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Abstract Many real-life problems are over-constrained, so that no solution satisfy-
ing all their constraints exists. Soft constraints, with costs denoting how much the
constraints are violated, are used to solve these problems. We use the edit-distance
based SoftRegular constraint as an example to show that a propagation algorithm that
sometimes underestimates the cost may guide the search to incorrect (non-optimal)
solutions to an over-constrained problem. To compute correctly the cost for the edit-
distance based SoftRegular constraint, we present a quadratic-time propagation algo-
rithm based on dynamic programming and a proof of its correctness. We also give an
improved propagation algorithm using an idea of computing the edit distance between
two strings, which may also be applied to other constraints with propagators based on
dynamic programming. The asymptotic time complexity of our improved propagator
is always at least as good as the one of our quadratic-time propagator, but significantly
better when the edit distance is small. Our propagators achieve domain consistency on
the problem variables and bounds consistency on the cost variable. Our method can
also be adapted for the violation measure of the edit-distance based Regular constraint
for constraint-based local search.
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1 Introduction

In constraint programming (CP), soft constraints provide a natural way to solve over-
constrained problems, by allowing constraints to be partially satisfied. A soft constraint
is allowed to be violated and is obtained by adding to the original constraint a cost
variable, which represents how much that constraint is violated. When soft constraints
are used, an optimal solution that violates the soft constraints as little as possible,
while satisfying the other constraints, is to be found by the CP solver.

The Regular constraint (Pesant 2004; a generalisation of which is also known as the
Automaton constraint, see Beldiceanu et al. 2004) is defined as Regular (X, M), where
X = 〈x1, . . . , xn〉 is a sequence of n decision variables; and M is a deterministic finite
automaton (DFA). A DFA M is defined as M = 〈Q, �, δ, q0, F〉, where Q is a finite
set of states, � is the alphabet, δ : Q × � → Q is the transition function, q0 ∈ Q is
the start state, and F ⊆ Q is the set of accepting states.

For example, Fig. 1 gives a DFA M that describes a simple work scheduling con-
straint for one employee. There are values for two work shifts, namely day (d) and
evening (e), as well as a value for enjoying a one-day vacation (v). Shift sequences are
subject to the following four constraints: one must start with a work shift, and must
end with some vacation; one must enjoy some vacation before a change of work shift;
one cannot enjoy a vacation of more than one day; and one must enjoy a vacation
after working an evening. The start state O is marked by a transition entering from
nowhere, while state O is also the unique accepting state and is marked by a double
circle. Missing transitions, say from state D upon reading value e, are assumed to go to
an implicit failure state, with a self-loop transition for every symbol of the alphabet (so
that no accepting state is reachable from it). The set of words accepted by M defines
the set of acceptable shift sequences for one employee, e.g., the set of acceptable shift
sequences of length 5 is {ddddv, ddvdv, ddvev, dvddv, evddv}.
Fig. 1 A DFA for a simple
work scheduling constraint with
three states and five transitions
over an alphabet of three letters
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Underestimating the cost of a soft constraint 731

The SoftRegular constraint is the softened version of the Regular constraint, and is
defined as SoftRegular (X, M, z), where z is the cost variable. There are two versions
of the SoftRegular constraint (van Hoeve et al. 2004, 2006), namely the Hamming-
distance based and edit-distance based SoftRegular constraints, based on two different
cost measures. The edit distance (also known as Levenshtein distance) between two
words is the minimum number of non-copying edit operations (namely substitution,
insertion, and deletion of a letter) needed to transform one word into the other. Com-
pared with the Hamming-distance based cost measure (where only substitution is
allowed) for the SoftRegular constraint, the edit-distance based cost measure, which
is the minimum edit distance between any possible assignment of X under the current
domains and the words of length |X | of the regular language of M (see Definition 10
on page 365 of van Hoeve et al. 2006), is argued to be more suitable for scheduling
problems in (van Hoeve et al. 2004, 2006). For example, evddv is a word accepted
by the DFA of Fig. 1, but not devdd. The Hamming distance between the two words
is 4, but their edit distance is only 2 since we can delete the ‘d’ at the beginning
of the second word and insert a ‘v’ at its end. In this paper, we are only concerned
with the edit-distance based SoftRegular constraint, hence whenever the SoftRegular

constraint is mentioned in the rest of the paper, we mean the edit-distance based
SoftRegular constraint.

The authors of (van Hoeve et al. 2004, 2006) represent soft constraints with weighted
flow networks, and then introduce a generic propagator based on computing flows,
with the precondition that every integer source-to-sink flow necessarily represents a
solution to the constraint and that the value of a minimum-weight flow is exactly the
cost measure of the constraint (see Algorithm 1 on page 354 of van Hoeve et al. 2006).
Note that whenever a flow is mentioned in this paper, we mean a minimum-weight
maximum integer flow from the source to the sink; and we use propagator to mean a
propagation algorithm in the rest of this paper.

Consider a SoftRegular (X, M, z) constraint, where X is a sequence of |X | = n
decision variables and M = 〈Q, �, δ, q0, F〉 is a DFA. The authors of (van Hoeve et
al. 2004, 2006) introduce a flow network representation of the SoftRegular (X, M, z)
constraint and a propagator that implements the generic propagator based on topo-
logical sort with table lookups (on pages 368 and 369 of van Hoeve et al. 2006). For
each decision variable xi in X and each value v in the domain of xi , the propagator
computes a flow (of value 1) that passes an arc related with the assignment xi := v, and
taking O((n+|Q|) · |δ|) time with O(n · (|δ|+|Q|)+|Q|2) = O(n · |δ|+|Q|2) space
(namely O(n · |δ|) space to store the flow network, n · |Q| space to compute minimum-
weight flows, |Q|2 space to store the shortest distance between any two states in Q,
and |δ| = |Q| · |�| ≥ |Q|). Note that we use binding to mean an assignment of a value
to just one decision variable in the rest of this paper, hence an assignment of X is a
set of |X | = n bindings. However the constructed input flow network (on page 368
of van Hoeve et al. 2006) for the propagator is not suitable for the reason that the flows
represent words in the whole regular language underlying the constraint instead of the
n-letter regular language (here n-letter regular language denotes the sub-language of
words of length n of the regular language), as we show in Sect. 4, and a propagator
with such an unsuitable flow network may thus underestimate the cost measure. Hence
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the propagator cannot be used as in Corollary 6 (on page 368 van Hoeve et al. 2006),
because its precondition is violated.

Furthermore, as we show in Sect. 4 for the SoftRegular constraint, using a propagator
that sometimes underestimates the cost measure has an unwanted consequence, as
the propagator may guide the search to incorrect (non-optimal) solutions to an over-
constrained problem. Hence we argue that it is crucial for a propagator for a soft
constraint to compute the exact cost measure.

The rest of the paper is organised as follows:
– Section 2 gives some background on CP.
– Section 3 gives a brief review of the weighted flow network representation of the

SoftRegular constraint.
– Section 4 shows (by example) the danger of underestimating the cost measure for

a soft constraint, namely missed propagations leading to incorrect (non-optimal)
solutions being found. Another example is given in Appendix A, based on a
reviewer error rather than an error in a publication.

– Section 5 presents our quadratic-time propagator for the SoftRegular constraint
based on dynamic programming instead of flow theory, as well as a proof of its
correctness, and then gives an improved propagator, the asymptotic time complex-
ity of which is always at least as good as the one of our quadratic-time propagator,
but significantly better when the edit distance is small. Our propagators achieve
domain consistency on the decision variables X and bounds consistency on the
cost variable z.

– Section 6 theoretically compares our propagators with two other propagators that
we propose, one based on the propagator of (van Hoeve et al. 2004, 2006), the other
based on the propagator for the WeightedGrammar constraint (Katsirelos et al. 2008,
2011).

– Section 7 demonstrates the efficiency of our propagators with some experiments.
– Section 8 shows how to adapt our method for the violation measure of an edit-

distance based Regular constraint for constraint-based local search (CBLS).
– Section 9 summarises this work.

2 Background

We first give some background material on CP (e.g., see Apt 2003), which is a declar-
ative paradigm to model and solve combinatorial problems.

2.1 Constraints and decision variables

In CP, a problem is modelled by a set of constraints. Let X = 〈x1, . . . , xn〉 be a
sequence of n decision variables, where the domain of a decision variable xi (for all
xi ∈ X ) is a finite set of values that can be assigned to xi and is denoted by dom(xi ).
A constraint C on X is usually specified by an intensionally defined subset of the
Cartesian product of the domains of all decision variables in X : C ⊆ dom(x1) ×
· · · × dom(xn). An assignment X := 〈v1, . . . , vn〉 ∈ C is called a solution to C , and
is called a solution to a problem if and only if it is a solution to all constraints of the
problem.
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Underestimating the cost of a soft constraint 733

2.2 Search and propagation

In CP, a problem is solved by exploring a search tree, where all possible variable-
value combinations in the domains are intelligently enumerated until a solution to the
problem is found or it is proved that none exists. At each node of the search tree,
constraint propagation is performed separately for all constraints in the problem to
remove some (but not necessarily all) inconsistent values, which cannot be part of a
solution to the constraint, from the domains, and is repeated until no more pruning is
possible (a fix point). Hence, each constraint is associated with a propagator for this
purpose.

2.3 Consistency

To solve a problem efficiently in CP, one objective is to construct a small search tree,
hence the propagator should remove as many inconsistent values from the domains as
possible; the other objective is to design low-complexity propagators, as propagators
are called many times during search. However the two objectives are conflicting, as a
propagator that can remove more values from the domains is usually of higher com-
plexity. This motivates the introduction of levels of consistency. We give definitions
of the two levels of consistency that are used in this paper.

Definition 1 (Domain Consistency) Given a sequence X = 〈x1, . . . , xn〉 of n decision
variables and a constraint C on X , we say that the dom(xi ) are domain consistent if
for each 1 ≤ i ≤ n and each value vi ∈ dom(xi ), there exist values d j ∈ dom(x j ) for
all j 	= i such that 〈d1, . . . , di−1, vi , di+1, . . . , dn〉 ∈ C .

Definition 2 (Bounds Consistency) Given a sequence X = 〈x1, . . . , xn〉 of n deci-
sion variables and a constraint C on X , we say that the dom(xi ) are bounds con-
sistent if for each 1 ≤ i ≤ n and each value vi ∈ {min dom(xi ), maxdom(xi )},
there exist values d j ∈

[
min dom(x j ), max dom(x j )

]
for all j 	= i such that

〈d1, . . . , di−1, vi , di+1, . . . , dn〉 ∈ C .

Note that domain consistency is a stronger level of consistency than bounds con-
sistency, as domain consistency checks every value in every domain while the latter
only checks the lower and upper bound values.

3 A flow network representation of the SOFTREGULAR constraint

Given a SoftRegular (X, M, z) constraint, where X = 〈x1, . . . , xn〉 is a sequence of
|X | = n decision variables, and M = 〈Q, �, δ, q0, F〉 is a DFA, the constraint is
represented with a weighted flow network (van Hoeve et al. 2004, 2006). In the flow
network (an example is given in Fig. 2), there is a source S and a sink T. Between S
and T, there are n + 1 vertical layers of nodes, where each layer has a node for each
state in Q. A node labelled with state qk ∈ Q in layer j is named q j

k . Let node q0
0

(recall that q0 is the start state) in layer 0 be called the start node; let each node qn
k

(for qk ∈ F) in layer n be called an accepting node.
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Fig. 2 The revised flow network representation of the SoftRegular (X, M, z) constraint for a sequence
X = 〈x1, . . . , x5〉 of 5 decision variables, with current domains dom(x1) = dom(x3) = {e}, dom(x2) =
{v}, dom(x4) = {d, v}, and dom(x5) = {d}; where M = 〈Q, �, δ, q0, F〉 is the DFA depicted in Fig. 1;
and z is the cost variable. Node S is the source, and node T is the sink. There are |X | + 1 = 6 vertical
layers of nodes between S and T, where each layer has a node for each state in Q. A node labelled with

state qk ∈ Q in layer j is named q j
k , e.g., D2 denotes the node labelled with state D in layer 2. There are

four kinds of arcs in the flow network: copy arcs (solid arcs), substitution arcs (dashed arcs), deletion arcs
(dotted arcs), and insertion arcs (dash-dotted arcs). All arcs have capacity 1; each solid arc has a weight
of 0; each non-solid arc has a weight of 1. Note that the letters for the arcs are not part of the flow network,
but show how the network was constructed

There are four arc sets in the flow network, depending on the current domains of the
decision variables: the copy arc set Acopy (which is called A in van Hoeve et al. 2004,
2006), the substitution arc set Asub, the insertion arc set Ains, and the deletion arc set
Adel. Every arc in Asub ∪ Ains ∪ Adel has a weight of 1, while every arc in Acopy has a
weight of 0. All arcs have capacity 1. For each arc set, we give the original definition
of (van Hoeve et al. 2004, 2006) and revise it in a way that will be useful in the rest of
the paper (but not for our propagator):

– An arc for symbol σ ∈ � at position i is in the copy arc set Acopy if it is used when
measuring the edit distance to a word where letter i is a copy of σ (i.e., i = σ ).
Formally, Acopy is made up of three disjoint arc subsets containing the following
arcs respectively: the arc from the source S to the start node q0

0 ; every arc from
node qi−1

k to node qi
� satisfying δ(qk, t) = q� with some value t ∈ dom(xi ); and

every arc from any accepting node to the sink T.

Acopy =
{
(S, q0

0 )
} ∪

n⋃

i=1

{
(qi−1

k , qi
�) | ∃t ∈ dom(xi ) : δ(qk, t) = q�

}

∪ {
(qn

k , T) | qk ∈ F
}

Hence, each integer flow that only passes arcs in Acopy represents a solution to the
hard Regular (X, M) constraint.

– An arc for symbol σ ∈ � at position i is in the substitution arc set Asub if it is
used when measuring the edit distance to a word where letter i is substituted by σ .
Formally, Asub contains every arc not in Acopy that goes from node qi−1

k to node
qi
� satisfying δ(qk, t) = q� with some value t ∈ �:
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Underestimating the cost of a soft constraint 735

Asub =
n⋃

i=1

{
(qi−1

k , qi
�) | ∃t ∈ � : δ(qk, t) = q�

}
\ Acopy

This definition is different from the one in (van Hoeve et al. 2006) (but the same
as in van Hoeve et al. 2004), where the 0-weight arcs in Acopy are not excluded
from Asub even though they are superfluous. Indeed, if a flow passes a substitution
arc α that is a duplicate of an arc α′ in Acopy, then we can get another flow of
the same maximum value but with a smaller weight by just replacing α with
α′. Therefore substitution arcs that are duplicate of arcs in Acopy cannot belong
to any minimum-weight maximum flow, and we can safely remove them from
Asub.

– An arc for symbol σ ∈ � at position i is in the insertion arc set Ains if it is used
when measuring the edit distance to a word where σ is inserted after position i .
Formally, Ains contains every intra-layer arc from node qi

k to node qi
� satisfying

δ(qk, t) = q� with some value t ∈ �:

Ains =
n⋃

i=0

{
(qi

k, qi
�) | ∃t ∈ � : δ(qk, t) = q�

}

This definition is different from the one in (van Hoeve et al. 2006) (but the same
as in van Hoeve et al. 2004), where the self-loops are excluded from Ains. A
counterexample is given in Path 1 of Sect. 5.1, where a self-loop insertion arc
must be used.

– An arc for symbol σ ∈ � at position i is in the deletion arc set Adel if it
is used when measuring the edit distance to a word where σ is deleted from
position i . Formally, Adel contains every arc from node qi−1

k to node qi
k (for

qk ∈ Q):

Adel =
n⋃

i=1

{
(qi−1

k , qi
k) | qk ∈ Q

}

This definition is different from the one in (van Hoeve et al. 2004, 2006), where
the arcs in Acopy are excluded from Adel. A counterexample is given in Path 2 of
Sect. 5.1, where a deletion arc that has a duplicate copy arc must be used.

Note that the flow network is domain-specific, as the arc sets Acopy and Asub change
incrementally upon propagation, and that arcs only move from Acopy to Asub, but never
otherwise.

For example, Fig. 2 gives the flow network representation of the SoftRegu-

lar (X, M, z) constraint for a sequence X = 〈x1, . . . , x5〉 of 5 decision variables, with
current domains dom(x1) = dom(x3) = {e}, dom(x2) = {v}, dom(x4) = {d, v}, and
dom(x5) = {d}, where M is the DFA depicted in Fig. 1.
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4 An example of an incorrectly computed solution

The authors of (van Hoeve et al. 2004, 2006) represent soft constraints with weighted
flow networks, and then introduce a generic propagator based on computing flows
(see Algorithm 1 on page 354 of van Hoeve et al. 2006), with the precondition that
every integer flow necessarily represents a solution to the constraint and that the
value of a minimum-weight flow is exactly the cost measure of the constraint. Given
a SoftRegular constraint with the unrevised flow network representation of Sect. 3,
a propagator that implements the generic propagator based on topological sort with
table lookups is introduced. However, the input flow network for the propagator is not
suitable, as the flows may pass different numbers of insertion arcs and deletion arcs.
The propagator with the unsuitable flow network computes the minimum edit distance
between any possible assignment of X under the current domains and the whole regular
language instead of the n-letter regular language, and may thus underestimate the
cost measure. Now, we use the SoftRegular (X, M, z) constraint as an example to
show that using a propagator that sometimes underestimates the cost measure has an
unwanted consequence, as the propagator may guide the search to incorrect (non-
optimal) solutions to an over-constrained problem.

Consider the following over-constrained problem P:

– There is a sequence of 5 decision variables X = 〈x1, . . . , x5〉, with the initial
domains dom(x1) = dom(x3) = {e}, dom(x2) = {v}, dom(x4) = {d, v}, and
dom(x5) = {d}.

– There is only one constraint, namely a SoftRegular (X, M, z) constraint, where
M is the DFA depicted in Fig. 1, and z is the cost variable with the initial domain
dom(z) = {0, . . . , 2}.

– The problem is over-constrained, hence the objective is to find a solution that
minimises z.

There are two possible assignments for X , namely X := 〈e, v, e, v, d〉 and X :=
〈e, v, e, d, d〉. The minimum edit distance between evevd and the 5-letter regular lan-
guage accepted by M (namely {ddddv, ddvdv, ddvev, dvddv, evddv}) is 3 (the edit
distance to evddv); the minimal edit distance between evedd and the 5-letter regu-
lar language is 2 (the edit distance to evddv). Hence the optimal solution to P is
X := 〈e, v, e, d, d〉, with z = 2.

However when using the propagator of (van Hoeve et al. 2004, 2006) with the
unsuitable flow network that may underestimate the edit-distance based cost measure,
the non-optimal solution (X := 〈e, v, e, v, d〉) is found. Figure 3 shows the difference
of using (denoted by dashed lines) the propagator of (van Hoeve et al. 2004, 2006)
with the unsuitable flow network and using (denoted by solid lines) the propagator
computing the exact cost measure that will be given in Sect. 5 to solve P , where
w denotes the edit distance between two given words. The propagator of (van Hoeve
et al. 2004, 2006) with the unsuitable flow network first finds a flow for each binding.
For the binding x4 := v, a flow of weight 1 is found, namely

S→ O0 copy ‘e’−−−−→ E1 copy ‘v’−−−−→ O2 copy ‘e’−−−−→ E3 copy ‘v’−−−−→ O4 delete ‘d’−−−−−→ O5 → T.
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Underestimating the cost of a soft constraint 737

Fig. 3 Comparison between two ways of solving the over-constrained problem P: one uses the propagator
of (van Hoeve et al. 2004, 2006) with the unsuitable flow network, and is denoted by dashed lines; the other
uses the propagator computing the exact cost measure that will be given in Sect. 5, and is denoted by solid
lines. The symbol w denotes the edit distance between two given words

This flow passes one deletion arc and no insertion arcs, and measures the edit distance
from evevd to the 4-letter word evev accepted by M . Recall that evevd is actually
at edit distance 3 (not 1) from the 5-letter language accepted by M . For the binding
x4 := d, a flow of weight 2 is found, namely

S→ O0 copy ‘e’−−−−→ E1 copy ‘v’−−−−→ O2 substitute ‘d’−−−−−−−→ D3 copy ‘d’−−−−→ D4 substitute ‘v’−−−−−−−→ O5 → T.

This flow passes two substitution arcs, and measures the edit distance from evedd to the
5-letter word evddv accepted by M . As both of the flows have a weight not larger than
max dom(z), which is 2, no value of dom(x4) is removed; furthermore, min dom(z) is
updated to the minimum weight of the two flows, which is 1. Next, assume without loss
of generality that the CP solver enumerates dom(x4). For the binding x4 := v, the same
flow of weight 1 is found by the propagator, and a solution, namely X := 〈e, v, e, v, d〉
with z = 1, is found. Thereafter the betterness constraint z < 1 is added by the
solver. For the binding x4 := d, no flow of weight less than 1 is found, hence the
value d is removed from dom(x4); since the domain of x4 is wiped out, there is no
solution in this branch and the proof of optimality is completed. Hence the CP solver
finds an incorrect optimal solution minimising z, which is X := 〈e, v, e, v, d〉, with an
incorrectly computed z = 1.
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5 A correct propagator for the SOFTREGULAR constraint

The propagator for the SoftRegular (X, M, z) constraint with the unsuitable flow net-
work of (van Hoeve et al. 2004, 2006) may guide the search to incorrect (non-optimal)
solutions. Hence one way to fix this problem is changing the input flow network so
that every flow necessarily represents an |X |-letter word of the regular language (as
shown in Sect. 6.1). However, we prefer to change the propagator so that it computes
the cost measure with the unchanged (but revised) flow network of flows representing
the whole regular language, as the space complexity is lower and as our experimental
results in Sect. 7 show that the new propagator works better in practice. Hence we now
present, prove, analyse, and improve a new propagator for the SoftRegular constraint.
Our propagators achieve domain consistency on the decision variables X and bounds
consistency on the cost variable z.

5.1 Description of the propagator

Given a SoftRegular (X, M, z) constraint with |X | = n decision variables and a DFA
M = 〈Q, �, δ, q0, F〉, let G be the revised flow network (seen as a digraph now) in
Sect. 3 with four arc sets: Acopy, Asub, Ains, and Adel. We introduce a propagator (see
Algorithm 1) for the SoftRegular constraint based on dynamic programming, which is
a popular way of designing propagators (e.g., see Quimper and Walsh 2006; Kadioǧlu
and Sellmann 2010). Similarly to (van Hoeve et al. 2004, 2006), our propagator com-
putes for each binding a minimum-weight path from the source S to the sink T in the
digraph G, but it ensures that every computed minimum-weight path passes the same
number of insertion and deletion arcs, hence it computes the cost measure, which is
the minimum edit distance between any possible assignment of X under the current
domains and the n-letter regular language.

Note that the revised digraph is necessary for computing a minimum-weight path
that passes the same number of insertion and deletion arcs. For example, Fig. 4(b)
is the revised digraph representation of the SoftRegular (X, M, z) constraint for a
sequence X = 〈x1, . . . , x5〉 of 5 decision variables, with current domains dom(x1) =
{d}, dom(x2) = {h}, dom(x3) = dom(x5) = {e}, and dom(x4) = {v}; where M =
〈Q, �, δ, q0, F〉 is the DFA depicted in Fig. 4(a); and z is the cost variable. We can
find the following two minimum-weight paths that pass the same number of insertion

and deletion arcs: in the first path, a self-loop insertion arc (namely D2 insert ‘h’−−−−−→ D2)

must be used; in the second path, a deletion arc (namely D1 delete ‘h’−−−−−→ D2) that has a

duplicate copy arc (namely D1 copy ‘h’−−−−→ D2) must be used.

Path 1: S → O0 copy ‘d’−−−−→ D1 copy ‘h’−−−−→ D2 insert ‘h’−−−−−→ D2 copy ‘e’−−−−→ E3 copy ‘v’−−−−→
O4 delete ‘e’−−−−−→ O5 → T

Path 2: S → O0 copy ‘d’−−−−→ D1 delete ‘h’−−−−−→ D2 copy ‘e’−−−−→ E3 copy ‘v’−−−−→ O4 copy ‘e’−−−−→
E5 insert ‘v’−−−−−→ O5 → T
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Underestimating the cost of a soft constraint 739

(a) (b)

Fig. 4 Subfigure a is a DFA (not the same as in Fig. 1). Subfigure b is the revised digraph representation
of the SoftRegular (X, M, z) constraint for a sequence X = 〈x1, . . . , x5〉 of 5 decision variables, with
current domains dom(x1) = {d}, dom(x2) = {h}, dom(x3) = dom(x5) = {e}, and dom(x4) = {v}; where
M = 〈Q, �, δ, q0, F〉 is the DFA depicted in subfigure (a); and z is the cost variable

5.1.1 Computing the cost measure

In order to compute the edit distance w between the words a1 and a2 of length n
(where a1[i] is the i th letter of the word a1 and a1[i . . . j] is the subword of a1 starting
from the i th letter to the j th letter), Wagner and Fischer (1974) introduced a dynamic
programming algorithm taking O(n2) time by computing an (n+1)×(n+1) matrix h
row by row as follows:

h[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i if j = 0

j if i = 0

min

⎛

⎜
⎝

h[i − 1, j − 1] + ifa1[i] = a2[ j] then 0 else 1,

h[i, j − 1] + 1,

h[i − 1, j] + 1

⎞

⎟
⎠ otherwise,

where h[i, j]denotes the edit distance between the subwords a1[1 . . . i] and a2[1 . . . j],
so that w = h[n, n] (the value of the cell in the lower-right corner) is the edit distance
between the words a1 and a2. For example, Fig. 5 gives the matrix h when computing
the edit distance w = 2 between the words evddv and evedd.

Similarly, Algorithm 1 computes a matrix c[0 . . . n, 0 . . . n, Q] using a dynamic
programming algorithm (lines 4 –15). The matrix c has one more dimension than h,
and any cell h[i, j] is represented by |Q| cells in c (namely {c[i, j, q�] | q� ∈ Q}),
with c[i, j, q�] denoting the minimum edit distance between any possible assignment
of 〈x1, . . . , xi 〉 under the current domains and any word of j symbols accepted by M
from state q0 upon passing j transitions to state q�. Here only the c[i, j, q�] values
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Algorithm 1 A propagator computing the cost measure u for the SoftRegular (X, M, z)
constraint, with |X | = n decision variables, a DFA M = 〈Q, �, δ, q0, F〉, and the
cost variable z
1: global variable: G stores the digraph representing the SoftRegular (X, M, z) constraint
2: global variable: set reach[i in 0..n] stores the set of states in Q reachable from S in layer i of G

3: function propagator (SoftRegular (X, M, z), G)
4: int c[i in 0..n, j in 0..n, q� in Q] ← n
5: c[i in 0..n, 0, q0] ← i ; c[0, j in 1..n, q� in reach[ j]] ← j
6: for all i ← 1 to n do
7: for all j ← 1 to n do
8: for all arc (q j−1

k , q j
�
) ∈ Acopy such that qk ∈ reach[ j − 1] do

9: c[i, j, q�] ← min(c[i − 1, j − 1, qk ], c[i, j, q�])
10: for all arc (q j−1

k , q j
�
) ∈ Asub such that qk ∈ reach[ j − 1] do

11: c[i, j, q�] ← min(c[i − 1, j − 1, qk ] + 1, c[i, j, q�])
12: for all arc (q j−1

k , q j−1
�

) ∈ Ains such that qk ∈ reach[ j − 1] do
13: c[i, j, q�] ← min(c[i, j − 1, qk ] + 1, c[i, j, q�])
14: for all arc (q j−1

�
, q j

�
) ∈ Adel such that q� ∈ reach[ j] do

15: c[i, j, q�] ← min(c[i − 1, j, q�] + 1, c[i, j, q�])
16: int u ← min{c[n, n, q�] | q� ∈ F ∩ reach[n]}
17: if u > min dom(z) then
18: min dom(z)← u
19: if u > max dom(z) then
20: return fail
21: else if u + 1 ≤ max dom(z) then
22: return succeed
23: bool r [i in 0..n, j in 0..n, q� in Q] ← false
24: for all state q� ∈ F ∩ reach[n] do
25: if c[n, n, q�] = u then
26: r [n, n, q�] ← true
27: set s[i in 1..n] ← ∅
28: for all i ← n to 1 do
29: for all j ← n to 1 do
30: for all arc (q j−1

k , q j
�
) ∈ Acopy such that qk ∈ reach[ j − 1] do

31: if r [i, j, q�] and c[i, j, q�] = c[i − 1, j − 1, qk ] then
32: r [i − 1, j − 1, qk ] ← true; s[i] ← s[i] ∪ {the value labelled on the arc}
33: for all arc (q j−1

k , q j
�
) ∈ Asub such that qk ∈ reach[ j − 1] do

34: if r [i, j, q�] and c[i, j, q�] = c[i − 1, j − 1, qk ] + 1 then
35: r [i − 1, j − 1, qk ] ← true; s[i] ← dom(xi )

36: for all arc (q j−1
k , q j−1

�
) ∈ Ains such that qk ∈ reach[ j − 1] do

37: if r [i, j, q�] and c[i, j, q�] = c[i, j − 1, qk ] + 1 then
38: r [i, j − 1, qk ] ← true

39: for all arc (q j−1
�

, q j
�
) ∈ Adel such that q� ∈ reach[ j] do

40: if r [i, j, q�] and c[i, j, q�] = c[i − 1, j, q�] + 1 then
41: r [i − 1, j, q�] ← true; s[i] ← dom(xi )

42: for all i ← 1 to n do
43: dom(xi )← s[i]
44: return succeed

with q� ∈ reach[ j] are interesting, as there is no word of j symbols accepted by M
from q0 passing j transitions to q� for any q� /∈ reach[ j], hence c is a sparse matrix
unlike h. The global variable reach[0..n] is a vector of sets of states, with reach[i]
denoting the set of states of M labelled on the nodes in layer i of G that can be
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Underestimating the cost of a soft constraint 741

Fig. 5 The matrix h for
computing the edit
distance w = 2 between the
words evddv and evedd

Algorithm 2 Computing the vector reach for the SoftRegular (X, M, z) constraint,
with |X | = n decision variables, a DFA M = 〈Q, �, δ, q0, F〉, and the cost variable z
1: global variable: G stores the digraph representing the SoftRegular (X, M, z) constraint
2: global variable: set reach[i in 0..n] stores the set of states in Q reachable from S in layer i of G

3: procedure comp_reach(M)

4: reach[0] ← {q0}
5: for all i ← 1 to n do
6: reach[i] ← ∅
7: for all state qk ∈ reach[i − 1] do
8: for all transition δ(qk , v) = q� do
9: reach[i] ← reach[i] ∪ {q�}

reached from the start state q0 through i transitions of M . For example, in Fig. 2,
reach[0] = {O}, reach[1] = {D, E}, and reach[2] = · · · = reach[5] = {O, D, E}.
The vector reach only needs to be computed once before the first call of the propagator,
by exploring at most n times all transitions of M (as shown in Algorithm 2), and it never
changes during propagation and search. First, the matrix c is created and initialised
(line 4), and then each cell of c is computed similarly to h (lines 5–15). Note that,
for any word in the n-letter regular language, the DFA M recognises the word as a
sequence of n+1 states in Q, hence the minimum edit distance u between any possible
assignment of X under the current domains and the n-letter regular language accepted
by M , is assigned the minimum among the c[n, n, q�]with q� ∈ reach[n]∩F (line 16).

5.1.2 Removing inconsistent values

Considering a binding xi := t for a decision variable xi (with 1 ≤ i ≤ n) and a value
t ∈ dom(xi ), we say that a path from the source S to the sink T is minimum-weight-
related with the binding if the following conditions are satisfied:

– The path passes the same number of insertion and deletion arcs, and thus represents
a word in the n-letter regular language accepted by M .
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– The path passes an arc representing the binding.
– The path has a weight that is the minimum edit distance between any assignment

to X (with xi := t) and the n-letter regular language accepted by M .

Lemma 1 The SoftRegular (X, M, z) constraint is domain consistent on X (and is
bounds consistent on z) if and only if

1. For every binding, a minimum-weight-related path has a weight not larger than
max dom(z).

2. The minimum weight of all such paths is not larger than min dom(z).

Proof The result follows from the theorem on domain consistency for soft constraints
(Theorem 2 on page 354 of van Hoeve et al. 2006). ��

Note that for a soft constraint, the objective is to minimise its cost, hence only the
lower bound on the cost is considered.

Revisit the example in Fig. 2, where the minimum edit distance between any possible
assignment of X under the current domains and the 5-letter regular language accepted
by M is 2. We find that every minimum-weight-related path for every binding has a
weight of either 2 or 2 + 1 = 3. For example, the minimum-weight-related path for
x4 := d, namely

S→ O0 copy ‘e’−−−−→ E1 copy ‘v’−−−−→ O2 substitute ‘d’−−−−−−−→ D3 copy ‘d’−−−−→ D4 substitute ‘v’−−−−−−−→ O5 → T,

has a weight of 2; and the minimum-weight-related path for x4 := v, namely

S→ O0 copy ‘e’−−−−→ E1 copy ‘v’−−−−→ O2 substitute ‘d’−−−−−−−→ D3 substitute ‘d’−−−−−−−→ D4 substitute ‘v’−−−−−−−→ O5→T,

has a weight of 3. We have the following lemma:

Lemma 2 Given the minimum edit distance u between any possible assignment of X
under the current domains and the n-letter regular language accepted by M, every
minimum-weight-related path for every binding has a weight of either u or u + 1.

Proof There exist a word 〈k1, . . . , kn〉 in the n-letter regular language accepted by
M and an assignment X := 〈a1, . . . , an〉 (with ai ∈ dom(xi )), such that the edit
distance between 〈k1, . . . , kn〉 and 〈a1, . . . , an〉 is exactly u. Give any binding xi :=
t (with t ∈ dom(xi )), if t = ai then the edit distance between 〈k1, . . . , kn〉 and
〈a1, . . . , ai−1, t, ai+1, . . . , an〉 is exactly u; otherwise the edit distance is at most u+1
by substituting t with ai first. ��

Similarly to the propagator for the SoftGCC constraint (Zanarini et al. 2006), using
Lemmas 1 and 2, Algorithm 1 removes inconsistent values (if necessary) from the
domains for achieving domain consistency on X (and bounds consistency on z) for
the SoftRegular (X, M, z) constraint (lines 17–43), after computing the cost measure u.
If u > min dom(z), then min dom(z) is updated to u (lines 17 and 18) so that the
second condition in Lemma 1 is satisfied. If u > max dom(z), then by Lemma 2 we
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Underestimating the cost of a soft constraint 743

have that for every binding, every minimum-weight-related path has a weight (either u
or u + 1) larger than max dom(z), hence all values of X are inconsistent (lines 19
and 20); else if u+1 ≤ max dom(z), then by Lemma 2 we have that for every binding,
all minimum-weight-related paths have a weight not larger than max dom(z), and all
values of X are domain consistent (lines 21 and 22); otherwise u = max dom(z), a
vector s of n sets is computed by tracing paths of weight u backwards (lines 23–41)
such that s[i] (for 1 ≤ i ≤ n) stores all values in dom(xi ) that have minimum-weight-
related paths of weight u, and all values not in s[i] are removed from dom(xi ) (lines 42
and 43; by Lemma 2, they all have minimum-weight-related paths of weight u + 1,
which is larger than max dom(z) = u). The matrix r is used to trace paths of weight u
backwards, with r [i, j, q] = true (or false) denoting whether c[i, j, q] is (or not) a
support to obtain the minimum weight u.

5.2 Correctness of the propagator

Lemma 3 Each element c[i, j, q�] with q� ∈ reach[ j] is the minimum edit distance
between any possible assignment of 〈x1, . . . , xi 〉 under the current domains and any
word of j symbols accepted by M from q0 passing j transitions to q�.

Proof (1) c[i, 0, q0] is the minimum edit distance between any possible assignment
of 〈x1, . . . , xi 〉 and the empty path, thus is i by i deletions; c[0, j, q�] with q� ∈
reach[ j] is the minimum edit distance between the empty sequence and any word
of j symbols, thus is j by j insertions (line 5).

(2) For any (0, 0) ≤lex (i0, j0) <lex (i, j) ≤lex (n, n), and any state p0 ∈ reach[ j0],
the induction hypothesis is that c[i0, j0, p0] is the minimum edit distance between
any possible assignment of 〈x1, . . . , xi0〉 and any word of j0 symbols from q0 to
p0. For any q� ∈ reach[ j], we prove that c[i, j, q�] is the minimum edit distance
between any possible assignment of 〈x1, . . . , xi 〉 and any word of j symbols from
q0 to q�. The following four cases must hold:

1. If there is a copy arc (q j−1
k , q j

� ) ∈ Acopy such that qk ∈ reach[ j − 1], then
c[i, j, q�] = c[i − 1, j − 1, qk], as this arc has a weight of zero (no edit oper-
ation). Therefore we have c[i, j, q�] = min{c[i − 1, j − 1, qk] | (q j−1

k , q j
� ) ∈

Acopy ∧ qk ∈ reach[ j − 1]} (lines 8 and 9). The condition qk ∈ reach[ j − 1]
is crucial: if qk /∈ reach[ j − 1], then we cannot compute c[i, j, q�] from
c[i − 1, j − 1, qk], as there is no word of j − 1 symbols accepted by M from
q0 passing j − 1 transitions to qk ; note that qk ∈ reach[ j − 1] also implies
q� ∈ reach[ j], so that c[i − 1, j − 1, qk] and c[i, j, q�] are well-defined.

2. If there is a substitution arc (q j−1
k , q j

� ) ∈ Asub such that qk ∈ reach[ j − 1], then
c[i, j, q�] = c[i−1, j−1, qk]+1, as this arc has a weight of one (one substitution).
Therefore we have c[i, j, q�] = min{c[i − 1, j − 1, qk] + 1 | (q j−1

k , q j
� ) ∈

Asub ∧ qk ∈ reach[ j − 1]} (lines 10 and 11). The condition qk ∈ reach[ j − 1]
is crucial similarly to case 1.

3. If there is an insertion arc (qk
j−1, q j−1

� ) in Ains such that qk ∈ reach[ j − 1],
then c[i, j, q�] = c[i, j − 1, qk] + 1, as this arc has a weight of one (one inser-
tion). Therefore we have c[i, j, q�] = min{c[i, j − 1, qk] + 1 | (q j−1

k , q j−1
� ) ∈

123



744 J. He et al.

Ains ∧ qk ∈ reach[ j − 1]} (lines 12 and 13). The condition qk ∈ reach[ j − 1]
is crucial similarly to case 1.

4. There is always a deletion arc (q j−1
� , q j

� ) in Adel for every q� ∈ Q, so c[i, j, q�] =
c[i − 1, j, q�] + 1, as such an arc has a weight of one (one deletion). Therefore
we have c[i, j, q�] = min{c[i − 1, j, q�] + 1 | q� ∈ reach[ j]} (lines 14 and 15).
The condition q� ∈ reach[ j] is crucial so that c[i − 1, j, q�] and c[i, j, q�] are
well-defined.

Hence c[i, j, q�] with q� ∈ reach[ j] is the minimum among the four cases, which is
the same as computed by the method. By complete induction, we finish the proof. ��
Lemma 4 The value of u computed by Algorithm 1 is the minimum edit distance
between any possible assignment of 〈x1, . . . , xn〉 under the current domains and the
n-letter regular language accepted by M.

Proof From Lemma 3, we know that c[n, n, q�] is the minimum edit distance between
any possible assignment of 〈x1, . . . , xn〉 and any word of n symbols accepted by M
from q0 passing n transitions to q�. So if q� ∈ reach[n] ∩ F , then the sequence of
n values labelled on the n transitions of such a path is a word of length n accepted
by M . Hence u is the minimum edit distance between any possible assignment of
〈x1, . . . , xn〉 and the n-letter regular language accepted by M (line 16). ��
Lemma 5 Algorithm 1 computes all bindings that have minimum-weight-related
paths of weight u.

Proof Consider the following four cases, where u is the minimum edit distance
between any possible assignment of 〈x1, . . . , xn〉 under the current domains and the
n-letter regular language accepted by M :

1. Assume a path of weight u passes a copy arc (line 31), and the arc is labelled
with t . The path is a minimum-weight path related with the binding xi := t , hence
the value t is added to s[i] (line 32).

2. Assume a path of weight u passes a substitution arc (line 34). We know there is an
assignment a, namely X := 〈V1, . . . , Vn〉, such that the edit distance between a
and the word represented by the path is u. For any value t ∈ dom(xi ), we can get
an assignment a′, namely 〈V1, . . . , Vi−1, t, Vi+1, . . . , Vn〉, and the edit distance
between a′ and the word represented by the path is also u (as the arc denotes a
substitution operation on Vi : replacing Vi by t cannot increase the edit distance,
and the edit distance cannot be larger than u; as u is the minimum weight, the edit
distance cannot be less than u also). Hence for any value t ∈ dom(xi ), the path
is a minimum-weight path related with xi := t , and s[i] is assigned dom(xi ) (any
value in dom(xi ) is domain consistent) (line 35).

3. Assume a path of weight u passes an insertion arc (line 37). As an insertion arc is
not an edit operation related with the binding to xi , no value is added to s[i] (no
related path is found; line 38).

4. Assume a path of weight u passes a deletion arc (line 40). Similarly to case 2, for
any value t ∈ dom(xi ), the path is a minimum-weight path related with xi := t ,
and s[i] is assigned dom(xi ) (any value in dom(xi ) is domain consistent) (line 41).
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Hence Algorithm 1 correctly computes all bindings that have minimum weight related
paths of weight u. ��
Theorem 1 Algorithm 1 computes the cost measure and achieves domain consistency
on X and bounds consistency on z for the SoftRegular (X, M, z) constraint.

Proof The result follows from Lemmas 1, 2, 4, and 5. ��

5.3 Complexity of the propagator

To establish the time complexity of Algorithm 1, note that the vector reach only needs
to be computed once, by exploring at most n times all transitions of M (as shown in
Algorithm 2) in O(n · |δ|) time, where |δ| denotes the number of transitions of M .
The initialisation of the matrix c takes O(n + n · |Q|) = O(n · |Q|) time. For any
1 ≤ i, j ≤ n, the set of all elements c[i, j, q�] with q� ∈ reach[ j] can be computed
(upon using distributive laws) by exploring once each arc in Acopy∪ Asub∪ Ains∪ Adel
(which can have O(|δ| + |Q|) arcs: Acopy has O(|δ|) arcs, Asub has O(|δ|) arcs,
Ains has O(|δ|) arcs, and Adel has Θ(|Q|) arcs), in O(|δ| + |Q|) time total. Hence
computing the matrix c takes O(n2 · (|δ| + |Q|)) time in total, and the same holds
for tracing all minimum-weight paths backwards. Computing u takes O(|Q|) time by
querying O(|Q|) elements of c. As |δ| = |Q| · |�| ≥ |Q|, the overall complexity of
the algorithm is O(n · |δ| + n · |Q| + n2 · (|δ| + |Q|) + |Q|) = O(n2 · |δ|) time,
which is n2

n+|Q| times more expensive than the propagator of (van Hoeve et al. 2004,
2006), which however may guide the search to incorrect (non-optimal) solutions with
an unsuitable flow network.

In (van Hoeve et al. 2006) (on page 369), it is assumed that |Q| ≤ n. However in
the worst case, we have |Q| = |�|n+1, as M is at most a complete tree of depth n,
where each state has |�| transitions.

Considering space complexity, Algorithm 1 takes O(n · |Q| + n · (|Q| + |δ|)) =
O(n · |δ|) space to store the nodes and arcs in the digraph G (as there are O(n · |Q|)
nodes and O(n · (|Q|+ |δ|)) arcs in G, and |δ| = |Q| · |�| ≥ |Q|); it takes O(n2 · |Q|)
space for the matrices c and r , and O(n · |Q|) space for the vector reach; in addition,
it takes O(n · |�|) space for the vector s. Hence Algorithm 1 takes O(n · |δ| + n2 ·
|Q|+ n · |Q|+ n · |�|) = O(n · |δ|+ n2 · |Q|) space in total, as |δ| = |Q| · |�| ≥ |�|.

5.4 Revisiting the example of Sect. 4

Given the same over-constrained problem as in Sect. 4, a CP solver using the propagator
of Algorithm 1 will find the correct optimal solution to the problem. The propagator
first computes the minimum edit distance u between all possible assignments (namely
X := 〈e, v, e, v, d〉 and X := 〈e, v, e, d, d〉) and the 5-letter regular language (namely
{ddddv, ddvdv, ddvev, dvddv, evddv}), which is 2 here. As u > min dom(z), we have
that dom(z) is updated to {2}. As u = max dom(z), the propagator traces all related
minimum weight paths of weight u backwards, and finds two flows, namely

S→ O0 copy ‘e’−−−−→ E1 copy ‘v’−−−−→ O2 substitute ‘d’−−−−−−−→ D3 copy ‘d’−−−−→ D4 substitute ‘v’−−−−−−−→ O5 → T
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(assigns dom(x5) = {d} to s[5], inserts {d} into s[4], assigns dom(x3) = {e} to s[3],
inserts {v} into s[2], and inserts {e} into s[1]) and

S→O0 copy ‘e’−−−−→E1 copy ‘v’−−−−→ O2 delete ‘e’−−−−−→ O3 copy ‘d’−−−−→ D4 copy ‘d’−−−−→ D5 insertion ‘v’−−−−−−→ O5→T

(inserts {d} into s[5], inserts {d} into s[4], assigns dom(x3) = {e} to s[3], inserts {v} into
s[2], and inserts {e} into s[1]). Hence s[1] = {e}, s[2] = {v}, s[3] = {e}, s[4] = {d},
and s[5] = {d}. As v /∈ s[4], the value v is removed from dom(x4). The domains of
each decision variable and the cost variable z contain only one value, and the correct
optimal solution (also the unique solution), namely X := 〈e, v, e, d, d〉 with z = 2, is
found.

5.5 An improved propagator

Ukkonen (1985) observed that the dynamic programming algorithm of (Wagner and
Fischer 1974), which computes the edit distance between two words, is often not effi-
cient in practice, as it often evaluates unnecessary values of the matrix h. Revisit the
example in Fig. 5, which gives the matrix h for computing the edit distance w between
the words evddv and evedd of length n = 5. Each cell on the diagonal ki (or fi ) has a
value larger than or equal to i , as it is computed by operating at least i insertions (or
deletions). If a cell on the diagonal ki (or fi ) is a support to obtain the edit distance w,
i.e., if there exists a path from this cell to the cell in the lower-right corner to compute
the edit distance w, then this path passes at least another i deletions (or insertions),
and hence w = h[n, n] ≥ 2 · i . Therefore only the sequence �w of diagonals (namely

�w =
[
k�w

2 �, . . . , k1, 0, f1 . . . , f�w
2 �

]
, see Fig. 7) is necessary for computing the edit

distance w. Recall that each cell h[i, j] (with i, j ≥ 1) is computed from three adjacent
cells (namely h[i − 1, j − 1], h[i, j − 1], and h[i − 1, j]). If h[i, j] is on the first or
last diagonal of �w, then h[i, j−1] or h[i−1, j]may be an unnecessary cell (we call
a cell outside �w an unnecessary cell), and its value is not computed. Whenever an
unnecessary cell is queried, we just assume the value of this cell to be∞ (as this cell
is not a support to obtain the edit distance w). For example, in Fig. 7, h[2, 1] =
min {h[1, 0] + 1, h[2, 0] + 1, h[1, 1] + 1} = min {1+ 1,∞+ 1, 0+ 1} = 1, as
h[2, 0] is an unnecessary cell.

Based on the observation above, an improved dynamic programming algorithm
taking O(w · n) time is introduced in (Ukkonen 1985). Initially, the improved algo-
rithm assumes the edit distance is w′ = 1 and computes the edit distance using the

sequence �w′ of diagonals (namely �w′ =
[

k⌊
w′
2

⌋, . . . , k1, 0, f1, . . . , f⌊ w′
2

⌋
]

, which

is [0] here). If the computed edit distance w is larger than w′, then the algorithm dou-
bles the value of w′ and recomputes w with the enlarged sequence �w′ of diagonals.
This process repeats until w is not larger than w′. The improved algorithm runs for⌈

log2 w
⌉ + 1 iterations and computes 1 + 2i−1 (or 1) diagonals in iteration i with

i > 1 (or i = 1), where each diagonal has at most n cells. Hence the overall time
complexity of the improved algorithm is
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Fig. 6 The matrix h for
computing the edit distance
w = 2 between the words evddv
and evedd with i = 1 and
w′ = 1

⎛

⎝1+
�log2 w�+1∑

i=2

(1+ 2i−1)

⎞

⎠ · n = (
2 · w + ⌈

log2 w
⌉− 1

) · n = O(w · n)

and the worst-case time complexity is O(n2), since w ≤ n.
For example, the improved dynamic programming algorithm computes the edit

distance w between the words evedd and evddv as follows. Initially it assumes w′ = 1
and the matrix h is computed as in Fig. 6. As w = h[5, 5] = 2 > 1 = w′, it
doubles w′. Now we have w′ = 2 and the matrix h is computed as in Fig. 7. As
w = h[5, 5] = 2 ≤ w′, the algorithm terminates and returns the edit distance w = 2
between the words evedd and evddv after computing 6+ (5+6+5) = 22 cells of the
matrix h (instead of computing all 36 cells of h as in Fig. 5 when using the algorithm
of Wagner and Fischer 1974).

Similarly to the algorithm of (Ukkonen 1985), the propagator of Algorithm 3 com-
putes the cost measure and achieves domain consistency on X (and bounds consistency
on z) for the SoftRegular (X, M, z) constraint in O(min(u, max dom(z)) ·n · |δ|) time
with O(n · |δ| + n2 · |Q|) space, where u is the minimum edit distance between any
possible assignment of 〈x1, . . . , xn〉 under the current domains and the n-letter regular
language accepted by M . Although the space complexity of Algorithm 3 is the same
as the one of Algorithm 1, the asymptotic time complexity of Algorithm 3 is always
at least as good as the one of Algorithm 1 (as u ≤ n), but significantly better when
u is small. Indeed, our experimental results in Sect. 7 show that Algorithm 3 works
much better than Algorithm 1 in practice.

6 Other propagators

Given a SoftRegular (X, M, z) constraint with |X | = n decision variables and the
DFA M = 〈Q, �, δ, q0, F〉, we introduce and analyse two other correct propagators
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Fig. 7 The matrix h for
computing the edit distance
w = 2 between the words evddv
and evedd with i = 2 and
w′ = 2

Algorithm 3 An improved propagator computing the cost measure u for the Soft-

Regular (X, M, z) constraint, with |X | = n decision variables, a DFA M =
〈Q, �, δ, q0, F〉, and the cost variable z
1: lines 1 to 2 of Algorithm 1

2: function propagator_improved(SoftRegular (X, M, z), G)
3: lines 4 to 5 of Algorithm 1
4: int u
5: int u′ ← 1
6: repeat
7: for all i ← 1 to n do
8: for all j ← max(1, i − u′

2 ) to min(n, i + u′
2 ) do

9: lines 8 to 15 of Algorithm 1
10: u ← min{c[n, n, q�] | q� ∈ F ∩ reach[n]}
11: u′ ← 2 · u′
12: until (u ≤ u′

2 ) or (u > max dom(z))
13: lines 16 to 27 of Algorithm 1
14: for all i ← n to 1 do
15: for all j ← min(n, i + u′

2 ) to max(1, i − u′
2 ) do

16: lines 30 to 41 of Algorithm 1
17: lines 42 to 44 of Algorithm 1

to compute the cost measure and achieve domain consistency on X (and bounds
consistency on z) for the SoftRegular (X, M, z) constraint.

We can also use the propagator for the MultiCostRegular constraint (Menana and
Demassey 2009) with two cost variables z and z1, where z1 with dom(z1) = {0}
denotes the number of insertion arcs minus the number of deletion arcs in each flow
of the flow network constructed from M with the revisions we indicated in Sect. 3, to
compute the cost measure and achieve domain consistency on X (and bounds consis-
tency on z). However there is no published time and space complexity of the propagator
for the MultiCostRegular constraint, hence we cannot compare asymptotically.
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Underestimating the cost of a soft constraint 749

6.1 Making every flow represent a word of length n

Given a flow network with every flow necessarily passing the same number of deletion
and insertion arcs, the propagator of (van Hoeve et al. 2004, 2006) for the SoftRegu-

lar (X, M, z) constraint correctly computes the edit-distance based cost measure, as
the precondition of the generic propagator of (van Hoeve et al. 2004, 2006) is now sat-
isfied. We can construct such a flow network as follows: first compute the minimised
intersection of M with the DFA accepting �n , which will give a DFA M ′ that only
accepts words of length n accepted by M ; and then construct a flow network from M ′
according to Sect. 3 (with or without the revisions we indicated).

The time complexity of the propagator is established in two parts. The first part of
the propagator computes the smallest distance from q ′k to q ′�, for every pair of states
q ′k and q ′� of M ′. This can be done in Θ(

∣∣Q′
∣∣ · ∣∣δ′∣∣) time through breadth-first search

from every state of M ′, where
∣∣Q′

∣∣ = O(n · |Q|) is the number of states in M ′, and∣∣δ′
∣∣ = O(n · |δ|) is the number of transitions in M ′.
The second part of the propagator computes shortest paths from the source S to

the sink T of the flow network through topological sort with table lookups, taking
O(n · ∣∣δ′∣∣) time. However we cannot match this O(n · ∣∣δ′∣∣) time complexity for our

implementation, which takes O(
∣∣Q′

∣∣2
) time to deal with the insertion arcs on one

layer by querying the smallest distance from q ′k to q ′�, for all pairs of states q ′k and

q ′� of M ′. Hence our implementation of the propagator takes O(n · (∣∣Q′∣∣2 + ∣
∣δ′

∣
∣)) =

O(n3 · |Q|2+ n2 · |δ|) time to compute shortest paths from the source S to the sink T,
with O(n · ∣∣Q′

∣∣2
) time for insertion arcs and O(n · ∣∣δ′∣∣) time for the other arcs.

Therefore, the overall time complexity is O(
∣∣Q′

∣∣ · ∣∣δ′∣∣ + n · (∣∣Q′
∣∣2 + ∣∣δ′

∣∣)) =
O(n2 · |Q| · |δ| + n3 · |Q|2), which is more expensive than the worst case O(n2 · |δ|)
of Algorithm 3.

Considering that the DFA M ′ is necessarily acyclic, we can improve our imple-
mentation of the propagator by skipping the first part and changing the second part to
use topological sort without table lookups. Hence our improvement of this propagator
takes O(n ·∣∣δ′∣∣) = O(n2 ·|δ|) time, which is the same as the worst case of Algorithm 3.
However our experimental results in Sect. 7 show that Algorithm 3 works better in
practice.

The propagator takes O(n ·(∣∣δ′∣∣+∣∣Q′
∣∣)) space to store the flow network constructed

from M ′, where
∣∣Q′

∣∣ = O(n · |Q|) is the number of states in M ′, with O(n · ∣∣δ′∣∣)
space for arcs and O(n · ∣∣Q′

∣∣) for nodes. Hence the overall space complexity is
O(n2 · (|δ| + |Q|)), which is more expensive than the O(n · |δ| + n2 · |Q|) space
of Algorithm 3.

6.2 Using the WeightedGrammar constraint

Katsirelos et al. (2008, 2011) present a method of encoding the edit-distance based
SoftGrammar constraint into the WeightedGrammar constraint, and give a propaga-
tor for the WeightedGrammar constraint based on the Cocke-Younger-Kasami (CYK)
parser. Given an edit-distance based SoftRegular (X, M, z) constraint (with M =

123



750 J. He et al.

〈Q, �, δ, q0, F〉 and |X | = n), we can use the propagator for the WeightedGram-

mar constraint to compute the edit-distance based cost measure and achieve domain
consistency on X (and bounds consistency on z) for the SoftRegular constraint as fol-
lows: first, we construct a DFA M ′ (with M ′ = 〈Q′, �, δ′, q ′0, F ′〉) that only accepts
words of length n accepted by M in the same way as in Sect. 6.1; second, we encode
every transition of δ′ into a zero-weight production of a grammar; third, we add unit-
weight productions into the grammar to simulate substitution, insertion, and deletion
operations (as in Katsirelos et al. 2008, 2011), and the resulting weighted grammar
has a size of O(

∣∣δ′
∣∣); finally, we use the CYK-based propagator on the obtained

WeightedGrammar constraint. As the obtained weighted grammar is necessarily lin-
ear, the CYK-based propagator uses O(n2 · ∣∣δ′∣∣) = O(n3 · |δ|) time and space, as∣∣δ′

∣∣ = O(n · |δ|) (Katsirelos et al. 2009), which is n times more expensive (in both
time and space) than the worst case O(n2 · |δ|) of Algorithm 3. Our experimental
results in Sect. 7 confirm that Algorithm 3 works much better in practice.

Note that it is necessary to use the DFA M ′ (and not M) to generate the input
grammar. If we use the DFA M , then the obtained grammar accepts words of the
whole regular language instead of the n-letter regular language of M , and the CYK-
based propagator with such an unsuitable grammar may thus underestimate the cost
measure. A counterexample is given in Appendix A.

7 Experimental evaluation

We now investigate experimentally the efficiency of Algorithm 3 by comparing it to
Algorithm 1 and the two propagators in Sects. 6.1 and 6.2. We implemented all these
propagators for the CP back-end of Comet (Van Hentenryck and Michel 2005). We
did two experiments, where each model contains two SoftRegular constraints sharing
the variables X but each constraint has its own cost variable, and the objective is to find
a solution that minimises the sum of the two cost variables. All experiments use the
same search heuristic, which uses the first-fail principle first on the two cost variables
and then on the decision variables X . We need not try other branching heuristics, as
that is orthogonal to our purpose of giving a fair comparison of the four propagators.
All experiments were run under Comet (version 2.1.1) and Suse Linux 11.3 on a 3.07
GHz Intel Core i7 with a 3GB RAM.

The first experiment uses the two small DFAs in Fig. 8: one with 3 states and
4 transitions, and the other with 6 states and 7 transitions. The initial domains for all
variables of X are the same, namely {d, e, v}, and the initial domains for the two cost
variables are the same, namely {0, . . . , |X |}. In Table 1, each row indicates |X | = n,
the computed objective value (the minimum sum of the two cost variables), the run-
time (in seconds) of the four propagators, the number of branchings, the number of
propagations, and the number of failures. Note that for each of the four columns obj,
#branch, #propag, and #fail, all four propagators necessarily have the same values.
From Table 1, we observe that: Algorithm 3 has the best runtime among the four propa-
gators, and is even about 3 times faster than the second-best propagator (Algorithm 1);
the propagator in Sect. 6.2 has the worst runtime, as it is the only one with an O(n3)

time complexity, while the other three have an O(n2) time complexity; Algorithm 1
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Fig. 8 Two DFAs used in the first experiment

Table 1 Results for the experiment with two small DFAs, where each row indicates |X | = n, the computed
objective value, the runtime (in seconds) of the four propagators, the number of branchings, the number of
propagations, and the number of failures

n Obj Algorithm 3 Algorithm 1 Section 6.1 Section 6.2 #Branch #Propag #Fail

12 6 0.6 1.7 2.2 16.5 538 3,489 1,522

16 8 31.0 90.4 115.9 1,190.6 16,289 105,097 46,462

20 10 1,401.6 4,390.5 5,416.3 74,644.0 517,364 3,342,003 1,477,278

and the propagator in Sect. 6.1 have close runtimes, but Algorithm 1 is about 1.5 times
faster. In this experiment, the computed objective value increases linearly with n, but
the runtime of all propagators increases super-linearly with n.

The second experiment uses the two large DFAs from case 15 and case 16 of
(Beldiceanu et al. 2013), which are used to model a nurse scheduling problem. In
case 15, the DFA has 1,115 states and 2,272 transitions; in case 16, the DFA has 1,309
states and 3,698 transitions. The initial domains for all variables of X are the same,
namely {1, 2, 3, 4}, and the initial domains for the two cost variables are the same,
namely {0, . . . , |X |}. Table 2 gives the results for the second experiment. We observe
that: the minimum sum of the two cost variables is always 0 in this experiment, hence
it is a test where the computed minimum edit distance u during each propagation
takes small values; Algorithm 3 is the best among the four propagators, and is already
13 times faster than the second-best propagator (Algorithm 1) when n = 28; the
runtime of Algorithm 3 only increases a little when n increases, as its complexity is
bounded by an expression on u; and the comparisons of the other three propagators
are the same as for Table 1.

8 Constraint-based local search

Constraint-based local search (CBLS, e.g., Van Hentenryck and Michel 2005) is the
local search approach to CP. In CBLS, constraints are used to describe and control
local search. Given an initial assignment of values to all the variables, CBLS tries to
find a better assignment that decreases the amount of constraint violation, by exploring
a neighbourhood of the current assignment, that is a set of assignments that do not
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Table 2 Results for the experiment with two large DFAs, where each row indicates |X | = n, the computed
objective value, the runtime (in seconds) of the four propagators, the number of branchings, the number of
propagations, and the number of failures

n Obj Algorithm 3 Algorithm 1 Section 6.1 Section 6.2 #Branch #Propag #Fail

12 0 1.7 1.8 2.4 7.8 14 13 0

16 0 2.5 4.2 5.1 91.9 18 33 2

20 0 2.0 7.6 10.9 406.9 22 41 2

24 0 2.5 19.2 26.3 1,334.3 26 61 4

28 0 2.9 39.4 54.2 3,180.3 30 81 6

differ much from the current one. An assignment with zero (or minimum) violation is
to be found. Meta-heuristics are used to escape local minima.

In (Pralong 2007, He et al. 2011), two Hamming-distance based violation measures
of the Regular constraint for CBLS have been introduced. However there is no work on
an edit-distance based Regular constraint for CBLS, as far as we know. Interestingly,
our method can also be used for the edit-distance based Regular (X, M) constraint for
CBLS. Given the current assignment a to the n decision variables X = 〈x1, . . . , xn〉,
the flow network G can be constructed by setting the domain of each decision vari-
able xi to a singleton, namely dom(xi ) = {a(xi )}, where a(xi ) is the value assigned to
xi under a. Given a SoftRegular (X, M, z) constraint, in Algorithm 1 the variable u is
computed as the minimum edit distance between the current domains of X and the n-
letter regular language accepted by the DFA M ; thus u can be taken as the edit-distance
based constraint violation measure of a Regular (X, M) constraint in CBLS.

9 Conclusion

We have used the edit-distance based SoftRegular constraint as an example to show that
a propagator that sometimes underestimates the cost measure for a soft constraint may
guide the search to incorrect (non-optimal) solutions to an over-constrained problem.
We have presented a propagator and an improved version that correctly compute the
cost measure for the SoftRegular constraint, and favourably compared theoretically
and experimentally our propagators with two other propagators. We have shown that
our method can also be adapted for the violation measure of the edit-distance based
Regular constraint for constraint-based local search.

Future work includes using the idea of (Ukkonen 1985) to improve propagators
that are based on dynamic programming for other constraints.
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Underestimating the cost of a soft constraint 753

Appendix A: An example of encoding the SOFTREGULAR constraint incorrectly

Given an edit-distance based SoftRegular (X, M, z) constraint with M = 〈Q, �, δ,

q0, F〉 and |X | = n, we give an example to show that the CYK-based propagator
for the WeightedGrammar constraint of (Katsirelos et al. 2008, 2011) with a weighted
grammar obtained from M may underestimate the edit-distance based cost measure, as
the grammar accepts words of the whole regular language instead of the n-letter regular
language of M . Hence we cannot use the weighted grammar obtained from M when
encoding the SoftRegular (X, M, z) constraint with the WeightedGrammar constraint.

The DFA M in Fig. 1 can be converted into the following context-free grammar
(CFG) G1 by encoding every transition of M into a linear production, where O is the
start symbol:

G1 : O→ dD|eE|ε
D→ dD|vO

E→ vO

The CFG G1 can be converted into the following Chomsky normal form (CNF) G2:

G2 : O→ YdD|YeE

D→ YdD|YvO|v
E→ YvO|v
Yd → d

Ye → e

Yv → v

The WeightedGrammar constraint can be used to encode the edit-distance based Soft-

Grammar constraint (Katsirelos et al. 2008, 2011). Given the CNF G2, the following
weighted productions will be added to simulate substitution, insertion, and deletion
operations:

substitution productions : Yd → e|v, with weight 1

Ye → d|v, with weight 1

Yv → d|e, with weight 1

insertion productions : Yd → ε, with weight 1

Ye → ε, with weight 1

Yv → ε, with weight 1

D→ ε, with weight 1

E→ ε, with weight 1

deletion productions : O→ HO|OH, with weight 0

D→ HD|DH, with weight 0

E→ HE|EH, with weight 0
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Fig. 9 A minimum-weight parse tree computed by the CYK-based propagator of (Katsirelos et al. 2011)

Yd → HYd|YdH, with weight 0

Ye → HYe|YeH, with weight 0

Yv → HYv|YvH, with weight 0

H→ d|e|v, with weight 1

Consider the SoftRegular (X, M, z) constraint, where X = 〈x1, . . . , x5〉 is a sequence
of |X | = 5 decision variables, with current domains dom(x1) = dom(x3) =
{e}, dom(x2) = {v}, dom(x4) = {d, v}, and dom(x5) = {d}, and M is the
DFA of Fig. 1. The minimum edit distance between all feasible assignments
(namely {evedd, evevd}) and the 5-letter regular language accepted by M (namely
{ddddv, ddvdv, ddvev,dvddv, evddv}) is 2. However, as shown in Fig. 9, the minimum
weight computed by the CYK-based propagator of (Katsirelos et al. 2008, 2011) with
the obtained weighted grammar is 1 (instead of 2), which is the same as the one
computed in (van Hoeve et al. 2004, 2006) measuring the edit distance from word
evevd to evev (in the 4-letter regular language accepted by M) through one deletion
operation, hence the CYK-based propagator with the unsuitable weighted grammar
underestimates the cost measure in this case.

Actually, in order to make the CYK-based propagator for the WeightedGram-

mar constraint of (Katsirelos et al. 2008, 2011) work properly for the edit-distance
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Fig. 10 An example for the
CYK-based propagator of
(Katsirelos et al. 2011) with
insertion productions that
generate ε

based SoftGrammar constraint, we claim that two more changes are needed in addition
to the one mentioned for this purpose on page 200 of (Katsirelos et al. 2011), which
changes a loop control variable in order to handle ε productions.

1. Unit-weight ε productions are introduced to simulate insertion operations. Here,
ε production means a production that generates ε. In order to handle these ε produc-
tions, the CYK-based propagator allows a symbol generated from another symbol
in the same cell. For example, in Fig. 10, there are 2 symbols, C and E, in the cell
(i = 1, j = 0) generated from the two insertion productions C→ ε and E→ ε.
Note that the example of Fig. 10 has no relation to our running example of Sect. 4.
In the cell (i = 1, j = 2), there are three symbols O, D, and A generated from
the three productions O → CD, D → EA, and A → BC respectively. When
the CYK-based propagator computes the lower (or upper) bounds, it is crucial
that these three productions are explored in a correct order: first A → BC, then
D → EA, and finally O → CD (or in the opposite order), so that the lower (or
upper) bounds of O, D, and A in cell (i = 1, j = 2) are computed correctly. Hence
all symbols in each cell must be sorted before computing the bounds.

2. Line 73 of the CYK-based propagator on page 191 of (Katsirelos et al. 2011),
where the domains of the decision variables are pruned, also needs to be modified
to suit the case of substitution and deletion productions, so that the domain of the
decision variable xi should not be pruned if there exists a symbol with an upper
bound of 1 in cell (i, 1) denoting a substitution or deletion production.
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