M. Rousseau. Modeling the Regular constraint with integer
programming. In P. Van Hentenryck and L. A. Wolsey, editors, CP-AI-OR 2007, volume 4510 of
LNCS, pages 29–43. Springer, 2007.

[17] M. A. Francisco Rodríguez, P. Flener, and J. Pearson. Generation of implied constraints for
automaton-induced decompositions. In A. Brodsky, E. Grégoire, and B. Mazure, editors, IC-
TAI 2013, pages 1076–1083. IEEE Computer Society, 2013.

[18] G. Pesant. A regular language membership constraint for finite sequences of variables. In M. Wal-
lace, editor, CP 2004, volume 3258 of LNCS, pages 482–495. Springer, 2004.

[19] C.-G. Quimper and T. Walsh. Decomposing global grammar constraints. In C. Bessière, editor,
CP 2007, volume 4741 of LNCS, pages 590–604. Springer, 2007.

[20] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,
2006.

[21] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-relations analysis. In
R. Giacobazzi, editor, SAS 2004, volume 3148 of LNCS, pages 53–68. Springer, 2004.

[22] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint satisfaction: Easy gener-
ation of hard (satisfiable) instances. Artificial Intelligence, 171(8):514–534, 2007.

126

http://sicstus.sics.se

	Introduction
	Background: Constraints on Automata
	Automata, the Regular and Automaton Constraints
	Signature Variables and Signature Constraints
	Decomposition of the Automaton Constraint
	Precise Statement of Our Objective

	Generation of Linear Implied Constraints
	Implied Constraints: Template and Set-Up of the System N
	Implied Constraints: Generation by Solving the System N
	Implied Constraints: Redundancy Elimination and Selection

	Results
	Experiments on Decompositions in Isolation
	Experiments on Entire Constraint Problems

	Conclusion, Related Work, and Future Work

