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Abstract. Consider a constraint on a sequence of variables functionally
determining a result variable that is unchanged under reversal of the se-
quence. Most such constraints have a compact encoding via an automa-
ton augmented with accumulators, but it is unknown how to maintain
domain consistency efficiently for most of them. Using such an automaton
for such a constraint, we derive an implied constraint between the result
variables for a sequence, a prefix thereof, and the corresponding suffix.
We show the usefulness of this implied constraint in constraint solving,
both by local search and by propagation-based systematic search.

1 Introduction

Deterministic finite automata augmented with accumulators [4] were motivated
by the need to encode a constraint C on a sequence X of variables using an
automaton whose size does not depend on the size of X : accumulators are ini-
tialised at the start state and evolve through the transitions; upon acceptance,
the accumulators are often mapped to a result variable R of C. The Global
Constraint Catalogue [1] gives very compact automata with accumulators for 56
constraints (and some will be given shortly), but it is unknown how to maintain
domain consistency efficiently for most of them, so implied constraints can help
improve the propagation. In this paper, we consider such constraints C(X,R)
where R is the same for both X and its reverse Xrev; this covers 45 of those 56
constraints. Such constraints have proved very useful, for instance in production
sequencing and staff rostering. Given a partition of X into a prefix P and a suffix

T , we derive an implied constraint, shown to exist and be unique, between R,
−→
R ,

and
←−
R when C(X,R), C(P,

−→
R ), and C(T rev,

←−
R ) hold. We show the usefulness

of this implied constraint in constraint solving, whether by local search or by
propagation-based systematic search.

We now define the Group constraint, to which we will be referring heavily
throughout. We then give a motivating example, introducing our terminology
and serving as running example throughout the rest of the paper.
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Definition 1 ([1]). In a sequence, a group is a maximal contiguous subsequence
with values from a given set. The constraint Group(X,W,G, V,H,L) holds if
there are G groups of a total of V values from the given set W in the possibly
empty sequence X of variables, the highest and lowest group sizes being H and
L respectively, with H = 0 = L if G = 0. (W.l.o.g., we omit two parameters.)

The instance Group([d, a, c, b, e, a, b], {a, e}, 2, 3, 2, 1) holds since there are
G = 2 groups of a total of V = 3 occurrences of ‘a’ and ‘e’ in the sequence
[d, a, c, b, e, a, b], namely the groups [a] and [e, a], the highest group size be-
ing H = 2 and the lowest group size being L = 1. Group has no known
propagator. Its decomposition [1] into the conjunction GroupG(X,W,G) ∧
GroupV(X,W, V ) ∧ GroupH(X,W,H) ∧ GroupL(X,W,L) can be encoded
using four Automaton constraints on automata with accumulators [4]: see Fig-
ure 1 and Section 2 for details. These constraints are very useful, for instance in
staff rostering, where multiple counting constraints on the same sequence (the
shift assignments of an employee over a planning horizon) are quite frequent.

Example 1. Consider the instance Group([X1, X2, X3], {a}, G, V,H, L), where
dom(Xi) = {a, b}, dom(G) = {0, 1, 2} = dom(V ), dom(H) = {2, 3} = dom(L),
with dom(α) denoting the current domain of variable α. Using the encoding
mentioned above, no domain pruning is achieved on this instance.

However, it is possible to achieve some propagation on this instance, whose
solutions are Group([a, a, b], {a}, 1, 2, 2, 2) and Group([b, a, a], {a}, 1, 2, 2, 2):
among others, there cannot be G = 2 groups (as that would require a sequence
of at least five elements, as groups must have at least two elements), the groups
cannot have a total of V = 0 values (as the largest group must have at least two
elements), and X2 cannot be ‘b’ (as X2 must participate in a group of ‘a’).

We now discuss three schemes for achieving more propagation than with just
the encoding by four Automaton constraints.

Scheme 1. The Group constraint has so-called graph invariants [5], which
can be seen as implied constraints. For instance, consider the following bounds
on V :

max(G− 1, 0) · L+H ≤ V ≤ max(G− 1, 0) ·H + L (1)

Intuitively, the lower bound corresponds to having one group ofH elements while
all the other groups are as small as possible, that is, they have L elements. The
upper bound is justified in a similar way. Consider again the instance above: if
the implied constraint (1) is added to the four Automaton constraints, then 2
is pruned from dom(G), but all the other domains remain unchanged. There are
90 graph invariants in [5] for the Group constraint: the pruning upon adding
all the corresponding implied constraints is evaluated in Section 5.

Scheme 2. Note that Group([X1, . . . , Xn],W,G, V,H,L) holds if and only if
Group([Xn, . . . , X1],W,G, V,H,L) holds with the same set and the same inte-
ger variables for the reverse sequence: in Section 3.1, we will say that Group is
its own reverse constraint. Let us focus on the variable V , representing the total
number of group values. If we split a sequence [X1, . . . , Xn] with n ≥ 2 elements
into a non-empty prefix [X1, . . . , Xi] and a non-empty suffix [Xi+1, . . . , Xn], with
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1 ≤ i < n, then observe that the numbers V ,
−→
V , and

←−
V of group values respec-

tively in the entire sequence, the prefix, and the reverse suffix are related by the

constraint V =
−→
V +
←−
V : in Section 3.2, we will say that this constraint implied by

the conjunction of GroupV([X1, . . . , Xn],W, V ), GroupV([X1, . . . , Xi],W,
−→
V ),

and GroupV([Xn, . . . , Xi+1],W,
←−
V ) is a glue constraint. Glue constraints for all

the integer variables of Group are given in Figure 2 and will be explained in

Section 3.2. While GroupV([Xn, . . . , Xi+1],W,
←−
V ) could be replaced above by

GroupV([Xi+1, . . . , Xn],W,
←−
V ), this will be seen to be impossible in general

with our approach, where the third implying constraint must be on the reverse
suffix, not on the suffix itself. Now consider again the instance above: if we add
the glue constraints in Figure 2 for every possible split of the sequence (with
1 ≤ i < n), but not the implied constraint (1), then ‘b’ is pruned from dom(X2)
and 0 is pruned from dom(V ), but all the other domains remain unchanged.

Note that the extra pruning achieved by Scheme 1 is incomparable with that
achieved by Scheme 2.

Scheme 3. The idea of sequence splitting (underlying the glue constraints) can
be applied also to the implied constraints stemming from graph invariants: for
instance, instead of adding (1) on the integer variables for the entire sequence,
we can add (1) on the integer variables for the prefix and reverse suffix of every
possible split of the sequence. On the instance under consideration, applying
Scheme 1+2+3 achieves the same pruning as applying Scheme 1+2, but, in
general, more pruning is possible, as we will show in Section 5. In Section 4, we
formalise Scheme 3. ��

Multiple constraints on a sequence can originate from sources other than
the decomposition of a constraint, unlike the previous example. For instance, a
conjunction of about 20 constraints on the same sequence (of energy produced
by a plant every half an hour for two consecutive days) is the pattern learned
in the context of the EDF model seeker [7]. Also, in staff rostering, one has a
matrix indexed in the rows by the employees and in the columns by the days
of a planning horizon: each matrix cell is to be assigned an identifier (or a
special off-duty value) giving the shift assigned to the corresponding employee
on the corresponding day. The constraints on the columns are usually cardinality
constraints, stemming from a performance contract, and there are often multiple
constraints on each row, stemming from employee preferences as well as labour
union and legislative restrictions. In [2], we have addressed the lack of interaction
between such row and column constraints; in this paper, we address the lack of
interaction between the constraints on a given row.

The contributions and the organisation of the rest of this paper are as follows,
after first recalling (and slightly extending) in Section 2 the concept of automaton
with accumulators [4], which can be used for compactly encoding a constraint
on a sequence of variables using the Automaton constraint [4]:

– In Section 3, our main result, after introducing the notion of reverse of a
constraint, we define a glue constraint as an implied constraint, shown to
exist and be unique, linking the result variable R under a constraint C(X,R)
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on a sequence X of variables to the result under C on a prefix and the result
under the reverse of C on the corresponding reverse suffix ofX , where both C
and its reverse are encoded using automata with accumulators. We show how
to derive glue constraints automatically for a useful class of such constraints.

– In Section 4, we formalise Scheme 3 of Example 1 so as to cover any con-
junction of constraints Cj(X,Rj) on the same sequence X , whose results Rj

do not vary independently but are linked by an implied constraint.
– In Section 5, we evaluate the effectiveness and efficiency of the three schemes.
– In Section 6, we use the glue constraint to compute, in constant time, the

violation cost of C when probing an assignment move in local search.

We conclude and discuss related and future work in Section 7.

2 Background: Automata with Accumulators

Recall that a deterministic finite automaton (DFA) is a tuple 〈Q,Σ, δ, φ,A〉,
where Q is the set of states, Σ the alphabet, δ : Q × Σ → Q the transition
function, φ ∈ Q the start state, and A ⊆ Q the set of accepting states. When
δ(q, σ) = q′, there is a transition from state q to state q′ upon reading alphabet
symbol σ in the word given to the DFA. Let Σ∗ denote the infinite set of words
built from Σ, including the empty word, denoted ε. The extended transition
function ̂δ : Q×Σ∗ → Q for words (instead of symbols) is recursively defined by
̂δ(q, ε) = q and ̂δ(q, wσ) = δ(̂δ(q, w), σ) for a word w and symbol σ. An example
will be given shortly, but first we augment DFAs with a memory, in the spirit
of [4], in order to encode more compactly many constraints.

We here define a memory-DFA (mDFA) with a memory of k ≥ 0 accumulators
as a tuple 〈Q,Σ, δ, φ, I, A, α〉, where Q, Σ, φ, and A are as in a DFA, while the
transition function δ has signature (Q × Z

k) × Σ → Q × Z
k, and similarly for

its extended version ̂δ. Further, I is the k-tuple of initial values of the variables
in the memory. Finally, α : A × Z

k → Z is called the acceptance function and
transforms the memory of an accepting state into an integer. Given a word w,
the mDFA returns α(̂δ(〈φ, I〉, w)) if w is accepted. Note that δ, ̂δ, and α are
total functions. This definition can be generalised, but suffices for the purpose
of the examples in this paper.

Example 2. Consider the mDFA H depicted in Figure 1c. It returns the highest
size of all groups of ones within a given word of zeros and ones. It uses two
accumulators: at any moment, c stores the size of the current group, while h
stores the highest size of all the groups seen so far. The state set Q is {s}.
The alphabet Σ is {0, 1}. The start state φ is s, and is indicated by an arrow
coming from nowhere, annotated within braces by the initialisation to zero of
h and c, hence I = 〈0, 0〉. A transition δ(〈q, 〈h, c〉〉, σ) = 〈q′, 〈h′, c′〉〉, where h′

and c′ are functional expressions in terms of h and c, is depicted by an arrow
going from state q to state q′, annotated by symbol σ and, within braces, the
memory update 〈h, c〉 := 〈h′, c′〉. For instance, the lower self-loop depicts that
δ(〈s, 〈h, c〉〉, 1) = 〈s, 〈max(h, c + 1), c + 1〉〉 for all h and c. If a memory update
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s

{v := 0}

return v

0

1
{v := v + 1}

(a) mDFA V for GroupV

return gs

{g := 0}

t

0

1
{g := g + 1}

1
0

(b) mDFA G for GroupG

s

{〈h, c〉 := 〈0, 0〉}

return h
0

{c := 0}

1
{〈h, c〉 := 〈max(h, c+ 1), c+ 1〉}

(c) mDFA H for GroupH

return min(�, c)s

{〈�, c〉 := 〈+∞, 0〉}

t

0

1
{c := 1}

1
{c := c+ 1}

0
{� := min(�, c)}

(d) mDFA L for GroupL

Fig. 1. Memory-DFAs for the constraints of the decomposition of Group

corresponds to the identity function, then we omit it; for instance, the right self-
loop has the memory update c := 0 as an abbreviation for 〈h, c〉 := 〈h, 0〉. All
states are accepting, hence A = Q, an accepting state being marked by a double
circle. The acceptance function α transforms a memory 〈h, c〉 at state s into h,
and is depicted by a box linked to s by a dotted line. ��

Automata are useful for encoding a constraint on a sequence X of variables:
the Regular(D, X) constraint [14] takes a constraint encoded by a DFA D and
holds if and only if the word represented by X is accepted by D; similarly, the
Automaton(M, X) constraint [4] takes a constraint encoded by an mDFAM
and specialises to Regular for a memory of k = 0 accumulators. We define
Automaton(M, X,R) for an mDFA with a memory of k > 0 accumulators:
this constraint is equivalent to the conjunction of Automaton(M, X) and the
acceptance constraint that variable R be equal to the integer returned by M,
that is R = α(̂δ(〈φ, I〉, X)). Note that R functionally depends on X , as α and ̂δ
are total functions. Automaton does not maintain domain consistency if k > 0.

Further, a constraint C on a sequence X of variables can sometimes be en-
coded with the help of an (m)DFA that operates not on X , but on a sequence S
of signature variables, each depending via a signature constraint [4] under a total
function on a sliding window of a consecutive variables within X . The constant
a ≥ 1 is called the arity of the signature constraints, and is linked to the lengths
n of X and m of S by m = n+1−a. The arity gives a precondition on C, namely
n ≥ a−1, as the signature constraints fail otherwise. The sliding windows within
X for two consecutive signature variables overlap by a− 1 variables.
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Example 3. Consider the GroupH([X1, . . . , Xn],W,H) constraint with n ≥ 0.
We constrain a sequence [S1, . . . , Sm] of m = n signature 0/1 variables Si with
the signature constraints (Xi ∈ W ) ⇔ (Si = 1) for all 1 ≤ i ≤ n: we have
a = 1 since each signature constraint is on a single Xi. Using the mDFA
H of Example 2 and Figure 1c, we encode GroupH([X1, . . . , Xn],W,H) by
Automaton(H, [S1, . . . , Sn], H) and these signature constraints. For the con-
straint instance GroupH([d, a, c, b, e, a, b], {a, e}, 2), the mDFA H indeed re-
turns h = 2 on the sequence S = [0, 1, 0, 0, 1, 1, 0] of signature values. Similarly,
the other constraints of the given decomposition of the Group constraint can
be encoded with the help of the other three mDFAs in Figure 1. ��

In the absence of signature variables and constraints, we consider S = X to
be a signature constraint, as this simplifies the discussion.

3 Reverse Constraints and Glue Constraints

After defining the concept of reverse of a constraint in Section 3.1, we define
in Section 3.2 a glue constraint as an implied constraint for a constraint with
a reverse constraint, both encoded using an automaton with accumulators, and
we show that the glue constraint is unique and always exists. Finally, we show
in Section 3.3 how to derive, mechanically and efficiently, the glue constraint for
a useful large class of constraints.

3.1 The Reverse of a Constraint

A constraint C(V1, . . . , Vn) is a total-function constraint [3] if its variables Vi

can be partitioned into two non-empty sets, D and R, such that for any as-
signment to the variables of D there is a unique assignment to the variables
of R that satisfies C. For example, the constraints Group(X,W,G, V,H,L),
GroupG(X,W,G), GroupV(X,W, V ), GroupH(X,W,H), GroupL(X,W,L)
are total-function constraints, where X and W uniquely determine G, V , H , and
L. Also, signature constraints (see Section 2) are total-function constraints.

We write a constraint C(D,R) as C(D → R) when the variables D func-
tionally determine the variables R. We denote the reverse of a word or variable
sequence w by wrev. We now define our first core concept.

Definition 2. The reverse of a total-function constraint C(D → R), where D
is a sequence of variables, is a total-function constraint C′(D′ → R′), where D′

is a sequence of variables, such that, for any sequence X of variables, both X
and its reverse functionally determine the same result variables Y under C and
C′ respectively, that is both C(X → Y ) and C′(Xrev → Y ) hold.

Example 4. The constraints Group, GroupG, GroupV, GroupH, GroupL
are their own reverses. The constraint LengthFirstSequence(X,L), which
holds if L is the size of the first group of identical values within the sequenceX of
variables [1], does not have itself as reverse, but LengthLastSequence(X,L),
which holds if L is the size of the last group of identical values within X [1]. ��
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If a total-function constraint C(X,R) is encoded by Automaton(M, S, R)
and signature constraints linking the sequences X and S of variables, using a
memory-DFAM = 〈Q,Σ, δ, φ, I, A, α〉 with k accumulators, then M necessar-
ily only has accepting states, that is A = Q, because the total function α is
only defined on accepting states, so that the value returned byM on the word
represented by S might be undefined if there were some non-accepting states.

If a total-function constraint C has a memory-DFAM, then a memory-DFA
M′ for its reverse constraint C′ can in some cases be derived automatically from
M. Indeed, M′ is then the reverse of M, in the sense that M′ recognises the
reverse of every word recognised by M, and both return the same value. For
instance, if M has a single accumulator (hence k = 1), which is initialised to
zero (hence I = 0) at the start state φ and increased by a non-negative quantity
at each transition, and if the acceptance function α returns that accumulator
increased by a non-negative quantity, then M is a weighted DFA [12] over the
tropical semiring over the integers, and the algorithms implemented in [13] can
be used for reversal. Among the 45 of 56 constraints of the catalogue covered by
this paper, there are 16 with weighted DFAs, such as GroupG and GroupV,
but not GroupH and GroupL, whose accumulator updates use the max and
min operators. (We revisit this useful class of constraints in Section 3.3.)

3.2 Glue Constraints

We need the Automaton constraint to be implemented, in extension to how
it is done in [4], by a decomposition that introduces variables representing
not only the accumulators but also the state of the argument mDFA M =
〈Q,Σ, δ, φ, I, A, α〉 after reading each symbol of an argument sequence S of vari-

ables. Upon reading the entire S, we then have that ̂δ(〈φ, I〉, S) is a tuple 〈q, V 〉,
where variable q represents the reached state of M, and V is an array of k
variables representing the k obtained accumulator values ofM.

We now show that the result ofM on a word w can be computed from only
these state and accumulator variables, as they encode all information on w. We
will then exploit this insight by constructing a function g, which is unique and
correctly computes the result of M on a word w = pt by combining the state
and accumulator variables reached by its prefix p and the reverse of its suffix t.

Theorem 1. Consider an mDFAM = 〈Q,Σ, δ, φ, I, A, α〉 and its reverseM′ =
〈Q′, Σ, δ′, φ′, I ′, A′, α′〉, over the same alphabet Σ. Consider four words p1, p2,

t1, and t2. Assume p1 and p2 reach the same tuple inM, that is ̂δ(〈φ, I〉, p1) =
〈qp, Vp〉 = ̂δ(〈φ, I〉, p2). Assume the reverses of t1 and t2 reach the same tuple

in M′, that is ̂δ′(〈φ′, I ′〉, t1rev) = 〈q′t, V ′t 〉 = ̂δ′(〈φ′, I ′〉, t2rev). We then have

α(̂δ(〈φ, I〉, p1t1)) = α(̂δ(〈φ, I〉, p2t2)), so that the result on a word is independent
of its prefixes pi and corresponding suffixes ti transiting through the same tuples.

Proof. We have α(̂δ(〈φ, I〉, p1t1)) = α(̂δ(〈qp, Vp〉, t1)) = α(̂δ(〈φ, I〉, p2t1)). Simi-

larly, α′(̂δ′(〈φ′, I ′〉, (p2t1)rev)) = α′(̂δ′(〈q′t, V ′t 〉, p2rev)) = α′(̂δ′(〈φ′, I ′〉, (p2t2)rev)).
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AsM′ is the reverse ofM, we have α(̂δ(〈φ, I〉, p2t1)) = α′(̂δ′(〈φ′, I ′〉, (p2t1)rev))
= α′(̂δ′(〈φ′, I ′〉, (p2t2)rev)) = α(̂δ(〈φ, I〉, p2t2)), and hence α(̂δ(〈φ, I〉, p1t1)) =

α(̂δ(〈φ, I〉, p2t2)). ��
Hence there exists a unique total function g that takes two tuples 〈q, V 〉 and

〈q′, V ′〉 ofM andM′ respectively, such that

g(〈q, V 〉, 〈q′, V ′〉) = α(̂δ(〈φ, I〉, pt)) (2)

for any prefix p that reaches the tuple 〈q, V 〉 inM and any suffix t such that trev

reaches the tuple 〈q′, V ′〉 inM′. It follows from Theorem 1 that this function is
well-defined, as it is independent of the prefix p and suffix t picked.

Consider a total-function constraint C(X → R), for which an mDFA M
reads a sequence S of signature variables channelled with the sequence X by
signature constraints, such that the variable R must be the result returned by
M on S. Hence C(X,R) can be encoded by Automaton(M, S, R) and the
signature constraints. Consider a split of S into the concatenation of a possibly
empty prefix P and a possibly empty suffix T , that is S = PT , with R =
α(̂δ(〈φ, I〉, PT )). We now define our second core concept:

Definition 3. Suppose, in addition to Automaton(M, PT,R), we post the

constraint Automaton(M, P,
−→
R ) on the prefix P , as well as the constraint

Automaton(M′, T rev,
←−
R ) on the reverse suffix T rev, where M′ is the reverse

ofM. Let ̂δ(〈φ, I〉, P ) = 〈−→q ,−→V 〉 and ̂δ′(〈φ′, I ′〉, T rev) = 〈←−q ,←−V 〉. The function g
of (2) gives rise to an implied constraint, called the glue constraint:

R = g(〈−→q ,−→V 〉, 〈←−q ,←−V 〉) (3)

Example 5. The glue constraints for all four numeric variables of the Group
constraint are given in Figure 2. They are organised as matrices, called glue
matrices. The glue matrix in Figure 2d represents the following glue constraint:

L =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min(
−→
� ,−→c +←−c ,←−� ) if −→q = s ∧←−q = s

min(
−→
� ,←−c ,←−� ) if −→q = s ∧←−q = t

min(
−→
� ,−→c ,←−� ) if −→q = t ∧←−q = s

min(
−→
� ,−→c +←−c ,←−� ) if −→q = t ∧←−q = t

Figure 3 illustrates its use on an instance of GroupL. ��
We post the three Automaton constraints of Definition 3 and their implied

glue constraint (3) for every split of the sequence S of signature variables into a
possibly empty prefix P and a possibly empty suffix T .

We have no general calculus (yet) for deriving the glue function g mechanically
from an mDFA, but we now illustrate the typical reasoning on an example. In
Section 3.3, we then show how to derive g mechanically and efficiently for the
useful class of constraints mentioned at the end of Section 3.1.
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s

s V = −→v +←−v
(a) Glue constraint for GroupV

s t

s G = −→g +←−g G = −→g +←−g
t G = −→g +←−g G = −→g − 1 +←−g
(b) Glue constraint for GroupG

s

s H = max(
−→
h ,−→c +←−c ,←−h )

(c) Glue constraint for GroupH

s t

s L = min(
−→
� ,−→c +←−c ,←−� ) L = min(

−→
� ,←−c ,←−� )

t L = min(
−→
� ,−→c ,←−� ) L = min(

−→
� ,−→c +←−c ,←−� )

(d) Glue constraint for GroupL

Fig. 2. Glue constraints for the constraints of the decomposition of Group: a row
index refers to the state of the corresponding mDFA in Figure 1 reached by the prefix,
and a column index refers to the state reached by the corresponding reverse suffix;
recall that each of the four mDFAs is its own reverse.

Example 6. The mDFA H in Figure 1c has a single state, whose semantics is as
follows, given current accumulator values c and h: a word matching the regular
expression π1c has been read so far, where π = ε | Σ∗0, with c ≥ 0 (let 10 =
ε) and max(θ(h, π), c) = h, where θ(a, w) denotes the value of accumulator a
upon reading word w. Observe that θ(h, π) is not accessible any more in any
accumulator after reading π1c when c > 0. Note that θ(h,w) = θ(h,wrev) for
any word w, because H and GroupH are their own reverses.

When GroupH(X,W,H) is encoded by Automaton(H, S,H) and the sig-
nature constraints of Example 3 between X and S, let us split S into the con-
catenation of a possibly empty prefix P and a possibly empty suffix T .

Upon feeding the prefix P to H, we end up with acceptance at state −→q = s,

since H has only that state. Let us call −→c and
−→
h the obtained accumulator

values. From the semantics above of state s, we know that −→c ≥ 0 and P = π1
−→c

for a possibly empty prefix π of P , with:

max(θ(h, π),−→c ) = −→h (4)

Similarly, upon feeding the reverse suffix T rev to H, we get ←−q = s, ←−c ≥ 0, and
T rev = τ rev1

←−c for a possibly empty prefix τ rev of T rev, that is T = 1
←−c τ , with:

max(θ(h, τ rev),←−c ) =←−h (5)

Overall, we have S = PT = π1
−→c 1
←−c τ = π1

−→c +←−c τ , hence:

θ(h, S) = max(θ(h, π),−→c +←−c , θ(h, τ)) by the semantics of H
= max(θ(h, π),−→c +←−c , θ(h, τ rev)) by H being its own reverse

= max(
−→
h ,−→c +←−c , θ(h, τ rev)) by ←−c ≥ 0 and (4)

= max(
−→
h ,−→c +←−c ,←−h ) by −→c ≥ 0 and (5)

(6)
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GroupL([b, a, a, a, b, b, a, a, b, a, a, a, a], {a}, 2)

GroupL
(
[b, a, a, a, b, b, a], {a}, 1 ) ∧ GroupL

(
[a, a, a, a, b, a], {a}, 1 )

glue matrix entry associated with 〈t, t〉: L = min
(−→
�7 ,
−→c7 +←−c6,←−�6

)
= min(3, 1+ 1, 4) = 2

Fig. 3. Use of the entry for the state pair 〈t, t〉 in the glue matrix of Figure 2d for
linking the result variable L with the state and accumulator variables after reading the
prefix [b, a, a, a,b,b, a] and corresponding suffix [a,b, a, a, a, a] of a sequence. The left
(resp. right) table shows the initialisation (for i = 0) and evolution of the state of the
mDFA L in Figure 1d and its accumulators � and c upon reading the symbol at index
i of the sequence (resp. its reverse).

The law underlying the last two equalities is that max(x, y) = h implies that
max(x, y + z) = max(h, y + z) when z ≥ 0. Note that θ(h, S) is now entirely
defined in terms of the accumulator values after processing P and T rev.

Posting Automaton(H, P,−→H ) gives access to −→q , −→c , −→h as variables, with−→
H =

−→
h . Similarly, posting Automaton(H, T rev,

←−
H ) gives access to←−q ,←−c ,←−h as

variables, with
←−
H =

←−
h . Since the acceptance function α computes H = θ(h, S),

the implied glue constraint is H = max(
−→
h ,−→c +←−c ,←−h ), due to (6). ��

3.3 Deriving the Glue Constraint

Reconsider the useful class of constraints mentioned at the end of Section 3.1,
namely those that can be encoded using an mDFAM = 〈Q,Σ, δ, φ, I, A, α〉 with
a single accumulator (hence k = 1), which is initialised to zero (hence I = 0) at
the start state φ and increased by a non-negative quantity at each transition as
well as by the acceptance function α. We denote γ(q, σ) the accumulator increase
on the transition from state q upon reading symbol σ. Similarly, we denote
γ̂(q, w) the total accumulator increase on the path from state q upon reading a
possibly empty word w. Let M′ = 〈Q′, Σ, δ′, φ′, I ′, A′, α′〉 be the reverse of M
(computed as seen in Section 3.1), on the same alphabet. The glue constraint
then always takes a particular form, as described after defining a needed concept.

Definition 4. Let PT be a word such that possibly empty prefix P leads to state−→q of mDFA M, and the reverse of possibly empty suffix T leads to state ←−q of
the reverse mDFAM′ of M. The correction term for −→q and ←−q is:

Δ(−→q ,←−q ) = γ̂(φ, PT )− (γ̂(φ, P ) + γ̂′(φ′, T rev))
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Suppose, in addition to Automaton(M, PT,R), we post the constraints

Automaton(M, P,
−→
R ) and Automaton(M′, T rev,

←−
R ). Let ̂δ(〈φ, I〉, P ) =

〈−→q ,−→v 〉 and ̂δ(〈φ′, I ′〉, T rev) = 〈←−q ,←−v 〉. The glue constraint for states −→q and←−q is then always of the form R = α(−→v +Δ(−→q ,←−q )+←−v ), because −→v = γ̂(φ, P ),
←−v = γ̂′(φ′, T rev), and R = α(̂δ(〈φ, I〉, PT )) = α(γ̂(φ, PT )). Therefore, we can
abbreviate the glue matrix into the matrix of its correction terms.

Example 7. The glue matrices in Figures 2a and 2b can be abbreviated into (0)
and

(

0 0
0 −1

)

, respectively, which contain constants independent of P and T . ��
We now show that the matrix of constant correction terms can be computed

efficiently, as it obeys a recurrence relation. By Definition 4, we have the base
cases Δ(φ, q′) = 0 for every state q′ ofM′, and Δ(q, φ′) = 0 for every state q of
M. For the step case of two non-start states −→q and ←−q , let PσT be a word such
that non-empty prefix P leads to state −→q ofM, with successor −→r upon reading
symbol σ, and the reverse of possibly empty suffix T leads to state ←−r of M′,
with successor ←−q upon reading symbol σ. Using Definition 4 with σT as suffix,
we get the following recurrence relation:

Δ(−→q ,←−q ) = (γ̂(φ, P ) + γ̂(−→q , σT ))− (γ̂(φ, P ) + γ̂′(φ′, T revσ))

= γ̂(−→q , σT )− γ̂′(φ′, T revσ)

= (γ(−→q , σ) + γ̂(−→r , T ))− (γ̂′(φ′, T rev) + γ′(←−r , σ))
= Δ(−→r ,←−r ) + γ(−→q , σ)− γ′(←−r , σ)

(7)

The matrix of correction terms for all state pairs can then be computed by dy-
namic programming. It suffices to initialise to zero the row of φ and the column
of φ′. Then let name(q) denote a shortest word reaching state q from the start
state of its mDFA. The dynamic program uses the recurrence relation (7) for
every pair 〈−→q ,←−q 〉 of non-start states with name(←−q ) = name(←−r )σ. Note that
both σ and ←−r are uniquely determined by name(←−q ), and that −→r is uniquely
defined as the successor of −→q under σ, since an mDFA is deterministic. Proceed-
ing by increasing lexicographic order of 〈|name(−→q )|+ |name(←−q )|,−|name(−→q )|〉,
where |w| denotes the length of word w, ensures that the right-hand side of (7)
is always already determined.

Example 8. The glue matrix
(

0 0
0 −1

)

of Example 7 is for the GroupG constraint,
whose mDFA G in Figure 1b is its own reverse. There are zeros in the left column
and top row, by the base cases. The −1 in the lower-right cell follows from the
following application of (7): we have −→q = t = ←−q , with name(←−q ) = “1” =
name(←−r )σ, hence σ = 1 and name(←−r ) = ε, so ←−r = s; since −→r is the successor
of−→q under σ, we have−→r = t; hence (7) givesΔ(t, t) = Δ(t, s)+γ(t, 1)−γ′(s, 1) =
0 + 0 − 1 = −1. Indeed, if the last symbol of prefix P and the first symbol of
suffix T are in a group, then the sum of the numbers of groups of P and T rev

would be one unit too high and has to be downward adjusted by −1. ��
Filling the matrix of |Q| · |Q′| correction terms takes Θ(|Q| · |Q′|+ |Σ|) time.

Indeed, each correction term is computed in constant time, and the state names
can be computed in Θ(|Q|+ |Q′|+ |Σ|) time.



Linking Prefixes and Suffixes for Constraints Encoded Using Automata 153

4 Implied Constraints on Prefixes and Suffixes

In Scheme 3 of Example 1, we showed how to improve pruning in the presence of
an implied constraint on the result variables of multiple total-function constraints
on the same sequence of variables. We now formalise this idea.

Consider a conjunction of p total-function constraints Cj(X → Rj) on the
same sequence X of n variables. For each constraint Cj , assume we have an
mDFA Mj = 〈Qj , Σj , δj , φj , Ij , Aj , αj〉 that reads a sequence Sj of mj signa-
ture variables channelled with X by signature constraints of arity aj ≥ 1 (hence
mj = n + 1 − aj), such that the variable Rj is constrained to be equal to the
result returned by Mj on Sj . (We write Sj rather than Sj so that, in line

with the rest of the paper, we can write Sj
i to refer to the element at index i

of Sj .) Hence each Cj(X → Rj) is encoded by Automaton(Mj , S
j, Rj) and

its signature constraints. Let M′j = 〈Q′j , Σj, δ
′
j , φ
′
j , I
′
j , A

′
j , α
′
j〉 be the reverse of

Mj , over the same alphabet Σj : it is used for encoding the reverse of Cj by
Automaton(M′j , (Sj)

rev
, Rj), using the same signature constraints and vari-

ables. Note that all the Rj are only defined when X is sufficiently long, namely
n ≥ a− 1, where a = max(a1, . . . , ap).

Consider that the p result variables Rj are not independent and that we have
an implied constraint �(R1, . . . , Rp), called a graph invariant in [5], on them.

The idea is to improve the propagation on the conjunction of the Cj with �
(which constrains the overall results Rj under the Cj on the entire sequence X)
by adding also � on the partial results under the Cj for every sufficiently long
prefix of X , as well as adding � on the partial results under the reverses of the
Cj for the reverse of every sufficiently long suffix of X .

We thus post the implied constraint � on the results Ri
j for every not nec-

essarily strict prefix [X1, . . . , Xi+aj−1] of X , each prefix being long enough for

all the Ri
j to be defined. We also post � on the results R′ij for the reverse of

every not necessarily strict suffix [Xn, . . . , Xn−aj−i+2] of X , each suffix being

long enough for all the R′ij to be defined. We get:

∀j : ∀1 ≤ i ≤ n− aj + 1 : Automaton(Mj , [X1, . . . , Xi+aj−1], R
i
j)

∀j : ∀1 ≤ i ≤ n− aj + 1 : Automaton(M′j , [Xn, . . . , Xn−aj−i+2], R
′i
j)

∀a ≤ i ≤ n : �(Ri−a1+1
1 , . . . , Ri−ap+1

p ) ∧ �(R′i−a1+1
1 , . . . , R′i−ap+1

p )

Rather than posting 2 · (n − aj + 1) Automaton constraints for a given Mj ,
we only post two Automaton constraints over the sequence X and its reverse,
where our implementation of Automaton provides access to the internal vari-
ables Ri

j and R′ij .
Note that the glue constraints of Section 3 make each implied constraint on a

prefix communicate, through shared variables, with the implied constraint on the
reverse of the corresponding suffix: we evaluate this experimentally in Section 5.

Example 9. In Scheme 3 of Example 1, we had p = 4, a1 = a2 = a3 = a4 = 1 = a,
and � as the implied constraint (1). Further experiments are in Section 5. ��
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5 Experiments

We have implemented as a generic framework for our method a Prolog predicate
taking as arguments (i) a shared sequence of variables, (ii) a list of p mDFAs
with their corresponding signature and glue constraints, (iii) a list of p numeric
variables Rj to be computed, (iv) a conjunction of implied constraints over the
Rj , and (v) some options for controlling the encoding scheme (see below). We
have also extended the Global Constraint Catalogue [1] with glue constraints for
most of its mDFAs and with implied constraints relating arguments of different
constraints (e.g. those of [5] and the relation between the number of valleys and
peaks [7] of a sequence).1

To evaluate our methods, we ran three experiments on a conjunction of two
Group constraints over a shared sequence of a/b variables, one with W = {a}
and one with W = {b}. Thus, a total of eight numeric values are computed from
the sequence. Each experiment was run on two sets of 1000 randomly generated
unique instances. An instance consists of initial domains for the sequence and
numeric variables. In each experiment, four encoding schemes were compared:
B the baseline, i.e. as p = 8 Automaton constraints; BI as B plus 90 implied
constraints linking the eight numeric variables, provided by [1, Section 4.3], see
Scheme 1 of Example 1; BG as B plus the appropriate glue constraints posted
at every prefix-suffix junction, see Scheme 2; and BGI as BG plus the same 90
implied constraints posted on the full sequence as well as on every nonempty
prefix and suffix, i.e. using Scheme 1+2+3.

All experiments were run in SICStus Prolog 4.3 [9] on a quad core 2.8 GHz
Intel Core i7-860 machine with 8MB cache per core, running Ubuntu Linux.

Special attention was devoted to generating meaningful instances, since the
eight numeric variables are all but independent, and a truly random choice of
their initial domains leads to an unsatisfiable instance in the vast majority of
cases. We came up with two instance sets:

Sloppy (11% satisfiable) is generated as follows: First, each a/b variable is as-
signed ‘a’ with 10% probability, ‘b’ with 10% probability, and left unassigned
with 80% probability. Then, each numeric variable is given a random subin-
terval of its feasible interval. If posting the 90 implied constraints on the
obtained candidate instance detects failure without search, then the candi-
date is rejected. Otherwise, it is included in the set.

Strict (96% satisfiable) is generated like the Sloppy set, but also, if posting
the full BGI scheme on the candidate detects failure without search, then
the candidate is rejected. Otherwise, it is included in the set.

The results of the three experiments are shown in Figure 4. In the first ex-
periment (left column), sequences of length 20 were used. In the two plots, each
point (x, y) denotes that y instances reached a total domain size of at most x

1 All code and data for the experiments as well as the extended version of the catalogue
can be found at http://www.sics.se/~matsc/research/reversible.

http://www.sics.se/~matsc/research/reversible
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Fig. 4. Experimental results. Comparison of the amount of pruning after posting
(left), the time to find the first solution or detect unsatisfiability (centre), and the time
to find all solutions (right). Top row: Sloppy. Bottom row: Strict.

after initial pruning, for the given scheme. We find that BGI is the most effec-
tive in pruning and B the least effective. For Sloppy, we see that BG detects
unsatisfiability far more effectively than BI. For Strict, we see that BI gives
much more pruning than BG.

For the remaining experiments (centre and right column), we plot the number
of instances that can be solved by a given deadline. Sequences of length 10 were
used here, to avoid having to impose a time limit, so that we can compare all
methods on all instances. We find that the schemes involving implied constraints
outperform the schemes that do not.

The BG curves are similar throughout the Sloppy row, confirming that the
glue method more effectively detects unsatisfiability. For the Strict instances,BI
outperformed BGI. Partial benchmark results for length 20 and for combining
Group and ChangeContinuity [1,5] paint an almost identical picture, except
there is some indication that BGI is more effective on longer sequences.

Evaluating our schemes on the model inferred by the EDF model seeker [7] is
ongoing work, and requires more work and analysis since the model is nontrivial
and contains 20 interacting constraints.

6 Constant-Time Move Probing in Local Search

In the context of constraint-based local search [15], consider a total-function con-
straint C([X1, . . . , Xn]→ R) that is encoded using an mDFAM. The violation
cost of C under the current assignment β is |β(R) − r|, where r is the result
returned by M on [β(X1), . . . , β(Xn)]. We now show, on an example, how to
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use the glue constraint of C in order to compute, in constant time, the violation
cost of C when probing a move Xi := v, which changes the current assignment.

For example, let us start from the ground instance of Figure 3, namely
GroupL([b, a, a, a, b, b, a, a, b, a, a, a, a], {a}, 2). It is satisfied, hence its violation
cost under the current assignment is 0. Assume now we want to probe chang-
ing variable X7 from ‘a’ into ‘b’, that is changing signature variable S7 from 1
into 0. The violation cost under the resulting new assignment, and its increase
compared to the current assignment, are computed in constant time as follows:

1. Starting from the prefix column for i = 6, we compute the new column for
i = 7, upon the mDFA L in Figure 1d reading a 0 instead of a 1: we get
−→q 7 = s and

−→
� 7 = 3 = −→c 7. The suffix column for i = 6 remains unchanged.

2. Using the glue matrix entry in Figure 2d for the state pair 〈−→q 7,
←−q 6〉 = 〈s, t〉,

we know that the new sequence has min(
−→
� 7,
←−c 6,
←−
� 6) = min(3, 1, 4) = 1 as

the lowest group size (that is not 2 anymore).
3. Hence the violation cost under the new assignment is |2− 1| = 1 (as we still

have R = 2), and has thus increased by 1− 0 = 1.

Thus, with one matrix of states and accumulator values for the mDFA and one
for the reverse mDFA, as in Figure 3, probing can be done in constant time,
thereby beating the linear time achieved for the Automaton constraint in [11].

Commitment to a move actually selected by the search (meta-)heuristic fol-
lows the same steps as above, namely once for updating the values of the left
table (in Figure 3) from the concerned column until the last column, and once
for updating the values in the right table from the concerned column until the
first column. This takes time linear in the length of X .

7 Conclusion

For a total-function constraint on a sequence of variables whose result is invariant
under sequence reversal, we have shown how to derive, from a compact encoding
of the constraint via an automaton with accumulators, an implied constraint
between the result variables for a sequence of variables, a prefix thereof, and the
corresponding suffix. Such total-function constraints have proved very useful, for
instance in production sequencing and staff rostering. We have shown that the
glue constraint is unique and always exists. We have also shown the usefulness of
the derived implied constraint in constraint solving, both by local search, where
the implied constraint enables constant-time move probing, and by propagation-
based systematic search, where the implied constraint improves propagation: our
concept is thus not oriented toward a specific solver technology.

Other constraints than Automaton could be used for handling memory-
DFAs and deriving glue constraints: recall that our method supports multiple
accumulators, and needs access as variables to the sequence of values for each
accumulator, as well as access as variables to the sequence of automaton states.
For instance, CostRegular [10] is currently limited to the class of single-
accumulator mDFAs discussed in Section 3.3, and is compared in detail with
Automaton in [6]. Encodings based on Slide [8] could also be investigated.
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