
Constraints (2013) 18:1–6
DOI 10.1007/s10601-012-9132-0

LETTER

On the reification of global constraints

Nicolas Beldiceanu · Mats Carlsson · Pierre Flener ·
Justin Pearson

Published online: 13 November 2012
© Springer Science+Business Media New York 2012

Abstract We introduce a simple idea for deriving reified global constraints in a
systematic way. It is based on the observation that most global constraints can be
reformulated as a conjunction of total function constraints together with a constraint
that can be easily reified.

Keywords Global constraint · Reification · Reformulation · Functional dependency

1 Introduction

Conventional wisdom has it that many global constraints cannot be easily reified, i.e.,
augmented with a 0–1 variable reflecting whether the constraint is satisfied (value 1)
or not (value 0). Reified constraints are useful for expressing propositional formulas
over constraints and for expressing that a certain number of constraints hold (e.g.,
the cardinality operator [14]). Using standard algorithms from automata theory, we
have previously shown [4, Section 3.7.196 of 2010 version] how to reify a global
constraint that can be expressed in terms of a counter-free finite automaton [3, 12].
However, many global constraints, such as alldifferent and cumulative, cannot

N. Beldiceanu
TASC team (CNRS/INRIA), Mines de Nantes, 44307 Nantes, France
e-mail: Nicolas.Beldiceanu@mines-nantes.fr

M. Carlsson
SICS, P.O. Box 1263, 164 29 Kista, Sweden
e-mail: Mats.Carlsson@sics.se

P. Flener (B) · J. Pearson
Uppsala University, Box 337, 751 05, Uppsala, Sweden
e-mail: Pierre.Flener@it.uu.se

J. Pearson
e-mail: Justin.Pearson@it.uu.se



2 Constraints (2013) 18:1–6

be expressed by an automaton whose size is polynomial in the number of variables
of the constraint. The importance of the negation of global constraints has recently
increased, e.g., in the context of a constraint seeker with negative samples [5] and for
proving the equivalence of constraint models [1, 10].

Many early constraint programming systems, such as CHIP, GNU Prolog, Ilog
Solver, and SICStus Prolog, provide reification for arithmetic constraints. However,
when global constraints started to get introduced (e.g., alldifferent and cumu-
lative), reification was not available for global constraints. We believe that, in
the early 1990s, reification was not considered for global constraints since it was
believed that reification could only be obtained by modifying the filtering algorithms
attached to each global constraint. Nowadays, Minion [8, 9] features constraint trees,
which constitute a very efficient mechanism for executing Boolean combinations of
primitive as well as global constraints.

In this letter, we present a portable reification method that is useful on solvers that
do not have such features, and so this work is orthogonal to specific implementation
approaches.

2 How to derive reified global constraints

A global constraint GC(A) can be defined by restrictions R(A) on its arguments
A, e.g., restrictions on the bounds of its arguments, and by a condition C(A) on
its arguments, i.e., we have GC(A) ≡ R(A) ∧ C(A). For instance, for a constraint
defined by a finite automaton (e.g., global_contiguity [4, page 1058]), a typical
restriction is that the variables take values in a given alphabet (e.g., values 0 and 1 for
global_contiguity). See [4, pages 9–17] for other examples of such restrictions. Note
that the set of restrictions may be empty, that is R(A) may be always satisfied. We
define the reif ied version of GC(A) as R(A) ∧ (C(A) ⇔ b), where b is a 0–1 variable
reflecting whether GC(A) holds or not. In particular, we require the negation of
GC(A) to satisfy the same restrictions R(A).

Let a core reif iable constraint be a constraint of the form of a Boolean combi-
nation of linear arithmetic equalities and inequalities and 0–1 variables. We assume
that such constraints are already reifiable, without resorting to the methods being
developed in this letter. This is the case in all constraint programming systems that
we are aware of.

A constraint R(v1, . . . , vn) is a total function (TF) if and only if its variables can
be partitioned into two non-empty sets, X and Y, such that for any assignment
to the variables of X there is a unique assignment to the variables of Y satisfying
R. For instance, nvalue(nv, 〈v1, . . . , vn〉) [4, page 1466] is a TF since variable nv
is uniquely determined by the number of distinct values of the set {v1, . . . , vn} of
variables. However, alldifferent(〈v1, . . . , vn〉) is not a TF, because no subset of
the variables 〈v1, . . . , vn〉 uniquely determines the other variables. The set Y may
contain more than one variable, witness the sort(〈v1, . . . , vn〉 , 〈w1, . . . , wn〉) con-
straint [4, page 1772], where 〈v1, . . . , vn〉 uniquely determine 〈w1, . . . , wn〉. The global
constraint catalogue [4] contains a significant number (23 %) of TF constraints.

We now provide the key observation that allows us to reify most global constraints
in a straightforward way. Given a global constraint GC(A) defined by R(A) ∧ C(A),
it turns out that the condition C(A) can often be reformulated as a conjunction



Constraints (2013) 18:1–6 3

CF1(A1,V1) ∧ · · · ∧ CF p(Ap,Vp) ∧ CN(Ap+1) of constraints, where R(A) implies
that each constraint CFi(Ai,Vi) (with 1 ≤ i ≤ p) is a TF for which the determined
variables Vi do not occur in A, and where CN(Ap+1) is a core reifiable constraint
(i.e., we may use CN(Ap+1) ⇔ b). The arguments of the constraints CFi(Ai,Vi) (with
1 ≤ i ≤ p) and CN(Ap+1) must obey the following conditions:

– Vi (with 1 ≤ i ≤ p) is a non-empty set of distinct new variables, i.e., it has an
empty intersection with A ∪ V1 ∪ · · · ∪ Vi−1 ∪ Vi+1 ∪ · · · ∪ Vp.

– Ai ⊆ A ∪ V1 ∪ · · · ∪ Vi−1 (with 1 ≤ i ≤ p + 1), i.e., Ai gets fixed when
A,V1, . . . ,Vi−1 are fixed.

– Vi has a non-empty intersection with Ai+1 ∪ · · · ∪ Ap+1, i.e., each introduced
variable is used at least once.

If all the variables of A that occur in one of the Ai (with 1 ≤ i ≤ p) are fixed,
then all variables in Vi (with 1 ≤ i ≤ p) are also fixed, by the TF constraints. Note
that, from the first two conditions, the conjunction CF1(A1,V1) ∧ · · · ∧ CF p(Ap,Vp)

determines the variables of V1, . . . ,Vp from the arguments A.
In this context, the reified version of GC(A) is expressed as follows:

R(A) ∧ CF1(A1,V1) ∧ · · · ∧ CF p(Ap,Vp) ∧ (
CN(Ap+1) ⇔ b

)

3 Sample reifications of global constraints

We now illustrate our approach on some constraints of the Global Constraint
Catalogue, showing how to reify them by using a conjunction of TF constraints and a
constraint for which reification is directly available.

alldifferent(〈v1, . . . , vn〉) [4, page 434] is reified as follows:

sort(〈v1, . . . , vn〉, 〈w1, . . . , wn〉) ∧ (w1 < w2 ∧ · · · ∧ wn−1 < wn) ⇔ b

global_cardinality(〈x1, . . . , xn〉, 〈v1 o1, . . . , vm om〉) [4, page 1034], where v j and o j

(with j ∈ [1, m]) respectively denote the value for which we count the number of
occurrences and the corresponding number of occurrences among the xi variables
(with i ∈ [1, n]), is reified as follows:

global_cardinality(〈x1, . . . , xn〉, 〈v1 p1, . . . , vm pm〉) ∧
(o1 = p1 ∧ · · · ∧ om = pm) ⇔ b

Being a TF, global_cardinality is itself used in the TF part of its reformulation
(p = 1), but with other determined variables; the core reified constraint of the
reformulation compares the two sets of determined variables.

element(i, 〈t1, . . . , tn〉 , v) [4, page 958] is reified as follows:

element(i, 〈t1, . . . , tn〉 , w) ∧ (v = w) ⇔ b

Since its restriction, 1 ≤ i ≤ n, implies that element is a TF(the variable v is
uniquely determined by the index i and the table 〈t1, . . . , tn〉), element is itself
used in the TF part of its reformulation, but with another determined variable w;
it suffices to reify v = w.

cumulative(〈s1 d1 e1 r1, . . . , sn dn en rn〉, limit) [4, page 786], where si, di, ei, and
ri (with i ∈ [1, n]) respectively denote the start, duration, end, and resource



4 Constraints (2013) 18:1–6

consumption of task i, can be reified by a reformulation that uses TF constraints
for determining the maximum resource consumption:

– For each pair of tasks i, j (with i, j ∈ [1, n]) we create a variable rij, which is
the resource consumption of task j if task j overlaps the start of task i, and 0
otherwise:

– For j = i: (di = 0 ∧ rij = 0) ∨ (di > 0 ∧ rij = ri)

– For j �= i: ((s j ≤ si ∧ e j > si ∧ si < ei) ∧ rij = r j) ∨ ((s j > si ∨ e j ≤
si ∨ si = ei) ∧ rij = 0)

– For each task i (with i ∈ [1, n]) we create a variable sri, which is the sum of
the resource consumptions of the tasks that overlap the start of task i (task i
overlaps its own start), i.e., sri = ri1 + · · · + rin.

Finally, (s1 + d1 = e1 ∧ · · · ∧ sn + dn = en ∧ sr1 ≤ limit ∧ · · · ∧ srn ≤ limit) ⇔ b
is the reified constraint.

diffn(〈〈o11 s11 e11, . . . , o1m s1m e1m〉, . . . , 〈on1 sn1 en1, . . . , onm snm enm〉〉) [4, page 872],
where oik, sik, and eik (with i ∈ [1, n] and k ∈ [1, m]) respectively denote the
origin, size, and end in dimension k of object i, is reified as follows:

⎛

⎜⎜
⎝

∧

1≤i≤n
1≤ j≤n

i< j

∨

1≤k≤m

(sik = 0 ∨ s jk = 0 ∨ oik ≥ e jk ∨ o jk ≥ eik) ∧
∧

1≤i≤n
1≤k≤m

(oik + sik = eik)

⎞

⎟⎟
⎠ ⇔ b

The constraint holds if each pair of these objects has no overlap. Unlike all the
previous examples, we do not need any TF constraints here, i.e., p = 0.

symmetric_alldifferent(〈s1, . . . , sn〉) [4, page 1854] holds if S = 〈s1, . . . , sn〉 is a
permutation of [1, n] with n

2 permutation cycles of length 2. It is reified
as follows. For each i, we get its two closest successors and check that
they form a cycle of length 2. The first step is done by stating the
following TF constraints: element(s1, S, t1) ∧ · · · ∧ element(sn, S, tn). Finally,
(s1 �= t1 ∧ t1 = 1 ∧ · · · ∧ sn �= tn ∧ tn = n) ⇔ b is the reified constraint.

Automata. Any constraint that can be modelled by an automaton with counters
c1, . . . , ci with expected values v1, . . . , vi can be reified using the automaton
meta-constraint [3] as follows:

automaton(. . . ) ∧ (w1 = v1 ∧ · · · ∧ wi = vi ∧ wi+1 = 1) ⇔ b

where:

– ci+1 is an auxiliary counter, with initial value 1 if the start state is an accept
state, and 0 otherwise,

– w1, . . . , wi+1 are the counter values in the state where the automaton stops,
– any arc leading to an accept state is amended with ci+1 ← 1,
– any arc leading to a non-accept state is amended with ci+1 ← 0,
– finally, all states are turned into accept states.

Figure 1 shows an example of this transformation. There are 90 such constraints
in the catalogue. In [2], we give specialised reification methods for two cases
where i = 0 (covering 19 and 41 constraints, respectively).



Constraints (2013) 18:1–6 5

N 0

1

2, 3

1

2

3

1, 2

3
N N +1

1, 2, 3

N 0
T 0

1
T 1

2 , 3
T 0

1
T 1

2
T 1

3
T 0

1 , 2
T 1

3
N N +1

T 1

1 , 2 , 3
T 0

Fig. 1 Left automaton for a constraint over {1, 2, 3} requiring that the first 2 be preceded by at least
one 1, that the first 3 be preceded by at least one 2, and that there be at least one occurrence of 1;
the counter N counts the number of occurrences of 3. Right its version used for reification, with an
auxiliary counter T, reflecting the truth value

4 Conclusion

Based on the insight that most constraints can naturally be defined by a determine
and test scheme, where the determine part is associated to total function (TF)
constraints that determine additional variables, and the test part to a core reifiable
constraint on these variables, we have shown that most global constraints can be
reified. Surprisingly, this simple idea allows us to reify at least 313 of the 381 (i.e.,
82 %) constraints (details in [2]) of the Global Constraint Catalogue. Most of the
constraints not covered are graph constraints involving set variables.

Some of our insights might be folklore. For instance, Tip 5.3 of [13, page 78]
outlines the idea for TF constraints and gives an example, but the notion of TF
and our more general pattern of Section 2 are not identified. Similarly, Example 14
of [10, page 58] also provides an example of negation for a TF constraint without
identifying the pattern. The reformulations of constraints such as alldifferent
or global_cardinality in [6] can be unfolded to make explicit the TF and core
reified constraints. As observed in [7, Section 4], given a global constraint c and
its propagator, it is straightforward to construct a propagator for its half-reified
version b ⇒ c, but not so for the only-if version c ⇒ b . In the context of software
verification, the equivalence of constraint models must sometimes be proven and
one needs to negate global constraints [1, 10].

The Zinc language [11] introduces local existentially quantified variables, which
can be used for the same purpose as our functionally determined variables. In a
negated or reified context, Zinc requires that such variables be functions of non-local
variables and parameters, and restricts the set of functions that are allowed, whereas
our approach admits any TF constraint. For example, Zinc allows array expressions
as syntactic sugar for element, but does not allow sort as a function, even though
both are TF. Thus there seems to be a case for lifting this restriction in Zinc.

Our decomposition scheme is mainly useful in case the solver does not directly
support some global constraint in negated or reified contexts, as well as for obtaining
reformulations of global constraints. While such reformulations may not be very
efficient from a memory point of view for a reformulation whose size is quadratic
in the number of variables of the constraint, many reformulations are quite compact.



6 Constraints (2013) 18:1–6

Acknowledgements Many thanks to Christian Schulte and the anonymous referees for useful
comments. The first author was supported by the French ANR project Net-WMS-2. The last two
authors were supported by grant 2011-6133 of the Swedish Research Council.

References

1. Alvarez Divo, C.E. (2011). Automated reasoning on feature models via constraint programming.
Master’s thesis, Uppsala University, Sweden. Tech. Rep. IT 11 041.

2. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J. (2012). On the reification of global con-
straints. Tech. Rep. T2012:02, Swedish Institute of Computer Science. Available at http://soda.
swedish-ict.se/view/sicsreport/.

3. Beldiceanu, N., Carlsson, M., Petit, T. (2004). Deriving filtering algorithms from constraint
checkers. In CP 2004. LNCS (Vol. 3258, pp. 107–122). Springer.

4. Beldiceanu, N., Carlsson, M., Rampon, J.X. (2012). Global constraint catalog, 2nd edn.
(revision a). Tech. Rep. T2012:03, Swedish Institute of Computer Science.

5. Beldiceanu, N., & Simonis, H. (2011). A constraint seeker: Finding and ranking global constraints
from examples. In J.H.M. Lee (Ed.), CP 2011. LNCS (Vol. 6876). Springer.

6. Bessière, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T. (2009). Decompositions
of all different, global cardinality and related constraints. In IJCAI (pp. 419–424).

7. Feydy, T., Somogyi, Z., Stuckey, P.J. (2011). Half reification and flattening. In J.H.M. Lee (Ed.),
CP 2011. LNCS (Vol. 6876, pp. 286–301). Springer.

8. Gent, I.P., Jefferson, C., Miguel, I. (2006). Minion: a fast scalable constraint solver. In ECAI 2006
(pp. 98–102). IOS Press.

9. Jefferson, C., Moore, N.C.A., Nightingale, P., Petrie, K.E. (2010). Implementing logical connec-
tives in constraint programming. Artificial Intelligence, 174, 1407–1429.

10. Lazaar, N. (2011). Méthodologie et outil de test, de localisation de fautes et de correction
automatique des programmes à contraintes. Ph.D. thesis, Rennes 1 Univ., France.

11. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M. (2008).
The design of the Zinc modelling language. Constraints, 13(3), 229–267.

12. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables.
In M.G. Wallace (Ed.), CP 2004. LNCS 2004 (Vol. 3258, pp. 482–495). Springer.

13. Schulte, C., Tack, G., Lagerkvist, M.Z. (2011). Modeling and programming with gecode
(version 3.7.1). Available from http://www.gecode.org/.

14. Van Hentenryck, P., & Deville, Y. (1991). The cardinality operator: a new logical connective in
constraint logic programming. In ICLP 1991. MIT Press

http://soda.swedish-ict.se/view/sicsreport/
http://soda.swedish-ict.se/view/sicsreport/
http://www.gecode.org/

	On the reification of global constraints
	Abstract
	Introduction
	How to derive reif ied global constraints
	Sample reif ications of global constraints
	Conclusion
	References


