A Parametric Propagator for Discretely Convex Pairs of Sum Constraints^

Jean-Noël Monette ${ }^{1}$, Nicolas Beldiceanu ${ }^{2}$, Pierre Flener ${ }^{1}$, and Justin Pearson ${ }^{1}$
${ }^{1}$ Uppsala University, Dept. of Information Technology, 75105 Uppsala, Sweden FirstName.LastName@it.uu.se
${ }^{2}$ Mines de Nantes, TASC Team (CNRS/INRIA), 44307 Nantes, France
Nicolas.Beldiceanu@Mines-Nantes.fr

Abstract

We introduce a propagator for abstract pairs of Sum constraints, where the expressions in the sums respect a form of convexity. This propagator is parametric and can be instantiated for various concrete pairs, including Deviation, Spread, and the conjunction of Sum and Count. We show that despite its generality, our propagator is competitive in theory and practice with state-of-the-art propagators.

1 Introduction

Many constraint problems involve a Sum constraint, along with other constraints. It is however well-known that a Sum constraint taken in isolation is not able to perform a lot of pruning since the estimation of the minimum or maximum of a sum does not take other constraints into account. Several authors have studied how to include other constraints (sharing some variables) in the propagator for Sum, either in particular cases (e.g., Spread [9], IncreasingSum [11, and Sum with cliques [12]), or in general (e.g., ObjectiveSum [15]).

In the present work, we focus on a parametric problem, which can be cast as

$$
\begin{array}{r}
\sum_{i \in[1, n]} f_{i}\left(x_{i}\right) \leq \bar{f} \\
\underline{g} \leq \sum_{i \in[1, n]} g_{i}\left(x_{i}\right) \leq \bar{g} \tag{2}
\end{array}
$$

for any $n \geq 1$. The f_{i} and g_{i} are functions from integers to integers and the f_{i} (resp. g_{i}) can differ for each i. In this work, \bar{f}, g, and \bar{g} are constants, but Section 5 shows how to use variables instead. In Section 5, we also consider a lower bound \underline{f} on the first sum.

Finding a solution to the conjunction of (1) and (2) is in general NP-complete as it includes as a special case the knapsack problem. There is however a large class of f_{i} and g_{i} functions for which either domain consistency or bounds (\mathbb{Z}) consistency (see, e.g., [19] for definitions) can be achieved in polynomial time.

[^0]In this paper, we present a parametric propagator for this class of functions and show how to instantiate it for various functions f_{i} and g_{i}. We show that the considered class of problems includes among others the (bounds(\mathbb{Z}) consistent) constraints Deviation [17], Spread [9], and WeightedAverage [3] (with variable weights and constant values) and the (domain consistent) conjunction of Linear and Count [13]. In several cases, we match the theoretical complexity and practical efficiency of previously published specialised propagators.

Our approach for propagating the conjunction of (1) and (2) contains two parts. First (as discussed in Section (2), we compute a sharp lower bound on $\sum_{i \in[1, n]} f_{i}\left(x_{i}\right)$ under constraint (2), together with a witnessing assignment. The conjunction is feasible if this lower bound, which we call the feasibility bound, is at most \bar{f}. To compute this feasibility bound, we introduce new functions derived from the f_{i} and g_{i}. We show that the feasibility bound can be greedily computed if the newly introduced functions are discretely convex.

In the second part of the propagator (discussed in Section 3), the domain of each variable x_{j} is filtered by computing for each value u in its domain a sharp lower bound on $\sum_{i \in[1, n]} f_{i}\left(x_{i}\right)$ under constraint (2) when x_{j} is assigned u. If this lower bound is larger than \bar{f}, then u is removed from the domain of x_{j}. The lower bound for each pair $\left(x_{j}, u\right)$ is computed incrementally from the witnessing assignment for the feasibility bound thanks to the discrete convexity property. We also present an improved propagator for an additional property of f_{j} and g_{j}.

The resulting propagator is parametric, depending on the f_{i} and g_{i}. The time complexity and the achieved level of consistency depend on the shape of the f_{i} and g_{i} and on the values given to the parameters. We study the complexity in Section 4 and give some implementation notes. Afterwards, we present in Section 5 several instantiations of the propagator, including a case study of Deviation. Finally, Section 6 presents some experimental results showing that the genericity of our approach is not detrimental to performance.

2 Feasibility Test

Given a variable x, let D_{x} denote the current domain of that variable. For a function f and value v, we write $f^{-1}(v)$ for the set of values $\{u \mid f(u)=v\}$. For a function f and set S, we write $f(S)$ for $\{f(u) \mid u \in S\}$. We use x_{i}, v_{i}, f_{i} to represent single variables, values, and functions, while $\mathbf{x}, \mathbf{v}, \mathbf{f}$ represent the respective vectors of all variables, values, and functions (e.g., $\mathbf{x}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$).

The conjunction of (1) and (2) is satisfiable if and only if the cost (i.e., the value of the objective function) of an optimal solution to the following problem is at most \bar{f} :

$$
\begin{align*}
\text { minimise } & \sum_{i \in[1, n]} f_{i}\left(x_{i}\right) \\
\text { such that } & \underline{g} \leq \sum_{i \in[1, n]} g_{i}\left(x_{i}\right) \leq \bar{g} \tag{3}\\
& x_{i} \in \mathrm{D}_{x_{i}}, \quad \forall i \in[1, n]
\end{align*}
$$

We gradually show in the next sub-sections how to compute greedily this cost, called the feasibility bound, together with a witnessing assignment.

2.1 Problem Reformulation

We reformulate problem (31) in two steps. The first step introduces for each i a new function h_{i} that captures the relation between f_{i} and g_{i}. The second step splits the resulting reformulated problem into two subproblems.

First Step. After introducing new variables y_{i}, so that $y_{i}=g_{i}\left(x_{i}\right)$ for each i, we propose the following new problem:

$$
\begin{align*}
\text { minimise } & \sum_{i \in[1, n]} h_{i}\left(y_{i}\right) \\
\text { such that } & \underline{g} \leq \sum_{i \in[1, n]} y_{i} \leq \bar{g} \tag{4}\\
& y_{i} \in g_{i}\left(\mathrm{D}_{x_{i}}\right), \quad \forall i \in[1, n]
\end{align*}
$$

where we introduce a new function $h_{i}: g_{i}\left(\mathrm{D}_{x_{i}}\right) \rightarrow f_{i}\left(\mathrm{D}_{x_{i}}\right)$ for each i. This function is defined as $h_{i}(v)=\min f_{i}\left(g_{i}^{-1}(v)\right)=\min \left\{f_{i}(u) \mid u \in \mathrm{D}_{x_{i}} \wedge g_{i}(u)=v\right\}$, that is $h_{i}(v)$ is the smallest value of $f_{i}\left(x_{i}\right)$ that can be attained when $g_{i}\left(x_{i}\right)$ is equal to v. Note that the definition of h_{i} depends on the current domain of x_{i}. We now prove that the feasibility bound can also be computed from problem (4).

Lemma 1. All optimal solutions to problems (3) and (4) have the same cost.
Proof. Let \mathbf{v} denote a vector of values for the vector \mathbf{y} of variables. For each value v_{i}, we choose an arbitrary value u_{i} in $\mathrm{D}_{x_{i}}$ such that $g_{i}\left(u_{i}\right)=v_{i}$ and $f_{i}\left(u_{i}\right)=h_{i}\left(v_{i}\right)$. Such a value u_{i} always exists, by the definition of h_{i}. Then the vector \mathbf{u} is a feasible solution to problem (3) if and only if \mathbf{v} is a feasible solution to problem (4), and they have the same cost. In addition, any other assignment \mathbf{u}^{\prime} such that $g_{i}\left(u_{i}^{\prime}\right)=v_{i}$ for each i has a cost larger than or equal to the cost of \mathbf{u} and \mathbf{v}, by the definition of h_{i}. Hence \mathbf{u} is optimal if and only if \mathbf{v} is optimal.

Second Step. We define a new function, called H, from integers to integers:

$$
\begin{equation*}
H(b)=\min \left\{\sum_{i \in[1, n]} h_{i}\left(y_{i}\right) \mid \sum_{i \in[1, n]} y_{i}=b \wedge \forall i \in[1, n]: y_{i} \in g_{i}\left(\mathrm{D}_{x_{i}}\right)\right\} \tag{5}
\end{equation*}
$$

That is, $H(b)$ is the minimum of the sum of the $h_{i}\left(y_{i}\right)$ when the sum of the y_{i} is equal to b. For a given b, we define \mathbf{w}^{b} to be an assignment of \mathbf{y} such that $b=\sum_{i \in[1, n]} w_{i}^{b}$ and $H(b)=\sum_{i \in[1, n]} h_{i}\left(w_{i}^{b}\right)$, i.e., an optimal solution to (5). We call \mathbf{w}^{b} a witnessing assignment of b. We propose the following new problem:

$$
\begin{align*}
\text { minimise } & H(z) \\
\text { such that } & \underline{g} \leq z \leq \bar{g} \tag{6}
\end{align*}
$$

Table 1. Several instantiations of f_{i} and g_{i}, and the corresponding h_{i}. The notation [cond] uses the Iverson bracket and is defined to be 1 if cond is true, and 0 otherwise.

Common Name	$f_{i}(u)$	$g_{i}(u)$	$h_{i}(v)$
Linear	$a_{i} \cdot u$	0	$\begin{cases}a_{i} \cdot \min \mathrm{D}_{x_{i}} & \text { if } a_{i}>0 \\ a_{i} \cdot \max \mathrm{D}_{x_{i}} & \text { if } a_{i} \leq 0\end{cases}$
WeightedAverage 3]	$a_{i} \cdot u$	u	$a_{i} \cdot v$
Deviation 17	$\|n \cdot u-n \cdot \mu\|$	u	$\mid n \cdot v-n \cdot \mu$
Spread 9]	$(n \cdot u-n \cdot \mu)^{2}$	u	$(n \cdot v-n \cdot \mu)$
L_{p}-NORM, $0<p<+\infty$	$\|n \cdot u-n \cdot \mu\|^{p}$	u	$\|n \cdot v-n \cdot \mu\|^{p}$
			$\begin{cases}a_{i} \cdot \min \left(\mathrm{D}_{x_{i}} \backslash \mathcal{V}\right) & \text { if } v=0 \wedge a_{i}>0 \\ a_{i} \cdot \max \left(\mathrm{D}_{x_{i}} \backslash \mathcal{V}\right) & \text { if } v=0 \wedge a_{i} \leq 0\end{cases}$
Linear and Count 13	$a_{i} \cdot u$	$[u \in \mathcal{V}]$	$\begin{cases} \\ a_{i} \cdot \min \left(\mathrm{D}_{x_{i}} \cap \mathcal{V}\right) & \text { if } v=1 \wedge a_{i}>0 \\ a_{i} \cdot \max \left(\mathrm{D}_{x_{i}} \cap \mathcal{V}\right) & \text { if } v=1 \wedge a_{i} \leq 0\end{cases}$
Linear and Maximum	$a_{i} \cdot u$	$\left[{ }^{2} \geq m\right]$	(omitted, similar to previous pair)
ModAndDiv $\left(a_{i}>0\right)$	$\left\lfloor u-a_{i} \cdot\left\lfloor u / a_{i}\right\rfloor\right.$	$\left\lfloor u / a_{i}\right\rfloor$	$\max \left(0, \min \mathrm{D}_{x_{i}}-a_{i} \cdot v\right)$

where z is a fresh variable. The feasibility bound can also be computed from problem (6), as the latter has the same optimal cost as problem (4), and thus as problem (3): this is shown by replacing $H(z)$ by its definition (5) in the formulation of problem (6). Problems (4) and (6) are more interesting than problem (3) in three respects. First, it is simpler to reason with only one function per variable (namely h_{i}) instead of two (namely f_{i} and g_{i}). Second, the domain $\mathrm{D}_{y_{i}}$, which is equal to $g_{i}\left(\mathrm{D}_{x_{i}}\right)$, might be much smaller than $\mathrm{D}_{x_{i}}$. Third, introducing H allows us to compute the feasibility bound in two steps: (i) construct H from the h_{i}, and (ii) find an optimal solution to (6). This can be done greedily if all h_{i} are discretely convex.

Definition 1. A function $f: A \rightarrow B$, where $A, B \subseteq \mathbb{Z}$, is discretely convex if 1. A is an interval, and
2. $\forall v \in A:(v-1) \in A \wedge(v+1) \in A \Rightarrow 2 \cdot f(v) \leq f(v-1)+f(v+1)$.

The notion of discrete convexity is an adaptation of the usual convexity from the reals to the integers. This notion has been studied in depth, for instance in [7]. It is also related to the notion of submodular functions on sets [4].

The first condition in Definition 1 restricts in some cases the application of our approach to domains with no holes. This is discussed further in Section 5.1

Table 1 presents the f_{i}, g_{i}, and h_{i} for several pairs. The h_{i} are convex for all those examples. Before providing algorithms, we need to introduce some notions.

2.2 Deltas, Segments, Slopes, Breakpoints, Reasoning on Infinity

Let $f: A \rightarrow B$ be a function with $A, B \subseteq \mathbb{Z}$. Given some value v in A, we call right delta (resp. left delta) the increase of f when v increases (resp. decreases) by 1 . Formally: $\Delta^{+}(f, v)=f(v+1)-f(v)$ and $\Delta^{-}(f, v)=f(v-1)-f(v)$; the value of $\Delta^{+}(f, v)\left(\operatorname{resp} . \Delta^{-}(f, v)\right)$ is $+\infty$ when $v+1$ (resp. $v-1$) is not in A.

Fig. 1. Illustration of the notions of Section 2.2, Filled points are at breakpoints.

A segment of f is a maximal interval $[\ell, u]$ of its domain where the (right or left) delta is constant. Formally: $\Delta^{+}(f, v)=\Delta^{+}(f, v+1)$ for all $v \in[\ell, u-1]$, with $\ell \leq u, \Delta^{+}(f, \ell-1) \neq \Delta^{+}(f, \ell)$, and $\Delta^{+}(f, u-1) \neq \Delta^{+}(f, u)$. The endpoints ℓ and u of a segment $[\ell, u]$ of f are called breakpoints of f. The length of a segment $[\ell, u]$ is $u-\ell$. The slope of a segment $[\ell, u]$ is $\Delta^{+}(f, \ell)$. Hence the slope of a function is constant inside any of its segments and changes at its breakpoints.

The domain of f can be uniquely partitioned into its segments, and each value of the domain belongs to one or two segments. For a value v, the breakpoint on the right of v, denoted by $\mathrm{bp}^{+}(f, v)$, is u if v is in some segment $[\ell, u]$ with $u \neq v$, and otherwise undefined, denoted by $+\infty$. Similarly, $\operatorname{bp}^{-}(f, v)$ denotes the breakpoint on the left of v, if any, otherwise $-\infty$.

Let f be a discretely convex function. For any two contiguous segments, the slope of the former is smaller than the slope of the latter, hence no two segments have the same slope. Also, $\Delta^{+}(f, v)=+\infty$ only for the largest value v in A, as A is an interval, and $\Delta^{-}(f, v)=+\infty$ only for the smallest value v in A.

Figure 1 illustrates these notions on a discretely convex function.
The basic properties of $+\infty$ and $-\infty$ used in our algorithms are, for any $v \in \mathbb{Z}:-\infty<v<+\infty, v+(+\infty)=+\infty, v+(-\infty)=-\infty, v-(-\infty)=+\infty$, $v-(+\infty)=-\infty, \min (v,+\infty)=v$, and $v /+\infty=0$.

2.3 Characterisation of the H Function

When the h_{i} are discretely convex, problem (6) is easy to solve by greedy search, because H is then also discretely convex and can be calculated efficiently.

Before proving those claims, we need to study the relationship between $H(b)$, $H(b+1)$, and $H(b-1)$, and their respective witnessing assignments. For any j and $k \neq j$, the sum $w_{1}^{b}+\cdots+\left(w_{j}^{b}+1\right)+\cdots+\left(w_{k}^{b}-1\right)+\cdots+w_{n}^{b}$ equals b, and hence by definition of H (since w_{i}^{b} are the values that minimise $H(b)$), we have $H(b) \leq h_{1}\left(w_{1}^{b}\right)+\cdots+h_{j}\left(w_{j}^{b}+1\right)+\cdots+h_{k}\left(w_{k}^{b}-1\right)+\cdots+h_{n}\left(w_{n}^{b}\right)$.

Rearranging and cancelling out common terms gives

$$
\begin{equation*}
h_{k}\left(w_{k}^{b}\right)-h_{k}\left(w_{k}^{b}-1\right) \leq h_{j}\left(w_{j}^{b}+1\right)-h_{j}\left(w_{j}^{b}\right) \tag{7}
\end{equation*}
$$

If h_{j} is discretely convex, then we have that $h_{k}\left(w_{k}^{b}\right)-h_{k}\left(w_{k}^{b}-1\right) \leq h_{j}\left(w_{j}^{b}+\right.$ 1) $-h_{j}\left(w_{j}^{b}\right) \leq h_{j}\left(w_{j}^{b}+2\right)-h_{j}\left(w_{j}^{b}+1\right)$. Thus $h_{1}\left(w_{1}^{b}\right)+\cdots+h_{j}\left(w_{j}^{b}+1\right)+\cdots+$ $h_{k}\left(w_{k}^{b}\right)+\cdots+h_{n}\left(w_{n}^{b}\right) \leq h_{1}\left(w_{1}^{b}\right)+\cdots+h_{j}\left(w_{j}^{b}+2\right)+\cdots+h_{k}\left(w_{k}^{b}-1\right)+\cdots+h_{n}\left(w_{n}^{b}\right)$, so that adding two to any single w_{j}^{b} and reducing another w_{k}^{b} by one to arrive at the sum $b+1$ will have a higher cost than simply adding one to a single w_{j}^{b}. Because each h_{i} is discretely convex, this is true for any increment larger than one. Hence it is possible to find a witnessing assignment \mathbf{w}^{b+1} for $b+1$ from a witnessing assignment \mathbf{w}^{b} for b by increasing any suitable w_{i}^{b} by one. Similarly it is possible to find $\mathrm{a} \mathbf{w}^{b-1}$ by subtracting one from any suitable w_{i}^{b}.

Lemma 2. H is discretely convex whenever each h_{i} is discretely convex.
Proof. The domain of each h_{i} is an interval $\left[\ell_{i}, u_{i}\right]$, so that the domain of H is the interval $\left[\sum_{i \in[1, n]} \ell_{i}, \sum_{i \in[1, n]} u_{i}\right]$. We need to show that $H(b)-H(b-1) \leq$ $H(b+1)-H(b)$. If w_{i}^{b} is a witnessing assignment for some b then by the discussion above there are some k and j such that $H(b-1)=h_{1}\left(w_{1}^{b}\right)+\cdots+h_{k}\left(w_{k}^{b}-1\right)+$ $\cdots+h_{n}\left(w_{n}^{b}\right)$ and $H(b+1)=h_{1}\left(w_{1}^{b}\right)+\cdots+h_{j}\left(w_{j}^{b}+1\right)+\cdots+h_{n}\left(w_{n}^{b}\right)$. Therefore $H(b)-H(b-1)=h_{k}\left(w_{k}^{b}\right)-h_{k}\left(w_{k}^{b}-1\right)$ and $H(b+1)-H(b)=h_{j}\left(w_{j}^{b}+1\right)-h_{j}\left(w_{j}^{b}\right)$ and by (7) $H(b)-H(b-1) \leq H(b+1)-H(b)$. Hence H is discretely convex.

We now show how to calculate H efficiently by giving a characterisation of its minimum and segments. Here, for any set S and function f, the expression $\operatorname{argmin}_{i \in S} f(i)$ returns one (arbitrary) value $i \in S$ that minimises $f(i)$.

Lemma 3. A witnessing assignment $\mathbf{w}^{b^{*}}$ of a value b^{*} that minimises H is such that $w_{i}^{b^{*}}=\operatorname{argmin}_{v_{i} \in g_{i}\left(\mathrm{D}_{x_{i}}\right)} h_{i}\left(v_{i}\right)$.

Proof. If $\mathbf{w}^{b^{*}}$ is a witnessing assignment of b^{*}, then b^{*} is equal to $\sum_{i \in[1, n]} w_{i}^{b^{*}}$ and $H\left(b^{*}\right)=\sum_{i \in[1, n]} h_{i}\left(w_{i}^{b^{*}}\right)$. Since each $w_{i}^{b^{*}}=\operatorname{argmin}_{y_{i} \in g_{i}\left(\mathrm{D}_{x_{i}}\right)} h_{i}\left(y_{i}\right)$ corresponds to the minimum value obtainable by h_{i}, it is not possible to reduce the value $\sum_{i \in[1, n]} h_{i}\left(w_{i}^{b^{*}}\right)$ by picking a different value for any $w_{i}^{b^{*}}$.

There exist potentially several $\mathbf{w}^{b^{*}}$ that minimise H. The correctness of our approach does not depend on a particular choice for those values.

We now characterise the segments of H.
Lemma 4. If \mathbf{w}^{b} is a witnessing assignment for b, then $\Delta^{+}\left(h_{i}, w_{i}^{b}\right) \geq \Delta^{+}(H, b)$ and $\Delta^{-}\left(h_{i}, w_{i}^{b}\right) \geq \Delta^{-}(H, b)$ for all $i \in[1, n]$.

Proof. If b is increased by one, then one of the w_{i}^{b} must be increased by one as discussed previously. To reach the minimum value for $b+1$, one needs to increase the value of a variable y_{k} that has the smallest $\Delta^{+}\left(h_{k}, w_{k}^{b}\right)$. So the increase of H, namely $\Delta^{+}(H, b)$, is equal to $\Delta^{+}\left(h_{k}, w_{k}^{b}\right)$, which is smaller than or equal to $\Delta^{+}\left(h_{i}, w_{i}^{b}\right)$ for any other i. A similar argument is used for a decrease of b.

Lemma 5. The length of each segment of H is equal to the sum of the lengths of the segments in the h_{i} functions with the same slope.

Proof. As in the proof of Lemma 4. $\Delta^{+}(H, b)$ is equal to a minimal $\Delta^{+}\left(h_{k}, w_{k}^{b}\right)$. If one wants to increase b by more than one, the increase per unit stays constant as long as there is at least one variable with slope equal to $\Delta^{+}(H, b)$. This defines a segment of slope $\Delta^{+}(H, b)$, whose length is equal to the sum of the lengths of the segments of all h_{i} functions with the same slope.

We can use Lemmas 3 and 5 to construct H efficiently. Section 4 presents two ways to implement this construction in practice.

2.4 Computing the Feasibility Bound and a Witnessing Assignment

We can now show a case when problem (6) can be solved in a greedy way.
Theorem 1. Problem (6) can be solved greedily if each h_{i} is discretely convex.
Proof. If each function h_{i} is discretely convex, then the function H is also discretely convex (by Lemma 2) and can be constructed from the h_{i} (by Lemmas 3 and 5). Finding the minimum of a discretely convex function under some bound constraints can be done greedily, as a local minimum of a discretely convex function is also a global minimum (see, e.g., Theorem 2.2 in (7).

Given the function H, problem (6) can be solved by first finding b^{*} minimising H, and then greedily increasing or decreasing b^{*} if b^{*} is not in $[\underline{g}, \bar{g}]$. In addition, it is useful for the filtering to compute the witnessing assignment $\mathbf{w}^{b^{*}}$ of b^{*}.

Thanks to Lemma 4 this can be achieved as in Algorithm [1. From now on, we simply write \mathbf{w} to refer to $\mathbf{w}^{b^{*}}$. An assignment \mathbf{w} that minimises the value of H without considering the bounds of b is initially constructed (lines 2-4). If b is in $[\underline{g}, \bar{g}]$, then the initial assignment is the final one. Otherwise the assignment is iteratively modified in order to satisfy the bounds of b. We assume $b<\underline{g}$ in line 5 (the case $b>\bar{g}$ is symmetrical and not shown). Then some w_{i} must be increased until b is equal to \underline{g}. This is done in two steps. In lines $6-10$, the segment of H where g lies is found. Its slope is stored in $\Delta^{\max }$, and the distance between $\mathrm{bp}^{-}(H, \underline{g})$ and \underline{g} is stored in slack. Those two values allow us then to modify each w_{i} separately (lines $11-17$). For each i, first w_{i} is moved from breakpoint to breakpoint of h_{i} while the slope of the segment is smaller than $\Delta^{\max }$. Next, if the slope of the segment on the right of w_{i} is equal to $\Delta^{\max }$, then w_{i} is moved further on this segment, without exceeding the remaining slack (line 15).

The algorithm returns the witnessing assignment \mathbf{w} (line 20), or "null" if the constraint is unsatisfiable (line 8), which triggers propagator failure and happens if there exists no value in the domains of the h_{i} such that $b \in[\underline{g}, \bar{g}]$.

3 Domain Filtering

To filter the domain of a variable, we extend the reasoning presented in Section 2.1. Indeed, variable x_{j} can take the value u if the cost of an optimal solution to the following problem is smaller than or equal to \bar{f} :

```
Algorithm 1. Greedy algorithm to compute a witnessing assignment
    function GetWitnessLowerBound \((\mathbf{h}, H, \underline{g}, \bar{g})\)
        for all \(i \in[1, n]\) do
            \(w_{i}:=\operatorname{argmin}_{v \in g_{i}\left(\mathrm{D}_{x_{i}}\right)} h_{i}(v)\)
        \(b:=\sum_{i \in[1, n]} w_{i}\)
        if \(b<\underline{g}\) then
            while \(\Delta^{+}(H, b)<+\infty\) and \(\mathrm{bp}^{+}(H, b)<\underline{g}\) do
                \(b:=\mathrm{bp}^{+}(H, b)\)
            if \(\Delta^{+}(H, b)=+\infty \wedge b<\underline{g}\) then return null \(\}\) sharp bound
            \(\Delta^{\max }:=\Delta^{+}(H, b)\)
            slack \(:=\underline{g}-b\)
            for all \(i \in[1, n]\) do
                while \(\Delta^{+}\left(h_{i}, w_{i}\right)<\Delta^{\max }\) do
                        \(w_{i}:=\mathrm{bp}^{+}\left(h_{i}, w_{i}\right)\)
                if \(\Delta^{+}\left(h_{i}, w_{i}\right)=\Delta^{\max }\) and slack \(>0\) then
                                    modifying w
                        \(w^{\prime}:=\min \left(\mathrm{bp}^{+}\left(h_{i}, w_{i}\right), w_{i}+\right.\) slack \()\)
                        slack \(:=\) slack \(-w_{i}+w^{\prime}\)
                        \(w_{i}:=w^{\prime}\)
                \(\}\) initial bound
        else if \(b>\bar{g}\) then
            [analogous algorithm]
        return w
```

$$
\begin{array}{cl}
\operatorname{minimise} & f_{j}(u)+\sum_{i \neq j \in[1, n]} f_{i}\left(x_{i}\right) \\
\text { such that } & \underline{g} \leq g_{j}(u)+\sum_{i \neq j \in[1, n]} g_{i}\left(x_{i}\right) \leq \bar{g} \tag{8}\\
& x_{i} \in \mathrm{D}_{x_{i}}, \quad \forall i \neq j \in[1, n]
\end{array}
$$

Problem (8) resembles problem (3) but x_{j} is fixed to u. Hence we can use the same reformulation as in Section 2.1. We introduce the following new function:

$$
H_{j}(b)=\min \left\{\sum_{i \neq j \in[1, n]} h_{i}\left(y_{i}\right) \mid \sum_{i \neq j \in[1, n]} y_{i}=b \wedge \forall i \neq j \in[1, n]: y_{i} \in g_{i}\left(\mathrm{D}_{x_{i}}\right)\right\}
$$

That is, $H_{j}(b)$ is similar to $H(b)$ in (5) but it only uses the functions h_{i} for i different from j. The optimal cost of problem (8) is the optimal cost of the following new problem:

$$
\begin{align*}
\operatorname{minimise} & f_{j}(u)+H_{j}(z) \tag{9}\\
\text { such that } & \underline{g} \leq g_{j}(u)+z \leq \bar{g}
\end{align*}
$$

where value u is given and z is the only variable. The result of the following lemma can be used to compute H_{j}.

Lemma 6. The function H_{j} is discretely convex if all h_{i} are convex. The value b_{j}^{*} that minimises H_{j} is equal to the value b^{*} that minimises H minus the value v^{*} that minimises h_{j}. The length of each segment of H_{j} is equal to the length of the linear segment of H of the same slope minus the length of the linear segment of h_{j} of the same slope (if any).

The proof (omitted for space reasons) of this lemma uses similar arguments to the ones of Lemmas 2 to 5. We show hereafter two ways to use H_{j} to filter the domains. The first way is applicable in general (provided H_{j} is discretely convex). The second way makes use of an additional property of f_{j} and g_{j}.

3.1 Filtering in the General Case

As several values u of x_{j} can have the same image v through g_{j}, the set of values in $\mathrm{D}_{x_{j}}$ that are consistent with constraints (1) and (2) can be partitioned as:

$$
\bigcup_{v \in g_{j}\left(\mathrm{D}_{x_{j}}\right)}\left\{u \mid g_{j}(u)=v \wedge f_{j}(u) \leq \bar{f}-\min _{\underline{g} \leq z+v \leq \bar{g}} H_{j}(z)\right\}
$$

That is, for each v, we have the set of values u in $g_{j}^{-1}(v)$ such that the optimal cost of problem (9) is no larger than \bar{f}, hence which are consistent. The domain of x_{j} can be made domain consistent by filtering the following unary constraint for each value $v \in g_{j}\left(\mathrm{D}_{x_{j}}\right)$:

$$
\begin{equation*}
g_{j}\left(x_{j}\right)=v \Rightarrow f_{j}\left(x_{j}\right) \leq \bar{f}-\min _{\underline{g} \leq z+v \leq \bar{g}} H_{j}(z) \tag{10}
\end{equation*}
$$

The function H_{j} being discretely convex, one can compute $\min _{\underline{g} \leq z+v \leq \bar{g}} H_{j}(z)$ (which is independent from a particular u) incrementally from a value v to $v+1$. In addition, if v is equal to w_{j}, the value of y_{j} in the witnessing assignment \mathbf{w} computed in Section [2.4] then $H_{j}\left(\sum_{i \neq j \in[1, n]} w_{i}\right)+h_{j}\left(w_{j}\right)=H\left(\sum_{i \in[1, n]} w_{i}\right)$. This leads to Algorithm 2 which is used to filter the domain of x_{j} for the values v larger than w_{j}. This algorithm traverses h_{j} and H_{j}. The only complication is that in some cases (captured by the Boolean variable dec ${ }_{b}$ defined in lines 6 and 11) reaching an optimal solution to $\min _{\underline{g} \leq z+v \leq \bar{g}} H_{j}(z)$ involves decrementing b, which is the current value of $z(\operatorname{line} 9)$. Domain filtering according to constraint (10) takes place in lines 5 and 10. The algorithm ends when the optimal cost of problem (9) for $v+1$ is larger than \bar{f} (line 7). A complementary algorithm is used for the values smaller than w_{j}. Algorithm 2 achieves domain consistency provided the h_{i} are discretely convex. Section 5.1 discusses more precisely the link between the shape of the h_{i} and the consistency level.

3.2 Filtering in a Special Case

We now present a special case to avoid useless computation. Let us define $k_{j}(v)=$ $\max f_{j}\left(g_{j}^{-1}(v)\right)$, that is $k_{j}(v)$ is the largest value $f_{j}(u)$ for u such that $g_{j}(u)=v$. The function k_{j} is similar to h_{j} but the 'max' operator replaces the 'min' one.

```
Algorithm 2. Filtering algorithm for values larger than \(w_{j}\) (general case)
    function \(\operatorname{ForwardFilter}(j, \mathbf{h}, \mathbf{w}, H, \bar{f})\)
        \(H_{j}:=\operatorname{ComputeHj}\left(H, h_{j}\right)\)
        \(b:=\sum_{i \in[1, n]} w_{i}-w_{j}\)
        \(v:=w_{j}\)
        \(\operatorname{Filter}\left(g_{j}\left(x_{j}\right)=v \Rightarrow f_{j}\left(x_{j}\right) \leq \bar{f}-H_{j}(b)\right)\)
        dec \({ }_{b}:=b+v \geq \bar{g} \vee \Delta^{-}\left(H_{j}, b\right)<0\)
        while \(H_{j}(b)+h_{j}(v)+\left(\right.\) if \(d e c_{b}\) then \(\Delta^{-}\left(H_{j}, b\right)\) else 0\()+\Delta^{+}\left(h_{j}, v\right) \leq \bar{f}\) do
            \(v:=v+1\)
            if dec \(_{b}\) then \(b:=b-1\)
            \(\operatorname{Filter}\left(g_{j}\left(x_{j}\right)=v \Rightarrow f_{j}\left(x_{j}\right) \leq \bar{f}-H_{j}(b)\right)\)
            dec \(:=b+v \geq \bar{g} \vee \Delta^{-}\left(H_{j}, b\right)<0\)
        \(\operatorname{Filter}\left(g_{j}\left(x_{j}\right) \leq v\right)\)
```

If $h_{j}(v) \geq k_{j}(v-1)$ for any value v larger than $v^{*}=\operatorname{argmin}_{u \in g_{j}\left(\mathrm{D}_{x_{j}}\right)} h_{j}(u)$ and $h_{j}(v) \geq k_{j}(v+1)$ for any v smaller than v^{*}, then there exists a value $v^{\max }$ such that for all values $v \in g_{j}\left(\mathrm{D}_{x_{j}}\right)$ smaller than $v^{\max }$ (but larger than or equal to w_{j}), all values $u \in g_{j}^{-1}(v)$ are consistent, and for all v larger than $v^{\text {max }}$, there is no consistent u. We then need not consider all values but only find $v^{\max }$ and filter according to the two constraints $g_{j}\left(x_{j}\right) \leq v^{\max }$ and $g_{j}\left(x_{j}\right)=v^{\max } \Rightarrow$ $f_{j}\left(x_{j}\right) \leq \bar{f}-\min _{\underline{g} \leq z+v^{\max } \leq \bar{g}} H_{j}(z)$. A similar argument holds for a $v^{\min }$.

Finding $v^{\max }$ amounts to computing the largest value v such that $h_{j}(v)+$ $\min _{\underline{g} \leq z+v \leq \bar{g}} H_{j}(z) \leq \bar{f}$. As h_{j} and H_{j} are both convex, this problem can be solved by incrementally increasing v until the bound is reached. Algorithm [3 presents the steps to find $v^{\max }$. This algorithm is very similar to Algorithm 2 but it does not need to iterate over all the values v, only over the ones that are at a breakpoint of h_{j} or H_{j}. The increment is stored in ℓ (lines 6,11 , and 12).

An example of the special case is when g_{j} is the identity function. Then g_{j} is injective. Hence $h_{j}=k_{j}$ and, by convexity, h_{j} is non-decreasing right of v^{*} and non-increasing left of v^{*}.

4 A Parametric Propagator and Its Complexity

Our propagator is generic in the sense that it works correctly for any functions f_{i} and g_{i} that respect the condition of Theorem 1. However, we call it a parametric propagator, because rather than resorting to a fully generic implementation, we use hook functions and procedures that need to be provided. This allows us to get a lower time complexity. The parameters to provide for an instantiation are shown in Table 2, they are used in Algorithms 1 to 3 We now study the time and space complexity of our propagator, based on a few implementation notes.

Feasibility Test. We implement the H function as a linked list of segments, plus two integers for the values b^{*} and $H\left(b^{*}\right)$. The value of $H(b)$ is never queried for arbitrary values of b, but only for b^{*} and for incrementally modified values of b,

```
Algorithm 3. Filtering algorithm for values larger than \(w_{j}\) (special case)
    function \(\operatorname{ForwardFilter}(j, \mathbf{h}, \mathbf{w}, H, \bar{f})\)
        \(H_{j}:=\operatorname{ComputeHJ}\left(H, h_{j}\right)\)
        \(b:=\sum_{i \in[1, n]} w_{i}-w_{j}\)
        \(v:=w_{j}\)
        \(d e c_{b}:=b+v \geq \bar{g} \vee \Delta^{-}\left(H_{j}, b\right)<0\)
        \(\ell:=\min \left\{b-\mathrm{bp}^{-}\left(H_{j}, b\right), \mathrm{bp}^{+}\left(h_{j}, v\right)-v\right.\), if \(d e c_{b}\) then \(+\infty\) else \(\left.\bar{g}-b-v\right\}\)
        while \(H_{j}(b)+h_{j}(v)+\ell \cdot\left(\left(\right.\right.\) if \(\operatorname{dec}_{b}\) then \(\Delta^{-}\left(H_{j}, b\right)\) else 0\(\left.)+\Delta^{+}\left(h_{j}, v\right)\right) \leq \bar{f}\) do
            \(v:=v+\ell\)
            if \(d e c_{b}\) then \(b:=b-\ell\)
            \(d e c_{b}:=b+v \geq \bar{g} \vee \Delta^{-}\left(H_{j}, b\right)<0\)
            \(\ell:=\min \left\{b-\mathrm{bp}^{-}\left(H_{j}, b\right), \mathrm{bp}^{+}\left(h_{j}, v\right)-v\right.\), if \(d e c_{b}\) then \(+\infty\) else \(\left.\bar{g}-b-v\right\}\)
        \(\ell:=\left(\bar{f}-H_{j}(b)-h_{j}(v)\right) /\left(\Delta^{+}\left(h_{j}, v\right)+\left(\right.\right.\) if \(\operatorname{dec}_{b}\) then \(\Delta^{-}\left(H_{j}, b\right)\) else 0\(\left.)\right)\)
        \(v:=v+\ell\)
        \(\operatorname{Filter}\left(g_{j}\left(x_{j}\right) \leq v\right)\)
        \(\operatorname{Filter}\left(g_{j}\left(x_{j}\right)=v \Rightarrow f_{j}\left(x_{j}\right) \leq \bar{f}-H_{j}(b)\right)\)
```

Table 2. Parameters to instantiate

Functions	Procedures
$\operatorname{argmin}_{v \in g_{i}\left(\mathrm{D}_{x_{i}}\right)} h_{i}(v)$	Filter $\left(g_{i}\left(x_{i}\right) \leq v\right)$
$\Delta^{+}\left(h_{i}, v\right)$	Filter $\left(g_{i}\left(x_{i}\right) \geq v\right)$
$\Delta^{-}\left(h_{i}, v\right)$	Filter $\left(g_{i}\left(x_{i}\right)=v \Rightarrow f_{i}\left(x_{i}\right) \leq u\right)$
$\operatorname{bp}^{+}\left(h_{i}, v\right)$	
$\operatorname{bp}^{-}\left(h_{i}, v\right)$	

so that $H(b)$ can also be computed incrementally. This is also true for h_{i}, and is reflected by the absence of $h_{i}(u)$ from the parameters in Table 2 Using that linked list and some bookkeeping, the computation of $H(b), \Delta^{+}(H, b), \Delta^{-}(H, b)$, $\mathrm{bp}^{+}(H, b)$, and $\mathrm{bp}^{-}(H, b)$ can be performed in constant time for all values of b used in the algorithms.

Constructing the linked list of H can be done in various ways. A first way is to traverse each function h_{i} in turn and to build H incrementally by traversing the linked list in parallel. This takes $\mathcal{O}(n \cdot(s(h) \cdot p+s(H)))$ time, where $s(h)$ is the maximum number of segments among the h_{i} functions, $s(H)$ is the number of segments of H, and p is the highest complexity of the parametric functions. A second way is to collect all the segments from all the functions in a list, to sort this list, and to construct H by traversing the list. This takes $\mathcal{O}(n \cdot s(h)$. $(p+\log (n \cdot s(h))))$ time and is asymptotically better than the first way when $s(H)>s(h) \cdot \log (n \cdot s(h))$.

Algorithm 1 computes a witnessing assignment in $\mathcal{O}(s(H)+n \cdot s(h))$ time. This is dominated by the prior construction of H, as $s(H) \leq n \cdot s(h)$.

Filtering. We implement Algorithm 2 to run in $\mathcal{O}(r(h) \cdot c)$ time, where $r(h)=$ $\left|g_{j}\left(\mathrm{D}_{x_{j}}\right)\right|$ and c is the highest complexity of the procedures in Table 2, The segments of H_{j} are computed on the fly from h_{j} and H. The sum in line 3 of

Table 3. Time complexity of the different versions of the propagator

Propagator	Time complexity
Traversing, general case	$\mathcal{O}(n \cdot(s(h) \cdot p+s(H)+r(h) \cdot c)$
Sorting, general case	$\mathcal{O}(n \cdot(s(h) \cdot p+s(h) \cdot \log (n \cdot s(h))+r(h) \cdot c))$
Traversing, special case	$\mathcal{O}(n \cdot(s(h) \cdot p+s(H)+c))$
Sorting, special case	$\mathcal{O}(n \cdot(s(h) \cdot p+s(h) \cdot \log (n \cdot s(h))+s(H)+c))$

Algorithm 2 is actually provided by our implementation of H, so it need not be recomputed each time. Algorithm 3 takes $\mathcal{O}(s(h)+s(H)+c)$ time.

The Whole Propagator. The time complexity of our propagator is obtained by multiplying the filtering complexity by n (the number of variables) and adding the complexity of computing H. Table 3summarises this for the different versions of the propagator. Note that $s(h) \leq r(h) \leq\left|\mathrm{D}_{x}\right|$ and $s(H) \leq n \cdot s(h)$.

The space complexity of our propagator is $\mathcal{O}(n+s(H))$, as we need to store a constant amount of information (namely w_{i}) for each variable and the whole function H (which amounts to a constant amount for each of its segments). The functions h_{i} and H_{j} are not stored explicitly.

5 Instantiating the Parametric Propagator

We now show how our propagator can be used for particular pairs of constraints.
Note that if h_{i} is a linear function, then $-h_{i}$ is also discretely convex. This means that one can put a lower bound \underline{f} on $\sum_{i \in[1, n]} f_{i}\left(x_{i}\right)$ and run the propagator twice, first with constraint (1) being $\sum_{i \in[1, n]} f_{i}\left(x_{i}\right) \leq \bar{f}$, then with constraint (1) being $-\sum_{i \in[1, n]} f_{i}\left(x_{i}\right) \leq-\underline{f}$.

Our propagator can also be extended to handle variables as the upper and lower bounds of the constraints. In such a case, the largest values in the domains of \bar{f} and \bar{g}, and the smallest values in the domains of \underline{f} and \underline{g} are used in the propagator. In addition, the other bound of each variable can be constrained by the H function. Only bounds (\mathbb{Z}) consistency can be achieved on those variables.

5.1 Instantiations and Consistency

We now discuss for which functions f_{i} and g_{i} our propagator can be used and how it affects the consistency of the propagator. The required discrete convexity of the h_{i} functions puts a strong restriction on the shape of the g_{i}. Recall that $g_{i}\left(\mathrm{D}_{x_{i}}\right)$ must be an interval by the first condition in Definition 1 Note that the discrete convexity must be respected for all $\mathrm{D}_{x_{i}}$ that arise during the search.

If $\mathrm{D}_{x_{i}}$ can be any set of integers, then the only instantiations of g_{i} satisfying the first condition of Definition 1 are those whose image contains only two values, which must be consecutive. We call these characteristic functions. In such a case, the second condition of Definition 1 is always respected and the f_{i} can be any (integer) functions.

If $\mathrm{D}_{x_{i}}$ can only be an interval, then the class of g_{i} functions satisfying the first condition of Definition 1 is more general, namely all functions where

$$
\begin{equation*}
\left|g_{i}(u)-g_{i}(u+1)\right| \leq 1 \quad \forall u, u+1 \in \mathrm{D}_{x_{i}} \tag{11}
\end{equation*}
$$

If there are holes in a domain $\mathrm{D}_{x_{i}}$, then $\mathrm{D}_{x_{i}}$ can be relaxed to the smallest containing interval without losing the correctness of the approach. Some propagation may be lost, but this compromise is often acceptable for global constraints. In particular, we do not achieve domain consistency, but bounds (\mathbb{Z}) consistency.

Among others, the identity function respects equation (11). If g_{i} is the identity function, then f_{i} must be discretely convex, because $h_{i}=f_{i}$. For other instantiations of g_{i} satisfying (11), the restrictions on f_{i} are varying.

5.2 Example Instantiations

We now show that many existing (pairs of) constraints fit our parametric problem, optionally extended with a lower bound \underline{f} and with variable bounds. Table 1 presents several instantiations of f_{i} and g_{i}, together with the derived h_{i}. We discuss below various constraints and their time complexity. The concrete complexities are derived from the complexities in Table 3 by replacing $s(h), s(H)$, $r(h), p$, and c by suitable values derived from the h_{i}.

If $g_{i}(u)=0$ for all i, then the second constraint vanishes and we can use our propagator for a single SUM constraint, e.g., a linear inequation. Our parametric propagator is however too general for this simple case, as it runs in $\mathcal{O}(n \cdot \log n)$ time, while a dedicated bounds (\mathbb{Z}) consistent propagator runs in $\mathcal{O}(n)$ time [6].

The case $g_{i}(u)=u$ covers many interesting constraints already presented in the literature. In particular, it covers the bounds (\mathbb{Z}) consistent propagators for the statistical constraints Deviation and Spread with a fixed rational mean. Interestingly, it can be generalised to any L_{p}-norm, with $p>0$ (except $L_{+\infty}$). One can also give a different penalty for deviations over and under the average. The time complexity of our propagator is $\mathcal{O}(n)$ for Deviation, which matches the best published propagator [17]. For Spread (and higher norms), the time complexity of our propagator is $\mathcal{O}(n \cdot d)$, with $d=\left|\cup_{i \in[1, n]} \mathrm{D}_{x_{i}}\right|$. This is incomparable to the complexity $\mathcal{O}(n \cdot \log n)$ of the best published propagator [9]. Note that our propagator achieves bounds (\mathbb{Z}) consistency, which has only been achieved very recently in the case of Spread [18].

As an example, we show in Table 4 the instantiation of the parameters for Deviation (symmetric parameters are omitted). For Deviation, h_{i} has (up to) three segments, joining at the breakpoints $\lfloor\mu\rfloor$ and $\lceil\mu\rceil$.

The case $g_{i}(u)=u$ and $f_{i}(u)=a_{i} \cdot u$ can be used to model a restricted version of the WeightedAverage constraint [3], where the weight are variables, the values are constants, and the average must take an integer value. The time complexity of our bounds (\mathbb{Z}) consistent propagator is $\mathcal{O}(n \cdot \log n)$, though the dedicated propagator runs in $\mathcal{O}(n)$ time.

If g_{i} is a characteristic function, then f_{i} can be any function. A characteristic function may be used to count, as is the case of the Count family of constraints

Table 4. Expressions for instantiating a propagator for Deviation. The conditions are not always mutually exclusive and are to be evaluated in top-down order.

Parameter	Instantiation
$\operatorname{argmin}_{v \in g_{i}\left(\mathrm{D}_{x_{i}}\right)} h_{i}(v)$	$\begin{cases}\lceil\mu\rceil & \text { if } \min \mathrm{D}_{x_{i}} \leq \mu \leq \max \mathrm{D}_{x_{i}} \wedge\lceil\mu\rceil-\mu<\mu-\lfloor\mu\rfloor \\ \lfloor\mu\rfloor & \text { if } \min \mathrm{D}_{x_{i}} \leq \mu \leq \max \mathrm{D}_{x_{i}} \wedge\lceil\mu\rceil-\mu \geq \mu-\lfloor\mu\rfloor \\ \min \mathrm{D}_{x_{i}} & \text { if } \mu<\min \mathrm{D}_{x_{i}} \\ \max \mathrm{D}_{x_{i}} & \text { if } \mu>\max \mathrm{D}_{x_{i}}\end{cases}$
$\Delta^{+}\left(h_{i}, v\right)$	$\begin{cases}+\infty & \text { if } v=\max \mathrm{D}_{x_{i}} \\ -n & \text { if } v<\lfloor\mu\rfloor \\ n \cdot(\lceil\mu\rceil+\lfloor\mu\rfloor)-2 \cdot n \cdot \mu & \text { if } v=\lfloor\mu\rfloor \wedge\lfloor\mu\rfloor \neq\lceil\mu\rceil \\ n & \text { if } v \geq\lceil\mu\rceil\end{cases}$
$\mathrm{bp}^{+}\left(h_{i}, v\right)$	$\begin{cases}+\infty & \text { if } v=\max \mathrm{D}_{x_{i}} \\ \min \left(\max \mathrm{D}_{x_{i}},\lfloor\mu\rfloor\right) & \text { if } v<\lfloor\mu\rfloor \\ \lceil\mu\rceil & \text { if } v=\lfloor\mu\rfloor \wedge\lfloor\mu\rfloor \neq\lceil\mu\rceil \\ \max _{\mathrm{D}_{x_{i}}} & \text { if } v \geq\lceil\mu\rceil\end{cases}$
$\overline{\operatorname{FiLTER}}\left(g_{i}\left(x_{i}\right) \leq v\right)$	Filter $\left(x_{i} \leq v\right)$
$\begin{gathered} \operatorname{FILTER}\left(g_{i}\left(x_{i}\right)=v \Rightarrow\right. \\ \left.f_{i}\left(x_{i}\right) \leq u\right) \\ \hline \end{gathered}$	Filter $\left(\|n \cdot v-n \cdot \mu\|>u \Rightarrow x_{i} \neq v\right)$

(e.g., Among [12]). But characteristic functions can also be used to represent the Maximum constraint. Indeed, the constraint $m=\max _{i \in[1, n]} x_{i}$ can be decomposed as $\forall i \in[1, n]: m \geq x_{i} \wedge \sum_{1 \in[1, n]}\left(\right.$ if $x_{i} \geq m$ then 1 else 0$) \geq 1$. Table 1 gives the definition of h_{i} for Linear and Exactly, in which case our propagator is domain consistent and runs in $\mathcal{O}(n \cdot(\log n+p+c))$ time, as does the dedicated propagator presented in [13].

Many other pairs can be instantiated. Note that the f_{i} or g_{i} functions can differ for each i, i.e., one can mix in the same sum terms of different forms (e.g., some linear and some quadratic), as long as each function h_{i} is discretely convex.

6 Experimental Evaluation

To show that the genericity of our propagator is not detrimental not only to asymptotic complexity (as seen in Section (5) but also to performance, we propose a small experiment to compare custom propagators with instantiations of our parametric propagator. We selected the Deviation [17] and Spread [18] constraints as their bounds (\mathbb{Z})-consistent propagators are freely available in the distribution of OscaR [8]. We performed the comparison on the 100 instances of the Balanced Academic Curriculum Problem (BACP) that were introduced in [16] modelled as in the OscaR distribution (we only slightly modified the search heuristic to make it deterministic, so that the search trees are the same).

[^1]For Deviation, we used the 44 instances that are solved to optimality in more than 1 second (to avoid measurement errors) but less than 12 hours (3 instances timed out). When using our parametric propagator, the time to solve an instance is on average only 7% longer than when using the custom propagator (with a standard deviation of 5%). The numbers of nodes in the search tree and calls to the propagator are exactly the same for both propagators due to their common level of consistency and the deterministic search procedure.

For Spread, we used the 33 instances that are solved to optimality in more than 1 second but less than 12 hours (2 instances timed out). When using our parametric propagator, the time to solve an instance is on average 28% shorter than when using the custom propagator (with a standard deviation of 10%). Again, the numbers of nodes in the search tree and calls to the propagator are exactly the same for both propagators. This improvement is explained by a different algorithmic approach, which is in our favour when the domains of the variables are small, as is the case for the BACP instances.

Our Java implementation is available at http://www.it.uu.se/research/ group/astra/software/convexpairs and a package for replication at http://recomputation.org [5].

7 Conclusion, Related Work, and Future Work

We have studied how to propagate pairs of SUM constraints that respect a discrete convexity condition. From this condition, we have derived a parametric propagator, which can be instantiated to be competitive with previously published propagators, often matching their time complexity, despite its generality.

Our approach of first computing a feasibility bound and then incrementally adapting it is not new and has been used in the design of several propagators. Among others, this is the case for the constraints covered by our own propagator. However, the novelty of our work is that for the first time we abstract from the details of each constraint to focus on their common properties. This is close in spirit to what has been done with SEQBIN 10 for another class of constraints.

When the g_{i} are characteristic functions, our conjunction of sum constraints can be represented using CostGCC [14]. However, this requires the explicit representation of all variable-value pairs and induces a larger time complexity than our propagator. On the other hand, CostGCC can handle more than one counting constraint in one propagator.

There are a number of open questions we plan to address in the future. Can we automatically generate the instantiation of the parameters from the definitions of the f_{i} and g_{i} ? Can we make an incremental propagator that has a better time complexity along a branch of the search tree? Can we extend the approach to functions that take more than one argument, say $f_{i}\left(x_{i}, y_{i}\right)$ for variables y_{i} distinct from each other, or $f_{i}\left(x_{i}, y\right)$ for a shared variable y ? Can we deal with more than two sum constraints in one propagator? Beside when there are holes in the domains, when is it correct and useful to use a relaxation of h_{i} when this function is not discretely convex?

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and Computer Modelling 20(12), 97-123 (1994)
2. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Among, common and disjoint constraints. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 29-43. Springer, Heidelberg (2006)
3. Bonfietti, A., Lombardi, M.: The weighted average constraint. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 191-206. Springer, Heidelberg (2012)
4. Fujishige, S.: Submodular Functions and Optimization. In: Annals of Discrete Mathematics, 2nd edn., Elsevier (2005)
5. Gent, I.P.: The recomputation manifesto. CoRR, abs/1304.3674 (2013)
6. Harvey, W., Schimpf, J.: Bounds consistency techniques for long linear constraints. In: Proceedings of TRICS 2002, the Workshop on Techniques foR Implementing Constraint programming Systems, pp. 39-46 (2002)
7. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219-260. Springer (2009)
8. OscaR Team. OscaR: Scala in OR (2012),https://bitbucket.org/oscarlib/oscar
9. Pesant, G., Régin, J.-C.: SPREAD: A balancing constraint based on statistics. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460-474. Springer, Heidelberg (2005)
10. Petit, T., Beldiceanu, N., Lorca, X.: A generalized arc-consistency algorithm for a class of counting constraints. In: IJCAI 2011, pp. 643-648. AAAI Press (2011), revised edition available at http://arxiv.org/abs/1110.4719
11. Petit, T., Régin, J.-C., Beldiceanu, N.: A $\Theta(\mathrm{n})$ bound-consistency algorithm for the increasing sum constraint. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 721-728. Springer, Heidelberg (2011)
12. Puget, J.-F.: Improved bound computation in presence of several clique constraints. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 527-541. Springer, Heidelberg (2004)
13. Razakarison, N., Beldiceanu, N., Carlsson, M., Simonis, H.: GAC for a linear inequality and an atleast constraint with an application to learning simple polynomials. In: SoCS 2013, AAAI Press (2013)
14. Régin, J.-C.: Cost-based arc consistency for global cardinality constraints. Constraints 7(3-4), 387-405 (2002)
15. Régin, J.-C., Petit, T.: The objective sum constraint. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 190-195. Springer, Heidelberg (2011)
16. Schaus, P.: Solving balancing and bin-packing problems with constraint programming, PhD Thesis, Université catholique de Louvain, Belgium (2009)
17. Schaus, P., Deville, Y., Dupont, P.: Bound-consistent deviation constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 620-634. Springer, Heidelberg (2007)
18. Schaus, P., Régin, J.-C.: Bound-consistent spread constraint, application to load balancing in nurse to patient assignments (submitted)
19. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the same search space? ACM Transactions on Programming Languages and Systems 27(3), 388-425 (2005)

[^0]: * This work is supported by grants 2011-6133 and 2012-4908 of the Swedish Research Council (VR). We thank the reviewers for their constructive comments.

[^1]: ${ }^{1}$ They are available from http://becool.info.ucl.ac.be/resources/bacp

