
Generation of Implied Constraints for
Automaton-Induced Decompositions

María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson

Department of Information Technology

Uppsala University

Uppsala, Sweden

Email: {Maria.Andreina.Francisco, Pierre.Flener, Justin.Pearson}@it.uu.se

Abstract—Automata, possibly with counters, allow many con-
straints to be expressed in a simple and high-level way. An
automaton induces a decomposition into a conjunction of already
implemented constraints. Generalised arc consistency is not
generally maintained on decompositions induced by counter
automata with more than one state or counter. To improve
propagation of automaton-induced constraint decompositions,
we use automated tools to derive loop invariants from the
constraint checker corresponding to the given automaton. These
loop invariants correspond to implied constraints, which can be
added to the decomposition. We consider two global constraints
and derive implied constraints to improve propagation even to
the point of maintaining generalised arc consistency.

Keywords-constraint programming; implied constraints; global
constraints; generalised arc consistency; invariants; automata

I. INTRODUCTION

In constraint programming (CP), a global constraint restricts
a non-fixed number of decision variables. For example, the

ALLDIFFERENT(x1, . . . , xn) constraint holds if and only if

the n decision variables xi take n distinct values. Global

constraints are important components of modern CP solvers.

A global constraint does two things: from the modelling per-

spective, it allows a modeller to express a commonly occurring

combinatorial substructure; from the solving perspective, it

comes with a propagation algorithm, called a propagator,
which removes impossible values from the domains of its

decision variables when invoked during systematic search.

There are global constraints for many combinatorial structures,

such as scheduling [1], [2], packing [3], and rostering [4].

For a fairly exhaustive survey, see the Global Constraint
Catalogue [5].

Although modern constraint solvers have many global con-

straints, often a constraint that one is looking for is not there.

In the past, the choices were either to reformulate the model

or to write one’s own propagator.

In [6], [7], a framework is given for defining many global

constraints in a relatively simple and high-level way by a

deterministic finite automaton, possibly with counters (in the

case of [6]). Such an automaton corresponds to a constraint

checker, expressed as a simple imperative program. Based

on the automaton, the framework of [6] decomposes the

specified new global constraint into a conjunction of already

implemented (global) constraints. This conjunction gives the

semantics of the specified global constraint and provides the

propagation. Unfortunately, generalised arc consistency (GAC)

is in general not maintained on decompositions induced by

counter automata with more than one state or more than

one counter, which means that when the propagators of the

constraints of the decomposition reach a common fixpoint, not

all infeasible values have been removed from the domains of

the decision variables, even if GAC is maintained individually

on those constraints.
In this paper, we investigate deriving loop invariants from

constraint checkers and use them as implied constraints to

extend the corresponding automaton-induced decomposition

in order to improve propagation. To illustrate the process we

study two global constraints, namely the JTHNONZEROPOS

and NGROUP constraints, and show that propagation is im-

proved. Moreover, in the case of the JTHNONZEROPOS

constraint we prove that GAC is maintained by the ex-
tended decomposition, that is, the automaton-induced de-

composition extended with the implied constraints. The

JTHNONZEROPOS constraint (having the too long name

ITH_POS_DIFFERENT_FROM_0 in [5]) was motivated by a

real-life application in molecular biology [8] and can also be

used for personnel rostering problems. It has no published

propagator, but a decomposition into a conjunction of con-

straints that have propagators is given in [5]. The NGROUP

constraint captures an important combinatorial substructure of

the GROUP constraint [5] of the CHIP solver, and has many

applications, including personnel rostering.
After a summary of the background material in Section II,

the contributions and impact of Sections III and IV of this

paper are as follows:

• From an analysis of checkers corresponding to counter

automata, we identify, by means of an automatic invariant

generator and other techniques, logically implied con-

straints that we add to the respective decompositions. In

particular, we use the JTHNONZEROPOS and NGROUP

constraints as examples.

• We show that the presence of these implied constraints

does not increase the time or space complexity of com-

puting the common fixpoint of the propagators of the

decomposition. Moreover, we show that these implied

constraints often improve propagation, incurring little or

no time overhead.

• We show that in the presence of these implied constraints,

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.160

1076

GAC can be maintained on the decomposition of the

JTHNONZEROPOS constraint, demonstrating that these

implied constraints can be quite powerful. However, the

objective of our research is to improve propagation,

regardless of whether or not GAC is maintained on the

extended decomposition.

Finally, in Section V, we conclude and discuss related as well

as future work.

II. BACKGROUND

To make this paper self-contained, we define the used

concepts, namely constraints, constraint problems, solutions,

supports, generalised arc consistency (GAC), checker [6], loop

invariant [9], disjunctive invariant [10].

A constraint is a pair R(S), where S = 〈w1, . . . , wn〉 is

a tuple of decision variables, called the scope, and R is a

set of n-tuples. During search, every decision variable wi is

associated with a current set of possible values, called its

domain and denoted by D(wi). A solution to a constraint
R(S) is an assignment {w1 = d1, . . . , wn = dn} to its

decision variables such that 〈d1, . . . , dn〉 ∈ R. A constraint
problem is a conjunction of constraints, sometimes given as

a set of constraints with an implicit conjunction between its

elements. A solution to a constraint problem is an assignment

to all its decision variables that contains a solution to all its

constraints.

The assignment {wk = dk} is supported by a constraint

(problem) if there is a solution to that constraint (problem)

where wk = dk and all decision variables take values in their

current domains.

There is generalised arc consistency (GAC) on a constraint
R(S) if every domain value of every decision variable of S
is supported by R(S); we also say that R(S) is GAC.

There is GAC on a constraint problem if every domain value

of every decision variable of the problem is supported by the

problem; we also say that the problem is GAC.

A checker is an algorithm that returns true if and only if an

assignment is a solution to a constraint. For example, consider

the constraint EXACTLY(N,V, P), which holds if and only

if the sequence V of decision variables contains exactly N
elements taking the given value P . Parameters N and P must

be constants, under the restriction 0 ≤ N ≤ |V|. For instance,
EXACTLY(2, [4, 2, 4, 5], 4) holds since exactly 2 elements of

the sequence [4, 2, 4, 5] take the value 4. A checker for the

EXACTLY constraint is given in Algorithm 1.

Informally, a loop invariant is a predicate on the variables

occurring in the loop, that should be true on entry into a loop

and that is guaranteed to remain true on every iteration of

the loop. This means that on exit from the loop both the loop

invariant and the loop termination condition can be guaranteed.

Consider again Algorithm 1. The loop has, among others, the

invariant i ≤ |V|.
A key problem in automatic invariant generation is the

inference of disjunctive invariants, which contain at least one

disjunction. In order to simplify the generation of disjunctive

invariants, we use a technique proposed in [10] to decompose

Algorithm 1 Checker for the EXACTLY constraint

1: function EXACTLY(N ,V ,P)

2: i← 0
3: c← 0
4: while i < |V| do
5: if V[i] = P then
6: c← c+ 1

7: i← i+ 1

8: return N = c

a loop into a semantically equivalent sequence of loops, each

of which has only conjunctive invariants. An example will be

given in Section III.

III. THE JTHNONZEROPOS GLOBAL CONSTRAINT

The JTHNONZEROPOS(J, P,V) constraint [5] holds if and

only if the J th non-zero element is at position P (counting

from 1) of the sequence V of decision variables. Parameter

J must be a constant and parameter P can be a decision

variable, under the restriction 1 ≤ J ≤ P ≤ |V|. For instance,
JTHNONZEROPOS(2, 4, [5, 0, 0, 1, 3]) holds since the second

non-zero element is at position 4 (namely 1) of [5, 0, 0, 1, 3].
The JTHNONZEROPOS constraint can be used in personnel

rostering. For instance, if each element of V represents the

shift of a daily duty of a worker, using the special value 0 for

being off-duty, then one can constrain the unknown position

P of the J th off-duty day so that it does not occur too early

or late.

The constraint was inspired by multiplex dispensation or-

der generation, a real-life problem for DNA sequence anal-

ysis with the pyrosequencing method [8]. They used two

precursors of this constraint. The FIRST(V, P) constraint

holds if and only if JTHNONZEROPOS(1, P,V) holds. The

FOLLOW([v1, . . . , vn], L,Q) constraint holds if and only if

JTHNONZEROPOS(1, Q−L, [vL+1, . . . , vn]) holds, where pa-

rameter L must be a constant and Q can be a decision variable,

under the restriction 1 ≤ L < Q ≤ n.

A. Automaton-Induced Decomposition

A deterministic finite automaton (taken from [5]) is given

in Fig. 1 for JTHNONZEROPOS(J, P,V). The only state,

σ, is both the start state (marked by an arrow coming in

from no state) and an accepting state (double circle). The

alphabet is {z, nz} rather than the domain of the sequence

decision variables vi of V , because each decision variable

vi is assumed to be paired with a new decision variable si,
called a signature decision variable, which takes the value

‘z’ (zero) if and only if vi takes the special value 0, and the

value ‘nz’ (non-zero) otherwise; this can be achieved with

(vi = 0 ⇔ si = z) ∧ (vi 	= 0 ⇔ si = nz), called a signature
constraint (the second conjunct is logically superfluous, but we

keep it here for completeness). The automaton is extended [6]

with two counters j and p, both initialised to 0; they evolve on

each transition as indicated between braces. Until J non-zero

elements have been found, counter j maintains the number

1077

σ{j ← 0; p← 0} 〈J, P 〉 = 〈j, p〉

z {if j < J then p← p+ 1 else nop}

nz {if j < J then j ← j + 1; p← p+ 1 else nop}

Fig. 1: Automaton with two counters for the

JTHNONZEROPOS(J, P,V) constraint

of non-zero values among the elements of V , while counter p
maintains the number of all values. After J non-zero elements

have been found, both counters stop evolving. Consider for

example an instance where J = 2. After consuming the prefix

[1, 0, 1], we have j3 = 2 and p3 = 3. Moreover, for all i ≥ 3
we have that ji = 2 and pi = 3. Upon acceptance, the final

value of the counter pair 〈j, p〉 is constrained to be equal to

〈J, P 〉; this constraint is called the acceptance constraint and

is depicted in a box attached to the accepting state.

This counter automaton induces the following decomposi-

tion under the framework of [6]:

q0 = σ ∧ 〈j0, p0〉 = 〈0, 0〉 ∧∧n
i=1 TRANS(qi−1, 〈ji−1, pi−1〉, si, qi, 〈ji, pi〉)

∧ qn = σ ∧ 〈jn, pn〉 = 〈J, P 〉
∧ ∧n

i=1(vi = 0⇔ si = z) ∧ (vi 	= 0⇔ si = nz)

(1)

The si are the already mentioned signature decision variables;

notice the signature constraints in the last conjunct of the de-

composition. Each qi is a new decision variable, called a state
decision variable, denoting the state of the automaton after the

signature decision variables s1, . . . , si have been consumed,

with i ∈ [0, n]. Each ji and pi is a new decision variable,

called a counter decision variable, denoting the values of

counters j and p of the automaton after the signature decision

variables s1, . . . , si have been consumed, with i ∈ [0, n].
The constraint TRANS(q′, 〈j′, p′〉, s, q′′, 〈j′′, p′′〉) holds if and

only if the automaton in Fig. 1 has a transition from state

q′ to state q′′ labelled by symbol s that updates the counters

〈j, p〉 from values 〈j′, p′〉 to values 〈j′′, p′′〉; it is called a

transition constraint. As this automaton has only one state, one

could in principle project the state decision variables away; we

keep them to be consistent with the general decomposition of

automata in [6].

A folklore result of CP being that GAC is maintained on

Berge-acyclic constraint hypergraphs if (but not only if) GAC

is maintained on each constraint, in general, in the presence

of at least one counter an automaton-induced decomposition

has a Berge-cyclic constraint hypergraph, so that GAC might
not be maintained on such decompositions [6]. In particular,

we now show that maintaining GAC on each constraint of

the decomposition (1) of the JTHNONZEROPOS constraint

does not maintain GAC on JTHNONZEROPOS. Consider the

ground instance JTHNONZEROPOS(2, P, [v1, v2, 0, v4]), with

D(P) = {2, . . . , 4} and unrestricted domains of the vi.

Maintaining GAC on the JTHNONZEROPOS constraint would

prune the value 3 from the domain of P , but maintaining

GAC on each constraint of the decomposition will not. Indeed,

since the element at position 3 is 0, there is no solution

where P = 3, neither to the decomposition nor to the

JTHNONZEROPOS constraint (recall that P is a position where

a non-zero element is to occur). To show this, consider the

constraints T3 = TRANS(σ, 〈j2, p2〉, s3, σ, 〈j3, p3〉) and T4 =
TRANS(σ, 〈j3, p3〉, s4, σ, 〈j4, p4〉) in the decomposition (1),

which share the decision variables j3 and p3. As illustrated

in Fig. 2, there is no solution to T3 with {j3 = 2, p3 = 3},
even though there are solutions to T3 where j3 = 2, namely

{j2 = 2, p2 = 2, s3 = z, j3 = 2, p3 = 2}, and to T3

where p3 = 3, namely {j2 = 1, p2 = 2, s3 = z, j3 =
1, p3 = 3}. Note that the assignments {j3 = 2, p3 = 2}
and {j3 = 1, p3 = 3} are contained in solutions to T4. The

assignment {j3 = 2, p3 = 3} is however also contained in

solution {j3 = 2, p3 = 3, s4 = z, j4 = 2, p4 = 3} to T4.

In consequence, we have 3 ∈ D(p4) because the assignment

{p4 = 3} is supported by T4, even though there is no solution

to the decomposition where P = 3. Hence, maintaining GAC

on the decomposition is not enough to maintain GAC on the

JTHNONZEROPOS constraint.

B. Deriving Implied Constraints

The automaton in Fig. 1, together with the signature con-

straints, can be translated into the checker in Algorithm 2. The

automatic invariant generator InvGen [11] derives, in addition

to other ones that do not improve propagation (for example

i ≤ |V|), the following invariants:

j ≤ J (2)

0 ≤ j ≤ p ≤ i (3)

In order to transform these invariants into implied constraints,

we note that, for example, the invariant p ≤ i is satisfied

at every iteration. On each iteration, the element at position

i of the sequence V is visited. This notion corresponds to

the automaton consuming i elements, and so the decision

variables ji and pi denote the values of the variables j and

p after consuming i elements. In consequence, we write the

invariants (2) and (3) as the following implied constraints:

ji ≤ J (4)

0 ≤ ji ≤ pi ≤ i (5)

for 0 ≤ i ≤ |V|. Note that the quantification corresponds to

the values of i before and after the loop.

Disjunctive invariants generally arise from the existence

of conditionals in the loop body. Given that the disjunctive

invariant mode of InvGen is currently experimental, we use

the technique proposed by [10] to derive disjunctive implied

constraints. Note that not all conditionals imply that a dis-

junctive invariant exists, but for example, conditionals whose

predicate is related to the number of iterations the loop has

been executed, as well as predicates that will never be satisfied

again after a given numbers of iterations usually do. The idea

1078

D(j0)×D(p0) D(j1)×D(p1) D(j2)×D(p2) D(j3)×D(p3) D(j4)×D(p4)

(0, 0)
z ��
nz

��

(0, 1)
nz �� (1, 2)

z �� (1, 3)
nz �� (2, 4)

(1, 1)

z
��

nz �� (2, 2)

z

��

(2, 3)
z ��
nz �� (2, 3)

(1, 2)
nz

��

(2, 2) nz ��
z ��

(2, 2)

Fig. 2: Solutions to the transition constraints projected onto the induced decision variables of the decomposition (1) of

JTHNONZEROPOS(2, P, [v1, v2, 0, v4]). Assignments unsupported by (1) are boxed.

is to find a splitter predicate, which informally means that

the predicate can be used to divide the loop into a sequence

of loops. We split the loop in Algorithm 2 into two loops

using the conditional j < J as splitter predicate, obtaining

Algorithm 3. Note that both checkers are equivalent. From

Algorithm 3, InvGen derives the predicate j ≤ J ∧ p = i as

an invariant of the first loop, and the predicate j = J ∧ p ≤ i
as an invariant of the second loop. As a result, the disjunction

of both predicates is a disjunctive invariant of the loop in Al-

gorithm 2. These invariants allow us to derive, using standard

logic transformations, the following implied constraint:

ji < J ⇒ pi = i (6)

We now remove the second loop in Algorithm 3, which does

not affect the correctness of the checker, and split the first

loop using the splitter predicate j < J − 1. After splitting, we

simplify the second loop obtaining Algorithm 4. The predicate

V[i] 	= 0 is added to the return statement in order to verify that

the while loop ended because an element different from 0 was

found and not because all the elements in the sequence have

been visited. From Algorithm 4, InvGen derives the predicate

j ≤ J − 1 ∧ p = i as an invariant of the first loop,

and the predicate j = J − 1 ∧ s = z ∧ p = i as an

invariant of the second loop. As a result, the disjunction of both

predicates is a disjunctive invariant of the loop in Algorithm 2.

These invariants allow us to derive, using standard logic

transformations, the following implied constraint:

(si = z ∨ ji−1 	= J − 1)⇒ pi+1 	= i (7)

for 0 < i < n. As can be verified, either by hand or by using a

theorem prover (for instance Z3 [12]), if we consider the return

condition in Algorithm 4 always to be satisfied, together with

the implied constraint (7), we obtain the implied constraint:

(si = z ∨ ji−1 	= J − 1)⇔ pi+1 	= i (8)

for 0 < i < n.

C. The Effect of the Implied Constraints: Maintaining GAC

In the presence of the implied constraints (4), (5), (6), and

(8), the transition constraints support only pairs of values for

the counter decision variables ji and pi that are reachable by

Algorithm 2 Checker for the JTHNONZEROPOS constraint

1: function JTHNONZEROPOS(J ,P ,V)
2: i← 0
3: j ← 0
4: p← 0
5: while i < |V| do
6: if j < J then
7: if V[i] 	= 0 then
8: j ← j + 1

9: p← p+ 1

10: i← i+ 1

11: return j = J ∧ p = P

Algorithm 3 Checker for the JTHNONZEROPOS constraint

after splitting the loop once

1: function JTHNONZEROPOS(J ,P ,V)
2: i← 0; j ← 0
3: p← 0
4: while i < |V| ∧ j < J do
5: if V[i] 	= 0 then
6: j ← j + 1

7: p← p+ 1
8: i← i+ 1

9: while i < |V| ∧ j ≥ J do
10: i← i+ 1

11: return j = J ∧ p = P

the counters j and p. In consequence, as proved next, main-

taining GAC on each constraint of the extended decomposition

will maintain GAC on the decomposition.

Theorem 1. Assume we add the constraints (4), (5), (6),
and (8), for each 0 < i < n, to the decomposition (1) of
JTHNONZEROPOS(J, P,V). If each constraint of the extended
decomposition is GAC, then the whole decomposition is GAC.

Proof: The proof has two parts. First we show that the

implied constraints are sound, in the sense that they do not re-

duce the number of solutions to the (sound decomposition (1)

of the) JTHNONZEROPOS constraint. Second we show that

1079

Algorithm 4 Checker for the JTHNONZEROPOS constraint

after splitting the loop twice

1: function JTHNONZEROPOS(J ,P ,V)
2: i← 0; j ← 0; p← 0
3: while i < |V| ∧ j < J − 1 do
4: if V[i] 	= 0 then
5: j ← j + 1

6: p← p+ 1
7: i← i+ 1

8: while i < |V| ∧ j ≥ J − 1 ∧ V [i] = 0 do
9: p← p+ 1

10: i← i+ 1

11: return j = J − 1 ∧ p = P − 1 ∧ V [i] 	= 0

it is always possible to construct a solution to the constraint

using every value in every domain after GAC is maintained

on each constraint in the extended decomposition.

Soundness. It is easy to show that the constraints (4) to

(6) are sound. The implied constraints (8) capture that if a

given signature decision variable si is assigned the value ‘z’,
then there is no solution to the JTHNONZEROPOS constraint

where P = i. Moreover, if there are fewer than J−1 signature

decision variables that can take the value ‘nz’ among s1
till si−1, then there is no solution to the JTHNONZEROPOS

constraint were P = i.

Constructing solutions. For each value in the domain

of each decision variable, we will show that if the value

is supported by the extended decomposition, then it is part

of a solution to the constraint. Recall that parameter J is

a constant, satisfying 1 ≤ J ≤ P ≤ n = |V|. In this

decomposition there are five classes of decision variables: the

sequence decision variables vi; the state decision variables qi;
the counter decision variables ji and pi; the signature decision

variables si; and the problem decision variable P . Each

sequence decision variable vi appears in only one constraint

(a signature constraint), with scope 〈vi, si〉, so that the vi need
not be considered because maintaining GAC on the signature

constraints will be enough, since we can show that every

domain value of every signature decision variable is supported

by the decomposition. Also, we do not consider the state

decision variables qi because each is necessarily set to σ,
because σ is the only state.

The si decision variables. For any given si we will show

every value in D(si) is supported by the constraint, by showing

there exists some value k in D(P) and values in the domains

of the other signature decision variables giving a solution to

the constraint. We will not consider all the decision variables

pi and ji as their values will be fixed by transition constraints

once values have been assigned to the si and P .

For a chosen si, we will show that if there is some

k in D(P) with k < i, then the signature decision vari-

ables can be divided into two groups: the decision variables

sk+1, . . . , si, . . . , sn, which can be assigned any value in

their domains and be part of an assignment that satisfies the

constraint; and the decision variables s1, . . . , sk, where there

must be exactly J decision variables that can be assigned the

‘nz’ value and exactly k− J decision variables taking the ‘z’
value to give a solution when P is assigned k.

We will now show that such an assignment is possible, when

k is less than i. If we assign to P the value k, then no values

are pruned from the domain of the chosen si. By (8) we know

that sk has the domain {nz}; further, by (8) and by the TRANS

constraints, the decision variable jk will have the domain {J}.
By the transition constraints and the implied constraints (5)

and (6) for each 0 ≤ i ≤ k the decision variable pi will

have the domain {i}, and again by the transition constraints

D(pk+1) = D(pk+2) = · · · = D(pn) = {k}, because, after

assigning P to be k, the decision variable jk will be equal to

J , and j0 is always assigned the value 0 in the decomposition.

When the ji decision variables are assigned, by the transition

constraints each ji+1 has the value ji or the value ji+1. Hence

when GAC is maintained on the transition constraints, it is

guaranteed that there are exactly J signature decision variables

taking the ‘nz’ value and exactly k − J signature decision

variables taking the ‘z’ value in the sequence s1, . . . , sk,
because the domains of the ji and pi decision variables are

constrained by the values in the domains of the si decision

variables.

For a chosen si, if there is no k in D(P) with k < i, then we

have to show that, after assigning si any value in its domain,

the domain of P will never be empty. If D(P) has exactly

one element k ≥ i, then we know that the decision variables

sk+1, . . . , sn can be assigned any values for satisfying the

constraint. Then, as in the previous paragraph when we

assigned P the value k, jk will be assigned J , and hence when

GAC is maintained on the transition constraints it is guaranteed

that there are exactly J signature decision variables taking the

value ‘nz’ and exactly k−J signature decision variables taking

the value ‘z’ in the sequence s1, . . . , sk. If the domain of D(P)
has more than one element, then assigning si any value in its

domain will remove at most one element from D(P). Hence,

for an assignment of si, any value in D(P) can be picked to

give a solution extending the assignment of si as in the case

where we assumed that D(P) = {k}.
The P decision variable. After assigning P any value

k in its domain, by the implied constraints (8) and after

propagation the decision variable sk will be assigned ‘nz’ and
the decision variable jk−1 will be assigned J − 1. If ‘nz’ is

not in D(si) or J − 1 is not in D(jk−1), then by the implied

constraints (8) the value k would not be in D(P). Again the

signature decision variables can be divided into two groups:

the decision variables sk+1, . . . , sn can be assigned any values

in their domains in order to satisfy the constraint; and the

decision variables s1, . . . , sk, where there must be exactly J
decision variables taking the ‘nz’ value and exactly k − J
decision variables taking the ‘z’ value. Since P is assigned

k, after propagation pk will be assigned k and jk is assigned

J . As before, because j0 = 0 and jk = J when GAC is

maintained on the transition constraints it will be guaranteed

that there are exactly J signature decision variables taking the

1080

‘nz’ value and exactly k−J signature decision variables taking

the ‘z’ value in the sequence s1, . . . , sk.
The decision variables pi and ji. After GAC is maintained

on all constraints in the extended decomposition, the domains

of the pi and ji are constrained by the TRANS constraints and

the values in the domains of the si decision variables. Hence,

for each value in the domain of a pi or ji it is possible using

the arguments above to pick values for the si and P to satisfy

the constraint.

GAC can be maintained on each implied constraint individ-

ually, since J and i are constants for each of them, and on the

transition constraints [6].

As a sanity check, we implemented in SICStus Pro-

log version 4.2.1 [13] the extended decomposition of

JTHNONZEROPOS(J, P,V). We generated instances with ran-

dom amounts (n ≤ 50) of signature decision variables

[s1, . . . , sn] as well as random initial domains of P (one value,

two values, and intervals of length 2 or 3) and the si (one

value, and binary domains). The extended decomposition is

never faster than the original decomposition (but 20% slower

on average); such a time overhead is in practice probably

compensated by fewer invocations of the propagators of the

other constraints of the problem. Note that we did not use

the built-in automaton decomposition in SICStus Prolog in

our experiments. The reason is that, in general, its transition

constraint does not maintain GAC. If we use our own GAC

implementation (outlined in the following sub-section) of the

TRANS constraint, then this sanity check can also be used

to search for counterexamples to GAC on the decomposition:

upon many millions of generated random instances, no such

counterexample was found, lending further credence to Theo-

rem 1.

D. Complexity of GAC on the Extended Decomposition

Maintaining GAC on the JTHNONZEROPOS(J, P,V) con-

straint decomposition (1) takes Ω(n2) time and Ω(n) space.

In order to obtain this lower bound, one would need to

maintain GAC on each transition constraint in constant time

and use constant space to store the domain of each induced

decision variable. Using the multi-valued decision diagram

constraint [14], we managed to maintain GAC on each tran-

sition constraint in O(n) time, giving O(n3) time and O(n3)
space on the whole decomposition: we omit the details, as

they are not needed for proving that, using the lower bound,

the added implied constraints bear no asymptotic overhead on

maintaining GAC on the decomposition.

Theorem 2. Maintaining GAC on the implied constraints (4),
(5), (6), and (8), does not increase the asymptotic time and
space complexity of maintaining GAC on the original decom-
position (1) of the JTHNONZEROPOS(J, P,V) constraint.

Proof: There are 4(n − 1) implied constraints. Each

requires constant time and is at worst woken |D(P)| times

down any branch of the search tree, that is O(n) times. Prop-

agating all implied constraints down a branch of the search

tree therefore takes O(n2) time. Hence, the time complexity

ε{c← 0} γ

in {c← c+ 1}

ni

inni

N = c

Fig. 3: Predicate counter automaton (with one counter) for the

NGROUP(N,V,W) constraint.

of the decomposition is not affected even if GAC is maintained

on the transition constraints in constant time.

Since none of the implied constraints requires a new data

structure or extra decision variables, there is no asymptotic

extra space required. Hence, the space complexity of the

decomposition is not affected by the implied constraints.

IV. THE NGROUP CONSTRAINT

In a sequence, a group is a contiguous subsequence with

values from a given set. Here we consider only part of

the GROUP constraint [5]. The NGROUP(N,V,W) constraint

holds if and only if there are N groups of values from the

set W in the sequence V of decision variables. For example,

NGROUP(3, [2, 4, 1, 6, 4, 3, 4], {2, 4, 6}) holds since there are

three groups of even values in [2, 4, 1, 6, 4, 3, 4], namely [2, 4],
[6, 4], and [4].

A. Automaton-Induced Decomposition

A counter automaton (taken from [5]) is given in Fig. 3

for NGROUP(N,V,W), using the notation and terminology

of Section III. The start state is called ε and is reached if the

most recently consumed symbol (if any) is not in a group.

The other state is called γ and is reached if the most recently

consumed symbol is in a group. Both states are accepting. The

alphabet is {in, ni}, because the signature constraint (vi ∈
W ⇔ si = in) ∧ (vi 	∈ W ⇔ si = ni) pairs the sequence

decision variable vi with a new signature decision variable

si whose domain is that alphabet. Counter c maintains the

number of groups within the prefix of V consumed so far.

The acceptance constraint is N = c for both accepting states.

This automaton, together with the signature constraints, can

be translated into the checker given in Algorithm 5.

This counter automaton induces the following constraint

decomposition:

q0 = ε ∧ c0 = 0
∧ TRANS(q0, c0, s1, q1, c1) ∧ · · ·
∧ TRANS(qn−1, cn−1, sn, qn, cn)

∧ cn = N ∧∧n
i=1(vi ∈W ⇔ si = in) ∧ (vi 	∈W ⇔ si = ni)

(9)

where the new decision variables are the signature de-

cision variables si, the state decision variables qi, and

the counter decision variables ci. The transition constraint

TRANS(q, c′, s, q′, c′′) holds if and only if the automaton in

Fig. 3 has a transition from state q to state q′ labelled by

symbol s that updates the counter c from value c′ to value c′′.

1081

We now consider the constraint instance

NGROUP(N, [v1, v2, v3, v4], {2, 4, 6}). The signature

constraints are si = 1 ⇔ vi ∈ {2, 4, 6} and

si = 0 ⇔ vi /∈ {2, 4, 6}. The value of N is set by

propagation to the value of the induced counter decision

variable c4, and hence the domain of N is the set {0, . . . , 4}.
GAC on all the constraints in the decomposition does not

suffice to tighten the upper bound of the domain of each

decision variable ci to i/2�.
B. Deriving Implied Constraints

The automaton in Fig. 3, together with the signature con-

straints, can be translated into the checker in Algorithm 5.

Note that in the automaton in Fig. 3, every path of two

transitions increases the counter value by at most 1. Let us

extend the checker in Algorithm 5 in order to keep track

of the previous values of the counter variables c, obtaining

the checker in Algorithm 6. Variable c1 denotes the value of

variable c at the previous iteration, and variable c2 denotes its

value two iterations ago. From the checker in Algorithm 6,

InvGen derives the invariants:

c2 ≤ c ≤ c2 + 1 (10)

Note that c1 does not appear on the invariants, and we use it

only to keep track of the previous value of c. We translate the

invariants (10) into the implied constraints:

ci−1 ≤ ci+1 ≤ ci−1 + 1 (11)

for 0 < i < n.
At this point we believe that the implied constraints (qi =

ε ∧ sj = ni) ⇒ ci < cj can also be derived from

loop invariants and would suffice to maintain GAC on the

NGROUP constraint decomposition. However, the long-term

objective of our research is to automatically extend automaton-

induced decompositions by adding implied constraints that of-

ten strictly improve propagation, without significantly slowing

the propagation down, if slowing it down at all. Whether or

not these implied constraints actually help maintain GAC on

the decomposition is out of the scope of our objective.

C. The Effect of the Implied Constraints

Even though after adding the implied constraints (11) prop-

agation is improved, GAC on every constraint in the extended

decomposition is not enough to maintain GAC on the NGROUP

constraint. For example, consider again the constraint instance

NGROUP(N, [v1, v2, v3, v4], {2, 4, 6}). After the assignment

s2 = in, there is at least one group in the sequence V , that is
N > 0, but GAC on every constraint is not enough to prune

the value 0 from the domains of all ci with i ≥ 2, and so 0
is not pruned from the domain of N .

Towards testing the implied constraints, we implemented

in SICStus Prolog version 4.2.1 [13] the original and ex-

tended decompositions of NGROUP(N,V,W). We generated

instances with random amounts (n ≤ 50) of signature decision

variables [s1, . . . , sn] as well as random initial domains of N
(one value, two values, and intervals of length 2 or 3) and the

Algorithm 5 Checker for the NGROUP constraint

1: function NGROUP(N ,V ,W)

2: c← 0
3: q ← ε
4: i← 0
5: while i < |V| do
6: if V[i] ∈W then
7: if q = ε then
8: c← c+ 1
9: q ← γ

10: else
11: q ← ε

12: i← i+ 1

13: return N = c

Algorithm 6 Checker for the NGROUP constraint keeping

track of previous counter values

1: function NGROUP(N ,V ,W)

2: c← 0; c1 ← 0; c2 ← 0
3: q ← ε
4: i← 0
5: while i < |V| do
6: c2 ← c1
7: c1 ← c
8: if V[i] ∈W then
9: if q = ε then

10: c← c+ 1
11: q ← γ

12: else
13: q ← ε

14: i← i+ 1

15: return N = c

si (one value and binary domains). Note that, in the presence

of the signature constraints, generating random domains for

the signature decision variables is equivalent to generating

random domains for the decision variables [v1, . . . , vn]. Upon

many millions of such instances, it turns out that the extended

decomposition is never slower than the original decomposition

(but 2% faster on average), but always prunes at least as many

values (but 105% more on average) and detects at least as

many failures (but 8% more on average) as the latter.

D. Complexity of the Extended Decomposition

Maintaining GAC on the implied constraints (11) does

not increase the asymptotic time and space complexity of

maintaining GAC on the original decomposition (9) of the

NGROUP(N,V,W) constraint. The proof is similar to the one

of Theorem 2 in Section III-D, based on the observation that

there are 2(n− 1) implied constraints.

V. CONCLUSION, RELATED WORK, AND FUTURE WORK

Counter automata provide a uniform representation format

for many constraints. We believe that automatically deriving

1082

implied constraints that are necessary for maintaining GAC,

or that simply improve propagation, on counter-automaton-

induced constraint decompositions can be seen as an auto-

mated way to design propagators. Proving manually that a

candidate (extended) decomposition maintains GAC is very

tedious: witness the long and hard proof for the JTHNONZE-

ROPOS constraint in Theorem 1. It took us a very long time to

find this proof, partly because we initially manually derived the

implied constraints, starting from an analysis of the failure to

prove GAC. Manual proofs are also error-prone, which is why

we also ran the sanity check on the extended decomposition

of JTHNONZEROPOS at the end of Section III-C.

The hypergraphs of the decompositions (1) and (9) are

actually α-acyclic [15]. The main objective of our research

is to examine when and how (a consistency level close to)

GAC is maintained on Berge-cyclic (for instance α-acyclic)
constraint hypergraphs (rather than a deep desire to settle open

questions about the little known constraints studied in this

paper, very useful though they are).

A. Related Work

It was observed [6] that an α-acyclic constraint hypergraph

maintains GAC when all constraints are pairwise consis-

tent [16], but no further analysis was given.

There is also a large body of related work (e.g., [17], [18],

[19], [20]) on decomposing global constraints manually in or-

der to maintain GAC on the whole decomposition. This paper

can be seen as a more systematic approach to maintaining

GAC, via automaton-induced decompositions.

Initial experiments with using automated reasoning sys-

tems towards inferring implied algebraic constraints from a

constraint problem are reported in [21], [22], both using an

extension [21] of the PRESS equation solver. In contrast, the

present work uses a loop invariant generator; it is aimed at

a specialised class of constraint problems (namely counter-

automaton-induced decompositions) and at a specialised class

of implied constraints (on the induced counter decision vari-

ables), and is therefore more successful.

There is also some related work using graph invariants to

systematically derive implied constraints in [23] in order to

improve efficiency. Our paper explores a different approach,

which is capable of finding other invariants and it does not

require a database of invariants.

B. Future Work

We have given a methodology to infer useful implied

constraints, using an automated invariant generator, that can be

added to an automaton-induced decomposition. We will now

automate as many steps as possible of this methodology, for

the AUTOMATON constraint in SICStus Prolog.

ACKNOWLEDGEMENTS

The authors are supported by grants 2011-6133 and 2012-

4908 of the Swedish Research Council (VR). Many thanks to

the anonymous referees for their helpful comments.

REFERENCES

[1] A. Aggoun and N. Beldiceanu, “Extending CHIP in order to solve com-
plex scheduling and placement problems,” Mathematical and Computer
Modelling, vol. 17, no. 7, pp. 57–73, 1993.

[2] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-Based Scheduling:
Applying Constraint Programming to Scheduling Problems. Kluwer
Academic Publishers, 2001.

[3] M. Carlsson, N. Beldiceanu, and J. Martin, “A geometric constraint over
k-dimensional objects and shapes subject to business rules,” in CP 2008,
ser. LNCS, P. J. Stuckey, Ed., vol. 5202. Springer, 2008, pp. 220–234.

[4] S. Bourdais, P. Galinier, and G. Pesant, “HIBISCUS: A constraint
programming application to staff scheduling in health care,” in CP 2003,
ser. LNCS, F. Rossi, Ed., vol. 2833. Springer, 2003, pp. 153–167.

[5] N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, “Global con-
straint catalogue: Past, present, and future,” Constraints, vol. 12, no. 1,
pp. 21–62, March 2007, the current working version of the catalogue is
at http://www.emn.fr/z-info/sdemasse/aux/doc/catalog.pdf.

[6] N. Beldiceanu, M. Carlsson, and T. Petit, “Deriving filtering algorithms
from constraint checkers,” in CP 2004, ser. LNCS, M. Wallace, Ed., vol.
3258. Springer, 2004, pp. 107–122.

[7] G. Pesant, “A regular language membership constraint for finite se-
quences of variables,” in CP 2004, ser. LNCS, M. Wallace, Ed., vol.
3258. Springer, 2004, pp. 482–495.

[8] M. Carlsson and N. Beldiceanu, “Multiplex dispensation order gen-
eration for pyrosequencing,” in Proceedings of the Workshop on CSP
Techniques with Immediate Application (held at CP 2004), 2004.

[9] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[10] R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simplifying loop invariant
generation using splitter predicates,” in CAV 2011, ser. LNCS, vol. 6806.
Springer, 2011, pp. 703–719.

[11] A. Gupta and A. Rybalchenko, “InvGen: An efficient invariant genera-
tor,” in CAV 2009, ser. LNCS, vol. 5643. Springer, 2009, pp. 634–640.

[12] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS
2008, ser. LNCS. Springer, 2008, pp. 337–340.

[13] M. Carlsson, G. Ottosson, and B. Carlson, “An open-ended finite domain
constraint solver,” in PLILP 1997, ser. LNCS, vol. 1292. Springer, 1997,
pp. 191–206.

[14] K. C. Cheng and R. H. Yap, “An MDD-based generalized arc consistency
algorithm for positive and negative table constraints and some global
constraints,” Constraints, vol. 15, no. 2, pp. 265–304, Apr. 2010.

[15] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, “On the desirability
of acyclic database schemes,” Journal of the ACM, vol. 30, no. 3, pp.
479–513, July 1983.

[16] R. Fagin, “Degrees of acyclicity for hypergraphs and relational database
schemes,” Journal of the ACM, vol. 30, no. 3, pp. 514–550, July 1983.

[17] C. Bessière, G. Katsirelos, N. Narodytska, and T. Walsh, “Circuit
complexity and decompositions of global constraints,” in IJCAI 2009,
C. Boutilier, Ed., 2009, pp. 412–418.

[18] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and
T. Walsh, “Reformulating global constraints: The slide and regular
constraints,” in SARA 2007, ser. LNAI, vol. 4612. Springer, 2007,
pp. 80–92.

[19] C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh,
“Decomposition of the NValue constraint,” in CP 2010, ser. LNCS,
D. Cohen, Ed., vol. 6308. Springer, 2010, pp. 114–128.

[20] C.-G. Quimper and T. Walsh, “Decomposing global grammar con-
straints,” in CP 2007, ser. LNCS, C. Bessière, Ed., vol. 4741. Springer,
2007, pp. 590–604.

[21] B. Hnich, J. Richardson, and P. Flener, “Towards automatic generation
and evaluation of implied constraints,” Department of Information Tech-
nology, Uppsala University, Sweden, Tech. Rep. 2003-014, originally
written in August 2000, available at www.it.uu.se/research/reports/2003-
014.

[22] A. M. Frisch, I. Miguel, and T. Walsh, “Extensions to proof
planning for generating implied constraints,” in Proceedings
of Calculemus 2001, 2001, pp. 130–141, available at
http://www.calculemus.net/meetings/siena01/.

[23] N. Beldiceanu, M. Carlsson, J.-X. Rampon, and C. Truchet, “Graph
invariants as necessary conditions for global constraints,” in CP 2005,
ser. LNCS, P. van Beek, Ed., vol. 3709. Springer, 2005, pp. 92–106.

1083

