
Constraints (2013) 18:108–140
DOI 10.1007/s10601-012-9134-y

On matrices, automata, and double counting
in constraint programming

Nicolas Beldiceanu · Mats Carlsson · Pierre Flener ·
Justin Pearson

Published online: 11 December 2012
© Springer Science+Business Media New York 2012

Abstract Matrix models are ubiquitous for constraint problems. Many such prob-
lems have a matrix of variables M, with the same constraint C defined by a finite-
state automaton A on each row of M and a global cardinality constraint gcc on each
column of M. We give two methods for deriving, by double counting, necessary
conditions on the cardinality variables of the gcc constraints from the automaton A.
The first method yields linear necessary conditions and simple arithmetic constraints.
The second method introduces the cardinality automaton, which abstracts the overall
behaviour of all the row automata and can be encoded by a set of linear constraints.
We also provide a domain consistency filtering algorithm for the conjunction of lexi-
cographic ordering constraints between adjacent rows of M and (possibly different)
automaton constraints on the rows. We evaluate the impact of our methods in terms
of runtime and search effort on a large set of nurse rostering problem instances.

Keywords Double counting · Necessary (implied) constraint · Matrix model ·
Automaton constraint · Nurse scheduling

This paper extends a prior version published as [2].

N. Beldiceanu
TASC Team (CNRS/INRIA), Mines de Nantes, 44307 Nantes, France
e-mail: Nicolas.Beldiceanu@mines-nantes.fr

M. Carlsson
SICS, P.O. Box 1263, 164 29 Kista, Sweden
e-mail: Mats.Carlsson@sics.se

P. Flener (B) · J. Pearson
Department of Information Technology, Uppsala University,
Box 337, 751 05, Uppsala, Sweden
e-mail: Pierre.Flener@it.uu.se

J. Pearson
e-mail: Justin.Pearson@it.uu.se

Constraints (2013) 18:108–140 109

1 Introduction

Matrix models are ubiquitous for constraint problems. Despite this fact, only a few
constraints consider a matrix and some of its constraints as a whole: the allperm [13]
and lex2 [10] constraints were introduced for breaking symmetries in a matrix, while
the colored_matrix constraint [20] was introduced for handling a conjunction of gcc
constraints1 on the rows and columns of a matrix. We focus on another recurring
pattern, especially in the context of personnel rostering, which can be described in
the following way.

Given three positive integers R, K, and V, we have an R × K matrix M of
decision variables that take their values within the finite set of values {0, 1, . . . , V −
1}, as well as a V × K matrix M# of cardinality variables that take their values within
the finite set of values {0, 1, . . . , R}. Each row r (with 0 ≤ r < R) of M is subject to a
constraint defined by an automaton2 A and, depending on the search procedure, we
may break symmetries by a lexicographic ordering between adjacent rows [7, 11, 12].
For simplicity (except in Section 5), we assume that each row is subject to the same
constraint. Each column k (with 0 ≤ k < K) of M is subject to a gcc constraint that
restricts the number of occurrences of the values according to column k of M#: let
#v

k denote the number of occurrences of value v (with 0 ≤ v < V) in column k of
M, that is, the cardinality variable in row v and column k of M#. We call this pattern
the matrix-of-automaton-and-gcc pattern. We also introduce an R × V matrix M′# of
cardinality variables that take their values within the finite set of values {0, 1, . . . , K}.
Each row r (with 0 ≤ r < R) of M is also subject to a gcc constraint, derived from
the finite-state automaton, that restricts the number of occurrences of the values
according to row r of M′#: let #

′r
v denote the number of occurrences of value v

(with 0 ≤ v < V) in row r of M, that is, the cardinality variable in column v and
row r of M′#. In the context of personnel rostering, a possible interpretation of this
pattern is:

– R, K, and V respectively correspond to the number of persons, days, and types
of work (e.g., morning shift, afternoon shift, night shift, or day of f) we consider.

– Each row r of M corresponds to the work of person r over K consecutive days.
– Each column k of M corresponds to the work by the R persons on day k.
– The automaton A on the rows of M encodes the rules of a valid schedule for a

person; it can be the product of several automata defining different rules.
– The gcc constraint on column k represents the demand of services for day k. In

this context, the cardinality associated with a given service can either be fixed or
be specified to belong to a given range.

A typical problem with this kind of pattern is the lack of interaction between
the row and column constraints. This is especially problematic when, on the one
hand, the row constraint is a sliding constraint expressing a distribution rule on

1Given a set of decision variables vars and a set of value-variable pairs val_occ, the gcc(vars, val_occ)
constraint enforces for each value-variable pair val : occ of val_occ that val occur exactly occ times
within vars. Moreover, it imposes that all variables of vars be assigned a value from val_occ.
2The automaton(X,A) constraint [3] requires the sequence X of decision variables to take values
that, seen as a string, are accepted by the finite-state automaton A, which is possibly augmented with
counters. In the absence of counters, this is equivalent to the regular(X,A) constraint [19].

110 Constraints (2013) 18:108–140

the work, and, on the other hand, the demand profile (expressed with the gcc
constraints) varies drastically from one day to the next (e.g., during weekends and
holidays in the context of personnel rostering). This issue is usually addressed
by experienced constraint programmers by manually adding necessary conditions
(implied constraints), which are typically based on some simple counting conditions
depending on some specificity of the row constraints. Let us first introduce a toy
example to illustrate this phenomenon.

We show that implied constraints can be derived by using the combinatorial
technique of double counting (see for example [15]). We use the two-dimensional
structure of the matrix, counting along the rows and the columns. Some feature is
considered, such as the number of appearances of a word or stretch, and the occur-
rences of that feature are counted for the rows and columns separately. When the
counting is exact, these two values will coincide. In order to derive useful constraints
that will propagate, we derive lower and upper bounds on the given feature occurring
when counted column-wise. These are then combined into inequalities saying that
the sum of these column-based lower bounds is at most the sum of given row-based
upper bounds, or that the sum of these column-based upper bounds is at least the
sum of given row-based lower bounds.

Example 1 Take a 3 × 7 matrix M of 0/1 variables (i.e., R = 3, K = 7, V = 2), where
on each row we have a global_contiguity constraint (all the occurrences of value 1 are
contiguous) for which Fig. 1 depicts a corresponding automaton C (the reader can
ignore the assignments to counters c and d at this moment). In addition, M# defines
the following gcc constraints on the columns of M:

– Columns 0, 2, 4, and 6 of M must each contain two 0s and a single 1.
– Columns 1, 3, and 5 of M must each contain two 1s and a single 0.

A simple double counting argument proves that there is no solution to this
problem. Indeed, consider the sequence of numbers of occurrences of 1s on the seven
columns of M, that is 1, 2, 1, 2, 1, 2, 1. Each time there is an increase of the number
of 1s between two adjacent columns, a new stretch of consecutive 1s starts on at
least one row in the second of these columns of the matrix. From this observation
we can deduce that we have at least four stretches of consecutive 1s, namely one
stretch starts at the first column (since implicitly before the first column we have
zero occurrences of value 1) and three stretches start at the columns containing two
1s. But since we have a global_contiguity constraint on each row of the matrix and
since the matrix only has three rows, there is a contradiction.

Fig. 1 Automaton C associated with the global_contiguity constraint, with initial state s0, accepting
states s0, s1, s2, and transitions t0, t1, t2, t3, t4 labelled by values 0 or 1. The missing transition for value
1 from state s2 is assumed to go to a dead state. The automaton has been annotated with counters [3]:
the final value of counter c is the number of stretches of value 0, whereas d is an auxiliary counter

Constraints (2013) 18:108–140 111

After giving a first basic use of double counting (Section 2), the contributions of
this paper include:

– Methods for deriving necessary conditions on the cardinality variables of the gcc
constraints from (combinations of) string properties that hold for an automa-
ton A (Sections 3.1 to 3.5), including when the gcc constraints on the columns
are replaced by summation constraints (Section 3.6).

– A method for annotating an automaton A with counter variables extracting
string properties from A (Section 3.7), and a heuristic for selecting relevant string
properties (Section 3.8).

– Another method for deriving necessary conditions on the cardinality variables,
called the cardinality automaton, which simulates the overall behaviour of all the
row automata (Section 4).

– A method for achieving domain consistency on a chain of lexicographic ordering
constraints augmented with an arbitrary automaton constraint on every element
of the chain (Section 5).

– An evaluation of the impact of our methods in terms of runtime and search effort
on a large set of nurse rostering problem instances (Section 6).

2 Basic double counting

We now give a first basic use of double counting on matrix M. As sketched in the
introduction, we use for each column k (with 0 ≤ k < K) and each row r (with 0 ≤
r < R) of M a gcc constraint for linking the variables of a column of M and the
variables of a row of M with the occurrence variables of the corresponding column of
M# and the occurrence variables of the corresponding row of M′#. Let us introduce
for each value in the finite set {0, 1, . . . , V − 1} a counting variable Cv (with 0 ≤ v <

V) that denotes how many entries of matrix M are assigned value v. We have:

∀v ∈ [0, V − 1] : Cv =
K−1∑

k=0

#v
k (1)

∀v ∈ [0, V − 1] : Cv =
R−1∑

r=0

#
′r
v (2)

V−1∑

v=0

Cv = R · K (3)

Equation (3) may allow us to tighten the bounds of the counting variables Cv

(with 0 ≤ v < V), especially when some bounds of the counting variables come from
propagating (1), while others come from propagating (2).

112 Constraints (2013) 18:108–140

3 Deriving necessary conditions from string properties

We now develop a first method for deriving necessary conditions for the matrix-of-
automata-and-gcc pattern. The key idea is to approximate the set of solutions to the
row constraint C by string properties such as the following:

– Bounds on the number of letters, words, prefixes, or suffixes (see Section 3.1).
– Bounds on the number of stretches of a given value (see Section 3.2).
– Bounds on the lengths of stretches of a given value (see Section 3.3).
– The combination of forbidden prefixes or suffixes with bounds on the number of

stretches of a given value (see Section 3.4).
– Value precedence relations between specific pairs of values in any solution to C

(see Section 3.5).

We first develop a set of formulae expressed in terms of simple arithmetic
constraints for such string properties. Each formula gives a necessary condition for
the matrix-of-automata-and-gcc pattern provided that the set of solutions to the row
constraint satisfies a given string property. We then show how to adapt these results
when the gcc constraints on the columns are replaced by summation constraints (see
Section 3.6). The hurried reader can jump at any time to Section 3.7, but should
note that many of the string properties we consider occur naturally in the context of
timetabling problems, such as the one of Section 6.

We also show how to extract automatically such string properties from an automa-
ton (see Section 3.7 and outline a heuristic for selecting relevant string properties (see
Section 3.8). String properties can be seen as a communication channel for enhancing
the propagation between row and column constraints.

A key advantage of the overall approach described in this section is its incremental
nature, which depends on a set of string properties and formulae that can be refined
and enriched over time in order to get strong necessary conditions.

3.1 Constraining the number of occurrences of words, prefixes, and suffixes

A word is a fixed sequence of values, seen as letters. Suppose we have the fol-
lowing bounds for each row r on how many times a given word occurs (possibly
in overlapping fashion) in that row, denoted by Wr(w), all numbering starting
from zero:

– LWr(w) is the minimum number of times that the word w occurs in row r (i.e.,
Wr(w) ≥ LWr(w)).

– UWr(w) is the maximum number of times that the word w occurs in row r (i.e.,
Wr(w) ≤ UWr(w)).

Note that letters are just singleton words. It is not unusual for LWr(w) (or
UWr(w)) to be equal for all rows r for a given word w. From this information, we
now infer by double counting two necessary conditions for each such word.

Constraints (2013) 18:108–140 113

3.1.1 Necessary conditions

Let |w| denote the length of word w, and let w j denote the letter at position j
in word w. The following bounds:

lwk(w) = max

⎛

⎝

⎛

⎝
|w|−1∑

j=0

#
w j

k+ j

⎞

⎠ − (|w| − 1) · R, 0

⎞

⎠ (4)

uwk(w) = min
{

#
w j

k+ j | 0 ≤ j ≤ |w| − 1
}

(5)

correspond respectively to the minimum and maximum number of occurrences of
word w that start at column k ∈ [0, K − |w|]; this number is denoted by wk(w) (i.e.,
lwk(w) ≤ wk(w) ≤ uwk(w)). These bounds can be obtained as follows:

– Since the cardinality variables only denote the number of times a value occurs
in each column and do not constrain where it occurs, the lower bound (4) is the
worst-case intersection of all column value occurrences.

– A word cannot occur more often than its minimally occurring letter, hence
bound (5).

Example 2 Parts (a) and (b) of Fig. 2 respectively illustrate the lower and upper
bounds expressed by (4) and (5) on the number of occurrences of word w = 1010
starting at column 0, provided that the numbers of 0 (respectively 1) in columns 0, 1,
2, 3 are respectively equal to 4, 1, 4, 0 (respectively 1, 4, 1, 5).

word w=1 0 1 0 1 0 1 0word w=

(a)

0

1

1 0

0

0

1
1

1
1

0
0
0

1
1 0

0

0 1 2 3

0

1 4
4

4
5
0

1

1

1

number of occurrences
of each value in
each column

0
0

1
10

(b)

each column
of each value in
number of occurrences

1

1

1

0

5
4

4
41

0

3210

0
01

1
0
0
0

1
1

1
1

0

K K

Fig. 2 Lower and upper bounds on the number of words starting at a given column. Boldface in the
R × K matrices corresponds to partial instances of the word w = 1010 for which we try to minimise
(a) or maximise (b) the number of occurrences. Boldface in the V × K matrices corresponds to letters
of the word w = 1010

114 Constraints (2013) 18:108–140

Note that if some cardinality variable is not f ixed, then (4) and (5) should be
interpreted as arithmetic constraints. We get the following necessary condition:

K−|w|∑

k=0

wk(w) =
R−1∑

r=0

Wr(w) (6)

Note also that while evaluating the maximum value of the left-hand side of
equality (6), we may overestimate the maximum number of occurrences of word w

since, for instance, if the first two letters of w are distinct, then the maximum number
of occurrences of word w starting in two consecutive columns is also limited by R,
and not just by uwk(w) + uwk+1(w).

3.1.2 Generalisation: replacing each letter by a set of letters

So far, all letters of the word w were fixed. We now assume that each letter of a word
can be replaced by a finite nonempty set of possible letters. For this purpose, let w j

now denote the set of letters for position j of word w. Hence the bounds lwk(w) and
uwk(w) are now defined by aggregation as follows:

lwk(w) = max

⎛

⎝

⎛

⎝
|w|−1∑

j=0

∑

c∈w j

#c
k+ j

⎞

⎠ − (|w| − 1) · R, 0

⎞

⎠ (7)

uwk(w) = min

⎧
⎨

⎩
∑

c∈w j

#c
k+ j | 0 ≤ j ≤ |w| − 1

⎫
⎬

⎭ (8)

We get the same necessary conditions as before.3 Note that (7) and (8) specialise
respectively to (4) and (5) when all w j are singleton sets.

3.1.3 Extension: constraining pref ixes and suf f ixes

We now consider constraints on a word occurring as a prefix (the first letter of the
word is at the first position of the row) or suffix (the last letter of the word is at the
last position of the row). Let WPr(w) (respectively WSr(w)) denote the number of
times word w is a prefix (respectively a suffix) of row r, and suppose we have the
following bounds:

– LWPr(w) is the minimum number of times (0 or 1) word w is a prefix of row r.
– UWPr(w) is the maximum number of times (0 or 1) word w is a prefix of row r.
– LWSr(w) is the minimum number of times (0 or 1) word w is a suffix of row r.
– UWSr(w) is the maximum number of times (0 or 1) word w is a suffix of row r.

3When evaluating the number of occurrences nocci
k of a set of letters associated to the po-

tential value of the letter at position i of word w in column k, we should also use an
among(nocci

k, 〈M[0, k],M[1, k], . . . ,M[R − 1, k]〉, wi) constraint in order to get a possibly sharper
evaluation.

Constraints (2013) 18:108–140 115

From these bounds, we get the following necessary conditions:

w0(w) =
R−1∑

r=0

WPr(w) (9)

wK−|w|(w) =
R−1∑

r=0

WSr(w) (10)

Note that these necessary conditions also hold when each letter of a constrained
prefix or suffix is replaced by a set of letters.

3.2 Constraining the number of occurrences of stretches

Given a sequence x of fixed variables and a value v, a stretch of value v is a maximum
sequence of values in x that only consists of value v. Suppose now that we have
bounds for each row r on how many times a stretch of a given value v can occur in
that row, denoted by Sr(v):

– LSr(v) is the minimum number of stretches of value v on row r (i.e., Sr(v) ≥
LSr(v)).

– USr(v) is the maximum number of stretches of value v on row r (i.e., Sr(v) ≤
USr(v)).

It is not unusual for LSr(v) (or USr(v)) to be equal for all rows r for a given value v.

3.2.1 Necessary conditions

The following bounds (under the convention that #v
−1 = 0 for each value v)

ls+
k (v) = max(0, #v

k − #v
k−1) (11)

us+
k (v) = #v

k − max(0, #v
k−1 + #v

k − R) (12)

correspond respectively to the minimum and maximum number of stretches of value
v that start at column k, denoted by s+

k (v) (i.e., ls+
k (v) ≤ s+

k (v) ≤ us+
k (v)). Again, if

some cardinality variable is not f ixed, then the equations above should be interpreted
as arithmetic constraints. The intuitions behind these formulae are as follows:

– If the number of occurrences of value v in column k (i.e., #v
k) is strictly greater

than the number of occurrences of value v in column k − 1 (i.e., #v
k−1), then this

means that at least #v
k − #v

k−1 new stretches of value v can start at column k.
– If the number of occurrences of value v in column k (i.e., #v

k) plus the number
of occurrences of value v in column k − 1 (i.e., #v

k−1) is strictly greater than the
number of rows R, then the quantity #v

k−1 + #v
k − R represents the minimum

number of stretches of value v that cover both column k − 1 and column k. From
this minimum intersection we get the maximum number of new stretches that
can start at column k.

Example 3 Parts (a) and (b) of Fig. 3 respectively illustrate the lower and upper
bounds expressed by (11) and (12) on the number of stretches of value 1 starting at

116 Constraints (2013) 18:108–140

1

1

4
21

141 3

11

1

1

1
1

1

2

3

1

1

11

1

1

1

value v= 11value v=

0 1 2 3

0

number of occurrences
of each value in
each column

(b)

each column
of each value in
number of occurrences

0

320

(a)

Fig. 3 Lower and upper bounds on the number of stretches starting at a given column. Boldface
in the R × K matrices corresponds to stretches of value 1 starting at column 1 that we are trying
to minimise (a) or maximise (b). Boldface in the V × K matrices corresponds to the occurrence
constraints on value v = 1

column 1, provided that the number of occurrences of 0 (respectively 1) in columns
0 and 1 are equal to 2 and 1 (respectively 3 and 4).

By aggregating these bounds for all the columns of the matrix, we get the following
necessary condition using double counting:

K−1∑

k=0

s+
k (v) =

R−1∑

r=0

Sr(v) (13)

Similarly, the following bounds (under the convention that #v
K = 0 for each

value v)

ls−
k (v) = max(0, #v

k − #v
k+1) (14)

us−
k (v) = #v

k − max(0, #v
k+1 + #v

k − R) (15)

correspond respectively to the minimum and maximum number of stretches of value
v that end at column k, denoted by s−

k (v) (i.e., ls−
k (v) ≤ s−

k (v) ≤ us−
k (v)). We get a

similar necessary condition:

K−1∑

k=0

s−
k (v) =

R−1∑

r=0

Sr(v) (16)

3.2.2 Generalisation: replacing the value by a set of values

So far, the value v of a stretch was fixed. We now assume that a stretch may
consist of a finite nonempty set, denoted by v̂, of possible letters that are all
considered equivalent. Let #v̂

k denote the quantity
∑

v∈v̂(#
v
k), that is the total number

Constraints (2013) 18:108–140 117

of occurrences of the values of v̂ in column k. The bounds (11), (12), (14), (15) are
generalised as follows:

ls+
k (v̂) = max(0, #v̂

k − #v̂
k−1) (17)

us+
k (v̂) = #v̂

k − max(0, #v̂
k−1 + #v̂

k − R) (18)

ls−
k (v̂) = max(0, #v̂

k − #v̂
k+1) (19)

us−
k (v̂) = #v̂

k − max(0, #v̂
k+1 + #v̂

k − R) (20)

and we get the following necessary conditions:

K−1∑

k=0

s+
k (v̂) =

∑

v∈v̂

R−1∑

r=0

Sr(v) (21)

K−1∑

k=0

s−
k (v̂) =

∑

v∈v̂

R−1∑

r=0

Sr(v) (22)

Note that (21) and (22) specialise respectively to (13) and (16) when v̂ = {v}.

3.3 Constraining the minimum and maximum length of a stretch

Suppose now that we have lower and upper bounds on the length of a stretch of a
given value v for each row:

– LLS(v) is the minimum length of a stretch of value v in every row.
– ULS(v) is the maximum length of a stretch of value v in every row.

3.3.1 Necessary conditions

We get the following necessary conditions:

∀k ∈ [0, K − 1] : #v
k ≥

k∑

j=max(0,k−LLS(v)+1)

ls+
j (v) (23)

∀k ∈ [0, K − 1] : #v
k ≥

min(K−1,k+LLS(v)−1)∑

j=k

ls−
j (v) (24)

The intuition behind (23) (respectively (24)) is that the stretches starting (respec-
tively ending) at the considered columns j must overlap column k.

∀k ∈ [0, K − 1 − ULS(v)] :

ls+
k (v) +

ULS(v)∑

j=LLS(v)

#v
k+ j ≤ (ULS(v) − LLS(v) + 1) · R (25)

118 Constraints (2013) 18:108–140

∀k ∈ [ULS(v), K − 1] :

ls−
k (v) +

ULS(v)∑

j=LLS(v)

#v
k− j ≤ (ULS(v) − LLS(v) + 1) · R (26)

The intuition behind (25) is as follows. For each stretch beginning at column k
there must be an element distinct from v in a column j ∈ [k + LLS(v), k + ULS(v)]
of the same row. So the number of such values different from v in columns [k +
LLS(v), k + ULS(v)] (i.e., ls+

k (v)) plus the number of occurrences of v in columns
[k + LLS(v), k + ULS(v)] (i.e.,

∑ULS(v)

j=LLS(v) #v
k+ j) should not exceed the available space

(ULS(v) − LLS(v) + 1) · R. The reasoning for (26) is similar but considers stretches
ending at column k.

Example 4 Figure 4 illustrates the necessary condition (25) on the minimum number
of occurrences of values 0 and 1 in columns 2 and 3, provided that the minimum
number of stretches of value 1 starting in column 0 is equal to 3 (i.e., ls+

0 (1) = 3),
and that the minimum and maximum lengths of a stretch of value 1 are respectively
equal to 2 and 3 (i.e., LLS(1) = 2 and ULS(1) = 3). In this context, inequality (25)
holds since its left-hand side, i.e., the minimum number of occurrences of 0 and 1 in
columns 2 and 3, is equal to 3 + (3 + 1), while its right-hand side, i.e., the available
space in columns 2 and 3, is equal to (3 − 2 + 1) · 5.

3.3.2 Extension

We now provide another necessary condition, which holds for any value v ∈ [0, V −
1] and for any ULS(v) + 1 consecutive columns of the matrix M#. Let �v,k,� (with v ∈

0

13
42

3

2

3
2

0

1

01
0

0

1

1

1

0

0

each column
of each value in
number of occurrences

1

0

321

0
1
11

1
1

0

00

Fig. 4 Minimum number of occurrences of values 0 and 1 in columns 2 and 3 with respect to (a) the
minimum number of stretches starting in another column and (b) the minimum and maximum stretch
lengths. In the R × K matrix, boldface in column 0 corresponds to the requirement ls+

0 (1) = 3,
whereas boldface in the box corresponds to the left hand side of (25): boldface 0s correspond to the
term ls+

0 (1); boldface 1s correspond to the term
∑3

j=2 #1
j . Boldface in the V × K matrix corresponds

to the occurrence constraints on value v = 1

Constraints (2013) 18:108–140 119

[0, V − 1] and k ∈ [0, K − �]) denote the number of occurrences of values different
from value v in any � consecutive columns starting at column k of matrix M#.
Also, let �u,k,� (with u ∈ [0, V − 1] and k ∈ [0, K − �]) denote a lower bound on the
minimum number of stretches of value u that for sure have at least LLS(u) values
within any � consecutive columns starting at column k of matrix M. Formally:

�v,k,� = R · � −
k+�−1∑

i=k

#v
i (27)

�u,k,� = max
{
#u

i | k + LLS(u) − 1 ≤ i ≤ k + � − LLS(u)
}

(28)

We get the following necessary condition:

∀v ∈ [0, V − 1] : ∀k ∈ [0, K − ULS(v) − 1] :

R −
∑

u∈[0,V−1]
u 	=v

�u,k,ULS(v)+1

≤ �v,k,ULS(v)+1 −
∑

u∈[0,V−1]
u 	=v

LLS(u) · �u,k,ULS(v)+1

(29)

The left-hand side of (29) corresponds to the number of rows of matrix M that
do not necessarily contain a stretch of length LLS(u) for a value u different from
v. The right-hand side of (29) corresponds to the number of occurrences of values
different from value v that are not necessarily part of a stretch of length LLS(u).
If (29) does not hold, then we have a contradiction since at least one row of the
matrix M contains more than ULS(v) occurrences of value v. Figure 5a illustrates
condition (29).

Example 5 Let us illustrate constraint (29) on an R = 3 by K = 6 matrix M of
variables taking their values in the set {0, 1, 2, 3} (i.e., V = 4). For this purpose,
assume that the numbers of occurrences of 0, 1, 2, 3 in the six consecutive columns
of M, as well as the minimum and maximum stretch lengths of values 0, 1, 2, 3 are
respectively equal to:

– #3
0..5 = [1, 0, 1, 2, 1, 2], LLS(3) = 1, ULS(3) = 2

– #2
0..5 = [0, 0, 0, 0, 0, 0], LLS(2) = 3, ULS(2) = 3

– #1
0..5 = [1, 1, 0, 0, 1, 1], LLS(1) = 2, ULS(1) = 2

– #0
0..5 = [1, 2, 2, 1, 1, 0], LLS(0) = 2, ULS(0) = 4

See Fig. 5b: we focus on value v = 3 and on the collection C of ULS(3) + 1 = 3
consecutive columns of matrix M# that start at column 3 (recall that columns are
numbered from 0). The number of occurrences of values different from value v = 3
within C is equal to �3,3,3 = 3 · 3 − ∑3+3−1

i=3 #3
i = 9 − (2 + 1 + 2) = 4. For each value

120 Constraints (2013) 18:108–140

(a)

(b)

Fig. 5 a: Illustration of necessary condition (29). b: Illustration of Example 5, where a too long
stretch of value 3 occurs in columns 3 to 5 since, in these columns, the two occurrences of 0
(respectively 1) have to form a stretch; numbers in boldface respectively denote the columns we
focus on (the last three columns) and the number of occurrences of values we focus on (the number
of occurrences of values 0, 1, and 3 in column 4)

u different from value v = 3 (i.e., values 0, 1, and 2), consider the minimum number
of stretches of value u that for sure have at least LLS(u) values within C. We have:

– �0,3,3 = max3+3−2
i=3+2−1 #u

i = #0
4 = 1,

– �1,3,3 = max3+3−2
i=3+2−1 #u

i = #1
4 = 1,

– �2,3,3 = max3+3−3
i=3+3−1 #u

i = 0.

Constraints (2013) 18:108–140 121

Finally, since the condition 3 − (1 + 1 + 0) = 1 ≤ 0 = 4 − (2 · 1 + 2 · 1 + 3 · 0)

does not hold, the matrix-of-automata-and-gcc constraint pattern cannot be satisfied.
This can be interpreted as the fact that, in the last three columns of matrix M,
there must be at least one row containing three consecutive occurrences of 3. This
contradicts the requirement ULS(3) = 2.

3.4 Combining two string properties: forbidden prefixes or suffixes and number
of stretches

One can also combine several string properties and get stronger conditions. For
example, assume that the row automaton A has the following properties with respect
to two distinct values u and v (with u, v ∈ [0, V − 1]):

– The maximum number of stretches of value u is equal to 1.
– The word u+v is a forbidden prefix.

We then have the following necessary condition:

∀i ∈ [1, K − 2] : max(0, #u
0 + #u

i − R) + #v
i+1 ≤ R (30)

The quantity max(0, #u
0 + #u

i − R) represents the minimum number of rows where
value u for sure occurs both in columns 0 and i. Since we know that we can have at
most one stretch of value u in a row, this means that we have at least max(0, #u

0 +
#u

i − R) stretches of value u starting at column 0. Hence (30) enforces that none of
these stretches be directly followed by a v.

Similarly, when vu+ is a forbidden suffix, we have that:

∀i ∈ [1, K − 2] : max(0, #u
K−1 + #u

i − R) + #v
i−1 ≤ R (31)

Example 6 Let us illustrate (30) on an R = 3 by K = 6 matrix M of variables taking
their values in the set {0, 1, 2} (i.e., V = 3). For this purpose, assume that any three
consecutive stretches within a row of M must be over the values {1 0 2, 0 1 2, 0 1 0},
and that the numbers of occurrences of 0, 1, 2 in the six columns ofM are respectively
equal to:

– #0
0..5 = [1, 1, 1, 2, 1, 0]

– #1
0..5 = [2, 2, 2, 1, 2, 0]

– #2
0..5 = [0, 0, 0, 0, 0, 3]

Consider values u = 1 and v = 2. Note that each row of matrix M contains at most
one stretch of value 1. Moreover, the word 1+2 cannot be the prefix of any row of
M. Now, focus on the two occurrences of value 1 both in columns 0 and 4 of matrix
M, as well on the number #2

5 = 3 of occurrences of value 2 in the last column. We
have that max(0, #1

0 + #1
4 − 3) + #2

5 = max(0, 2 + 2 − 3) + 3 = 4 is greater than R = 3,
which is a contradiction since the word 1 1 1 1 1 2 will necessarily be a row of
matrix M.

122 Constraints (2013) 18:108–140

3.5 Constraining value precedence

Suppose now that we require that if a value v occurs at any position k in a row, then
another value u also occur at least � times (with � > 0) before position k in that row.
This can be directly translated into the following necessary condition

#v
0 = 0 ∧ ∀k ∈ [1, K − 1] :

k−1∑

i=0

#u
i ≥ � · #v

k (32)

where � · #v
k represents a lower bound on the number of occurrences of value u in

columns 0, 1, . . . , k − 1, under the hypothesis that we have #v
k occurrences of value v

on column k.
Value precedence, with � = 1, was originally introduced in [16] to break sym-

metries in the context where all occurrences of a value can be exchanged with all
occurrences of another value, e.g., in graph colouring problems the colours can be
exchanged unless additional constraints prevent this. Value precedence can also be
extracted from an automaton and Section 3.7 describes how to perform this task
automatically.

3.6 Replacing the gcc column constraint by a sum constraint

Assume that we want to replace the gcc constraint on a given column k by the
requirement that the sum S of the variables of column k be in a given interval [�, u].
By first introducing cardinality variables on the column of the matrix M for denoting
the number of occurrences of each value, and second linking the newly introduced
cardinality variables to the sum S with a channelling constraint, we can directly reuse
all the results previously introduced. For this purpose, besides setting the minimum
and maximum value of S to � and u, we create a channelling constraint of the form

S = 0 · #0
k + 1 · #1

k + · · · + (V − 1) · #V−1
k (33)

We can set all the previous necessary conditions on the newly introduced cardi-
nality variables #0

k, #1
k, . . . , #V−1

k .

3.7 Extracting occurrence, word, and stretch constraints from an automaton, or how
to annotate an automaton with string properties

Toward automatically inferring the constant bounds LWr(w), LWPr(w), LWSr(w),
LSr(w), etc., of the previous sub-sections, we now describe how a given automaton
A can be automatically annotated with counter variables constrained to reflect
properties of the strings that the automaton recognises. This is especially useful
if A is a product automaton for several constraints. For this purpose, we use the
automaton constraint introduced in [3], which (unlike the regular constraint [19])
allows us to associate counters to a transition. Each string property requires (i) a
counter variable whose final value reflects the value of that string property, (ii)
possibly some auxiliary counter variables, (iii) initial values of the counter variables,

Constraints (2013) 18:108–140 123

and (iv) update formulae in the automaton transitions for the counter variables. We
now give the details for some string properties.

In this context, n denotes an integer or a decision variable, b denotes a 0/1 integer
or decision variable, v̂ denotes a set of letters, v̂+ denotes a nonempty sequence
of letters in v̂, and si denotes the letter at position i of word s. We describe the
annotation for the following string properties for any given string:

– wordocc(v̂+, n): Word v̂+ occurs n times.
– wordpref ix(v̂+, b): b = 1 if and only if word v̂+ is a prefix of the string.
– wordsuf f ix(v̂+, b): b = 1 if and only if word v̂+ is a suffix of the string.
– stretchocc(v̂, n): Stretches of letters in set v̂ occur n times.
– stretchminlen(v̂, n): If letters in set v̂ occur, then n is the length of the shortest

such stretch, otherwise n = +∞.
– stretchmaxlen(v̂, n): If letters in set v̂ occur, then n is the length of the longest

such stretch, otherwise n = 0.
– valueprec(x, y, n): If y occurs, then x occurs n times before the first occurrence

of y, otherwise n = 0.

For a given annotation, Table 1 shows which counters it introduces, their initial
and final values, as well as the formulae for counter updates to be used in the
transitions. Figure 1 shows an automaton annotated for stretchocc({0}, n).

An automaton can be annotated with multiple string properties—since annota-
tions do not interfere with one another—and can be simplified in order to remove
multiple occurrences of identical counters that come from different string properties.

It is worth noting that propagation is possible from the decision variables to the
counter variables, and vice-versa.

3.8 Heuristics for selecting relevant string properties for an automaton

In our experiments (see Section 6), we chose to look for the following string
properties:

– For each letter, lower and upper bounds on the number of its occurrences.
– For each letter, lower and upper bounds on the number and length of its

stretches.
– Each word of length at most 3 that cannot occur at all.
– Each word of length at most 3 that cannot occur as a prefix or suffix.

These properties are derived, one at a time, as follows. We annotate the automa-
ton as described in the previous sub-section by the candidate string property. Then
we compute by labelling the feasible values of the counter variable reflecting the
given property, giving up if the computation does not finish within 5 CPU seconds.
Among the collected word, prefix, suffix, and stretch properties, some properties
are subsumed by others and are thus filtered away. Other properties could certainly
have been derived, e.g., not only forbidden words, but also bounds on the number
of occurrences of words. Our choice was based on two considerations: first which
properties we are able to derive necessary conditions for, and second empirical
observations of what actually pays off in our benchmarks.

124 Constraints (2013) 18:108–140

Table 1 Given an annotation shown in the first column, the second column shows the counters used
by the annotation: their initial values, their names, and their final values

Annotation Counter values Counter updates

wordocc(v̂+, n)

[0, ..., 0]
[c1, ..., c�]
[_, ..., n]

[1, ...] if u ∈ v̂+
1

[..., ci−1, ...] if 1 < i < � ∧ u ∈ v̂+
i

[..., c� + c�−1] if u ∈ v̂+
�

[..., 0, ...] if 0 < i < � ∧ u 	∈ v̂+
i

[..., c�] if u 	∈ v̂+
�

ci, i < � is 1 if and only if the most recently seen i letters match a
prefix of v̂+. c� is the number of occurrences of words matching
v̂+ so far.

wordpref ix(v̂+, b)

[1, 0, ..., 0]
[c0, c1, ..., c�]

[_, ..., b]

[0, ..., ci−1, ...] if 0 < i < � ∧ u ∈ v̂+
i

[0, ..., max(c�, c�−1)] if u ∈ v̂+
�

[0, ..., 0, ...] if 0 < i < � ∧ u 	∈ v̂+
i

[0, ..., c�] if u 	∈ v̂+
�

c0 is 1 if and only if the automaton is in the start state. ci, 0 < i < �

is 1 if and only if the automaton has seen exactly i letters matching
a prefix of v̂+. c� is 1 if and only if the first � letters seen by the
automaton match v̂+.

wordsuf f ix(v̂+, b)

[0, ..., 0]
[c1, ..., c�]
[_, ..., b]

[1, ...] if u ∈ v̂+
1

[..., ci−1, ...] if 1 < i < � ∧ u ∈ v̂+
i

[..., c�−1] if u ∈ v̂+
�

[..., 0, ...] if 0 < i < � ∧ u 	∈ v̂+
i

[..., c�] if u 	∈ v̂+
�

ci is 1 if and only if the most recently seen i letters match a prefix
of v̂+.

stretchocc(v̂, n)

[0, 0]
[c, d]
[n, _]

[c − d + 1, 1] if u ∈ v̂

[c, 0] if u 	∈ v̂

c and d respectively denote the number of stretches of values
matching v̂ encountered so far, and whether or not the current
position corresponds to values matching v̂.

The final value of one counter is the value computed by the annotation; the shared variable name
indicates which one it is. Given a transition of the automaton reading letter u, the third column gives
formulae for the counter updates performed in that transition, and under what conditions each given
formula applies. For the first three annotations, � is the word length. Finally, for each annotation, we
give the interpretation of the respective counters

4 The cardinality automaton of an automaton

The previous section introduced different complementary ways of generating neces-
sary conditions (expressed in terms of arithmetic constraints) from a given automa-

Constraints (2013) 18:108–140 125

Table 1 (Continued)

Annotation Counter values Counter updates

stretchminlen(v̂, n)

[+∞,+∞, 0]
[c, d, e]
[n, _, _]

[min(d, e + 1), d, e + 1] if u ∈ v̂

[c, c, 0] if u 	∈ v̂

c is the length of the shortest stretch of values matching v̂ seen
so far, or ∞ if no such stretch has been seen. d is the length of
the shortest finished such stretch seen so far, or ∞ if no such
stretch has been seen. e is the length so far of the current such
stretch, or 0 otherwise.

stretchmaxlen(v̂, n)

[0, 0]
[c, d]
[n, _]

[max(c, d + 1), d + 1] if u ∈ v̂

[c, 0] if u 	∈ v̂

c and d respectively denote the maximum length of the stretches
of values matching v̂ encountered so far, and the length of any
such stretch corresponding to the current position.

valueprec(x, y, n)

[0, 0]
[c, d]
[n, _]

[c, d + 1] if x = u
[max(c, d),−∞] if y = u

[c, d] if x 	= u 	= y

c is 0 if no y has been seen, and the number of x’s seen before
the first y otherwise. d is the number of x’s seen if no y has
been seen, and −∞ otherwise.

ton for the row constraints of the matrix M when its columns are subject to gcc
or sum constraints. This section presents an orthogonal systematic approach, again
based on double counting, which can handle the same class of column constraints
completely mechanically, without first having to choose relevant string properties.

Consider an R × K matrix M, where in each row we have the same constraint,
represented by an automaton A of p states s0, . . . , sp−1, and in each column we
have a gcc or linear (in)equality constraint where all the coefficients are the same.
We will first construct an automaton that simulates the parallel running of the R
copies of A and consumes entire columns of M at each transition. Since this new
automaton has pR states, we then use an abstraction where we just count the number
of automata that are in each state of A. As even this abstracted automaton has a
size exponential in p, we then use a linear-size encoding with linear constraints that
allows us to consider the column constraints on M as well.

4.1 Necessary row constraints

The vector automaton AR consumes column vectors of size R at each transition.
Its states are sequences of R states of A, where sequence entry � is the state of
the automaton of row �. There is a transition from state 〈si0 , . . . , siR−1〉 to state

126 Constraints (2013) 18:108–140

〈s j0 , . . . , s jR−1〉 if and only if for each � there is a transition in A from si� to s j� . A
state 〈si0 , . . . , siR−1〉 is initial (respectively accepting) if each of the si� is the initial
(respectively an accepting) state of A.

Fig. 6 (Top): vector automaton C2 for the (counter-free version of the) automaton C (with p = 3
states) in Fig. 1 for the global_contiguity constraint and vectors of R = 2 elements over the set {0, 1}.
(Bottom): cardinality automaton #

(
C2

)
for the automaton C and vectors of R = 2 elements

Constraints (2013) 18:108–140 127

For example, in Fig. 6 (top) is the vector automaton C2 for the (counter-free
version of the) automaton C (with p = 3 states) in Fig. 1 for the global_contiguity
constraint and vectors of R = 2 elements over the set {0, . . . , V − 1} for V = 2 values.
Each state is an R-tuple of states of C, indicating in which states of C the R copies
of C respectively are. There are pR = 32 = 9 states, each with at most V R = 22 = 4
outgoing transitions, hence the size of the cardinality automaton is exponential in
the number p of states of the original automaton. So let us just count the number
of copies of the original automaton that are in each of its states: this leads to the
following concept.

The cardinality (vector) automaton #
(
AR

)
is an abstraction of the vector automa-

ton AR that also consumes column vectors of size R at each transition. Its states are
sequences of p numbers, whose sum is R, where entry i is the number of automata
A in state si. There is a transition from state 〈ci0 , . . . , cip−1〉 to state 〈c j0 , . . . , c jp−1〉 if
and only if there exists a multiset of R transitions in A such that for each � there are
ci� of these R transitions going out from s�, and for each m there are c jm of these R
transitions arriving into sm. A state 〈ci0 , . . . , cip−1〉 is initial (respectively accepting) if
ci� = 0 whenever s� is not the initial (respectively an accepting) state of A.

For example, in Fig. 6 (bottom) is the cardinality automaton #
(
C2

)
for the

automaton C (with p = 3 states) and vectors of R = 2 elements. Each state is a p-
tuple of natural numbers, indicating how many of the R copies of C are in each state
of C. For instance, states 〈s0, s1〉 and 〈s1, s0〉 of C2 are merged into state 〈1, 1, 0〉. Note
that this cardinality automaton is non-deterministic. In general, the number of states

of #
(
AR

)
is the number of ordered partitions of p, and thus exponential in p.

However, it is possible to have a compact encoding of #
(
AR

)
via constraints.

Toward this, we use p · (K + 1) decision variables Sk
i in the domain {0, 1, . . . , R}

to encode the states of an arbitrary path of length K (the number of columns) in

#
(
AR

)
. We call Sk

i a state-count variable: it denotes the number of automata A that

are in state si after column k − 1 has been consumed; for k ∈ {1, . . . , K}, the sequence

〈Sk
0, Sk

1, . . . , Sk
p−1〉 has as possible values the states of #

(
AR

)
after the latter has

consumed column k − 1 in one transition; for k = 0, the sequence 〈S0
0, S0

1, . . . , S0
p−1〉

is fixed to 〈R, 0, . . . , 0〉 when, without loss of generality, s0 is the initial state of A.
We get the following constraint for column k:

Sk
0 + Sk

1 + · · · + Sk
p−1 = R (34)

and the following additional constraint for the last column K:

∀i ∈ {0, . . . , p − 1} : SK
i = 0 ← si is not an accepting state of A (35)

Assume that A has a set T = {(a0, �0, b 0), (a1, �1, b 1), . . . , (aq−1, �q−1, bq−1)} of q
transitions, where transition (ai, �i, bi) goes from state ai ∈ {s0, s1, . . . , sp−1} to state
bi ∈ {s0, s1, . . . , sp−1} upon reading letter �i ∈ {0, 1, . . . , V − 1}. We use q · K decision
variables Tk

i in the domain {0, 1, . . . , R} to encode the transitions of an arbitrary path

of length K in #
(
AR

)
. We call Tk

i a transition-count variable: it denotes the number

128 Constraints (2013) 18:108–140

of automata A that trigger the transition ti after column k has been consumed, with
k ∈ {0, . . . , K − 1}. We get the following constraint for column k:

Tk
(a0,�0,b 0)

+ Tk
(a1,�1,b 1)

+ · · · + Tk
(aq−1,�q−1,bq−1)

= R (36)

Consider two state encodings 〈Sk
0, Sk

1, . . . , Sk
p−1〉 and 〈Sk+1

0 , Sk+1
1 , . . . , Sk+1

p−1〉, and
consider the transition encoding 〈Tk

(a0,�0,b 0)
, Tk

(a1,�1,b 1)
, . . . , Tk

(aq−1,�q−1,bq−1)
〉 between

these two state encodings (with 0 ≤ k < K). To encode paths of length K in #
(
AR

)
,

we introduce the following constraints. First, we constrain the number of automata A
at any state s j before reading column k to be equal to the number of firing transitions
going out from s j when reading column k:

∀ j ∈ {0, . . . , p − 1} : Sk
j =

∑

(ai,�i,bi)∈T : ai=s j

Tk
(ai,�i,bi)

(37)

Second, we constrain the number of automata A at state s j after reading column
k to be equal to the number of firing transitions coming into s j when reading
column k:

∀ j ∈ {0, . . . , p − 1} : Sk+1
j =

∑

(ai,�i,bi)∈T : bi=s j

Tk
(ai,�i,bi)

(38)

These constraints will be illustrated in an example in the next sub-section. A re-
formulation with linear constraints when R = 1 and there are no column constraints
is described in [9].

4.2 Necessary column constraints and channelling constraints

The necessary constraints above on the state-count and transition-count variables
only handle the row constraints, but they can also be used to handle column
constraints of the previously considered kinds. These necessary constraints can thus
be seen as a communication channel for enhancing the propagation between row and
column constraints.

If column k has a gcc, then we constrain the number of occurrences of value v in
column k to be equal to the number of transitions on v when reading column k:

∀v ∈ {0, . . . , V − 1} : #v
k =

∑

(ai,�i,bi)∈T : �i=v

Tk
(ai,�i,bi)

(39)

If column k has a constraint on its sum, then we constrain that sum to be equal to
the value-weighted number of transitions on value v when reading column k:

R−1∑

r=0

M[r, k] =
V−1∑

v=0

v ·
⎛

⎝
∑

(ai,�i,bi)∈T : �i=v

Tk
(ai,�i,bi)

⎞

⎠ (40)

Example 7 Consider an R × K matrix M with a global_contiguity constraint on
each row and a gcc constraint on each column (see Example 1). An automaton C
associated with the global_contiguity constraint is described by Fig. 1. It has p = 3
states s0, s1, s2 and q = 5 transitions t0 = (s0, 0, s0), t1 = (s0, 1, s1), t2 = (s1, 1, s1),
t3 = (s1, 0, s2), t4 = (s2, 0, s2) labelled by values 0 and 1.

Constraints (2013) 18:108–140 129

The encoding of #
(
CR

)
has p · (K + 1) state-count variables Sk

i such that con-

straint (34) is imposed: Sk
0 + Sk

1 + Sk
2 = R for every k. Since s0 is the initial state of

C, we require that S0
0 = R and S0

1 = 0 = S0
2. Since C only has accepting states, no SK

j
is required to be zero under constraint (35). The encoding also has q · K transition-
count variables Tk

i such that constraint (36) is imposed: Tk
0 + Tk

1 + Tk
2 + Tk

3 + Tk
4 =

R for every k.
For instance, for R = 3 and K = 7, if M is

0 1 2 3 4 5 6
0 0 0 0 1 1 1 1
1 0 1 1 1 0 0 0
2 1 1 0 0 0 0 0

then the state-count variable matrix S and transition-count variable matrix T respec-
tively are

0 1 2 3 4 5 6 7
s0: 0 3 2 1 1 0 0 0 0
s1: 1 0 1 2 1 2 1 1 1
s2: 2 0 0 0 1 1 2 2 2

0 1 2 3 4 5 6
t0: 0 2 1 1 0 0 0 0
t1: 1 1 1 0 1 0 0 0
t2: 2 0 1 1 1 1 1 1
t3: 3 0 0 1 0 1 0 0
t4: 4 0 0 0 1 1 2 2

and they satisfy the constraints (34) to (36). The following three sets of linear
constraints link the S and T variable matrices for every column k (with 0 ≤ k < K)
and respectively are the necessary constraints (37), (38), and (39):

Sk
0 = Tk

0 + Tk
1 (transitions that exit state s0)

Sk
1 = Tk

2 + Tk
3 (transitions that exit state s1)

Sk
2 = Tk

4 (transitions that exit state s2)

Sk+1
0 = Tk

0 (transitions that enter state s0)

Sk+1
1 = Tk

1 + Tk
2 (transitions that enter state s1)

Sk+1
2 = Tk

3 + Tk
4 (transitions that enter state s2)

#0
k = Tk

0 + Tk
3 + Tk

4 (transitions labelled by value 0)

#1
k = Tk

1 + Tk
2 (transitions labelled by value 1)

Assume the gcc constraints on the columns of matrix M are as follows:

– Columns 0, 2, 4, 5, and 6 of M must each contain two 0s and a single 1.
– Columns 1 and 3 of M must each contain two 1s and a single 0.

The previously given instance of M satisfies these gcc constraints. Setting the
cardinality variables #v

k (with 0 ≤ k < 7 and 0 ≤ v ≤ 1) according to these gcc con-
straints, the eight necessary constraints above are satisfied. Note that the necessary
constraint (40) is not applicable here, as it is used when the column constraint is a
summation constraint.

130 Constraints (2013) 18:108–140

Now revise the gcc constraint on column 5 so that the latter is required to contain
two 1s and a single 0, instead of vice-versa: we get the gcc constraints of Example 1:

– Columns 0, 2, 4, and 6 of M must each contain two 0s and a single 1.
– Columns 1, 3, and 5 of M must each contain two 1s and a single 0.

Revising the cardinality variables #v
5 (with 0 ≤ v ≤ 1) accordingly, the system of

linear constraints (34) to (39) fails when we post it using standard propagation on
each constraint independently.

For even more propagation, we can link the state-count variables Sk
i and

transition-count variables Tk
i to the state variables and transition variables that are

induced by the decomposition of the R automata A, as discussed in [3]. For this
purpose, let the state variables Q0

i , Q1
i , . . . , QK

i (with 0 ≤ i < R) denote the K + 1
states visited by the automaton A on row i of length K. We get the following
necessary gcc constraint on column k (with k ∈ {0, . . . , K}) of this matrix Q of state
variables and the matrix S of state-count variables:

gcc
(〈

Qk
0, Qk

1, . . . , Qk
R−1

〉
,
〈
0 : Sk

0, 1 : Sk
1, . . . , p − 1 : Sk

p−1

〉)
(41)

Similarly, let the transition variables E0
i , E1

i , . . . , EK−1
i denote the K triggered

transitions of the automaton A on row i of length K. We get the following necessary
gcc constraint on column k (with k ∈ {0, . . . , K − 1}) of this matrix E of transition
variables and the matrix T of transition-count variables:

gcc
(〈

Ek
0, Ek

1, . . . , Ek
R−1

〉
,
〈
0 : Tk

0 , 1 : Tk
1 , . . . , q − 1 : Tk

q−1

〉)
(42)

4.3 Incomparability of filtering by cardinality automaton and string properties

The filtering by the cardinality automaton and the filtering by the string properties
are incomparable, as shown in the following example.

Example 8 Take a 3 × 6 matrix M of 0/1 variables (i.e., R = 3, K = 6, V = 2),
where each row must be a word of the form 0+1+0+1+ or 1+0+1+0+ (i.e., we have
two stretches of zeros and two stretches of ones). Assume that the numbers of
occurrences of 0 and 1 in the six columns of M are respectively #0

0..5 = [1, 0, 1, 1, 2, 1]
and #1

0..5 = [2, 3, 2, 2, 1, 2]. The filtering by the cardinality automaton finds a con-
tradiction without labelling on the variables of M, but the filtering by the string
properties (i.e., two stretches of zeros and two stretches of ones) does not. The
converse happens when #0

0..5 = [1, 0, 2, 2, 0, 1] and #1
0..5 = [2, 3, 1, 1, 3, 2].

5 A chain of lexicographic ordering constraints combined
with automaton constraints

Let us again consider an R by K matrix of variables M where on each row we
have a constraint specified by an automaton. Contrary to the previous sections,
the automata here need not be the same for all the rows. Moreover we require
that the rows be lexicographically ordered from the first to the last row. This is a
natural way to break symmetries in the context of rostering problems, where each

Constraints (2013) 18:108–140 131

row corresponds to the schedule of an employee. Without loss of generality, we
assume a non-strict lexicographic ordering constraint. Special cases of this pattern
were already considered in the lex_chain constraint of SICStus Prolog [7, 8], where
the additional constraints on the vectors were increasing and among. In that context,
no guarantees were given about achieving domain consistency.

The contributions of this section are theoretical. First, we allow any constraint that
can be expressed by an automaton without counters. Second, we guarantee domain
consistency for this pattern.

We first sketch the basic filtering algorithm of the lex_chain constraint presented
in [7, Section 5] (see Section 5.1). Since this algorithm relies on feasible lower and
upper bounds being required for each vector, we then show how to compute the
least vector that is both greater than or equal to a given fixed vector and accepted by
a given automaton (in Section 5.2). Finally we show how to adapt the basic filtering
algorithm in order to handle the extra automaton constraints on the vectors (see
Section 5.3).

5.1 Basic filtering algorithm of the lex_chain constraint

The basic filtering algorithm of the lex_chain constraint consists of three steps:

1. Scan the vectors from the first to the last one and compute for each vector a
feasible lower bound with respect to the domains of the variables and the feasible
lower bound of the previous vector, if any.

2. Scan the vectors from the last to the first one and compute for each vector a
feasible upper bound with respect to the domains of the variables and the feasible
upper bound of the next vector, if any.

3. Filter each vector according to the requirement that it be located between two
fixed feasible bounds. This can be done by using the between constraint [7], which
enforces a sequence of variables to be lexicographically greater than or equal to
a fixed lower bound and less than or equal to a fixed upper bound.

5.2 Computing the least vector with respect to a fixed lower bound and an
automaton constraint

In addition to the lexicographic ordering constraints between adjacent rows of the
matrix M, we have an automaton constraint on each row of M. Consequently, we
have to compute during the first and second steps of the filtering algorithm (recalled
in Section 5.1) lower and upper bounds that are feasible also with respect to the
automaton constraint on the considered row. Without loss of generality, we show
how to compute a feasible lower bound with respect to an automaton constraint.

Given an automaton A and a vector V that must satisfy A and be lexicographically
greater than or equal to a fixed bound [�0, �1, . . . , �K−1], we show how to compute
the least vector [a0, a1, . . . , aK−1] that is greater than or equal to [�0, �1, . . . , �K−1]
and satisfies A such that for all k in [0, K − 1] we have that ak is in the domain of
V[k] (i.e., step 1). We state that V[0] is greater than or equal to �0 and compute the
minimum value v0 of V[0] with respect to A:

– If this new minimum value v0 is strictly greater than �0, then we fix V[0] to
v0 and compute the corresponding least solution to A by successively fixing

132 Constraints (2013) 18:108–140

V[1],V[2], . . . ,V[K − 1] to their minimum value and by propagating A after
fixing each variable.

– If this new minimum value v0 is equal to �0, then we fix V[0] to v0 and reiterate
the same process on variables V[1],V[2], . . . ,V[K − 1].

Step 2 is performed in a similar way.

5.3 Filtering algorithm of the lex_chain constraint combined with automaton
constraints

The following filtering algorithm, called Lex_chain_automaton, of the lex_chain
constraint combined with automaton constraints on the vectors, also consists of three
steps:

1. Scan the vectors from the first to the last one and compute for each vector a
feasible lower bound with respect to (i) the domains of the variables, (ii) the
automaton constraint on that vector, and (iii) the feasible lower bound of the
previous vector, if any.

2. Scan the vectors from the last to the first one and compute for each vector a
feasible upper bound with respect to (i) the domains of the variables, (ii) the
automaton constraint on that vector, and (iii) the feasible upper bound of the
next vector, if any.

3. Filter each vector according to the requirement that it be located between
two fixed feasible bounds and accepted by the automaton constraint of the
considered vector. This can be done by computing the minimised product of the
automaton of the between constraint [7] and the automaton of the considered
vector, and by filtering each vector with respect to this new automaton.

We now show that this algorithm achieves domain consistency.

Theorem 1 Algorithm Lex_chain_automaton maintains domain consistency.

Proof We show that if we set the variable at position k (with 0 ≤ k < K) of vector V
to any remaining value of its domain, then we can always extend this to a full
assignment that satisfies all the lexicographic ordering and automaton constraints
in three steps:

1. We show how to fix completely vector V , assuming V[k] is set to one of its
potential values v. We compute the minimised product of the automaton of the
between constraint and the automaton A of the constraint on vector V . We then
use this automaton for finding a solution [s0, s1, . . . , sK−1] where sk = v satisfies
A as well as the required lower and upper bounds on vector V .

2. All vectors that precede vector V can be fixed to their respective lower bounds,
computed by the first step of the filtering algorithm. By construction, these lower
bounds are all lexicographically smaller than or equal to vector [s0, s1, . . . , sK−1].

3. We can also fix all vectors that follow vector V to their respective upper bounds
computed, by the second step of the filtering algorithm. These upper bounds are
all lexicographically greater than or equal to vector [s0, s1, . . . , sK−1]. �

Constraints (2013) 18:108–140 133

6 Experimental evaluation

NSPLib [21] is a very large repository of (artificially generated) instances of the nurse
scheduling problem (NSP), which is about constructing a duty roster for nursing
staff. Let R be the number of nurses, K the number of days of the scheduling
horizon, and V the number of shifts. The objective is to construct an R × K matrix
of values in the integer interval [0, V − 1], with value V − 1 representing the off-duty
“shift”.

In the instance f iles, there are hard coverage constraints and soft preference
constraints; we only use the former here: they give for each day d and shift s the lower
bound on the number of nurses that must be assigned to shift s on day d, and can be
modelled by a global cardinality constraint (gcc) on the columns. Note that the gcc
constraints on any two columns are in general not the same. There are instance files
for R × 7 rosters with R ∈ {25, 50, 75, 100}, and for R × 28 rosters with R ∈ {30, 60}.
There are three complexity indicators on the coverage constraints, giving rise to 270
instances for each of the 27 configurations of these indicators for the R × 7 rosters,
as well as to 80 instances for each of the 12 configurations of these indicators for the
R × 28 rosters.

In the case f iles, there are four hard constraints on the rows. For each shift s,
there are lower and upper bounds on the number of occurrences of s in any row
(the daily assignment of some nurse): this can be modelled by gcc constraints on
the rows. There are also lower and upper bounds on the cumulative number of
occurrences of the working shifts 0, . . . , V − 2 in any row: this can be modelled
by gcc constraints on the off-duty value V − 1 and always gives tighter occurrence
bounds on value V − 1 than the previous gcc constraints. For each shift s, there
are also lower and upper bounds on the length of any stretch of value s in any
row: this can be modelled by stretch_path constraints on the rows. Finally, there
are lower and upper bounds on the length of any stretch of the working shifts
0, . . . , V − 2 in any row: this can be modelled by generalised stretch_path_partition
constraints [4] on the rows. Note that the constraints on any two rows are the same.
There are 8 case files for the R × 7 rosters, and another 8 case files for the R × 28
rosters. Instead of posting four constraints on every row, we automatically generated
(see [4] for details) deterministic finite automata (DFA) for the row constraints of
each case, using their minimised product DFA (obtained through standard DFA
algorithms) to achieve domain consistency on the conjunction of row constraints [3].
(Since we use the automaton constraint [3] rather than the regular constraint [19],
the unfolding of the product automaton for a given number K of days is not an
issue here, nor is the minimisation of the unfolded automaton.) For each case,
string properties were automatically selected off-line as described in Section 3.8,
and cardinality automata were automatically constructed off-line as described in
Section 4, by using constraints (39) and (41). We can use (41) but not (42) since
the SICStus implementation of the automaton constraint [8] uses explicit Qk

i state
variables but has no Ek

i transition variables.
Under these choices, the NSPLib benchmark corresponds to the pattern studied

in this paper. To reduce the risk of reporting improvements where another search
procedure can achieve much of the same impact, we use a two-phase search that

134 Constraints (2013) 18:108–140

exploits the fact that there is a single domain-consistent constraint on each row and
column:

– Phase 1 addresses the column (coverage) constraints only: it seeks to assign
enough nurses to given shifts on given days to satisfy all but one coverage
constraint.

– In Phase 2, one column constraint and all row constraints remain to be satisfied.
But these constraints form a Berge-acyclic CSP [1], and so the remaining decision
variables can be easily labelled without search.

We cannot use the symmetry breaking method described in Section 5, for it would
break the Berge-acyclicity in Phase 2. Instead, we break symmetries during search in
Phase 1 by maintaining an equivalence relation: two rows (nurses) are in the same
equivalence class while they are assigned to the same shifts and days.

This search procedure is much more efficient than row-wise labelling under
decreasing value ordering (value V − 1 always has the highest average number of
occurrences per row) combined with decreasing lexicographic ordering of the rows.

The objective of our experiments is to measure the impact in runtime and
backtracks when using either or both of our methods. In the experiments, we used
SICStus Prolog 4.2 on a quad core 2.8 GHz Intel Core i7-860 machine with 8MB
cache per core, running Ubuntu Linux (using only one processor core). For each
instance, we searched for its first solution, using a timeout of 1 CPU minute. For
each case and nurse count R, we used the first 10 instances for each configuration
of the NSPLib coverage complexity indicators, that is instances 1–270 for the R × 7
rosters (Cases 1–8) and 1–120 for the R × 28 rosters (Cases 9–16).

Table 2 summarises the running of these 3120 instances using neither, either,
and both of our methods. Each row marked ‘sat’ (for satisfiable) for a given case
and nurse count R shows the performance of each variant, namely the number of
instances solved without timing out, as well as the total runtime (in seconds) and
the total number of backtracks on all instances where none of the four variants timed
out. Please note: this means that these totals are comparable, but also that they do not
reveal any performance gains on instances where some variant(s) timed out. Similarly
for each row marked ‘unsat’ (for unsatisfiable). Numbers in boldface indicate best
performance in a row. Instance-wise plots of the runtimes are given in Figs. 7, 8,
9, 10; since for many runtimes there are multiple instances, the plots are made to
appear to contain as many points as instances by multiplying every runtime for every
variant by a new random number in the interval [1.0, 1.3]: the purpose of the plots is
only to compare the approximate locations of the median runtimes for all variants.

It turned out that Cases 1–6, 9–10, and 12–14 are very simple (in the absence of
preference constraints), so that our methods only decrease backtracks on one of
those 2220 instances, but increase runtime. It also turned out that Case 11 is very
difficult (even in the absence of preference constraints), so that even our methods
systematically time out, because the product automaton of all row constraints is very
big; we could have overcome this obstacle by using the built-in gcc constraint and the
product automaton of the other two row constraints, but we wanted to compare all

Constraints (2013) 18:108–140 135

T
ab

le
2

N
SP

lib
be

nc
hm

ar
k

re
su

lt
s

C
as

e
R

St
at

us
F

ou
nd

N
ei

th
er

St
ri

ng
pr

op
er

ti
es

C
ar

di
na

lit
y

D
F

A
B

ot
h

#I
ns

t
T

im
e

#B
kt

k
#I

ns
t

T
im

e
#B

kt
k

#I
ns

t
T

im
e

#B
kt

k
#I

ns
t

T
im

e
#B

kt
k

7
25

sa
t

23
0

23
0

30
.1

32
10

9
23

0
47

.4
13

91
9

23
0

34
.4

13
82

3
23

0
66

.1
13

79
1

un
sa

t
38

37
94

.5
11

34
13

38
63

.4
19

49
1

38
33

.2
21

15
6

38
50

.9
12

90
5

7
50

sa
t

21
6

21
3

16
.1

12
16

5
21

6
24

.6
11

05
5

21
4

28
.2

11
07

7
21

6
44

.3
11

05
7

un
sa

t
43

40
88

.6
79

60
3

42
40

.5
86

78
43

10
4.

3
60

54
4

43
32

.8
58

21
7

75
sa

t
21

0
20

8
18

.6
12

70
9

20
9

20
.8

62
8

21
0

41
.9

12
42

1
21

0
42

.6
34

0
un

sa
t

48
48

10
3.

7
15

54
90

48
35

.8
88

58
48

42
.0

12
04

2
47

38
.1

83
04

7
10

0
sa

t
21

9
21

6
13

.0
36

1
21

9
28

.9
36

1
21

7
44

.7
35

5
21

9
65

.0
35

5
un

sa
t

26
22

37
.1

89
09

24
5.

5
45

2
23

4.
6

10
00

25
2.

5
45

9

8
25

sa
t

26
3

26
3

6.
3

28
2

26
3

12
.6

28
2

26
3

12
.2

76
26

3
19

.7
76

un
sa

t
7

7
96

.2
12

13
67

7
0.

1
19

7
0.

2
21

7
0.

2
21

8
50

sa
t

25
9

25
9

11
.1

13
6

25
9

16
.8

13
6

25
9

24
.0

13
6

25
9

36
.3

13
6

un
sa

t
11

10
64

.1
49

35
8

11
4.

8
71

5
10

52
.0

29
78

4
11

3.
4

59
2

8
75

sa
t

24
6

24
5

14
.1

44
9

24
5

23
.1

23
0

24
6

39
.2

44
9

24
6

53
.6

23
0

un
sa

t
22

21
69

.9
11

28
80

22
0.

1
21

22
0.

5
62

22
0.

3
30

8
10

0
sa

t
26

2
26

1
17

.4
23

9
26

2
31

.4
23

9
26

1
55

.0
23

9
26

2
76

.9
23

9
un

sa
t

6
4

0.
3

73
6

0.
0

4
4

0.
4

73
6

0.
1

4

15
30

sa
t

87
84

17
1.

2
37

86
18

0.
3

37
86

91
0.

1
37

87
92

2.
6

37
un

sa
t

23
9

23
.5

25
13

23
1.

5
9

18
14

.1
88

23
5.

0
14

15
60

sa
t

87
87

25
6.

3
13

1
87

27
1.

4
13

1
87

15
90

.6
13

1
87

16
16

.1
13

1
un

sa
t

13
8

23
.7

10
01

13
2.

1
8

11
31

.4
39

4
13

5.
2

12

16
30

sa
t

10
0

10
0

39
1.

8
15

3
10

0
39

9.
3

15
3

10
0

19
07

.0
15

3
10

0
19

22
.2

15
3

un
sa

t
10

5
7.

8
17

2
10

1.
0

4
6

51
.4

16
7

10
4.

3
6

16
60

sa
t

10
5

10
5

57
8.

5
14

5
10

5
59

2.
2

14
5

10
4

32
17

.7
14

5
10

5
32

42
.2

14
5

un
sa

t
3

1
16

.9
57

9
3

0.
0

1
2

0.
7

2
3

0.
7

2

136 Constraints (2013) 18:108–140

 10

 100

 1000

 10000

 100000

 1e+06

 20 30 40 50 60 70 80 90 100

cp
u

m
se

c

Number of Nurses (R)

Case 7+8 sat instances

Neither
String Properties
Cardinality DFA

Both

Fig. 7 Runtimes (in milliseconds) of the satisf iable instances of NSPLib cases 7 and 8 using neither,
either, or both of our methods

the cases under the same scenario. Hence we do not report any results on Cases 1–6
and 9–14.

Phase 1 uses dynamic choices, so the shape of the search tree can be affected by
whether or not the necessary conditions generated by our methods are included. In
a few cases, their inclusion does not yield the fewest backtracks.

An analysis of Table 2 and Figs. 7–10 reveals that our methods decide more
instances without timing out, and that they often drastically reduce the runtime
and number of backtracks (by up to four orders of magnitude), especially on the
common unsatisfiable instances. However, runtimes are often increased (by up to
one order of magnitude) on the common satisfiable instances. String properties
are only rarely defeated by the cardinality DFA on any of the three performance
measures, but their combination is often the overall winner, though rarely by a large
margin. It would take a more fine-grained evaluation to understand when to use
which string properties without increasing runtime on the satisfiable instances. The
good performance of our methods on unsatisfiable instances is indicative of gains
when exploring the whole search space, such as when solving an optimisation version
of the problem or using soft (preference) constraints.

With constraint programming, NSPLib instances (without the soft preference
constraints) were also used in [5, 6], but under row constraints different from those
of the NSPLib case files that we used. NSP instances from a different repository were
used in [18], though with soft global constraints: one of the insights reported there

Constraints (2013) 18:108–140 137

 10

 100

 1000

 10000

 100000

 1e+06

 20 30 40 50 60 70 80 90 100

cp
u

m
se

c

Number of Nurses (R)

Case 7+8 unsat instances

Neither
String Properties
Cardinality DFA

Both

Fig. 8 Runtimes (in milliseconds) of the unsatisf iable instances of NSPLib cases 7 and 8 using
neither, either, or both of our methods

 10

 100

 1000

 10000

 100000

 1e+06

 25 30 35 40 45 50 55 60 65

cp
u

m
se

c

Number of Nurses (R)

Case 15+16 sat instances

Neither
String Properties
Cardinality DFA

Both

Fig. 9 Runtimes (in milliseconds) of the satisf iable instances of NSPLib cases 15 and 16 using
neither, either, or both of our methods

138 Constraints (2013) 18:108–140

 10

 100

 1000

 10000

 100000

 1e+06

 25 30 35 40 45 50 55 60 65

cp
u

m
se

c

Number of Nurses (R)

Case 15+16 unsat instances

Neither
String Properties
Cardinality DFA

Both

Fig. 10 Runtimes (in milliseconds) of the unsatisf iable instances of NSPLib cases 15 and 16 using
neither, either, or both of our methods

was the need for more interaction between the global constraints, and our paper
shows steps that can be taken in that direction.

7 Conclusion

Since the necessary conditions generated by our methods are essentially linear
constraints, these methods should be applicable also in the context of linear pro-
gramming. Future work may also consider the integration of our techniques with the
multicost-regular constraint [17], which allows the direct handling of a gcc constraint
in the presence of automaton constraints (as on the rows of NSPLib instances)
without explicitly computing the product automaton, which can be very big.

Besides the fact that they can be used for generating necessary conditions for the
matrix-of-automata-and-gcc pattern, annotated automata can be used for at least two
other purposes:

– First, it is well known that making the product of several automata in order to
achieve domain consistency for a conjunction of automaton constraints on the
same sequence of variables usually leads to a size explosion. Now note that if
we use the same set of string properties in order to annotate two automata that
are applied to the same sequence of variables, then the variables corresponding
to these string properties can act as a communication channel between these

Constraints (2013) 18:108–140 139

automata. By restricting the bounds of a given string property, an automaton
communicates a partial view of its solution space to another automaton.

– Second, given a violated matrix-of-automata-and-gcc pattern, the necessary con-
ditions generated from a given string property can capture a sharp explanation
of the reason of failure. This kind of explanation is sharp for two reasons. On the
one hand, by essence, the necessary conditions catch directly the interaction of
the row and column constraints of the matrix. On the other hand, most necessary
conditions typically point to a small subset of columns of the matrix as well as
to specific cardinality variables of the gcc constraints. For instance, this is the
case when the necessary condition corresponds to a forbidden word. This usually
provides a clear hint on how to relax the domains of the cardinality variables in
order to achieve feasibility.

The tractability of propagating the matrix-of-automaton-and-gcc pattern of our [2]
and the present extension thereof is studied in [14].

Acknowledgements We thank the referees, including the ones of CPAIOR’10, for their helpful
comments, as well as Broos Maenhout for his replies to our questions on NSPlib. The last two authors
were supported by grants 2007-6445 and 2011-6133 of the Swedish Research Council.

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M. (1983). On the desirability of acyclic database
schemes. Journal of the ACM, 30, 479–513.

2. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J. (2010). On matrices, automata, and double
counting. In: A. Lodi, M. Milano, P. Toth (Eds.), CPAIOR 2010, LNCS (vol. 6140, pp. 10–24).
Springer.

3. Beldiceanu, N., Carlsson, M., Petit, T. (2004). Deriving filtering algorithms from constraint
checkers. In: M.G. Wallace (Ed.), CP 2004, LNCS (vol. 3258, pp. 107–122). Springer.

4. Beldiceanu, N., Carlsson, M., Rampon, J.X. (2012). Global constraint catalog, 2nd edition
(revision a). Tech. Rep. T2012:03. Swedish Institute of Computer Science. Available at
http://soda.swedish-ict.se/5195/. The current working version of the catalogue is at http://www.
emn.fr/z-info/sdemasse/aux/doc/catalog.pdf.

5. Bessière, C., Hebrard, E., Hnich, B., Kızıltan, Z., Walsh, T. (2008). SLIDE: A useful special case
of the CARDPATH constraint. In: M. Ghallab, et al. (Eds.), ECAI 2008 (pp. 475–479). IOS
Press.

6. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P.J., Walsh, T. (2007). Encodings of the
sequence constraint. In: C. Bessière (Ed.), CP 2007, LNCS (vol. 4741, pp. 210–224). Springer.

7. Carlsson, M., Beldiceanu, N. (2002). Arc-consistency for a chain of lexicographic ordering
constraints. Tech. Rep. T2002-18. Swedish Institute of Computer Science. ftp://ftp.sics.se/pub/
SICS-reports/Reports/SICS-T–2002-18–SE.ps.Z.

8. Carlsson, M., et al. (2007). SICStus Prolog User’s Manual. Swedish Institute of Computer Sci-
ence, 4.0 edition. http://www.sics.se/sicstus/.

9. Côté, M.C., Gendron, B., Rousseau, L.M. (2007). Modeling the regular constraint with integer
programming. In: P. Van Hentenryck, L. Wolsey (Eds.), CPAIOR 2007, LNCS (vol. 4150,
pp. 29–43). Springer.

10. Flener, P., Frisch, A.M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., Walsh, T. (2002). Breaking
row and column symmetries in matrix models. In: P. Van Hentenryck (Ed.), CP 2002, LNCS (vol.
2470, pp. 462–476). Springer.

11. Frisch, A.M., Hnich, B., Kızıltan, Z., Miguel, I., Walsh, T. (2002). Global constraints for lexico-
graphic orderings. In: P. Van Hentenryck (Ed.), CP 2002, LNCS (vol. 2470, pp. 93–108). Springer.

12. Frisch, A.M., Hnich, B., Kızıltan, Z., Miguel, I., Walsh, T. (2006). Propagation algorithms for
lexicographic ordering constraints. Artif icial Intelligence, 170(10), 803–834.

13. Frisch, A.M., Jefferson, C., Miguel, I. (2003). Constraints for breaking more row and column
symmetries. In: F. Rossi (Ed.), CP 2003, LNCS (vol. 2833, pp. 318–332). Springer.

http://soda.swedish-ict.se/5195/
http://www.emn.fr/z-info/sdemasse/aux/doc/catalog.pdf
http://www.emn.fr/z-info/sdemasse/aux/doc/catalog.pdf
ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T--2002-18--SE.ps.Z
ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T--2002-18--SE.ps.Z
http://www.sics.se/sicstus/

140 Constraints (2013) 18:108–140

14. de Haan, R., Narodytska, N., Walsh, T. (2012). The RegularGcc matrix constraint. CoRR
abs/1201.0564.

15. Jukna, S. (2001). Extremal combinatorics. Springer.
16. Law, Y.C., Lee, J.H.M. (2004). Global constraints for integer and set value precedence. In: M.G.

Wallace (Ed.), CP 2004, LNCS (vol. 3258, pp. 362–376). Springer.
17. Menana, J., Demassey, S. (2009). Sequencing and counting with the multicost-regular constraint.

In: W.J. van Hoeve, J.N. Hooker (Eds.), CPAIOR 2009, LNCS (vol. 5547, pp. 178–192). Springer.
18. Métivier, J.P., Boizumault, P., Loudni, S. (2009). Solving nurse rostering problems using soft

global constraints. In: I.P. Gent (Ed.), CP 2009, LNCS (vol. 5732, pp. 73–87). Springer.
19. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables.

In: M.G. Wallace (Ed.), CP 2004, LNCS (vol. 3258, pp. 482–495). Springer.
20. Régin, J.C., Gomes, C. (2004). The cardinality matrix constraint. In: M.G. Wallace (Ed.), CP

2004, LNCS (vol. 3258, pp. 572–587). Springer.
21. Vanhoucke, M., Maenhout, B. (2009). On the characterization and generation of nurse schedul-

ing problem instances. European Journal of Operational Research, 196(2), 457–467. NSPLib is at
http://www.projectmanagement.ugent.be/nsp.php.

http://www.projectmanagement.ugent.be/nsp.php

	On matrices, automata, and double counting in constraint programming
	Abstract
	Introduction
	Basic double counting
	Deriving necessary conditions from string properties
	Constraining the number of occurrences of words, prefixes, and suffixes
	Necessary conditions
	Generalisation: replacing each letter by a set of letters
	Extension: constraining prefixes and suffixes

	Constraining the number of occurrences of stretches
	Necessary conditions
	Generalisation: replacing the value by a set of values

	Constraining the minimum and maximum length of a stretch
	Necessary conditions
	Extension

	Combining two string properties: forbidden prefixes or suffixes and number of stretches
	Constraining value precedence
	Replacing the gcc column constraint by a sum constraint
	Extracting occurrence, word, and stretch constraints from an automaton, or how to annotate an automaton with string properties
	Heuristics for selecting relevant string properties for an automaton

	The cardinality automaton of an automaton
	Necessary row constraints
	Necessary column constraints and channelling constraints
	Incomparability of filtering by cardinality automaton and string properties

	A chain of lexicographic ordering constraints combined with automaton constraints
	Basic filtering algorithm of the lex_chain constraint
	Computing the least vector with respect to a fixed lower bound and an automaton constraint
	Filtering algorithm of the lex_chain constraint combined with automaton constraints

	Experimental evaluation
	Conclusion
	References

