
A Parametric Propagator

for Discretely Convex Pairs of Sum Constraints�

Jean-Noël Monette1, Nicolas Beldiceanu2, Pierre Flener1, and Justin Pearson1

1 Uppsala University, Dept. of Information Technology, 751 05 Uppsala, Sweden
FirstName.LastName@it.uu.se

2 Mines de Nantes, TASC Team (CNRS/INRIA), 44307 Nantes, France
Nicolas.Beldiceanu@Mines-Nantes.fr

Abstract. We introduce a propagator for abstract pairs of Sum con-
straints, where the expressions in the sums respect a form of convexity.
This propagator is parametric and can be instantiated for various con-
crete pairs, including Deviation, Spread, and the conjunction of Sum
and Count. We show that despite its generality, our propagator is com-
petitive in theory and practice with state-of-the-art propagators.

1 Introduction

Many constraint problems involve a Sum constraint, along with other con-
straints. It is however well-known that a Sum constraint taken in isolation is not
able to perform a lot of pruning since the estimation of the minimum or maxi-
mum of a sum does not take other constraints into account. Several authors have
studied how to include other constraints (sharing some variables) in the propa-
gator for Sum, either in particular cases (e.g., Spread [9], IncreasingSum [11],
and Sum with cliques [12]), or in general (e.g., ObjectiveSum [15]).

In the present work, we focus on a parametric problem, which can be cast as

∑

i∈[1,n]

fi(xi) ≤ f (1)

g ≤
∑

i∈[1,n]

gi(xi) ≤ g (2)

for any n ≥ 1. The fi and gi are functions from integers to integers and the
fi (resp. gi) can differ for each i. In this work, f , g, and g are constants, but
Section 5 shows how to use variables instead. In Section 5, we also consider a
lower bound f on the first sum.

Finding a solution to the conjunction of (1) and (2) is in general NP-complete
as it includes as a special case the knapsack problem. There is however a large
class of fi and gi functions for which either domain consistency or bounds(Z)
consistency (see, e.g., [19] for definitions) can be achieved in polynomial time.

� This work is supported by grants 2011-6133 and 2012-4908 of the Swedish Research
Council (VR). We thank the reviewers for their constructive comments.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 529–544, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

530 J.-N. Monette et al.

In this paper, we present a parametric propagator for this class of functions
and show how to instantiate it for various functions fi and gi. We show that the
considered class of problems includes among others the (bounds(Z) consistent)
constraints Deviation [17], Spread [9], and WeightedAverage [3] (with
variable weights and constant values) and the (domain consistent) conjunction
of Linear and Count [13]. In several cases, we match the theoretical complexity
and practical efficiency of previously published specialised propagators.

Our approach for propagating the conjunction of (1) and (2) contains two
parts. First (as discussed in Section 2), we compute a sharp lower bound on∑

i∈[1,n] fi(xi) under constraint (2), together with a witnessing assignment. The
conjunction is feasible if this lower bound, which we call the feasibility bound,
is at most f . To compute this feasibility bound, we introduce new functions
derived from the fi and gi. We show that the feasibility bound can be greedily
computed if the newly introduced functions are discretely convex.

In the second part of the propagator (discussed in Section 3), the domain of
each variable xj is filtered by computing for each value u in its domain a sharp
lower bound on

∑
i∈[1,n] fi(xi) under constraint (2) when xj is assigned u. If

this lower bound is larger than f , then u is removed from the domain of xj . The
lower bound for each pair (xj , u) is computed incrementally from the witnessing
assignment for the feasibility bound thanks to the discrete convexity property.
We also present an improved propagator for an additional property of fj and gj .

The resulting propagator is parametric, depending on the fi and gi. The time
complexity and the achieved level of consistency depend on the shape of the
fi and gi and on the values given to the parameters. We study the complexity
in Section 4 and give some implementation notes. Afterwards, we present in
Section 5 several instantiations of the propagator, including a case study of
Deviation. Finally, Section 6 presents some experimental results showing that
the genericity of our approach is not detrimental to performance.

2 Feasibility Test

Given a variable x, let Dx denote the current domain of that variable. For a func-
tion f and value v, we write f−1(v) for the set of values {u | f(u) = v}. For a
function f and set S, we write f(S) for {f(u) | u ∈ S}. We use xi, vi, fi to repre-
sent single variables, values, and functions, while x, v, f represent the respective
vectors of all variables, values, and functions (e.g., x = 〈x1, x2, . . . , xn〉).

The conjunction of (1) and (2) is satisfiable if and only if the cost (i.e., the
value of the objective function) of an optimal solution to the following problem
is at most f :

minimise
∑

i∈[1,n]

fi(xi)

such that g ≤
∑

i∈[1,n]

gi(xi) ≤ g

xi ∈ Dxi , ∀i ∈ [1, n]

(3)

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 531

We gradually show in the next sub-sections how to compute greedily this cost,
called the feasibility bound, together with a witnessing assignment.

2.1 Problem Reformulation

We reformulate problem (3) in two steps. The first step introduces for each i a
new function hi that captures the relation between fi and gi. The second step
splits the resulting reformulated problem into two subproblems.

First Step. After introducing new variables yi, so that yi = gi(xi) for each i, we
propose the following new problem:

minimise
∑

i∈[1,n]

hi(yi)

such that g ≤
∑

i∈[1,n]

yi ≤ g

yi ∈ gi(Dxi), ∀i ∈ [1, n]

(4)

where we introduce a new function hi : gi(Dxi) → fi(Dxi) for each i. This func-
tion is defined as hi(v) = min fi(g

−1
i (v)) = min{fi(u) | u ∈ Dxi ∧ gi(u) = v},

that is hi(v) is the smallest value of fi(xi) that can be attained when gi(xi) is
equal to v. Note that the definition of hi depends on the current domain of xi.
We now prove that the feasibility bound can also be computed from problem (4).

Lemma 1. All optimal solutions to problems (3) and (4) have the same cost.

Proof. Let v denote a vector of values for the vector y of variables. For each
value vi, we choose an arbitrary value ui in Dxi such that gi(ui) = vi and
fi(ui) = hi(vi). Such a value ui always exists, by the definition of hi. Then the
vector u is a feasible solution to problem (3) if and only if v is a feasible solution
to problem (4), and they have the same cost. In addition, any other assignment
u′ such that gi(u

′
i) = vi for each i has a cost larger than or equal to the cost of u

and v, by the definition of hi. Hence u is optimal if and only if v is optimal.
�

Second Step. We define a new function, called H , from integers to integers:

H(b) = min

⎧
⎨

⎩
∑

i∈[1,n]

hi(yi)

∣∣∣∣∣∣

∑

i∈[1,n]

yi = b ∧ ∀i ∈ [1, n] : yi ∈ gi(Dxi)

⎫
⎬

⎭ (5)

That is, H(b) is the minimum of the sum of the hi(yi) when the sum of the yi
is equal to b. For a given b, we define wb to be an assignment of y such that
b =

∑
i∈[1,n]w

b
i and H(b) =

∑
i∈[1,n] hi(w

b
i), i.e., an optimal solution to (5). We

call wb a witnessing assignment of b. We propose the following new problem:

minimise H(z)

such that g ≤ z ≤ g
(6)

532 J.-N. Monette et al.

Table 1. Several instantiations of fi and gi, and the corresponding hi. The notation
[cond] uses the Iverson bracket and is defined to be 1 if cond is true, and 0 otherwise.

Common Name fi(u) gi(u) hi(v)

Linear ai · u 0

{
ai ·minDxi if ai > 0

ai ·maxDxi if ai ≤ 0

WeightedAverage [3] ai · u u ai · v
Deviation [17] |n · u− n · μ| u |n · v − n · μ|
Spread [9] (n · u− n · μ)2 u (n · v − n · μ)2
Lp-Norm, 0 < p < +∞ |n · u− n · μ|p u |n · v − n · μ|p

Linear and Count [13] ai · u [u ∈ V]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai ·min (Dxi \V) if v = 0 ∧ ai > 0

ai ·max (Dxi \V) if v = 0 ∧ ai ≤ 0

ai ·min (Dxi ∩V) if v = 1 ∧ ai > 0

ai ·max (Dxi ∩V) if v = 1 ∧ ai ≤ 0
Linear and Maximum ai · u [u ≥ m] (omitted, similar to previous pair)
ModAndDiv (ai > 0) u− ai · �u/ai	 �u/ai	 max (0,minDxi −ai · v)

where z is a fresh variable. The feasibility bound can also be computed from
problem (6), as the latter has the same optimal cost as problem (4), and thus as
problem (3): this is shown by replacing H(z) by its definition (5) in the formula-
tion of problem (6). Problems (4) and (6) are more interesting than problem (3)
in three respects. First, it is simpler to reason with only one function per variable
(namely hi) instead of two (namely fi and gi). Second, the domain Dyi , which is
equal to gi(Dxi), might be much smaller than Dxi . Third, introducing H allows
us to compute the feasibility bound in two steps: (i) construct H from the hi,
and (ii) find an optimal solution to (6). This can be done greedily if all hi are
discretely convex.

Definition 1. A function f : A → B, where A,B ⊆ Z, is discretely convex if
1. A is an interval, and
2. ∀v ∈ A : (v − 1) ∈ A ∧ (v + 1) ∈ A ⇒ 2 · f(v) ≤ f(v − 1) + f(v + 1).

The notion of discrete convexity is an adaptation of the usual convexity from
the reals to the integers. This notion has been studied in depth, for instance
in [7]. It is also related to the notion of submodular functions on sets [4].

The first condition in Definition 1 restricts in some cases the application of
our approach to domains with no holes. This is discussed further in Section 5.1.

Table 1 presents the fi, gi, and hi for several pairs. The hi are convex for all
those examples. Before providing algorithms, we need to introduce some notions.

2.2 Deltas, Segments, Slopes, Breakpoints, Reasoning on Infinity

Let f : A → B be a function with A,B ⊆ Z. Given some value v in A, we call
right delta (resp. left delta) the increase of f when v increases (resp. decreases)
by 1. Formally: Δ+(f, v) = f(v+ 1)− f(v) and Δ−(f, v) = f(v− 1)− f(v); the
value of Δ+(f, v) (resp. Δ−(f, v)) is +∞ when v + 1 (resp. v − 1) is not in A.

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 533

f(v − 1)

f(v)
f(v + 1)

Δ−(f, v)

Δ+(f, v)

v − 1 v v + 1bp−(f, v) bp+(f, v)
segments

Fig. 1. Illustration of the notions of Section 2.2. Filled points are at breakpoints.

A segment of f is a maximal interval [�, u] of its domain where the (right or
left) delta is constant. Formally:Δ+(f, v) = Δ+(f, v+1) for all v ∈ [�, u−1], with
� ≤ u,Δ+(f, �−1) �= Δ+(f, �), andΔ+(f, u−1) �= Δ+(f, u). The endpoints � and
u of a segment [�, u] of f are called breakpoints of f . The length of a segment
[�, u] is u − �. The slope of a segment [�, u] is Δ+(f, �). Hence the slope of a
function is constant inside any of its segments and changes at its breakpoints.

The domain of f can be uniquely partitioned into its segments, and each value
of the domain belongs to one or two segments. For a value v, the breakpoint on
the right of v, denoted by bp+(f, v), is u if v is in some segment [�, u] with
u �= v, and otherwise undefined, denoted by +∞. Similarly, bp−(f, v) denotes
the breakpoint on the left of v, if any, otherwise −∞.

Let f be a discretely convex function. For any two contiguous segments, the
slope of the former is smaller than the slope of the latter, hence no two segments
have the same slope. Also, Δ+(f, v) = +∞ only for the largest value v in A, as
A is an interval, and Δ−(f, v) = +∞ only for the smallest value v in A.

Figure 1 illustrates these notions on a discretely convex function.
The basic properties of +∞ and −∞ used in our algorithms are, for any

v ∈ Z: −∞ < v < +∞, v + (+∞) = +∞, v + (−∞) = −∞, v − (−∞) = +∞,
v − (+∞) = −∞, min(v,+∞) = v, and v/ +∞ = 0.

2.3 Characterisation of the H Function

When the hi are discretely convex, problem (6) is easy to solve by greedy search,
because H is then also discretely convex and can be calculated efficiently.

Before proving those claims, we need to study the relationship between H(b),
H(b+ 1), and H(b − 1), and their respective witnessing assignments. For any j
and k �= j, the sum wb

1 + · · ·+ (wb
j +1)+ · · ·+ (wb

k − 1) + · · ·+wb
n equals b, and

hence by definition of H (since wb
i are the values that minimise H(b)), we have

H(b) ≤ h1(w
b
1) + · · ·+ hj(w

b
j + 1) + · · ·+ hk(w

b
k − 1) + · · ·+ hn(w

b
n).

Rearranging and cancelling out common terms gives

hk(w
b
k)− hk(w

b
k − 1) ≤ hj(w

b
j + 1)− hj(w

b
j) (7)

534 J.-N. Monette et al.

If hj is discretely convex, then we have that hk(w
b
k)− hk(w

b
k − 1) ≤ hj(w

b
j +

1)− hj(w
b
j) ≤ hj(w

b
j + 2)− hj(w

b
j + 1). Thus h1(w

b
1) + · · ·+ hj(w

b
j + 1) + · · ·+

hk(w
b
k)+· · ·+hn(w

b
n) ≤ h1(w

b
1)+· · ·+hj(w

b
j+2)+· · ·+hk(w

b
k−1)+· · ·+hn(w

b
n),

so that adding two to any single wb
j and reducing another wb

k by one to arrive

at the sum b+ 1 will have a higher cost than simply adding one to a single wb
j .

Because each hi is discretely convex, this is true for any increment larger than
one. Hence it is possible to find a witnessing assignment wb+1 for b + 1 from a
witnessing assignment wb for b by increasing any suitable wb

i by one. Similarly
it is possible to find a wb−1 by subtracting one from any suitable wb

i .

Lemma 2. H is discretely convex whenever each hi is discretely convex.

Proof. The domain of each hi is an interval [�i, ui], so that the domain of H is

the interval
[∑

i∈[1,n] �i,
∑

i∈[1,n] ui

]
. We need to show that H(b)−H(b − 1) ≤

H(b+1)−H(b). If wb
i is a witnessing assignment for some b then by the discussion

above there are some k and j such that H(b− 1) = h1(w
b
1) + · · ·+ hk(w

b
k − 1)+

· · ·+hn(w
b
n) and H(b+1) = h1(w

b
1)+ · · ·+hj(w

b
j +1)+ · · ·+hn(w

b
n). Therefore

H(b)−H(b−1) = hk(w
b
k)−hk(w

b
k−1) and H(b+1)−H(b) = hj(w

b
j+1)−hj(w

b
j)

and by (7) H(b)−H(b−1) ≤ H(b+1)−H(b). Hence H is discretely convex.
�
We now show how to calculate H efficiently by giving a characterisation of

its minimum and segments. Here, for any set S and function f , the expression
argmini∈S f(i) returns one (arbitrary) value i ∈ S that minimises f(i).

Lemma 3. A witnessing assignment wb∗ of a value b∗ that minimises H is such
that wb∗

i = argminvi∈gi(Dxi
) hi(vi).

Proof. Ifwb∗ is a witnessing assignment of b∗, then b∗ is equal to
∑

i∈[1,n] w
b∗
i and

H(b∗) =
∑

i∈[1,n] hi(w
b∗
i). Since each wb∗

i = argminyi∈gi(Dxi
) hi(yi) corresponds

to the minimum value obtainable by hi, it is not possible to reduce the value∑
i∈[1,n] hi(w

b∗
i) by picking a different value for any wb∗

i .
�

There exist potentially several wb∗ that minimise H . The correctness of our
approach does not depend on a particular choice for those values.

We now characterise the segments of H .

Lemma 4. If wb is a witnessing assignment for b, then Δ+(hi, w
b
i) ≥ Δ+(H, b)

and Δ−(hi, w
b
i) ≥ Δ−(H, b) for all i ∈ [1, n].

Proof. If b is increased by one, then one of the wb
i must be increased by one as

discussed previously. To reach the minimum value for b+1, one needs to increase
the value of a variable yk that has the smallest Δ+(hk, w

b
k). So the increase of

H , namely Δ+(H, b), is equal to Δ+(hk, w
b
k), which is smaller than or equal to

Δ+(hi, w
b
i) for any other i. A similar argument is used for a decrease of b.
�

Lemma 5. The length of each segment of H is equal to the sum of the lengths
of the segments in the hi functions with the same slope.

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 535

Proof. As in the proof of Lemma 4, Δ+(H, b) is equal to a minimal Δ+(hk, w
b
k).

If one wants to increase b by more than one, the increase per unit stays constant
as long as there is at least one variable with slope equal to Δ+(H, b). This defines
a segment of slope Δ+(H, b), whose length is equal to the sum of the lengths of
the segments of all hi functions with the same slope.
�

We can use Lemmas 3 and 5 to construct H efficiently. Section 4 presents two
ways to implement this construction in practice.

2.4 Computing the Feasibility Bound and a Witnessing Assignment

We can now show a case when problem (6) can be solved in a greedy way.

Theorem 1. Problem (6) can be solved greedily if each hi is discretely convex.

Proof. If each function hi is discretely convex, then the function H is also dis-
cretely convex (by Lemma 2) and can be constructed from the hi (by Lemmas 3
and 5). Finding the minimum of a discretely convex function under some bound
constraints can be done greedily, as a local minimum of a discretely convex func-
tion is also a global minimum (see, e.g., Theorem 2.2 in [7]).
�

Given the function H , problem (6) can be solved by first finding b∗ minimising
H , and then greedily increasing or decreasing b∗ if b∗ is not in [g, g]. In addition,

it is useful for the filtering to compute the witnessing assignment wb∗ of b∗.
Thanks to Lemma 4, this can be achieved as in Algorithm 1. From now on,

we simply write w to refer to wb∗ . An assignment w that minimises the value of
H without considering the bounds of b is initially constructed (lines 2–4). If b is
in [g, g], then the initial assignment is the final one. Otherwise the assignment is
iteratively modified in order to satisfy the bounds of b. We assume b < g in line 5
(the case b > g is symmetrical and not shown). Then some wi must be increased
until b is equal to g. This is done in two steps. In lines 6–10, the segment of
H where g lies is found. Its slope is stored in Δmax, and the distance between

bp−(H, g) and g is stored in slack. Those two values allow us then to modify
each wi separately (lines 11–17). For each i, first wi is moved from breakpoint
to breakpoint of hi while the slope of the segment is smaller than Δmax. Next,
if the slope of the segment on the right of wi is equal to Δmax, then wi is moved
further on this segment, without exceeding the remaining slack (line 15).

The algorithm returns the witnessing assignment w (line 20), or “null” if the
constraint is unsatisfiable (line 8), which triggers propagator failure and happens
if there exists no value in the domains of the hi such that b ∈ [g, g].

3 Domain Filtering

To filter the domain of a variable, we extend the reasoning presented in Sec-
tion 2.1. Indeed, variable xj can take the value u if the cost of an optimal
solution to the following problem is smaller than or equal to f :

536 J.-N. Monette et al.

Algorithm 1. Greedy algorithm to compute a witnessing assignment

1: function GetWitnessLowerBound(h,H, g, g)
2: for all i ∈ [1, n] do
3: wi := argminv∈gi(Dxi

) hi(v)

4: b :=
∑

i∈[1,n] wi

5: if b < g then

6: while Δ+(H, b) < +∞ and bp+(H, b) < g do

7: b := bp+(H, b)

8: if Δ+(H, b) = +∞∧ b < g then return null

9: Δmax := Δ+(H, b)
10: slack := g − b
11: for all i ∈ [1, n] do
12: while Δ+(hi, wi) < Δmax do
13: wi := bp+(hi, wi)

14: if Δ+(hi, wi) = Δmax and slack > 0 then
15: w′ := min

(
bp+(hi, wi), wi + slack

)
16: slack := slack − wi + w′

17: wi := w′

18: else if b > g then
19: [analogous algorithm]

20: return w

initial bound

sharp bound

modifying w

minimise fj(u) +
∑

i�=j∈[1,n]

fi(xi)

such that g ≤ gj(u) +
∑

i�=j∈[1,n]

gi(xi) ≤ g

xi ∈ Dxi , ∀i �= j ∈ [1, n]

(8)

Problem (8) resembles problem (3) but xj is fixed to u. Hence we can use the
same reformulation as in Section 2.1. We introduce the following new function:

Hj(b) = min

⎧
⎨

⎩
∑

i�=j∈[1,n]

hi(yi)

∣∣∣∣∣∣

∑

i�=j∈[1,n]

yi = b ∧ ∀i �= j ∈ [1, n] : yi ∈ gi(Dxi)

⎫
⎬

⎭

That is, Hj(b) is similar to H(b) in (5) but it only uses the functions hi for
i different from j. The optimal cost of problem (8) is the optimal cost of the
following new problem:

minimise fj(u) +Hj(z)

such that g ≤ gj(u) + z ≤ g
(9)

where value u is given and z is the only variable. The result of the following
lemma can be used to compute Hj .

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 537

Lemma 6. The function Hj is discretely convex if all hi are convex. The value
b∗j that minimises Hj is equal to the value b∗ that minimises H minus the value
v∗ that minimises hj. The length of each segment of Hj is equal to the length of
the linear segment of H of the same slope minus the length of the linear segment
of hj of the same slope (if any).

The proof (omitted for space reasons) of this lemma uses similar arguments
to the ones of Lemmas 2 to 5. We show hereafter two ways to use Hj to filter
the domains. The first way is applicable in general (provided Hj is discretely
convex). The second way makes use of an additional property of fj and gj .

3.1 Filtering in the General Case

As several values u of xj can have the same image v through gj, the set of values
in Dxj that are consistent with constraints (1) and (2) can be partitioned as:

⋃

v∈gj(Dxj
)

{
u

∣∣∣∣ gj(u) = v ∧ fj(u) ≤ f − min
g≤z+v≤g

Hj(z)

}

That is, for each v, we have the set of values u in g−1
j (v) such that the optimal

cost of problem (9) is no larger than f , hence which are consistent. The domain
of xj can be made domain consistent by filtering the following unary constraint
for each value v ∈ gj(Dxj):

gj(xj) = v ⇒ fj(xj) ≤ f − min
g≤z+v≤g

Hj(z) (10)

The function Hj being discretely convex, one can compute ming≤z+v≤g Hj(z)

(which is independent from a particular u) incrementally from a value v to v+1.
In addition, if v is equal to wj , the value of yj in the witnessing assignment
w computed in Section 2.4, then Hj(

∑
i�=j∈[1,n] wi) + hj(wj) = H(

∑
i∈[1,n]wi).

This leads to Algorithm 2, which is used to filter the domain of xj for the values
v larger than wj . This algorithm traverses hj and Hj . The only complication
is that in some cases (captured by the Boolean variable decb defined in lines 6
and 11) reaching an optimal solution to ming≤z+v≤g Hj(z) involves decrement-

ing b, which is the current value of z (line 9). Domain filtering according to
constraint (10) takes place in lines 5 and 10. The algorithm ends when the op-
timal cost of problem (9) for v + 1 is larger than f (line 7). A complementary
algorithm is used for the values smaller than wj . Algorithm 2 achieves domain
consistency provided the hi are discretely convex. Section 5.1 discusses more
precisely the link between the shape of the hi and the consistency level.

3.2 Filtering in a Special Case

We now present a special case to avoid useless computation. Let us define kj(v) =
max fj(g

−1
j (v)), that is kj(v) is the largest value fj(u) for u such that gj(u) = v.

The function kj is similar to hj but the ‘max’ operator replaces the ‘min’ one.

538 J.-N. Monette et al.

Algorithm 2. Filtering algorithm for values larger than wj (general case)

1: function ForwardFilter(j,h,w,H, f)
2: Hj := computeHj(H,hj)
3: b :=

∑
i∈[1,n] wi − wj

4: v := wj

5: Filter(gj(xj) = v ⇒ fj(xj) ≤ f −Hj(b))
6: decb := b+ v ≥ g ∨Δ−(Hj , b) < 0
7: while Hj(b) + hj(v) + (if decb then Δ−(Hj , b) else 0) +Δ+(hj , v) ≤ f do
8: v := v + 1
9: if decb then b := b− 1
10: Filter(gj(xj) = v ⇒ fj(xj) ≤ f −Hj(b))
11: decb := b+ v ≥ g ∨Δ−(Hj, b) < 0

12: Filter(gj(xj) ≤ v)

If hj(v) ≥ kj(v − 1) for any value v larger than v∗ = argminu∈gj(Dxj
) hj(u)

and hj(v) ≥ kj(v + 1) for any v smaller than v∗, then there exists a value vmax

such that for all values v ∈ gj(Dxj) smaller than vmax (but larger than or equal

to wj), all values u ∈ g−1
j (v) are consistent, and for all v larger than vmax,

there is no consistent u. We then need not consider all values but only find vmax

and filter according to the two constraints gj(xj) ≤ vmax and gj(xj) = vmax ⇒
fj(xj) ≤ f −ming≤z+vmax≤g Hj(z). A similar argument holds for a vmin.

Finding vmax amounts to computing the largest value v such that hj(v) +
ming≤z+v≤g Hj(z) ≤ f . As hj and Hj are both convex, this problem can be
solved by incrementally increasing v until the bound is reached. Algorithm 3
presents the steps to find vmax. This algorithm is very similar to Algorithm 2,
but it does not need to iterate over all the values v, only over the ones that are
at a breakpoint of hj or Hj . The increment is stored in � (lines 6, 11, and 12).

An example of the special case is when gj is the identity function. Then gj is
injective. Hence hj = kj and, by convexity, hj is non-decreasing right of v∗ and
non-increasing left of v∗.

4 A Parametric Propagator and Its Complexity

Our propagator is generic in the sense that it works correctly for any functions fi
and gi that respect the condition of Theorem 1. However, we call it a parametric
propagator, because rather than resorting to a fully generic implementation, we
use hook functions and procedures that need to be provided. This allows us to
get a lower time complexity. The parameters to provide for an instantiation are
shown in Table 2: they are used in Algorithms 1 to 3. We now study the time
and space complexity of our propagator, based on a few implementation notes.

Feasibility Test. We implement the H function as a linked list of segments, plus
two integers for the values b∗ and H(b∗). The value of H(b) is never queried for
arbitrary values of b, but only for b∗ and for incrementally modified values of b,

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 539

Algorithm 3. Filtering algorithm for values larger than wj (special case)

1: function ForwardFilter(j,h,w,H, f)
2: Hj := computeHj(H,hj)
3: b :=

∑
i∈[1,n] wi − wj

4: v := wj

5: decb := b+ v ≥ g ∨Δ−(Hj , b) < 0
6: � := min

{
b− bp−(Hj , b), bp+(hj , v)− v, if decb then +∞ else g − b− v

}
7: while Hj(b)+hj(v)+ � · ((if decb then Δ−(Hj , b) else 0)+Δ+(hj , v)) ≤ f do
8: v := v + �
9: if decb then b := b− �
10: decb := b+ v ≥ g ∨Δ−(Hj, b) < 0
11: � :=min

{
b−bp−(Hj , b), bp+(hj , v)−v, if decb then +∞ else g − b− v

}
12: � := (f −Hj(b)− hj(v))/(Δ

+(hj , v) + (if decb then Δ−(Hj , b) else 0))
13: v := v + �
14: Filter(gj(xj) ≤ v)
15: Filter(gj(xj) = v ⇒ fj(xj) ≤ f −Hj(b))

Table 2. Parameters to instantiate

Functions Procedures

argminv∈gi(Dxi
) hi(v) Filter(gi(xi) ≤ v)

Δ+(hi, v) Filter(gi(xi) ≥ v)
Δ−(hi, v) Filter(gi(xi) = v ⇒ fi(xi) ≤ u)
bp+(hi, v)
bp−(hi, v)

so that H(b) can also be computed incrementally. This is also true for hi, and
is reflected by the absence of hi(u) from the parameters in Table 2. Using that
linked list and some bookkeeping, the computation ofH(b), Δ+(H, b), Δ−(H, b),
bp+(H, b), and bp−(H, b) can be performed in constant time for all values of b
used in the algorithms.

Constructing the linked list of H can be done in various ways. A first way is
to traverse each function hi in turn and to build H incrementally by traversing
the linked list in parallel. This takes O(n · (s(h) · p+ s(H))) time, where s(h) is
the maximum number of segments among the hi functions, s(H) is the number
of segments of H , and p is the highest complexity of the parametric functions.
A second way is to collect all the segments from all the functions in a list, to
sort this list, and to construct H by traversing the list. This takes O(n · s(h) ·
(p + log(n · s(h)))) time and is asymptotically better than the first way when
s(H) > s(h) · log(n · s(h)).

Algorithm 1 computes a witnessing assignment in O(s(H) + n · s(h)) time.
This is dominated by the prior construction of H , as s(H) ≤ n · s(h).

Filtering. We implement Algorithm 2 to run in O(r(h) · c) time, where r(h) =∣∣gj(Dxj)
∣∣ and c is the highest complexity of the procedures in Table 2. The

segments of Hj are computed on the fly from hj and H . The sum in line 3 of

540 J.-N. Monette et al.

Table 3. Time complexity of the different versions of the propagator

Propagator Time complexity

Traversing, general case O(n · (s(h) · p+ s(H) + r(h) · c)
Sorting, general case O(n · (s(h) · p+ s(h) · log(n · s(h)) + r(h) · c))
Traversing, special case O(n · (s(h) · p+ s(H) + c))
Sorting, special case O(n · (s(h) · p+ s(h) · log(n · s(h)) + s(H) + c))

Algorithm 2 is actually provided by our implementation of H , so it need not be
recomputed each time. Algorithm 3 takes O(s(h) + s(H) + c) time.

The Whole Propagator. The time complexity of our propagator is obtained by
multiplying the filtering complexity by n (the number of variables) and adding
the complexity of computingH . Table 3 summarises this for the different versions
of the propagator. Note that s(h) ≤ r(h) ≤ |Dx| and s(H) ≤ n · s(h).

The space complexity of our propagator is O(n + s(H)), as we need to store
a constant amount of information (namely wi) for each variable and the whole
function H (which amounts to a constant amount for each of its segments). The
functions hi and Hj are not stored explicitly.

5 Instantiating the Parametric Propagator

We now show how our propagator can be used for particular pairs of constraints.
Note that if hi is a linear function, then −hi is also discretely convex. This

means that one can put a lower bound f on
∑

i∈[1,n] fi(xi) and run the propa-

gator twice, first with constraint (1) being
∑

i∈[1,n] fi(xi) ≤ f , then with con-

straint (1) being −∑
i∈[1,n] fi(xi) ≤ −f .

Our propagator can also be extended to handle variables as the upper and
lower bounds of the constraints. In such a case, the largest values in the domains
of f and g, and the smallest values in the domains of f and g are used in the
propagator. In addition, the other bound of each variable can be constrained by
the H function. Only bounds(Z) consistency can be achieved on those variables.

5.1 Instantiations and Consistency

We now discuss for which functions fi and gi our propagator can be used and
how it affects the consistency of the propagator. The required discrete convexity
of the hi functions puts a strong restriction on the shape of the gi. Recall that
gi(Dxi) must be an interval by the first condition in Definition 1. Note that the
discrete convexity must be respected for all Dxi that arise during the search.

If Dxi can be any set of integers, then the only instantiations of gi satisfying
the first condition of Definition 1 are those whose image contains only two values,
which must be consecutive. We call these characteristic functions. In such a case,
the second condition of Definition 1 is always respected and the fi can be any
(integer) functions.

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 541

If Dxi can only be an interval, then the class of gi functions satisfying the first
condition of Definition 1 is more general, namely all functions where

|gi(u)− gi(u+ 1)| ≤ 1 ∀u, u+ 1 ∈ Dxi (11)

If there are holes in a domain Dxi , then Dxi can be relaxed to the smallest con-
taining interval without losing the correctness of the approach. Some propagation
may be lost, but this compromise is often acceptable for global constraints. In
particular, we do not achieve domain consistency, but bounds(Z) consistency.

Among others, the identity function respects equation (11). If gi is the iden-
tity function, then fi must be discretely convex, because hi = fi. For other
instantiations of gi satisfying (11), the restrictions on fi are varying.

5.2 Example Instantiations

We now show that many existing (pairs of) constraints fit our parametric prob-
lem, optionally extended with a lower bound f and with variable bounds. Table 1
presents several instantiations of fi and gi, together with the derived hi. We
discuss below various constraints and their time complexity. The concrete com-
plexities are derived from the complexities in Table 3 by replacing s(h), s(H),
r(h), p, and c by suitable values derived from the hi.

If gi(u) = 0 for all i, then the second constraint vanishes and we can use our
propagator for a single sum constraint, e.g., a linear inequation. Our parametric
propagator is however too general for this simple case, as it runs in O(n · logn)
time, while a dedicated bounds(Z) consistent propagator runs in O(n) time [6].

The case gi(u) = u covers many interesting constraints already presented in
the literature. In particular, it covers the bounds(Z) consistent propagators for
the statistical constraints Deviation and Spread with a fixed rational mean.
Interestingly, it can be generalised to any Lp-norm, with p > 0 (except L+∞).
One can also give a different penalty for deviations over and under the average.
The time complexity of our propagator is O(n) for Deviation, which matches
the best published propagator [17]. For Spread (and higher norms), the time
complexity of our propagator is O(n · d), with d =

∣∣∪i∈[1,n] Dxi

∣∣. This is in-
comparable to the complexity O(n · logn) of the best published propagator [9].
Note that our propagator achieves bounds(Z) consistency, which has only been
achieved very recently in the case of Spread [18].

As an example, we show in Table 4 the instantiation of the parameters for
Deviation (symmetric parameters are omitted). For Deviation, hi has (up to)
three segments, joining at the breakpoints �μ� and �μ�.

The case gi(u) = u and fi(u) = ai ·u can be used to model a restricted version
of the WeightedAverage constraint [3], where the weight are variables, the
values are constants, and the average must take an integer value. The time
complexity of our bounds(Z) consistent propagator is O(n · logn), though the
dedicated propagator runs in O(n) time.

If gi is a characteristic function, then fi can be any function. A characteristic
function may be used to count, as is the case of the Count family of constraints

542 J.-N. Monette et al.

Table 4. Expressions for instantiating a propagator for Deviation. The conditions
are not always mutually exclusive and are to be evaluated in top-down order.

Parameter Instantiation

argminv∈gi(Dxi
) hi(v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�μ if minDxi ≤ μ ≤ maxDxi ∧�μ − μ < μ− �μ	
�μ	 if minDxi ≤ μ ≤ maxDxi ∧�μ − μ ≥ μ− �μ	
minDxi if μ < minDxi

maxDxi if μ > maxDxi

Δ+(hi, v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ if v = maxDxi

−n if v < �μ	
n · (�μ+ �μ)− 2 · n · μ if v = �μ	 ∧ �μ	 �= �μ
n if v ≥ �μ

bp+(hi, v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ if v = maxDxi

min (maxDxi , �μ) if v < �μ	
�μ if v = �μ	 ∧ �μ	 �= �μ
maxDxi if v ≥ �μ

Filter(gi(xi) ≤ v) Filter(xi ≤ v)

Filter(gi(xi) = v ⇒ Filter(|n · v − n · μ| > u ⇒ xi �= v)
mmmmmmmifi(xi) ≤ u)

(e.g., Among [1,2]). But characteristic functions can also be used to represent
the Maximum constraint. Indeed, the constraint m = maxi∈[1,n] xi can be de-
composed as ∀i ∈ [1, n] : m ≥ xi ∧

∑
1∈[1,n](if xi ≥ m then 1 else 0) ≥ 1.

Table 1 gives the definition of hi for Linear and Exactly, in which case our
propagator is domain consistent and runs in O(n · (logn+ p+ c)) time, as does
the dedicated propagator presented in [13].

Many other pairs can be instantiated. Note that the fi or gi functions can
differ for each i, i.e., one can mix in the same sum terms of different forms (e.g.,
some linear and some quadratic), as long as each function hi is discretely convex.

6 Experimental Evaluation

To show that the genericity of our propagator is not detrimental not only to
asymptotic complexity (as seen in Section 5) but also to performance, we pro-
pose a small experiment to compare custom propagators with instantiations of
our parametric propagator. We selected the Deviation [17] and Spread [18]
constraints as their bounds(Z)-consistent propagators are freely available in the
distribution of OscaR [8]. We performed the comparison on the 100 instances
of the Balanced Academic Curriculum Problem (BACP) that were introduced
in [16],1 modelled as in the OscaR distribution (we only slightly modified the
search heuristic to make it deterministic, so that the search trees are the same).

1 They are available from http://becool.info.ucl.ac.be/resources/bacp

http://becool.info.ucl.ac.be/resources/bacp

A Parametric Propagator for Discretely Convex Pairs of Sum Constraints 543

For Deviation, we used the 44 instances that are solved to optimality in
more than 1 second (to avoid measurement errors) but less than 12 hours (3
instances timed out). When using our parametric propagator, the time to solve
an instance is on average only 7% longer than when using the custom propagator
(with a standard deviation of 5%). The numbers of nodes in the search tree and
calls to the propagator are exactly the same for both propagators due to their
common level of consistency and the deterministic search procedure.

For Spread, we used the 33 instances that are solved to optimality in more
than 1 second but less than 12 hours (2 instances timed out). When using our
parametric propagator, the time to solve an instance is on average 28% shorter
than when using the custom propagator (with a standard deviation of 10%).
Again, the numbers of nodes in the search tree and calls to the propagator
are exactly the same for both propagators. This improvement is explained by a
different algorithmic approach, which is in our favour when the domains of the
variables are small, as is the case for the BACP instances.

Our Java implementation is available at http://www.it.uu.se/research/

group/astra/software/convexpairs and a package for replication at
http://recomputation.org [5].

7 Conclusion, Related Work, and Future Work

We have studied how to propagate pairs of sum constraints that respect a dis-
crete convexity condition. From this condition, we have derived a parametric
propagator, which can be instantiated to be competitive with previously pub-
lished propagators, often matching their time complexity, despite its generality.

Our approach of first computing a feasibility bound and then incrementally
adapting it is not new and has been used in the design of several propagators.
Among others, this is the case for the constraints covered by our own propagator.
However, the novelty of our work is that for the first time we abstract from the
details of each constraint to focus on their common properties. This is close in
spirit to what has been done with SeqBin [10] for another class of constraints.

When the gi are characteristic functions, our conjunction of sum constraints
can be represented using CostGCC [14]. However, this requires the explicit
representation of all variable-value pairs and induces a larger time complexity
than our propagator. On the other hand, CostGCC can handle more than one
counting constraint in one propagator.

There are a number of open questions we plan to address in the future. Can we
automatically generate the instantiation of the parameters from the definitions
of the fi and gi? Can we make an incremental propagator that has a better
time complexity along a branch of the search tree? Can we extend the approach
to functions that take more than one argument, say fi(xi, yi) for variables yi
distinct from each other, or fi(xi, y) for a shared variable y? Can we deal with
more than two sum constraints in one propagator? Beside when there are holes
in the domains, when is it correct and useful to use a relaxation of hi when this
function is not discretely convex?

http://www.it.uu.se/research/group/astra/software/convexpairs
http://www.it.uu.se/research/group/astra/software/convexpairs
http://recomputation.org

544 J.-N. Monette et al.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathemat-
ical and Computer Modelling 20(12), 97–123 (1994)

2. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Among, common
and disjoint constraints. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.)
CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 29–43. Springer, Heidelberg (2006)

3. Bonfietti, A., Lombardi, M.: The weighted average constraint. In: Milano, M. (ed.)
CP 2012. LNCS, vol. 7514, pp. 191–206. Springer, Heidelberg (2012)

4. Fujishige, S.: Submodular Functions and Optimization. In: Annals of Discrete
Mathematics, 2nd edn., Elsevier (2005)

5. Gent, I.P.: The recomputation manifesto. CoRR, abs/1304.3674 (2013)
6. Harvey, W., Schimpf, J.: Bounds consistency techniques for long linear constraints.

In: Proceedings of TRICS 2002, the Workshop on Techniques foR Implementing
Constraint programming Systems, pp. 39–46 (2002)

7. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260.
Springer (2009)

8. OscaR Team. OscaR: Scala in OR (2012), https://bitbucket.org/oscarlib/oscar
9. Pesant, G., Régin, J.-C.: SPREAD: A balancing constraint based on statistics. In:

van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg
(2005)

10. Petit, T., Beldiceanu, N., Lorca, X.: A generalized arc-consistency algorithm for
a class of counting constraints. In: IJCAI 2011, pp. 643–648. AAAI Press (2011),
revised edition available at http://arxiv.org/abs/1110.4719

11. Petit, T., Régin, J.-C., Beldiceanu, N.: A Θ(n) bound-consistency algorithm for the
increasing sum constraint. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 721–728.
Springer, Heidelberg (2011)

12. Puget, J.-F.: Improved bound computation in presence of several clique constraints.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 527–541. Springer, Heidelberg
(2004)

13. Razakarison, N., Beldiceanu, N., Carlsson, M., Simonis, H.: GAC for a linear in-
equality and an atleast constraint with an application to learning simple polyno-
mials. In: SoCS 2013, AAAI Press (2013)

14. Régin, J.-C.: Cost-based arc consistency for global cardinality constraints. Con-
straints 7(3-4), 387–405 (2002)

15. Régin, J.-C., Petit, T.: The objective sum constraint. In: Achterberg, T., Beck, J.C.
(eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 190–195. Springer, Heidelberg (2011)

16. Schaus, P.: Solving balancing and bin-packing problems with constraint program-
ming, PhD Thesis, Université catholique de Louvain, Belgium (2009)

17. Schaus, P., Deville, Y., Dupont, P.: Bound-consistent deviation constraint. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 620–634. Springer, Heidelberg
(2007)

18. Schaus, P., Régin, J.-C.: Bound-consistent spread constraint, application to load
balancing in nurse to patient assignments (submitted)

19. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to
the same search space? ACM Transactions on Programming Languages and Sys-
tems 27(3), 388–425 (2005)

https://bitbucket.org/oscarlib/oscar
http://arxiv.org/abs/1110.4719

	A Parametric Propagator for Discretely Convex Pairs of Sum Constraints
	1 Introduction
	2 Feasibility Test
	2.1 Problem Reformulation
	2.2 Deltas, Segments, Slopes, Breakpoints, Reasoning on Infinity
	2.3 Characterisation of the H Function
	2.4 Computing the Feasibility Bound and a Witnessing Assignment

	3 Domain Filtering
	3.1 Filtering in the General Case
	3.2 Filtering in a Special Case

	4 A Parametric Propagator and Its Complexity
	5 Instantiating the Parametric Propagator
	5.1 Instantiations and Consistency
	5.2 Example Instantiations

	6 Experimental Evaluation
	7 Conclusion, Related Work, and Future Work
	References

