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Abstract—We present a domain for string decision variables
of bounded length, combining features from fixed-length and
unbounded-length string solvers to reason on an interval defined
by languages of prefixes and suffixes. We provide a theoretical
groundwork for constraint solving on this domain and describe
propagation techniques for several common constraints.
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I. INTRODUCTION

Constraints over strings occur in a wide variety of real-

world problems, especially in fields such as test case genera-

tion [1], program analysis [2], model checking [3], and web

security [4]. In recent years several methods for solving string

constraints have appeared, which may be broadly classified

based on their treatment of string length.

For constraints on unbounded-length strings, solvers typ-

ically work by reasoning on automaton representations; see

for example the regular domains of [5]. To avoid exponential

blowup, these solvers are frequently restricted to a small set

of constraints, such as the tools SUSHI [6] and DPRLE [7].

Recent work also includes tools such as REVENANT [3], which

uses SAT and interpolation to check intersections of regular

languages defined as symbolic automata; and STRSOLVE [8], a

dedicated solver that handles expensive automata intersection

operations by lazily constructing cross-products. These tools

rely exclusively on automata operations; constraints that would

be handled using simpler methods in other solvers (such as in-

teger arithmetic constraints on string lengths) are encoded into

automata, resulting in increased computational complexity.

Another approach is to solve constraints on strings of a

fixed length. For example, the HAMPI tool provides a theory

of fixed-length strings for satisfaction modulo theories (SMT)

solvers, using the bit-vector solver STP to solve problems

of a single string variable [9]. The bit-vector approach has

also been explored in constraint programming (CP) [10]. More

commonly, however, fixed-length approaches in CP reason at

the level of symbols, providing constraints for regular [11],

[12] or context-free [13], [14] languages that operate on a se-

quence of symbol variables. In this approach, string constraints

are implemented in existing CP frameworks, allowing solvers

to easily combine constraints on strings with constraints on

individual symbols and other non-string variables.

A possibility lying between these two extremes is to handle

strings with lengths that are not fixed, but bounded by an

integer interval. Probably the best known bounded-length

solver is KALUZA [15], which solves constraints in two stages.

In the first, an SMT solver is used to find possible lengths

for strings which satisfy explicit length constraints, length

constraints implied by the string constraints of the problem,

and any other integer constraints present in the problem. In the

second stage, these lengths are applied to create a fixed-length

bit-vector problem, solved with STP in the same manner as

HAMPI. If the problem in the second stage is unsatisfiable,

the first stage is repeated, with the addition of new constraints

to avoid previously tried lengths. Other work, such as [16],

[17], handles bounded-length strings by adding a string length

reasoning component to unbounded automata approaches. In

CP, [18] illustrates propagation for bounded-length versions

of the fixed-length REGULAR and CFG constraints.

We propose a new bounded-length approach in CP. We

begin by defining variables and constraints for bounded-length

strings. We then describe the affix domain for bounded-length

strings, which is based on languages of prefixes and suffixes.

This domain allows us to reason about the content of string

suffixes, even when the length of the string is unknown.

We then describe propagation techniques for affix domains

over constraints of string equality, concatenation, indexing,

substring, reversal, and regular language membership.

This new domain fits into the framework of existing CP

solvers, thereby making available the large number of con-

straints over scalar and set variables which already exist.

Combined with these pre-existing non-string constraints, this

new domain and its attendant constraints yield a solver at

least as expressive as that handled by other bounded-length

solvers. Indeed, it is generally more expressive, as it freely

combines string and numeric reasoning, without restrictions

on the number of variables or types of arithmetic constraint.

II. PRELIMINARIES

A constraint satisfaction problem (CSP) [19] is a tuple

〈X,D,C〉 of decision variables X = 〈X1, . . . , Xn〉, domains
D = 〈D1, . . . , Dn〉 such that Xi ∈ Di, and constraints C. A

constraint Cj is a pair 〈Rj , Sj〉 where Rj is a relation on the

variables Sj ⊆ X , called the scope of Cj . An assignment is

a tuple A = 〈a1, . . . , an〉; A is a solution of the CSP if all

ai ∈ Di, and every Cj is satisfied, i.e., the projection of A
onto Sj is in Rj . A(Xi) denotes the projection of A onto Xi.

In sequel, we denote decision variables in uppercase (N )

to distinguish them from mathematical variables in lowercase

(i). We refer to the current domain of a decision variable N
as D(N), and, for an integer decision variable N , to the lower

and upper bounds of the domain as N and N , respectively,

and denote the original upper bound as Norig. We indicate
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arrays of mathematical variables or scalar decision variables

with vector notation (�c, �A), and string decision variables with

bold-face (X). We denote an element of an array with the

index in brackets ( �A[i]). We use the notation [�, u] to refer to

the set of integers { �, �+ 1, . . . , u− 1, u }.
An alphabet Σ is a finite set of symbols. A string w of length

|w| = n over the alphabet Σ is a finite sequence of elements

of Σ, denoted w1w2 · · ·wn, where wi ∈ Σ for all 1 ≤ i ≤ n.

The set of all strings over Σ is denoted by Σ∗. A possibly

infinite subset of L ⊆ Σ∗ is called a language over Σ. Given

a language L over Σ, for a string w ∈ L we say p is a prefix
of w if there exists a string x ∈ Σ∗ such that w = px (where

px denotes the concatenation of p and x). Similarly, s is a

suffix of w if there exists a string y ∈ Σ∗ such that w = ys;

we refer to prefixes and suffixes collectively as affixes. The

reversal of a word w is the word wrev = wn · · ·w2w1. The

reversal of a language L is the set Lrev = { wrev | w ∈ L }.
III. BOUNDED-LENGTH STRINGS

In this section, we describe a representation for string

decision variables of bounded length, and discuss constraints

on them. In Section IV we introduce a representation which we

argue is more useful for propagation; however, it is convenient

to specify constraints on bounded-length string decision vari-

ables in terms of the simpler representation introduced here.

A. Decision Variables

We will refer to unknown strings, over an arbitrary alphabet

Σ, which occur in the model of a constraint satisfaction

problem, as string decision variables. Abstractly, the domain

of a string decision variable is a subset of Σ∗; however,

we require a concrete representation. In [5], automata serve

as a concrete representation, allowing for domains that are

possibly infinite sets of strings; propagation is defined in

terms of automata operations. Another choice of representation

is a fixed-length sequence of scalar decision variables over

Σ [11], [12]. The latter representation has been more widely

adopted, primarily because of tighter integration with existing

finite-domain solvers; additional constraints are stated over

individual decision variables from the sequence in a natural

way. In contrast, a value of a decision variable in [5] is a

string, which does not readily facilitate interaction between

individual symbols and other types of decision variables.

As we propose to treat bounded-length strings, it is natural

to consider a representation based on the one used for bounded

open constraints [18]. A constraint is global [20] if the cardi-

nality of its scope is not determined a priori. In a closed global

constraint, the cardinality of the scope is determined by the

model, and remains constant throughout the solution process;

however, in an open global constraint, the cardinality of the

scope is determined as the solution procedure progresses [21].

In [18], the scope of an open global constraint is a sequence

of scalar decision variables with a length that is bounded by

an integer decision variable. This formulation leads to a string

representation we will call the open sequence representation:

〈 �A,N〉 consists of an array �A of scalar decision variables over

Σ, and an integer decision variable N representing the length

of the string. In contrast to [18], we treat the sequence and

length together as a representation of a single, bounded-length

string decision variable, a syntactical difference that will be

convenient when we define constraints over multiple variables

in the next subsection. The domain of 〈 �A,N〉 is defined in

terms of the domains of the pair:

D
(〈

�A,N
〉)

=
⋃

n∈D(N)

{
a1 . . . an

∣∣∣ ∀i ∈ [1, n] : ai ∈ D
(
�A[i]

)}

B. Simple Constraints
Semantically, the relation of a constraint may be defined

as a set of tuples over the scope of the constraint. We define

string constraints in the open sequence representation.
The constraint EQUAL(X,Y) enforces string equality for

string decision variables X and Y, defined as strings having

equal length and the same symbol at each index:

EQUAL

(〈
�Ax, Nx

〉
,
〈
�Ay, Ny

〉)
=

{(
〈�b, p〉, 〈�c, q〉

)∣∣∣
p ∈ D(Nx) ∧ q ∈ D(Ny) ∧ p = q ∧ ∀i ∈ [1, p] :(

�b[i] ∈ D(
�Ax[i]

) ∧ �c[i] ∈ D(
�Ay[i]

) ∧�b[i] = �c[i]
)}

The constraint REVERSE(X,Y), for string decision variables

X and Y, states that X is equal to the reverse of Y (the

specification differs from EQUAL only in the indexing of Y):

REVERSE

(〈
�Ax, Nx

〉
,
〈
�Ay, Ny

〉)
=

{(
〈�b, p〉, 〈�c, q〉

)∣∣∣
p ∈ D(Nx) ∧ q ∈ D(Ny) ∧ p = q ∧ ∀i ∈ [1, p] :(

�b[i] ∈ D(
�Ax[i]

)∧ �c[i] ∈ D(
�Ay[i]

)∧�b[i] = �c[p− i+ 1]
)}

CONCAT(X,Y,Z) states that string decision variable Z equals

the concatenation of string decision variables X and Y:

CONCAT

(〈
�Ax, Nx

〉
,
〈
�Ay, Ny

〉
,
〈
�Az, Nz

〉)
=

{(
〈�b, p〉, 〈�c, q〉, 〈�d, r〉

)∣∣∣ p ∈ D(Nx) ∧ q ∈ D(Ny)

∧ r ∈ D(Nz) ∧ p+ q = r ∧ ∀i ∈ [1, p] :(
�b[i] = �d[i] ∧�b[i] ∈ D(

�Ax[i]
) ∧ �d[i] ∈ D(

�Az[i]
))

∧ ∀j ∈ [1, q] :
(
�c[j] = �d[j+p−1] ∧ �c[j] ∈ D(

�Ay[j]
)

∧�d[j+p−1] ∈ D(
�Az[j+p−1]

))}

SUBSTRING(X,Y, I) states that string decision variable Y is

a contiguous substring of string decision variable X, starting at

the index given by the integer decision variable I . The special

case when Y has a length of one (i.e., where the second deci-

sion variable is scalar) is defined as CHARACTERAT(X, C, I):

SUBSTRING

(〈
�Ax, Nx

〉
,
〈
�Ay, Ny

〉
, I

)
=

{(
〈�b, p〉, 〈�c, q〉, r

)∣∣∣ p ∈ D(Nx) ∧ q ∈ D(Ny) ∧ r ∈ D(I)
∧ p ≥ q + r − 1 ∧ ∀i ∈ [1, p] : �b[i] ∈ D(

�Ax[i]
)∧

∀j ∈ [1, q] :
(
�c[j] ∈ D(

�Ay[j]
) ∧�b[r + j − 1] = �c[j]

)}
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CHARACTERAT

(〈
�Ax, Nx

〉
, C, I

)
=

{(
〈�b, p〉, q, r

)∣∣∣ p ∈ D(Nx) ∧ q ∈ D(C)

∧ r ∈ D(I) ∧ ∀i ∈ [1, p] : �b[i] ∈ D(
�Ax[i]

) ∧�b[r] = q
}

C. Language Membership Constraints

REGULAR(L,X) states that string decision variable X must

belong to the given regular language L. The specification

would be valid for any language, irrespective of regularity;

however, for bounded-length strings we only know of propa-

gation techniques when L is regular or context-free [18].

REGULAR

(
L,

〈
�Ax, Nx

〉)
=

{(
L, 〈�b, p〉

)∣∣∣ p ∈ D(Nx)

∧ ∀i ∈ [1, p] : �b[i] ∈ D(
�A[i]

) ∧�b[1]�b[2] . . .�b[p] ∈ L
}

IV. AFFIX DOMAINS

When searching for strings in the languages for which rever-

sal may be efficiently computed (i.e., the regular languages),

it is possible to make strong inferences not just about the

beginnings of strings, but also about their ends. Propagation

over fixed-length string decision variables takes advantage of

this fact, for example in the backwards pruning phase of [11].

Extending fixed-length methods to bounded length using the

open sequence representation [18], this source of inference is

lost: the last symbols of a string decision variable represented

as 〈 �A,N 〉 have unknown indices in �A until N is fixed.

In order to make better use of this source of inference,

we propose a domain based on the concatenation of two

languages, determining a set of strings based on both their

beginning and their end. We call these languages the prefix
language and suffix language (collectively, the affix languages)

of the domain. This approach could be extended to a con-

catenation over arbitrarily many languages, thereby allowing

for reasoning over several discontinuous regions of satisfying

strings; however, we believe that reasoning starting from the

outside of the string and moving towards the inside should

result in stronger pruning, as the beginning and end of the

strings are usually more clearly determined by the constraints.

A. Domains

The affix representation of a string decision variable X is

given by a tuple 〈�P , P , �S, S〉, where the components P and S
are integer decision variables, �P is an array of scalar decision

variables 〈�P [1], . . . , �P [P ]〉 over Σ, and �S is an array of scalar

decision variables 〈�S[1], . . . , �S[S]〉 over Σ. When required for

clarity, we will distinguish the components of X from those

of other string decision variables by denoting them P x, etc.

We construct the following bounded-length affix languages:

L(�P , P ) =
⋃

k∈D(P )

{
p1 . . . pk

∣∣∣ ∀i ∈ [1, k] : pi ∈ D
(
�P [i]

)}

L(�S, S) =
⋃

k∈D(S)

{
s1 . . . sk

∣∣∣ ∀i ∈ [1, k] : si ∈ D
(
�S[k−i+1]

)}

Definition 1. The affix domain of X is the concatenation of

the affix languages:

D
(〈

�P , P , �S, S
〉)

=
{
ps

∣∣∣ p ∈ L(�P , P ), s ∈ L(�S, S)
}

As strings in L(�S, S) are constructed from �S by decreasing
index, the first symbol in �S is the last symbol of any word in

D(X). Each assignment of the affix representation is mapped

to a unique open sequence representation assignment via the

semantic function:
�〈

�P , P , �S, S
〉�

=
〈
〈�P [1], . . . , �P [P ], �S[S], . . . , �S[1]〉, P + S

〉

In the examples which follow, we take as our alphabet the set

of symbols corresponding to the lowercase, English characters,

denoted a, b, etc. We write [p–s] to represent the lexicographic

interval { p, q, r, s }. A singleton lexicographic interval { p }
or integer interval { 1 } we denote as a bare element, i.e., p

or 1. We denote a concrete string as ‘example’.

Example 1 Consider a concrete affix representation:

α =
〈〈[p–s], [a–z], [a–z], [f–x]〉, [1, 3], 〈x, i, f, [f–x]〉, [2, 4]〉

Let A be a string decision variable, where the current do-

mains of the components of the affix representation are the

components of α. Here �P a has 4 elements, corresponding to

the original upper bound on the length of strings in the prefix

language, as opposed to P a = 3, which is the current upper

bound on that length. The strings ‘prefix’ and ‘suffix’ are

both in D(A), while ‘affix’ is not (since a 
∈ [p–s]). Also,

the prefix language of A does not include the string ‘post’,

because its length exceeds P a = 3; nevertheless, ‘postfix’

is in D(A), as a concatenation of ‘pos’ and ‘tfix’. �
The semantic function is surjective, but not injective: a

string defined in the open sequence representation may have

several equivalent definitions in the affix representation. This

is, however, sufficient for the purposes at hand; namely, propa-

gators which act on the underlying affix representation may, by

means of the semantic function, implement constraints which

are defined in terms of the open sequence representation.

The affix representation 〈�P , P , �S, S〉 of a string decision

variable which is not yet fixed may be mapped to an open

sequence representation 〈 �A,N 〉, where N = P + S and for

every index i in the array �A:

D
(
�A[i]

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(
�P [i]

)
if i ∈ [1, P ]

D
(
�P [i]

)
∪

S⋃
j=max(P+S−i+1,1)

D
(
�S[j]

)
if i ∈ [

P + 1, P
]

P+S−i+1⋃
k=max(P+S−i,1)

D
(
�S[k]

)
if i ∈ [

P + 1, P + S
]

Example 2 The affix representation

〈〈[p–s], [a–z], [a–z], [f–x]〉, [1, 4], 〈x, i, f, [f–x]〉, [2, 3]〉
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and the representation α from Example 1 both map to the open

sequence representation
〈〈[p–s], [a–z], [a–z], [f–x], { f, i, x } , { i, x } , x〉, [3, 7]〉

�
B. Consistency

We extend open domain consistency [18] to account for

the interaction between affix languages, and for the presence

of multiple string decision variables in the scope of a single

constraint. Informally, every symbol in the domain of every

affix element variable participates at its index in a solution

string, and there is a solution for every length in the domain

of each affix length variable. Formally:

Definition 2 (PS-consistency). Given a constraint C and a

bounded-length string decision variable X = 〈�P , P , �S, S〉 in

its scope, the domain of X is PS-consistent if

• for every �P [i] ∈ �P and every v ∈ D(�P [i]), there ex-

ists a string p = p1 . . . pn such that n ∈ D(P ), pi = v,

pj ∈ D(�P [j]) for j ∈ [1, n], a string s ∈ L(�S, S), and an

assignment A satisfying C such that A(X) = ps, and

• for every n ∈ D(P ) there exists a string p ∈ L(�P , P ) of

length |p| = n, a string s ∈ L(�S, S), and an assignment

A satisfying C such that A(X) = ps, and

• for every �S[i] ∈ �S and every v ∈ D(�S[i]), there ex-

ists a string s = s1 . . . sn such that n ∈ D(S), si = v,

sj ∈ D(�S[j]) for j ∈ [1, n], a string p ∈ L(�P , P ), and an

assignment A satisfying C such that A(X) = ps, and

• for every n ∈ D(S) there exists a string s ∈ L(�S, S) of

length |s| = n, a string p ∈ L(�P , P ), and an assignment

A satisfying C such that A(X) = ps.

We define PSL-consistency as a weakening of PS-

consistency that considers only prefixes of length P and

suffixes of length S; PSU-consistency is the same for maximal-

length affixes, and PSLU-consistency for both minimal- and

maximal-length affixes.

C. Domain Strength

Affix domains are sets of strings; for a pair of affix domains

D and D′ we say that D′ is stronger (resp. strictly stronger)

than D iff D′ ⊆ D (resp. D′ ⊂ D). From Definition 1 it is

clear that strengthening the domain of an affix representation

〈�P , P , �S, S〉 may be accomplished by removing strings from

either L(�P , P ) or L(�S, S). We now describe the removal

of strings from the prefix language; the description applies

equally to the suffix language.

The prefix length P may be used to partition the indices of
�P into three ranges: the required range of the indices up to the

current lower bound of P , the optional range of the indices

beyond the current lower and until the current upper bound,

and the discarded range of the indices beyond the current

upper bound:

�P req = [1, P ] �P opt = [P +1, P ] �P dis = [P +1, Porig]

The prefix language may be strengthened by tightening the

bounds on P , thereby increasing the required and/or discarded

ranges, and decreasing the optional range. In addition, the

prefix language may be strengthened by removing values from

the domains of the scalar decision variables with indices in the

required or optional range.

Example 3 Let the components of the affix representations

of string decision variables B and C be the components of,

respectively:

β =
〈〈p, r, [a–z], [a–z]〉, [1, 3], 〈x, i, f, [f–x]〉, [2, 4]〉

γ =
〈〈[p–s], [a–z], [a–z], [a–z]〉, [1, 3], 〈x, i, f, [f–x]〉, 4〉

Comparing with A from Example 1, we have

D(P b) = D(P a), D(�P b[i]) ⊆ D(�P a[i]) for all i ∈ [1, P b], and

D(�P b[1]) ⊂ D(�P a[1]); therefore, L(�P b, P b) ⊂ L(�P a, P a).
Since L(�Sb, Sb) = L(�Sa, Sa), this results in D(B) ⊂ D(A).
On the other hand, we have D(�P c[i]) ⊆ D(�P a[i]) for

all i ∈ [1, P c]; yet we still have L(�Sc, Sc) ⊂ L(�Sa, Sa)
due to D(Sc) ⊂ D(Sa). Since L(�P c, P c) = L(�P a, P a),
D(C) ⊂ D(A). The domains D(B) and D(C) are not

comparable, as illustrated by the strings ‘prefix’ and

‘suffix’; while both are elements of D(A), ‘prefix’ is an

element of D(B) but not D(C), and ‘suffix’ is an element

of D(C) but not D(B). �
Any propagator which only removes values from domains

of the elements of the affix arrays, or tightens the integer

bounds on an affix length, must be contracting. We further

note that each of these operations is finitely bounded: P and

S are finitely bounded integers, which cannot be tightened

indefinitely, while the finity of Σ guarantees that �P req and
�Sreq must eventually converge to concrete strings.

V. PROPAGATION

Next, we describe propagators for constraints over affix

domains. The constraints given in Section III-B state re-

lationships between the components of the open sequence

representations of bounded-length string decision variables,

but do not imply the same relationships among the components

of their affix representations. For example, in the open se-

quence representation, EQUAL(〈 �Ax, Nx〉, 〈 �Ay, Ny〉) implies

both �Ax = �Ay and Nx = Ny , but it does not imply either
�P x = �P y or P x = P y in a corresponding affix representation.

Propagation of EQUAL over affix domains must account for

cases where a region of �P x must be equal to a region of �P y ,

but also cases where a region of �P x must be equal to the

reverse of a region of �Sy; for �Sx there exist symmetric cases.

Example 4 Continuing from Example 3, consider the con-

straint EQUAL(B,C). In any satisfying assignment, the sym-

bols represented by �P b[1] and �P c[1] must be the same;

no similar deduction is possible for �P b[2] and �P c[2], as

P b = P c = 1. Pruning the domain of C may be accomplished

by giving it the affix representation:

γ′ =
〈〈p, [a–z], [a–z], [a–z]〉, [1, 3], 〈x, i, f, [f–t]〉, 4〉
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which is strictly stronger than γ. The domain of B may also be

pruned, but only by reducing the domains of the affix lengths

to reflect P b+Sb ∈ [5, 7]; i.e., the current interval of P c+Sc.

Pruning of affix lengths is discussed in Section V-B1. �
Example 5 If B has an affix representation stronger than

β, however, then an additional region of alignment may be

reasoned upon. For example:

β′ =
〈〈p, r, [a–z], [a–z]〉, [1, 3], 〈x, i, f, [f–t]〉, 2〉

If the components of the affix representations of B and C
are β′ and γ′ (of Example 4), respectively, then the length

of any satisfying string must be 5 (being both the minimum

of P b + Sb and the maximum of P c + Sc); furthermore, in

any solution the region �P b[2] through �P b[3] must align with

the region �Sc[4] through �Sc[3]. As D(�P b[3])∩D(�Sc[3]) = ∅,
there can be no satisfying solution. �

In Section V-A we define a pair of primitive pruning

operations that filter the domains of symbols in overlapping

regions of two affixes at a time. Then, in Section V-B we use

these operations to construct propagators for the constraints

specified in Section III-B. In Section V-C we discuss propa-

gating a regular language membership constraint.

A. Pruning Regions

A large portion of the filtering required for the propagation

of the constraints in Section III-B may be generally described

as a sequence of successive equalities between the symbols

occurring in a range of indices in an affix of one variable,

and a same-sized range in an affix of another variable. We

define this operation as EQREGION( �Q,Q, �R,R,D), where �Q
and �R are arrays of scalar decision variables, and Q, R, and

D are integer decision variables, where L( �Q,Q) and L(�R,R)
are affix languages of two distinct string decision variables.

The integer D represents the distance (in number of symbols)

between the position of �Q[1] and �R[1]; in other words, when

D is fixed, D( �Q[D + 1]) must be equal to D(�R[1]). In some

cases, this distance will be a fixed quantity; however, for

the sake of generality, we need to treat the distance as an

integer decision variable. The domain of the distance defines

the possible relative alignments of the two affix bounds.

To cover all the cases of aligned regions between the

arguments of the constraints, two versions of EQREGION are

required. The versions differ only in the relative direction of

these two affixes: a pair of prefixes or pair of suffixes is said

to be unidirectional, while a mixed prefix-suffix pair is said

to be bidirectional.
1) Unidirectional Region: The unidirectional pruning oper-

ation EQREGIONU( �Q,Q, �R,R,D) makes two types of infer-

ences. The first considers elements of �Q with an index in �Qreq

that align with some element of �R with an index in �Rreq, for

every distance in D(D). Each value in the domains of these

elements of �Q requires a witness in the union of the domains

of the elements of �R with which it aligns. There is a symmetric

requirement for elements of �R with index in �Rreq that align

with some element of �Q with an index in �Qreq.

The second type of inference concerns the possible values

of D: for each distance, the domains of the elements of �Q and
�R that would be aligned must have some value in common,

or the distance can be removed from D(D).

EQREGION
U
(
�Q,Q, �R,R,D

)
≡

∀i ∈ �Qreq ∩
[
D,R+D − 1

]
:
(
�Q[i] ∈

⋃
k∈D(D)

D
(
�R[i− k]

)

∧D ∈
{
k
∣∣∣ D

(
�R[i− k]

)
∩ D

(
�Q[i]

)

= ∅

})

∧ ∀j ∈ �Rreq ∩
[−D,Q−D − 1

]
:
(
�R[j] ∈

⋃
k∈D(D)

D
(
�Q[k + j]

)

∧D ∈
{
k
∣∣∣ D

(
�Q[k + j]

)
∩ D

(
�R[j]

)

= ∅

})

2) Bidirectional Region: For prefix-suffix or suffix-prefix

alignments, the two affixes have opposite directions. So while
�R[1] and �Q[D + 1] align in both cases, the alignments between

subsequent elements will differ. Otherwise, the reasoning

performed is similar to that of EQREGIONU: elements of �Q
that always align with some element of �R have their domains

filtered, and vice versa; while the domain of possible distances

is filtered based on the domains of the elements that would

become equal in that alignment.

EQREGION
B
(
�Q,Q, �R,R,D

)
≡

∀i ∈ �Qreq ∩
[
D −R,D − 1

]
:
(
�Q[i] ∈

⋃
k∈D(D)

D
(
�R[k−i−1]

)

∧D ∈
{
k
∣∣∣ D

(
�R[k−i−1]

)
∩ D

(
�Q[i]

)

= ∅

})

∧ ∀j ∈ �Rreq ∩
[
D −Q,D − 1

]
:
(
�R[j] ∈

⋃
k∈D(D)

D
(
�Q[k−j−1]

)

∧D ∈
{
k
∣∣∣ D

(
�Q[k−i−1]

)
∩ D

(
�R[j]

)

= ∅

})

B. Propagators

We proceed to describe propagators for the constraints of

Section III-B in terms of the two primitive pruning operations

defined in the previous subsection, with the addition of a few

integer equalities on affix length bounds.

1) Equality: It seems likely that unifying X and Y in the

model prior to constraint posting will generally be preferable

to maintaining EQUAL(X,Y); however, this is not always

possible, for example if one of the decision variables is used

in a reified context. Propagation of equality over affix do-

mains is significantly more complicated than for more familiar

domains, as we must account for interactions between �P x

and �Sy , and between �Sx and �P y . It is, nevertheless, simpler

than propagation for the other constraints specified here; we

therefore describe propagation of EQUAL in some detail, to

serve as an illustrative example of how propagation over affix

representations functions.

Figure 1 provides a propagator for the EQUAL constraint.

Lines 2 to 12 correspond to Nx = Ny in the open sequence
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1 EQUAL(〈�P x, P x, �Sx, Sx〉, 〈�P y, P y, �Sy, Sy〉):
2 if P x + Sx < P y + Sy then
3 P x ← max(P x,min(P y, P y + Sy − Sx))
4 Sx ← max(Sx,min(Sy, P y + Sy − P x))
5 else
6 P y ← max(P y,min(P x, P x + Sx − Sy))
7 Sy ← max(Sy,min(Sx, P x + Sx − P y))
8 n← min(P x + Sx, P y + Sy)
9 P x ← min(P x, n− Sx)

10 Sx ← min(Sx, n− P x)
11 P y ← min(P y, n− Sy)
12 Sy ← min(Sy, n− P y)

13 EQREGIONU(�P x, P x, �P y, P y, 0)

14 EQREGIONB(�P x, P x, �Sy, Sy, P x + Sx)

15 EQREGIONB(�Sx, Sx, �P y, P y, P x + Sx)

16 EQREGIONU(�Sx, Sx, �Sy, Sy, 0)

Fig. 1. Propagation of the constraint EQUAL

representation. The naive translation into P x + Sx = P y + Sy

would fail to take advantage of all available information.

Consider that an increase to Nx due to propagation could be

achieved with an increase to P x, Sx, or both; if, however, the

required region of the prefix of Y is larger than that of X,

then increasing P x is likely to result in filtering of domains

for symbols in �P x. In contrast, increasing Sx under those

same circumstances will yield little, if any, filtering of symbol

domains, as shown in the following example.

Example 6 Let the components of the affix representations of

string decision variables X and Y be, respectively:
〈〈[p–s], [a–z], [a–z], f〉, [1, 3], 〈x, i, [a–z], [a–z]〉, [2, 4]〉〈〈[p–s], [r–u], [f–s], [f–x]〉, 3, 〈x, i, f, [a–f]〉, [2, 4]〉

The minimum length of any string in D(Y) is P y + Sy = 5,

so clearly one or both of P x = 1 and Sx = 2 should be

increased accordingly. Choosing Sx ← 4 satisfies the length

constraints, but results in rather limited pruning; i.e., it would

not be valid to prune D(�Sx[3]) ← { f } based on D(�Sy[3]),
as depending on the value of P x, �Sx[3] might also align with
�P y[2] or �P y[3]. In contrast, the choice of P x ← 3 ensures

that in all satisfying assignments �P x[2] aligns with �P x[2]. �
Every domain of N may be represented by several P and

S combinations, so we choose the most advantageous of these

combinations. The best choice can be determined in constant

time (see line 2) by comparing the length bounds of the two

affix representations. For the pruning of the lower bounds of

lengths of strings in the affixes (following the conditional at

line 2), this means that the required region of each prefix (resp.

suffix) may be enlarged to take advantage of information from

the other prefix (resp. suffix), but only so long as the operation

would not cause the minimum length of either string to exceed

the minimum length of the other string. Adjustment to the

maximum lengths of the affixes is then made based on the

combination of these new affix minimum lengths, and the prior

maximum bound of the string lengths (computed at line 8).

As each affix is anchored to one or the other end of its

string, the prefix-prefix and suffix-suffix pairs each have a

fixed distance of zero; as a result, the EQREGIONU operations

at lines 13 and 16 perform quite strong pruning. For the

bidirectional pairs, the distance is the length of the two strings;

as long as this length is not fixed, EQREGIONB will be

relatively weaker. This is exactly as we would expect: with an

unknown string length, the precise alignment between prefix

symbols of one string and suffix symbols of the other may only

be known very late in the solution process, and it is only the

domains of those symbols that must align with some symbol

from the opposing affix for every feasible value of the string

length which might be pruned.

The EQUAL propagator in Figure 1 is contracting; it is also

checking, as any assignment must have a fixed length, at which

point the relative positions of the symbols in the two strings are

known. However, the reasoning on the required regions of X
and Y is not quite sufficient to maintain PSL-consistency. This

is due to a gap between the affix regions which are covered by

the two primitive pruning operations described in the previous

subsection. For example, when P y < P x < P y , then there

may be elements of �P x that align with either one element from
�P y or a region of elements from �Sy . The EQUAL propagator

in Figure 1 is correct despite ignoring this additional case,

as the affix elements affected are not covered by either the

EQREGIONU or EQREGIONB cases. Furthermore, as long

as the minimum affix lengths are pruned in the maximally

advantageous method, as described above, the additional case

seems to occur infrequently. Nevertheless, it should be possible

to extend the propagator to cover these cases by adding a

third primitive pruning operation which takes into account the

optional regions of the affixes, using similar reasoning to that

for required regions presented here. This should allow not only

for a PSL-consistent propagator, but also for extension to one

that is fully PS-consistent.

2) Reverse: The propagator for REVERSE follows directly

from that of EQUAL. The only required modification is the

swapping of the parameters corresponding to the prefixes and

suffixes of Y on lines 13 through 16 of Figure 1.

3) Concatenation: The propagator for CONCAT(X,Y,Z)
given in Figure 2 has many more cases than EQUAL; the prefix

of Z could have regions aligned with each of the four affixes

of X and Y, and there are another four possible alignments

for the suffix of Z. Nevertheless, each of these eight possible

aligned regions may be expressed as an instance of one of

the two defined pruning operations, with the calculation of a

suitable distance value.

Updating minimum length of the affix bounds is also similar

to EQUAL, although in the case of CONCAT there is less

information available. Specifically, Sx and P y are difficult to

increase, because of their position inside Z. The adjustment

of P x must consider not only Sx, but also the upper bounds

of the lengths of the affixes of Y, in order to avoid unjustified

pruning on Ny; adjustment of Sy is symmetric.
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1 CONCAT(〈�P x, P x, �Sx, Sx〉,
2 〈�P y, P y, �Sy, Sy〉, 〈�P z, P z, �Sz, Sz〉):
3 if P z + Sz < P x + Sx + P y + Sy then
4 P z ← max(P z,min(P x, P x+Sx+P y+Sy−Sz))
5 Sz ← max(Sz,min(Sy, P x+Sx+P y+Sy−P z))
6 else
7 P x ← max(P x,min(P z, P z+Sz−(P y+Sy)−Sx))
8 Sy ← max(Sy,min(Sz, P z+Sz−(P x+Sx)−P y))
9 n← min(P z + Sz, P x + Sx + P y + Sy)

10 P z ← min(P z, n− Sz)
11 Sz ← min(Sz, n− P z)
12 P x ← min(P x, n− (P y + Sy + Sx))
13 Sx ← min(Sx, n− (P y + Sy + P x))
14 P y ← min(P y, n− (P x + Sx + Sy))
15 Sy ← min(Sy, n− (P x + Sx + P y))

16 EQREGIONU(�P z, P z, �P x, P x, 0)

17 EQREGIONB(�P z, P z, �Sx, Sx, P x + Sx)

18 EQREGIONU(�P z, P z, �P y, P y, P x + Sx)

19 EQREGIONB(�P z, P z, �Sy, Sy, P z + Sz)

20 EQREGIONU(�Sz, Sz, �Sy, Sy, 0)

21 EQREGIONB(�Sz, Sz, �P y, P y, P y + Sy)

22 EQREGIONU(�Sz, Sz, �Sx, Sx, P y + Sy)

23 EQREGIONB(�Sz, Sz, �P x, P x, P z + Sz)

Fig. 2. Propagation of the constraint CONCAT.

The CONCAT propagator also does not maintain PSL-

consistency. The cases missed by the EQUAL propagator

described in the last section are missed here, as well. Further-

more, the possible alignments encountered while propagating

CONCAT allow for cases in which an element from an affix

array of one string decision variable might align with ranges

of elements from more than one affix array of another string

decision variable. These cases are somewhat more difficult to

generalize than the additional case discussed in EQUAL, and

further study is required to determine a method for achieving

PSL-consistency, and ideally PS-consistency, for CONCAT.

4) Character At Position and Substring:
SUBSTRING(X,Y, I) may also be decomposed into a

series of equalities of aligned regions, as shown in Figure 3.

In this case, the distance between the regions must also take

into account the decision variable I , representing the index of

the starting position of Y in X. Unfortunately, this alteration

results in rather weak pruning in general. A symbol in either

string which, in any satisfying solution, aligns with one of

a set of symbols in the required region of one of the other

string’s affixes is pruned essentially as if it were subject

to an ELEMENT constraint: each element of the domain of

the individual symbol must have a witness in the union of

the domains of the symbols with which it might align, and

the index I is filtered to remove positions, resulting in an

empty intersection of domains. The SUBSTRING propagator

described here does not maintain PSL-consistency, for the

1 SUBSTRING(〈�P x, P x, �Sx, Sx〉, 〈�P y, P y, �Sy, Sy〉, I):
2 P x + Sx ≥ I + P y + Sy

3 EQREGIONU(�P x, P x, �P y, P y, I)

4 EQREGIONB(�P x, P x, �Sy, Sy, I + P y + Sy)

5 EQREGIONB(�Sx, Sx, �P y, P y, P x + Sx − I)

6 EQREGIONU(�Sx, Sx, �Sy, Sy, P x+Sx−(I+P y+Sy))

Fig. 3. Propagation of the constraint SUBSTRING propagator

same reasons described for CONCAT.

CHARACTERAT propagation is identical, for Y of length 1.

C. Regular Language Membership

Given a finite automaton M that specifies L, an automaton

Mpre accepting the bounded-length prefixes of strings in L
is constructed by unrolling M to length P , and making all

states with distance at least P from the start state be accepting

states in Mpre (as long as they fall on a path leading to an

accepting state inM). Similarly, an automatonMsuf accepting

bounded-length suffixes is constructed from Mrev. We then

make use of the regular constraint for sequences of bounded

length described in [18], which we refer to as OPENREGU-

LAR. From this we get the decomposition into OPENREGU-

LAR(Mpre, �P , P ) and OPENREGULAR(Msuf, �S, S).

VI. PRELIMINARY RESULTS

This theoretical paper aims at laying a self-contained foun-

dation for bounded-length string decision variables in CP. A

full experimental evaluation is orthogonal to this purpose, and

would have to be omitted for space reasons. Nevertheless, we

implemented a prototype of the propagators described here

using the extended indexical language described in [22]. An

indexical [23] is an expression of the form x ∈ σ restricting

the domain of the decision variable x to the intersection of

its current domain and the interval σ. An indexical language

is a high-level language for propagator description; [22] pro-

vides a compiler which generates propagator descriptions from

checkers, and also has several solver-specific back-ends which

allow for compilation of the propagator into source code.

We used this compiler to generate prototypes, in

Gecode 3.7.3 [24], of propagators for the constraints given

here (exclusive of REGULAR), using both the affix represen-

tation and the open sequence representation. We compared

performance on several randomly generated concatenation

problems. In each instance, a concrete string of length 100

to 200, over an alphabet of size ten, was generated. CONCAT

constraints were used to constrain seven bounded-length string

decision variables to be equal to the concrete string, with the

variables occurring in a fixed sequence that included a single

repeated variable. Branch and bound search was used to find

the solution with the maximum length for the repeated variable

(i.e., the longest repeated symbol sequence in the concrete

string).

1042



Preliminary results were encouraging. Despite the increased

complexity inherent in propagating the affix representation,

over several hundred instances we observed very little vari-

ation in runtime. It is possible that the constraints in the

randomly generated problems were too loose to force the

execution of the more computationally expensive portions of

the propagators; it seems likely that hand-crafted test cases will

be required to properly evaluate the impact of these portions

on performance. More strongly constrained test cases should

also better demonstrate the impact of the affix representation

on search tree size; in the random instances we observed only a

moderate improvement (approx. 2% on average) in the number

of search tree nodes.
Full experimental analysis will, of course, require an affix

representation implementation of REGULAR.

VII. FUTURE WORK

Immediate work is focused on extending the propagators

to achieve PS-consistency, and on improving the efficiency

of the initial prototype. We also plan to investigate branch-

ing heuristics, as our intuition is that the early stages of

search must rely heavily on intelligent branching over string

lengths. A CP angle is promising here, as for fixed-length

strings (implemented as arrays of scalar decision variables),

CP solvers have already been shown [25] to outperform

systematically HAMPI [9], KALUZA [15], and SUSHI [6] by

orders of magnitude, on their own benchmarks. A promising

direction of research is alternative affix representations, such as

using regular languages to state the affix languages, allowing

for stronger domains than the array-based representation we

describe here. Supplementing the domain with a data structure

such as layered graphs [11], or MDD constraint stores [26],

would allow propagation directly on the data structure, similar

to the approach for unbounded regular domains in [5].
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