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Abstract—We consider a novel application in wireless sensor
networks where mobile phones and wireless sensors can col-
laborate to collect sensing data. Although mobile phones can
perform sensing at different locations, it is a challenge to
provide stable sensing quality and availability over the entire
area. One approach is to deploy stationary sensors at specific
locations to maintain the sensing quality and availability. In
this paper, we present a mathematical programming model to
minimise the deployment cost by placing a minimum number
of sensors at optimal locations. The problem is modelled by
integer linear programming considering the sensing capabilities
of both the mobile phones and wireless sensors. We evaluated
the performance of our solution in terms of sensing quality,
number of required sensors, and computation time. The results
demonstrate that our approach satisfies the required sensing
quality with optimal number of sensors in small sensing fields.
It achieves near optimal solution with low computation time for
large sensing fields.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely sug-
gested for environmental protection, transportation, industrial
production, health care, home safety, etc [1], [2]. They are
constructed by a number of sensors that measure temperature,
sound, vibration, motion, pollutants, etc. Even though indi-
vidual sensors are not very expensive, a large network can
have considerably high deployment and maintenance costs.
In the meantime, mobile phones are increasingly popular and
are often equipped with sensing capabilities, like camera,
microphone, motion sensor, and GPS, which allow them to
be used as sensors for different applications [3].

A number of sensing applications have emerged recently
that use mobile phones to assist sensing. These applications
are often referred to as participatory sensing [3] or urban
sensing [4]. For example, in “What’s Invasive” [5], mobile
phone users are asked to take pictures of invasive species
that are a threat to native plants and animals, consuming food
sources, or acting as fire hazards. The data collected by the
mobile phone users are uploaded to a server for aggregation
and publishing. It is understood that mobile phone users, who
join a sensing activity voluntarily, would enable their phones
to collect sensing data for that purpose. However, the mobility
and dynamic behaviour of mobile phone users make it hard
to guarantee a constant level of sensing coverage and quality.

In this work, we consider a collaborative sensing system
that enables mobile phones and stationary sensors to perform

sensing together. Mobile phones can collect sensing data at
different locations as they are carried by their users who are
moving freely in the sensing field. Stationary sensors can
complement the relatively dynamic sensing performance of the
mobile phones. We consider a meshed network infrastructure
that supports wireless communication standards, such as 3G,
WiFi and Zigbee, for mobile phones and wireless sensors
to report their data. The stationary sensors can be deployed
at different locations to monitor the environment and hu-
man activities. Our goal is to minimise the deployment cost
of stationary sensors, while maintaining satisfactory sensing
quality (average of sensor measurements compared with the
ground truth) in the collaborative sensing system. Moreover,
we target one-time deployment of the sensors to avoid extra
costs of re-configuration and re-deployment.

Our main contribution is to model and solve the one-
time deployment problem for large-scale sensor networks. We
model the problem using integer programming (IP). The aim
is to minimise the number of sensors and to place them at
optimal locations to ensure the required sensing coverage. We
make use of real mobile traces collected from Disney World
Orlando [6], [7] to evaluate the sensing coverage, number of
sensors, and computation time of our solution.

The rest of this paper is organised as follows. In section II
we present an overview of our network involving three phases
of gathering data, preprocessing, and deployment of stationary
wireless sensors. We present the preprocessing phase of the
raw data in section III, followed by an IP model in section IV.
We evaluate our model in section V, and present related
works in section VI. Finally, the conclusion and future work
is presented in section VII.

II. SYSTEM OVERVIEW

Our deployment is designed to have three phases. In the
first phase, the mobile phone users collect data in the sensing
field, while GPS traces of their locations are collected every 30
seconds during a period of time (typically 10 hours up to one
day). In the second phase, we analyse the collected coordinates
to discover the coverage provided by the mobile phones,
according to their sensing quality (preprocessing phase). In
the third phase, the stationary sensors are deployed to ensure
that a satisfactory total level of coverage in sensing is achieved,
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according to the sensing quality provided by the sensors in the
entire sensing field.

III. PREPROCESSING

The raw data resulting from phase one contain GPS co-
ordinates collected by mobile phone users. Without loss of
generality, we focus on square sensing fields, and we divide
the sensing field into square cells of side size CellSize, where
CellSize is typically between 20 and 200 meters. The ag-
gregated sensing coverage, which measures the sensing quality
provided by the mobile phone users, is calculated every hour
for all cells. We consider that the sensing capability of both the
mobile phones and the sensors are the same, as this does not
limit the applicability of the placement model [8]. Moreover,
the sensors are always deployed at the centres of the cells.
We take the detection model of [8], where the sensing quality
z(h) decreases exponentially with the distance h between the
target and the sensor:

z(h) = e−γ·h,

where γ models the quality of the sensor and the rate
at which its sensing quality diminishes with distance. Let
MaxCovRange be the maximum coverage range in meters
that a sensor or mobile phone provides, and let B be the
maximum number of cells that can be covered by a sensor
in one direction, so that B =

⌈
MaxCovRange

CellSize

⌉
.

We define the sensing mask (see Figure 1) as a square
matrix Z representing the coverage, provided as an integer
percentage, by a sensor:

∀i, j (1 ≤ i, j ≤ 2 · B − 1) :

Z[i, j] =

{⌈
100 · e−γ·h

⌉
if h ≤ MaxCovRange,

0 otherwise;
(1)

where

h = CellSize ·
√
(i− B)2 + (j − B)2,

is the Euclidean distance metric measuring the distance of a
target at coordinates (i, j) to the sensor that is at the centre
of the sensing mask, at coordinates (B ,B). By construction,
Z[B ,B ] = 100 and the size of the sensing mask is 2·B−1. In
our problem, the sensor provides full coverage (value 100) only
for the cell at which it is placed. Any cell outside the sensing
mask has a coverage of zero. Figure 1 shows an example of
a sensing mask Z based on the Euclidean distance metric for
MaxCovRange = 400 meters, CellSize = 100 meters, and
γ = 0.004, giving B = 4.

Given a sensing field of N × N cells (we say that it is
of size N ) from the GPS coordinates of the mobile phones,
we compute the coverage by placing copies of the sensing
mask Z on the location of each mobile phone, and sum all the
coverages for the overlapping masks on each cell in the sensing
field. We consider the coverage provided by the mobile phones
and sensors in the sensing field as in [9]. The coverage area
is the spatial extent of network covered by the sensors, which
represents the total information that can be extracted from all
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Figure 1. Sensing mask Z based on the Euclidean distance metric for
MaxCovRange = 400 m, CellSize = 100 m, and γ = 0.004, giving
B = 4.
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Figure 2. Two sensors placed at coordinates (3, 4) and (5, 5) provide
satisfactory total coverage over a sensing field of size N = 8, where M is
the coverage matrix provided by the mobile phones, and R is the requirement
matrix to be satisfied for all cells.

sensors in a sensing field. Intuitively, a sensing field with a
higher number of deployed sensors implies a higher reliability
of the monitored data. We adopt an additive model to measure
the aggregated sensing quality of multiple sensors in the same
sensing field [9]. In contrast, in [10] a minimum coverage
model is used, where the aggregated coverage is equal to the
minimum of the coverage provided at the considered cell.

We then take the average of the coverage at each 30 second
time slice over the entire duration of the experiment (see [11]).
As a result, the output of the second phase is an N × N
coverage matrix M , such that M [i, j] is the coverage (sensing
quality), given as an integer percentage, provided by the
mobile phones for cell (i, j) of the sensing field.

IV. DEPLOYMENT MODEL AND OPTIMISATION

Let R be a N ×N matrix, such that R[i, j] is the coverage
required, given as an integer percentage, for cell (i, j) of the
sensing field. Given the coverage M of the mobile phones, the
required coverage R, and the sensing mask Z of sensors, our
objective is to place a minimum number of stationary sensors
to achieve the required coverage R for all cells. Figure 2
shows matrices M and R for a field of size N = 8 with
a simplified sensing mask of size 3. In this example, the
coverage requirement R is satisfied by deploying two sensors,
at coordinates (3, 4) and (5, 5).

A sensor placed at cell (i, j) contributes to the coverage
of the neighbouring cells according to the sensing mask Z.
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Let s[i, j] be a binary decision variable denoting the placement
(value 1) or absence (value 0) of a sensor at cell (i, j), with
1 ≤ i, j ≤ N . We first pad the matrix s on all sides with B−1
extra rows and columns of zeros, for the ease of presentation.
Let s′ be the padded matrix.

Our integer programming formulation of the deployment
problem is defined as:

Inputs:
• M : Coverage provided by the mobile phones.
• R: Required coverage for the sensing field.
• Z: Coverage provided by a stationary sensor.
Outputs:
• s′: Placement: s′[i, j] = 1 iff a sensor is placed at

cell (i, j).
Objective:

minimize
N∑

i,j=1

s′[i, j] (2)

Such that:

M [i, j] +

2·B−1∑
k,`=1

Z[k, `] · s′[k + i− B , `+ j − B ] ≥ R[i, j]

for all i, j (1 ≤ i, j ≤ N),
(3)

s′[i, j] = 0 for all i, j ∈ padding area, (4)

s′[i, j] ∈ {0, 1} for all i, j (1 ≤ i, j ≤ N). (5)

The objective function (2) is to minimise the total number of
deployed sensors. The coverage constraints (3) ensure that for
every cell (i, j) in the sensing field, the sum of the coverage
provided by mobile phones M [i, j] and the coverage provided
by the stationary sensors in all the neighbouring cells is at least
the required coverage R[i, j]. The constraints (3) are linear, as
the sensing mask Z is a constant integer matrix. Just like for
the construction of M (in Section III), we here use the additive
coverage model of [9]. Constraints (4) ensure that no sensor
is placed on the padding area. Finally, the placement decision
variables s′ are binary (constraints (5)). The model has N2

decision variables and N2 constraints.

V. EVALUATIONS

We implemented the IP model in Gurobi Optimizer (revi-
sion 4.5.1),1 and run under Linux OpenSuse 11.4 (64 bit) on
an Intel Core i7 950 3.07 GHz with 8 MB L2 cache and 3 GB
RAM. The runtime is limited to 600 seconds. We evaluated
our model with the mobile traces collected by the participating
visitors to Disney World (Orlando, Florida, USA) [6], [7], [12],
where noise level and pictures are collected by the mobile
phone users. The instance data cover an area of approximately
16 km × 8 km. For the first instance, we choose a square
sensing field of 1 km × 1 km at the centre of that area.
This sensing field is divided into N2 = 100 cells of size
100 m× 100 m. In all other instances, we keep the same cell

1Available from http://gurobi.com
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Figure 3. Average sensing quality over a ten-hour period after deploying
the sensors for a sensing field of size N = 50, comparing our deployment
versus no sensors, random, and uniform deployment with an equal number of
sensors, and required sensing coverage of 70%.

size, i.e. CellSize = 100 m, and increase N by one, so that
the sensing field is expanded by CellSize/2 meters on each
side. We also set MaxCovRange = 400 m and γ = 0.004,
resulting in the sensing mask of Figure 1 with B = 4.

Figure 3 compares the average sensing quality of our de-
ployment versus no sensor, random, and uniform deployment
of sensors for a sensing field of size N = 50 over a ten-hour
period after deploying the sensors with a required sensing
coverage of 70% (the quantiles are not shown for space
reasons). We used an equal number of sensors computed by
our deployment for the random and uniform deployment. In
our experiment, the sensors are deployed according to a one
hour time slot in the beginning of the experiment, and the
average sensing quality is calculated every hour, considering
the coverage provided by the mobile phones and the coverage
provided by the stationary deployed sensors for each time slot
of one hour. The results show that our one-time deployment
achieves a significantly better average sensing quality after
deploying the sensors. Our deployment guarantees the required
sensing coverage of 70% for all cells in the sensing field during
the first three and last four time slots. However, we cannot
guarantee the required sensing quality during the fourth and
fifth time slot, which is due to strong variation in the mobility
of the mobile phones during this period, also the number of
mobile resources drops at the fifth time slot.

Figure 4 shows the computed number of sensors for deploy-
ment, varying the required coverage over all the cells. It also
compares the results of three different sensing fields with size
of N = 10, 30, and 50, respectively. We find that the number
of sensors increases linearly with required coverage. Also, a
larger sensing field requires more sensors to achieve the same
sensing coverage.

Figure 5 compares the computed number of wireless sensors
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Figure 4. Computed number of wireless sensors, varying the required sensing
coverage.
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Figure 5. Computed number of required wireless sensors compared to a
lower bound Slb on the optimal solution, varying the size of sensing field,
and using a required sensing coverage of 70%.

to be deployed to a lower bound Slb on the optimal solution,
varying the size of the sensing field, with a required sensing
coverage of 70%. From the results, our IP model always finds
the optimal solution up to N = 41. The solution quality for
sensing fields with N ≥ 42 is also very close to the optimum.

Table I presents the results of the same experiments starting
from grid size N = 10 up to N = 80, and a required
sensing coverage of 70%. Column Slb shows the computed
lower bound (using the dual form of the IP model) on
the number of sensors to be deployed as an indication of
the solution optimality. The gap between the lower bound
and the computed number of sensors is at most 8% in all
instances even with N ≥ 42. The columns S and Time show
respectively the computed number of sensors to be deployed

N Slb S Time N Slb S Time N Slb S Time

10 7 7 0.02 34 22 22 2.79 58 30 31 > 600

11 8 8 0.02 35 22 22 1.32 59 31 33 > 600

12 9 9 0.09 36 23 23 12.30 60 32 33 > 600

13 10 10 0.17 37 23 23 340.37 61 32 34 > 600

14 10 10 0.12 38 23 23 51.56 62 33 35 > 600

15 11 11 0.59 39 24 24 142.87 63 33 36 > 600

16 11 11 0.76 40 25 25 250.38 64 34 35 > 600

17 14 14 2.41 41 26 26 569.44 65 34 37 > 600

18 14 14 1.09 42 25 26 > 600 66 36 38 > 600

19 14 14 1.50 43 26 26 256.69 67 37 38 > 600

20 15 15 1.07 44 26 26 356.87 68 36 38 > 600

21 14 14 1.02 45 25 25 201.83 69 37 38 > 600

22 15 15 3.71 46 26 26 46.94 70 37 38 > 600

23 15 15 1.42 47 26 27 > 600 71 39 41 > 600

24 16 16 15.22 48 26 26 375.42 72 39 42 > 600

25 17 17 2.04 49 26 27 > 600 73 40 43 > 600

26 17 17 1.69 50 26 27 > 600 74 41 44 > 600

27 19 19 77.85 51 26 26 438.50 75 42 45 > 600

28 19 19 4.04 52 26 26 28.19 76 43 45 > 600

29 20 20 36.35 53 26 27 > 600 77 44 48 > 600

30 20 20 2.76 54 29 30 > 600 78 45 48 > 600

31 20 20 3.12 55 29 30 > 600 79 47 50 > 600

32 21 21 6.35 56 30 31 > 600 80 48 51 > 600

33 21 21 5.19 57 30 31 > 600

Table I
THE EXPERIMENT RESULTS REPRESENT THE GRID SIZE N , AND THE

COMPUTED (BY IP) LOWER BOUND Slb ON THE NUMBER OF SENSORS.
COLUMN S SHOWS THE COMPUTED NUMBER OF SENSORS TO BE

DEPLOYED. THE TOTAL TIME FOR THE OPTIMISATION IS GIVEN IN THE
TIME COLUMN IN SECONDS, WITH A TIMEOUT OF 600 SECONDS. THE

REQUIRED SENSING COVERAGE IS 70% FOR ALL CELLS IN THE SENSING
FIELD.

and the total time of the optimisation in seconds. The results
indicate that the optimal solutions can be computed efficiently
with much less than 600 seconds for small sensing fields
(N ≤ 35). For large sensing fields, near optimal solutions
can also be achieved in 600 seconds.

VI. RELATED WORK

The concepts of data mules and mobile sinks have been
explored to improve data collection in wireless sensor net-
works. Data Mules [13] have been proposed as a three-tier
architecture to collect data in sparse sensor networks using
moving entities. Similarly, mobile sinks have been suggested
to collect data from the sensors and forward the data to the
base station as mobile relays [14]. Various algorithms have
been proposed to control the movement of the mobile sinks
in order to optimise the performance in data collection [15],
[16]. Different from the work above, we consider the mobile
phones carried by people with independent and uncontrollable
mobility. Also, we focus on optimising the deployment cost
of stationary sensors instead of controlling the mobility of the
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moving entities.
The deployment problem of wireless sensors networks has

been widely studied. Dhillon et al. [8] proposed two greedy
algorithms for wireless sensor deployment based on a prob-
ability model in a grid sensing field. Chakrabarty et al. [17]
proposed a deployment scheme to reduce the deployment cost
for heterogeneous kinds of sensors. Apart from that, wireless
sensors have recently been suggested to improve the sensing
quality in collaboration with the mobile phones [11]. Although
a simple version of the deployment problem has been tackled
by us in [11], it was only solved by a heuristic algorithm
and only a small instance (size N2 = 100) was experimented
with. In this paper, we introduce an IP model to solve the
deployment problem, which can lead to near optimal solutions
for a much larger sensing field (size 100 ≤ N2 ≤ 6400).

Although sensor coverage with mobile sensors has been
investigated, the existing work mainly focused on deploying
or controlling the mobility of mobile sensors. Wang et al.
[18] proposed two bidding protocols for the movement of
mobile sensors to avoid the coverage holes from stationary
sensors. Similarly, Gupta et al. [19] proposed a stochastic
sensor movement strategy, which can monitor a geographical
area by a small number of mobile sensors. Different from their
work, we consider mobile phones with uncontrolled mobility
and improve the sensing performance by deploying stationary
sensors at optimal locations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a mathematical programming
model for sensor deployment in a collaborative sensing envir-
onment with both mobile phones and stationary sensors. We
model the problem by integer programming, considering the
sensing coverage of both the mobile phones and the wireless
sensors. Our solution provides satisfactory sensing coverage
as specified by the application requirements, while minimising
the number of wireless sensors in deployment. We evaluated
our model using real mobility traces and proved the optimality
of the solutions for small sensing fields. The results also
showed that close to optimal solutions can be achieved for
large sensing fields within short computation time. For the
future, we are interested in investigating how our model can
scale by introducing obstacles and solving the problem in
three dimensions. We also consider modelling the problem
by adopting other coverage models than the one used in
this work (namely additive coverage model) and compare the
performance and quality of the results.
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