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ABSTRACT
Solving combinatorial problems is increasingly crucial in busi-
ness applications, in order to cope with hard problems of
practical relevance. In these settings, data typically reside
on centralised information systems, in form of possibly large
relational databases, serving multiple concurrent transac-
tions run by different applications. We argue that the use
of current solvers in these scenarios may not be a viable
option, and study the applicability of extending information
systems (in particular database management systems) to of-
fer combinatorial problem solving facilities. In particular we
present a declarative language based on sql for modelling
combinatorial problems as second-order views of the data
and study the applicability of constraint-based local search
for computing such views, presenting novel techniques for lo-
cal search algorithms explicitly designed to work directly on
relational databases, also addressing the different cost model
of querying data in the new framework. We also describe
and experiment with a proof-of-concept implementation.

1. INTRODUCTION
Solving combinatorial problems is increasingly crucial in

many business scenarios, in order to cope with hard prob-
lems of practical relevance, like scheduling, resource and
employee allocation, security, and enterprise asset manage-
ment. The current approaches (beyond developing ad-hoc
algorithms) model and solve such problems with constraint
programming (CP), mathematical programming (MP), SAT,
or answer set programming (ASP). Unfortunately, in typi-
cal business scenarios, data reside on centralised informa-
tion systems, in form of possibly large relational databases
(DB) with complex integrity constraints, deployed in data
centres with a highly distributed or replicated architecture.
Furthermore, these information systems serve multiple con-
current transactions run by different applications. In these
scenarios, the current approach of loading the combinatorial
problem instance data into a solver and running it externally
to the database management system (DBMS) may not be
an option: data integrity is under threat, as the other busi-
ness transactions could need write-access to the data during
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the (potentially very long) solving process. Furthermore, in
some scenarios, the size of the portion of the data relevant
to the problem may be too large for it to be easily repre-
sented in central memory, which is a requirement for current
solvers. Finally, the complex structure of the data (or lack
of structure, as in presence of, e.g., textual or geo-spatial
information) may not permit an easy modelling into the lan-
guages offered by current solvers without extremely expen-
sive problem-specific preprocessing and encoding steps.

In [2] we argue that to address these issues, which may hin-
der a wider applicability of declarative combinatorial prob-
lem solving technologies in business contexts, information
systems and in particular DBMSs could be extended with
means to support the specification of second-order views
(i.e., views whose definition may specify NP-hard problems).
Although the interest of second-order query languages has
been mostly theoretical so far, in [2] we show that adding
non-determinism to sql (the DBMS language most widely
used today) is a viable means to offer combinatorial problem
modelling facilities to the DB user in practice.

In this paper we improve (Sec. 2) the sql-based combina-
torial problem modelling language of [2] for the definition of
second-order views, with the aim of easing the modelling ex-
perience for the average DB user, who usually has no skills
in combinatorial problem solving. In particular, we show
that a single general-purpose new construct enables non-
determinism, which is the key mechanism to enhance the
expressive power of sql. After a short formalisation of the
new language in terms of relational calculus (Sec. 3), we
study in Sec. 4 the applicability of local search (LS) [3], in
the spirit of constraint-based local search (CBLS) [7], to com-
pute second-order DB views. In particular, we study the fea-
sibility of enhancing standard DBMSs with LS capabilities,
rather than connecting them to external LS solvers. This
choice aims at taking into account the concerns above as
much as possible and brings different advantages. (i) Data
is not duplicated outside the DBMS, hence we do not re-
quire that it is kept frozen during solving. The computation
of a second-order view is seen as a normal DBMS back-
ground process that executes concurrently with the business
transactions, with its content evolving during the life-cycle
of the underlying DB, exploiting standard DBMS change-
interception mechanisms (i.e., triggers or event-based rules)
to react to (often small) data changes. (ii) As LS (although
incomplete) offers better scalability than global search, our
approach can be particularly useful when dealing with large
problem instances, as is often the case with business appli-
cations. Clearly, DBMSs can offer different view compu-
tation engines based on complementary technologies (e.g.,
backtracking and propagation). (iii) Our approach allows
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the average DB user to solve problems where data and con-
straints cannot be easily modelled in the languages of current
CP/MP/ASP solvers, as it offers the whole spectrum of sql
data-types and functions (e.g., the user can easily model a
constraint that performs full-text search, or pattern match-
ing in geo-spatial data or XML trees).

Given that the query cost model of DBMSs is very differ-
ent from the one of traditional solvers operating exclusively
in central memory, we re-think LS with an explicit focus on
the relational model and on the features of modern DBMSs
to manage relational data (potentially large and stored in
external memory) efficiently. In particular, we show that
the relational information retrieved during the evaluation
of constraints in any state of the search (beyond the usual
quantitative information about the cost share of each con-
straint) allows us to reason on the causes why constraints
are violated and to synthesise automatically a set of moves
explicitly devoted to remove these causes. We call this new
technique dynamic neighbourhood design (DND). The set
of moves synthesised by DND, in the form of a (typically
much smaller) subset of the set of all moves M that can be
executed from the current state, is complete, in the sense
that it will always contain the move that the LS algorithm
(whichever in use) would choose, if run on the entire set M .
Furthermore, we show that the clever join optimisation tech-
niques of current DBMSs may be exploited to perform a joint
(i.e., collective) exploration of the neighbourhood reachable
with these moves, which largely improves the time needed
by evaluating them one by one, as is done in traditional LS
solvers. We call this new technique joint incremental neigh-
bourhood evaluation (JINE).

Sec. 5 briefly describes a proof-of-concept implementation
based on DND and JINE, as well as some experiments.

2. MODELLING AS VIEW SYNTHESIS
ConSQL [2] is a non-deterministic extension of sql for

the specification of combinatorial problems. Being a super-
set of sql, it provides users with the possibility of safely
exploiting the rich set of language features of sql during
problem modelling. In this section, we improve this language
from a modelling standpoint, greatly reducing the number
of keywords added to standard sql (from 11 to just 4). In
particular, we propose a single general-purpose construct to
enable non-determinism. In our opinion, the new language,
which we call ConSQL+, makes the modelling task much
easier for the average DB user.

We do not give a formal description of the language, but
we introduce it by an example. Assume that a set of sci-
entists stored in DB relation Org wants to organise a set of
at most w workshops. All scientists in Org will participate,
and may be asked to invite others chosen from their coau-
thors. Each participant attends exactly one workshop. The
workshops to be organised (which must have a number of
participants between partmin and partmax ) do not have pre-
defined topics, as the partitioning of the participants among
them is entirely based on a complex criterion on the simi-
larity of their publications. In particular: two scientists s1
and s2 are considered unrelated iff any of them has more
than k publications unrelated to more than k publications
of the other. Two publications p1 and p2 are considered
(un)related according to a criterion similar(p1, p2) based on
the similarity of their titles and/or abstracts (analogously to
what happens in current web search engines). Each work-
shop can have at most u pairs of unrelated participants.

Data is taken from a bibliography DB storing (among pos-

sibly many others) the following three tables (primary keys
are underlined): Scientist(id) (the set of all scientists in the
DB), Pub(id, title) (the set of all publications), Authoring(s,p)
(storing authorships, s ∈ Scientist, p ∈ Pub).

Solving this problem with current CP/MP/ASP solvers is
extremely difficult, requiring the user to perform an extraor-
dinarily expensive (in programming effort) problem-specific
preprocessing and encoding of textual information: in par-
ticular, it could be necessary to pre-compute and store the
similarity measures for all pairs of publications authored by
any two scientists that may be invited to the same work-
shop. The problem can however be easily and compactly
modelled in ConSQL+ as follows (once tables Org(id) and
workshop(ws) have been added) exploiting the flexibility of
sql (the few new keywords added to sql are capitalised):

create SPECIFICATION Workshops (
create view Invitation as
select sb.id as invitee, CHOOSE(select ws from workshop)
from Org s, Authoring sa, Pub pa, Authoring sb
where s.id = sa.author and sa.pub = pa.id and sb.pub = pa.id

A problem specification is defined by the new construct cre-
ate SPECIFICATION, which embeds several elements. Above,
we have defined the first of such elements, namely a second-
order view on the data (Invitation). The difference of Invi-
tation with ordinary sql views is that one column (ws) is
defined by the new construct CHOOSE. Such columns are
called choose columns. We are asking the DBMS to popu-
late the choose column non-deterministically, picking tuples
from the query argument of CHOOSE (an example of a can-
didate extension of view Invitation is in Fig. 1). The user is
supposed to specify constraints that the DBMS must satisfy
when populating a choose column, as well as an optional
optimisation function. Constraints are defined as standard
sql assertions (see App. A for a brief description of the sql
syntax). As an example, the fragment:

check ”con1” ( not exists (
select * from Invitation i, Org s where i.invitee = s.id and i.ws is null ))

check ”con2” ( not exists (
select ws from Invitation i where i.ws is not null group by ws
having count(*)>0 and (count(*)<partmin or count(*)>partmax ) ))

defines constraints con1 and con2, which are satisfied iff view
Invitation is populated in such a way that all scientists in set
Org are invited to a workshop (con1) and each workshop
has either 0 (workshop not held) or partmin to partmax in-
vitees (con2). Function count(*) is one of the several aggre-
gates offered by sql, and counts the number of tuples inside
each group. sql (and hence ConSQL+) follows a paradigm
similar to that of logic programming languages and dual to
that of, e.g., CP, in that it encodes as /∃~x.¬c(~x) a constraint
that a CP practitioner would write as ∀~x.c(~x). This is be-
cause queries are existentially quantified formulas. Although
ConSQL+ accepts constraints defined by any sql condition,
not exists constraints are by far the most commonly used in
practice (as are ∀ constraints in CP). As constraints are
represented intensionally, this modelling paradigm does not
introduce any blow-up in the size of the problem model.

A specification can also define ordinary sql views (helper
views), possibly dependent on second-order views. This
eases the modelling task of some constraints. As an ex-
ample, the following view of the Workshops specification:

create view unrelated scientists pub as
select i1.ws as ws, a1.author as s1, a2.author as s2, p1.id as p1, count(*) as n
from Invitation i1, Invitation i2, Authoring a1, Authoring a2, Pub p1, Pub p2
where i1.ws is not null and i2.ws is not null and i1.ws = i2.ws and

i1.s <> i2.s and i1.s = a1.author and i2.s = a2.author and
a1.pub = p1.id and a2.pub = p2.id and not similar(p1, p2)

group by i1.ws, a1.author, a2.author, p1.id having n > k
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evaluates to the set of pairs of scientists (columns s1 and s2
in the select clause) invited to the same workshop ws, such
that one publication p1 of s1 is unrelated to more than k
publications of s2. This view is used to define a second one:

create view unrelated scientists as select ws, s1, s2
from unrelated scientists pub group by ws, a1, a2 having count(*) > k

which returns, for every workshop ws, the set of pairs (s1, s2)
of unrelated scientists invited to ws.

Constraint con3 is defined on top of the last helper view:

check ”con3” ( not exists (
select ws from unrelated scientists group by ws having count(*) > u ))

which enforces view Invitation to be such that no workshop
will be attended by more than u pairs of unrelated scientists.

Finally, a specification may define an objective function
(omitted in this example for brevity) via the new constructs
MINIMIZE and MAXIMIZE applied to an arbitrary aggregate
sql query (i.e., a query returning a single numeric value).

In general, a specification may define several second-order
views and each of them may contain several CHOOSE con-
structs.

The language of [2] used different keywords to define the
search space (i.e., the set of all possible ways to populate
choose columns of second-order views): SUBSET, PARTI-
TION, FUNCTION, PERMUTATION. All these keywords have
been replaced by the single non-deterministic CHOOSE con-
struct, which models a function (total if not null is specified,
partial otherwise) from the pure sql part of the hosting
view (the domain of the function) to the set of tuples of
a discrete and bounded interval or sql query argument of
CHOOSE (the codomain of the function). As CHOOSE con-
structs can take arbitrary queries as argument as well as
numeric intervals and modifiers, they are very flexible, of-
fering an easy all-purpose modelling tool to the DB user:
e.g., CHOOSE(distinct between 1 to count(*) as n) would ask
the DBMS to populate column n with a total ordering of
the tuples in the view (this would require the use of the
PERMUTATION keyword in the language of [2]). Second-
order views cannot refer to other second-order views and
their where clause cannot refer to choose columns.

3. FORMALISING ConSQL+

We formalise a ConSQL+ specification as a triple 〈S,V,C〉,
and use a language based on the safe tuple relational calcu-
lus (TRC) [6] to express queries. S = {S1, . . . , Sk} is a set
of total functions, each Si : Di → Ci being defined be-
tween two unary DB relations. Each Si is represented as a
relation over Di × Ci with the same columns {dom, codom}.
These functions, corresponding to ConSQL+ views with a
single choose column, are called guessed functions. V =
{V1, . . . ,Vl} is the set of views, whose extensions are (di-
rectly or through other views) functionally dependent on (in
the sense of [5]) those of S. View Vi of the form (conjunctive
view):

select * from V1
, . . . , Vp

, S1
, . . . , Sq

, T where w (1)

defined on top of other views (Vi), guessed functions (Sj),
and (fixed) DB relations (list T), defines the set of tuples
{t | t ∈ V1×· · ·×Vp×S1×· · ·×Sq× T∧w(t)}. Note that any
view or guessed function (e.g., Sj ∈ S) may occur multiple
times in the definition of V (with different superscripts: e.g.,
both Si

j and Sk
j , with i 6= k). For our purposes we can always

ignore a select clause different from ‘*’ for such queries, also

avoiding most issues on the sql bag-semantics, by (possibly
adding and) maintaining a key for all the relations involved.
A view of the form:

select g,a,e from V1, . . . , Vp, S1, . . . , Sq, T

where w group by g having h
(2)

with grouping attributes g (a subset of the columns of the in-
put relations), aggregates a, and value expressions e (arith-
metic expressions or functions over g and a, evaluated for

each tuple returned), is formalised as Πg,a,e

(
Vconj

i

)
, where

Vconj
i is the formalisation of (1) (the conjunctive part of V)

and Πg,a,e is an operator that, when applied to Vconj
i with

parameters g, a, and e, defines the following set:〈tg, ta, te〉 ∣∣∣
ta and te are the results of computing a and e

on G, where G is the set of tuples in Vconj
i

whose columns g agree with tg and G 6= ∅


Operator Π [6] never returns two tuples that agree on g.
The set e is assumed to contain function sath(g,a), which
computes for each group an integer denoting whether the
having condition h is satisfied (sath > 0) or not (sath = 0).
In App. B we give one possible definition for sath suitable
for our goals. The graph of dependencies among views must
be acyclic (as sql forbids cyclic dependencies).

C = {con1, . . . , conp} denotes the set of constraints, each
defined over a view in V. They may be of two kinds: exists
or not exists (sql supports also ◦any and ◦all, with ◦ being
any arithmetic comparison operator, but constraints using
them can always be rewritten in terms of exists or not exists).

Evaluating 〈S,V,C〉 on a finite DB amounts to non-deter-
ministically populating extensions of all functions in S so
that all constraints are satisfied. Such extensions, if exist,
represent a solution to the problem.

In [2] we introduced NP-Alg, a non-deterministic exten-
sion of plain relational algebra (RA), as the formal language
to define ConSQL. However, using NP-Alg to present our
new techniques on ConSQL+ specifications is impractical,
as RA expressions soon become intricate and the structure of
the problem (also in terms of dependencies among views) is
hidden. Given that TRC and RA are equivalent [6], we can
show (details omitted for lack of space) that our TRC-based
language is equivalent to NP-Alg, being able to express all
and only the specifications of decision problems belonging
to the class NP.

4. CBLS TO COMPUTE ConSQL+ VIEWS
Local search (LS) [3] has proved to be an extremely promis-

ing approach to solve combinatorial problems. Also, its in-
trinsic flexibility may be exploited when building systems
that need to cope with dynamic and concurrent settings and
do not have exclusive access to the data-set. Below, we re-
state the main notions of LS in terms of a ConSQL+ speci-
fication 〈S,V,C〉. Then, we present novel LS techniques to
exploit the relational query cost model.

A state is an extension S for guessed functions S. The
search space is the set of all possible states. The cost of a
state S is Σcon∈Ccost(con), where cost(con) is the cost of con-

straint con in S (weights may be added to the constraints).
For a not exists constraint con = /∃Vcon, cost(con) is |Vcon|
if Vcon is of the form (1) and Σt∈Vcon

t.sath if Vcon is of the
form (2) (see App. B for a possible definition of sath). For
an exists constraint con = ∃Vcon, cost(con) is 0 if |Vcon| > 0,
and 1 otherwise. A solution is a state with cost 0.

Most LS algorithms have at their core a greedy behaviour,
as they iteratively evaluate and perform small changes (moves)
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from the current state to neighbour states, in order to re-
duce its cost. To escape local minima (states from which
no moves lead to a cost reduction), they are enhanced with
non purely greedy techniques, like simulated annealing or
tabu-search.

Although, in general, the universe of possible moves is
designed by the programmer depending on the problem,
the simple structure of the relational model and guessed
functions suggests a natural general-purpose definition for
moves: a move is a triple 〈S, d, c〉 where S ∈ S (with S : D→
C), d ∈ D, c ∈ C. In any state, a move 〈S, d, c〉 changes the
extension of S by replacing with c the co-domain value as-
signed to domain value d. More complex moves (e.g., swaps)
could be defined by composition of these atomic moves. A
move m is improving, neutral, or worsening (resp., for a

given constraint) in a state S iff the cost of (resp., the cost
share of the constraint in) the state reached after performing
m is, respectively, less than, equal to, or greater than the
cost of (resp., the cost share of the constraint in) S.

LS algorithms follow different strategies for selecting an
improving move: for example, steepest descent chooses the
move that maximally reduces the cost of the current state.
Since steepest descent needs to consider all possible moves in
order to choose the best one, it could be inefficient on large-
scale neighbourhoods. Other algorithms focus on limited
portions of the neighbourhood, by e.g. selecting the move
that reduces as much as possible the cost share of a most
violated constraint (one with the highest cost share).

Dynamic Neighbourhood Design (DND).
Given a ConSQL+ specification 〈S,V,C〉 and a state S,

the neighbourhood of S can be indirectly represented by the
set of all moves that can be performed in S. Given our
definition of move, the neighbourhood may easily become
huge, being the set of all states reachable from the current
one by changing in all possible ways the co-domain value
associated to any domain value of any guessed function.

To overcome these difficulties, the concept of constraint-
directed neighbourhoods has been proposed [1]. The idea, in
the spirit of constraint-based local search [7], is to exploit
the constraints also to isolate subsets of the moves that pos-
sess some useful properties, e.g., those that are improving
w.r.t. one or more constraints. The presence of symbolic in-
formation (i.e., tuples) in the views defining the constraints
allows us to improve these methods. Consider a not exists
constraint con = /∃V. Each tuple in the extension of V in the
current state is a cause why con is violated. This knowledge
(beyond the classical numeric information about the cost
share of con) can be exploited during the greedy part of the
search to synthesise dynamically a (typically much smaller)
set of moves explicitly designed to remove these causes if
performed on the current state. When a local minimum is
reached, the same approach can be used to synthesise effi-
ciently a worsening move (depending on the chosen LS al-
gorithm). Fig. 1(a) gives an example of the cause why the
current state violates con1 in the Workshops problem. The
(single, in this example) tuple shows that the current assign-
ment does not invite scientist s3 ∈ Org to any workshop. To
reduce the cost of con1 (during greedy search) it makes no
sense to consider moves that act on a scientist not occurring
in any tuple, as these moves cannot be improving for con1.

Let us formalise this reasoning starting with the simpler
case where V is of type (1) and defined as {t | t ∈ V1 ×
· · · × Vp × S1 × · · · × Sq × T ∧ w(t)} on top of other views
(Vi), guessed functions (Sj), and (fixed) DB relations (list
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Figure 1: Example behaviour of DND on the Workhops
problem (DBMS-generated data in grey areas). CH1 is a

reference to the unique choose column in this problem.

Thick arrows denote the view-dependency graph.

T), where p or q may be 0. We define for V the following
query (in all the queries below, i ∈ [1..p] and j ∈ [1..q]):

dnd−(V)
(V of type (1))

=

〈m, t〉
∣∣∣
m 6= identity move ∧ t ∈ V ∧(
∃i . 〈m, t|Vi 〉 ∈ dnd−(Vi)

∨ ∃j . m.S = Sj ∧ t|Sj .dom = m.d
)


Query dnd−(V) computes the set of moves m that aim at
improving the cost of con = /∃V, as the moves that would
remove at least one tuple from V (such moves may actually
reveal to be worsening for con if, e.g., they also add new
tuples to V, so this reasoning is still incomplete, and will
be made complete by a second novel technique called JINE,
described next). Given our definition of cost share of a not
exists constraint defined over a view of type (1), removing at
least one tuple is a necessary (but not sufficient) condition
for a move to be improving. The tuples removed by each
move m are returned together with m (this comes at no cost
and will be precious in the next step). This computation (as
those that follow) inductively relies on the prior computation
of dnd−(Vi) of any view Vi that V depends on. In particular,
a move m = 〈S, d, c〉 would remove tuple t (and 〈m, t〉 will
be in the result set) either because m refers to a guessed
function Sj (for some j) and sub-tuple t|Sj is 〈d, c′〉 (with

c′ 6= c), or because m has been synthesised by dnd−(Vi)
(for some i). In both cases, performing m would remove
a necessary condition for the existence of t in V. Fig. 1(c)

shows the computation of dnd− for view Vconj
con2.

Dually, we can compute the set of moves that would add
at least one new tuple to V (together with the tuples added).
Such moves are useful when dealing with violated exists con-
straints, to cope with non-greedy steps of the search, as well
as (as we will see) to compute dnd− for views of type (2):
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dnd+(V)
(V of type (1))

=


〈m, t′〉

∣∣∣

m 6= identity move ∧ t′ has the schema of V ∧
t′|T ∈ T ∧ w(t′)∧

∀i .
(
〈m, t′|Vi 〉 ∈ dnd+(Vi)

)[†]
∨(

t′|Vi∈Vi∧ 〈m,t′|Vi 〉 6∈dnd−(Vi)
)

∧∀j .

{
t′|Sj ∈ Sj (if m.S 6=Sj∨t′|Sj .dom 6= m.d))

t′|Sj = m.〈d, c〉 (otherwise)[‡]

∧ at least one among the [†]s or the [‡]s holds


Here, m = 〈S, d, c〉 is either synthesised because it would
change to c the codomain value of tuple 〈d, c′〉 (with c′ 6= c)
in all the occurrences (if any) of guessed function S, or be-
cause it has been synthesised by dnd+ over some Vi occur-
ring in the definition of V. For every move m, the query pre-
dicts how the relations defining V would change if m were
executed and computes the set of tuples t′ that would be
added to V as the result of these changes. App. C contains a
step-by-step explanation of this query, while Fig. 1(f) shows

the output of dnd+(Vconj
con2). Note that moves assigning null

to column ws of view Invitation are not generated, as they
would not add tuples to Vconj

con2.

In case V is of type (2) and defined by Πg,a,e

(
Vconj

)
with

Vconj of type (1), tasks dnd−(V) and dnd+(V) become more
complex. Recall that any tuple t ∈ V denotes a group (to-
gether with values for aggregates and value expressions),
whose composition is given by tuples tconj ∈ Vconj such that
tconj.g = t.g. Fig. 1(b) shows the composition of groups of

Vcon2 as subsets of the tuples of Vconj
con2. The having condition h

is encoded as function sath in e, with sath > 0 for a group iff
that group satisfies h (in Fig. 1, sath = count(∗) − 1, mod-
elling h = count(∗) ≥ 2). So V contains also groups that
should be filtered out by h according to the user intention.

As above, dnd−(V) computes the set of moves m that
aim at improving con = /∃V. However, given the presence of
grouping and aggregation and our definition for the cost of
con in this case (i.e., the sum of the values of column sath),
a move might be improving for con also if it adds tuples to
the conjunctive part Vconj of V, as also these changes may
have a positive effect at the group level (i.e., they may re-
sult in different values for the aggregates for some groups,
yielding smaller values for sath). To this end, dnd−(V) syn-
thesises moves that, by removing or adding tuples from/to
Vconj, would alter the composition of groups t ∈ V such that
t.sath > 0 (i.e., groups that satisfy h in the current state):

dnd−(V)
(V of type (2))

=

〈m, t〉
∣∣∣ t ∈ V ∧ ∃t′ .
〈m, t′〉∈(dnd−(Vconj) ∪ dnd+(Vconj))∧
t′.g = t.g ∧ t.sath > 0


Fig. 1(d) shows the result of dnd−(Vcon2) computed from the

outcomes of dnd−(Vconj
con2) and dnd+(Vconj

con2).
Dually, the following query dnd+(V) synthesises moves

that would either add to V a new group t′ or modify
the composition of an existing group t, ensuring that the
new/modified group will have sath > 0, hence will satisfy
h:

dnd+(V)
(V of type (2))

=


〈m, t′〉

∣∣∣

t′ has the schema of V ∧
∃〈t, t−, t+〉 ∈

[
V

g

(
Π

〈m,g〉,a
(dnd−(Vconj))

m,g

Π〈m,g〉,a(dnd+(Vconj))
)]

s.t.:

− t′.〈m,g〉= t−.〈m,g〉 ∨ t′.〈m,g〉= t+.〈m,g〉
− t′.〈m,g〉 6= null
− t′.a = revise(t.a, t−.a, t+.a)
− t′.count(∗) > 0
− t′.e = eval. of expr’s in e on t′.g and t′.a
− t′.sath > 0



where we used the right- ( ) and full-outer ( ) join opera-
tors (see App. D) borrowed from relational algebra (as their
expression in TRC would not be as compact).

As sath (which belongs to the set of value expressions e,
see also App. B) may (and typically does) depend on the
values of the aggregates (which may be modified upon each
move), dnd+(V) incrementally revises all of them, before re-
evaluating all expressions e for the groups affected (or the
new groups introduced). In this way it is able to predict
which tuples will be added to V upon each generated move.
Incremental revision of aggregates (performed by function
revise in the query) is possible for aggregates a (see App. A)
being count or sum: revise(t.a, t−.a, t+.a) = t.a − t−.a + t+.a
(treating nulls as 0). Furthermore, avg can be rewritten
in terms of these two, and count(distinct) and sum(distinct)
can be handled by additional grouping. The semantics of
min and max does not always permit their full incremental
revision. We can define an additional (non-incremental) step
to do this job selectively. App. D contains a step-by-step
explanation of the query above, using the example in Fig. 1.
The following result holds (proofs omitted for lack of space):

Proposition 1. For each constraint con = /∃V (resp.
con = ∃V), the moves that are improving for con if executed
on the current state all belong to dnd−(V) (resp. dnd+(V)).

At each step of search, we perform DND depth-first in the
dependency graph of the views. Depending on the LS algo-
rithm used, we may start from the views defining all con-
straints (to perform, e.g., steepest descent, as the best pos-
sible move, if improving, must be improving for at least one
constraint) or from the view defining a most violated con-
straint (if we aim at, e.g., finding a move that reduces its
cost share as much as possible). Note that only DND queries
needed according to the LS algorithm used must be run.
E.g., to find moves improving w.r.t. constraint con = /∃V it
is enough to run dnd−(V), which, if V is of type (1), does
not need dnd+ over the views that define V. As we proceed
with DND bottom-up, the set of generated moves shrinks.
The moves returned by DND at the root nodes (the views
defining constraints) represent the only moves to be actually
explored to run the chosen LS algorithm correctly (as none
of the other moves would be chosen by that algorithm).

Sec. 5 experimentally shows that DND is able to filter out
many moves from further evaluation, and this filtering be-
comes very selective as the search approaches to a solution.

Joint Incremental Neighbourhood Evaluation (JINE).
Moves synthesised by DND can be stored in a relation

M(S, d, c), where S is a reference to a guessed function from
D to C, d ∈ D, and c ∈ C. For each move m ∈ M, dur-
ing DND we have already partially computed (as a side
effect) which tuples m would remove from or add to the
various views. Depending on the LS algorithm used, this
computation might be incomplete. For example, if the cost
of moves is computed by summing their cost share on all
the constraints, we may lack information, as we may not
have run both dnd− and dnd+ on all views that define con-
straints. We can store the (partial) results brought by dnd−

and dnd+ for each view V in temporary tables (resp., V−

and V+) and make them complete with a second depth-first
visit of the dependency graph of the views. In this way we
achieve a complete (yet incremental) assessment of the con-
tents of each view V. This task is performed collectively for
all moves in M, running two queries for each view. These
queries (omitted here) are similar to dnd− and dnd+ but
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will have M as an additional input (as they evaluate, but do
not generate, moves) and will not have restrictions on the
effects of the moves (e.g., we do not ask that sath > 0 as we
did in dnd+). We call this technique JINE. The following
result holds:

Proposition 2. ∀m ∈ M, ∀V ∈ V, the extension of V in
the state reached after performing m is given by:(

V \
{
t− | 〈m, t−〉 ∈ V−

})
∪
{
t+ | 〈m, t+〉 ∈ V+}

where V is the extension of V in the current state. Also, the
two arguments of ∪ have no tuples in common.

DND and JINE perform a joint exploration of the neighbour-
hood, taking advantage of the economy of scales brought by
the use of join operations (see forthcoming Sec. 5 for an ex-
perimental assessment) and allow us to exploit the similari-
ties among the neighbours of a given state, beyond the sim-
ilarity of each neighbour w.r.t. the current state, exploited
by incremental techniques in classical LS algorithms.

Note that, if for a view V we have already run both
dnd−(V) and dnd+(V), there is no need to run JINE on it,
as it would give us no new information. Conversely, always
running dnd− and dnd+ on all views would be overkill, as
the final set M to be considered is likely to be much smaller.

Given that the two arguments of ∪ in the formula of
Prop. 2 have no tuples in common, once we have completely
populated V− and V+ for every view V, we can compute
with one more query the exact cost of all moves in M over
all constraints, by counting tuples or by summing up the
values of sath columns (depending on the constraint) of the
views they are defined on. If all the V are materialised (i.e.,
stored in tables), after having chosen the move m ∈ M to
perform, we can incrementally update their content by delet-
ing and adding tuples temporarily stored in V− and V+.

5. EXPERIMENTS
We implemented a proof-of-concept ConSQL+ engine

based on the ideas above. The implementation choice of
using standard sql commands for choosing, evaluating,
and performing moves, interacting transparently with any
DBMS, introduces a bottleneck for performance. However,
it was dictated by the very high programming costs that
would have arisen if extending a DBMS at its internal layer
and/or designing storage engines and indexing data struc-
tures optimised for the kind of queries run by DND+JINE.
Given the observation above, as well as the targeted novel
scenario of having data modelled independently and stored
outside the solving engine, and queried by non-experts in
combinatorial problem solving using an extension of sql,
our purpose is not and cannot be to compete with state-
of-the-art LS solvers like the one of Comet [7]. Rather, we
designed our experiments to seek answers to the following
questions: what is the impact of DND+JINE on: (i) the
reduction of the size of the neighbourhood to explore;
(ii) the overall performance gain of the greedy part of the
search; (iii) the feasibility of the overall approach to bring
combinatorial problem solving to the relational DB world?

Given our objectives, it is sufficient to focus on single
greedy runs, until a local minimum is reached. Also, we can
focus on relative (rather than absolute) times and can omit
the numbers of moves performed, since DND+JINE do not
affect the sequence of moves executed by the LS algorithm.

A first batch of experiments involved two problems: graph
colouring (a compact specification with only one guessed

column and one constraint, which gives clean information
about the impact of our techniques on a per-constraint
basis) and university timetabling (a more articulated and
complex problem). Given the current objectives, we limit
our attention to instances that could be handled in a rea-
sonable time by the currently deployed system: 17 graph
colouring instances with up to 561 nodes and 6656 edges
(from mat.gsia.cmu.edu/COLOR/instances.html) and all
21 compX instances of the 2007 International Timetabling
Competition (www.cs.qub.ac.uk/itc2007) for university
timetabling, having up to 131 courses, 20 rooms, and 45
periods. Experiments involved steepest descent and a cause-
directed version of min-conflicts, where DND synthesises all
moves aiming at removing a random tuple from the view
defining a random constraint.

Results (obtained on a computer with an Athlon64 X2
Dual Core 3800+ CPU, 4GB RAM, using MySQL DBMS
v. 5.0.75) are in Fig. 2(a). Instances have been solved with
and without DND and JINE, starting from the same ran-
dom seed. Enabling DND and JINE led to speed-ups of
orders of magnitude on all instances, especially when the
entire neighbourhood needs to be evaluated (steepest de-
scent), proving that the join optimisation algorithms imple-
mented in modern DBMSs can be exploited to explore the
neighbourhood collectively. DND and JINE bring advan-
tages also when complete knowledge on the neighbourhood
is not needed (min-conflicts), although speed-ups are unsur-
prisingly lower.

The ability of DND in shrinking the neighbourhood to be
explored is shown in Fig. 2(b) (graph colouring, steepest
descent): DND often filters out more than 30% of the moves
at the beginning of search, and constantly more than 80%
(with very few exceptions) when close to a local minimum.

To show the overall feasibility of the approach on large
instances and on problems with ‘atypical’ (w.r.t. CP, MP,
ASP, SAT) constraints, we performed some experiments
with the Workshops example of Sec. 2. We used a computer
with 2 dual-core AMD Opteron 2220SE CPUs and 8 GB of
RAM, using PostgreSQL DBMS 8.4, and a DB containing
the entire DBLP (www.dblp.org) bibliography. We gener-
ated 5 instances by filling Org with 20 random scientists and
using PostgreSQL-specific full-text ranking features to im-
plement the similar(p1, p2) function (k = 10, u = 5). The
number of coauthors of the scientists in Org, i.e., the overall
number of potential invitees to the w = 5 planned work-
shops, was about 100 in each instance. The number of tu-
ples in view unrelated scientists pub (the largest one to be
maintained to evaluate the constraints) reached 1.3 million.
As these tuples represent pairs of unrelated publications of
two scientists invited to the same workshop, an encoding of
this problem into an external CP/MP/SAT/ASP/LS solver
would hide these high numbers inside a heavy preprocessing
step, which would synthesise directly the same aggregate val-
ues computed by view unrelated scientists (for all pairs of sci-
entists if the programmer aims at an instance-independent
preprocessing). On the other hand, the DBMS computes
view unrelated scientists only on the pairs of scientists that
are invited to the same workshop in the current state, also
keeping aggregate values synchronised with the actual pub-
lication data.

Notwithstanding these high numbers, the system (running
steepest descent) was able to choose the best move at each
iteration in about 400 seconds. Running min-conflicts re-
quired about a second per iteration. (The performance of
evaluating the moves one at the time is very poor; data is
omitted.) The impact of DND in the reduction of the size
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Problem / Algo Steepest-d. Min-conflicts
Graph 8×..665× 0.9×..1.6×

colouring (avg: 205×) (avg: 1.4×)

University >15×(*) 3×..21×
timetabling (avg: n/a) (avg: 8×)

(*) Evaluation of all instances without
DND+JINE (except one) starved for more
than 12 hours at the first iteration.
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Figure 2: (a) Speed-ups (in nbr. of iterations/hour) of

DND+JINE. (b) Ratio of the size of the neighbourhood

synthesised by DND w.r.t. the complete neighbourhood,

as a function of the state of run (0%=start, 100%=local

min. reached) for graph colouring (one curve per instance

whose greedy run terminated within the time-limit).

of the neighbourhood is very similar to the graph colouring
case: ∼30% (at the beginning of the run) to ∼90% (when
close to a local minimum) of the moves were ignored when
choosing the best move to perform (steepest descent).

6. CONCLUSIONS
Although there are attempts to integrate DBs and NP-

hard problem solving (see, e.g., constraint DBs [4], which
however focus on representing implicitly and querying a pos-
sibly infinite set of tuples), to our knowledge ConSQL and
ConSQL+ are the only proposals to provide the average
DB user with effective means to access combinatorial prob-
lem modelling and solving techniques without the interven-
tion of specialists. Our framework appropriately behaves in
concurrent settings, seamlessly reacting to changes in the
data, thanks to the flexibility of LS coupled with change-
interception mechanisms, e.g., triggers, that are well sup-
ported by DBMSs. This makes our approach fully respect
data access policies of information systems with concurrent
applications: a solution to the combinatorial problem is rep-
resented as a view of the data, which is dynamically kept
up-to-date w.r.t. the underlying (evolving) DB.

This paper is of course only a step in this direction. In
particular, the performance of the current implementation
can be drastically improved by a tighter integration with
the DBMS plus the design of storage engines and indexing
data structures to support the queries required by DND and
JINE. Also, parallelism can be heavily exploited: informa-
tion systems are often deployed in data centres and imple-
mented as DBs replicated in multiple copies. Divide-and-

conquer techniques are exploited during querying, splitting
queries into smaller pieces to be run on different servers.
DND and JINE can take advantage of replication, as they
can be launched simultaneously on different views, as long
as their dependency constraints are satisfied. All this would
allow a carefully-engineered implementation to scale much
better toward large DBs.
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APPENDIX
A. SYNTAX OF SQL TO DEFINE VIEWS

sql is a wide language and its full coverage is out of the
scope of this paper. Views on the data are defined through
queries, which (for what is of interest to us) may have the
form (1) or (2). As an example, the query select . . . of the
view defining constraint con1 in the Workshops problem re-
turns the set of tuples from the Cartesian product between
Invitation and Org (in general, the tuples in the Cartesian
product of the relations in the from clause) that satisfy the
condition expressed by the where clause, hence yielding one
tuple for each scientist in Org that is not assigned to a work-
shop (i.ws is null). Clause i.invitee = s.id (join condition)
filters out all pairs (i ∈ Invitation, s ∈ Org) of tuples that re-
fer to different scientists. The select clause contains a list of
the columns to be returned (‘*’ meaning all columns). The
tuples returned by the query represent scientists that violate
the not exists constraint.

Constraint con2 in the Workshops problem has the
form (2). The query defining it considers all the tuples i
in view Invitation that satisfy the where condition (scientists
actually invited to a workshop). Then, the group by clause
groups together the tuples that refer to the same workshop,
and only groups having a number of tuples (count(*)) that
violates the constraint are returned.

sql defines different aggregate functions, namely count(),
sum(), avg(), min(), max(), which compute respectively the
number, the sum, the average, the minimum, and the max-
imum value of the argument expression evaluated on all the
tuples of each group (if the group by clause is omitted, then
all the tuples belong to a single group). The distinct modi-
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fier would skip identical tuples to be considered more than
once.

B. DISTANCE TO FALSIFICATION OF h
We claimed that sath can be any function that is > 0 (= 0)

if a group satisfies (does not satisfy) the having condition h.
This function acts as a heuristic and can be regarded as the
dual of violation cost in CBLS [7]. In particular, we propose
(and have experimented with) the following function, called
distance to falsification of h.

If h = true, then sath = count(∗); if h = false, then sath =
0. Otherwise:

• if h is an atom of the form x < y, x 6= y, or x = y
(with x, y being constants or references to columns in
g or a), then sath is, respectively, max(0, y−x), |x−y|,
and if x = y then 1 else 0;

• if h is h′ ∨ h′′, then sath = sath′ + sath′′ ;

• if h is h′ ∧ h′′, then sath = min(sath′ , sath′′).

Intuitively, the higher sath for a group of a view V of type (2),
the higher the estimated amount of change that needs to be
done on the composition of that group to falsify h. With this
definition, queries dnd−(V) and dnd+(V) become simpler in
the frequent cases where the having condition is simple. As
an example, if h = count(∗) > k (with k being a constant), to
remove a tuple from V whose sath = max(0, count(∗)−k) >
0, we have that dnd−(V) does not need to run dnd+(Vconj),
as aiming at adding tuples to Vconj is not a good strategy to
reduce the number of tuples that compose any group of V
and reduce sath.

C. DND+ FOR VIEWS OF TYPE (1)
Below we give a step-by-step explanation of query

dnd+(V) in case view V is of type (1). The query returns
pairs 〈m, t′〉, where m is a move and t′ is a tuple that m
would add to the content of V. Any such t′ can be split into
〈t′V1 , . . . , t

′
Vp , t′S1 , . . . , t

′
Sq , t

′
T〉, with one sub-tuple for each

relation in the Cartesian product defining V. For m to in-
sert t′ into V, the execution of m must change the Vi and the
Sj in such a way that all the sub-tuples above will exist in
their respective relations. In particular: (i) for each occur-
rence Sj (if any) of m.S (the guessed function that m acts
on), if t′Sj .dom = d, then t′Sj .codom = c, as 〈d, c〉 is the only

tuple that m would introduce in S in replacement of 〈d, c′〉
for some c′ 6= c (case [‡]); (ii) all the other Sj (that would
remain unchanged after the execution of m) must already
contain t′Sj ; (iii) for each Vi, either t′Vi is already in Vi and

will not be removed by m (〈m, t′Vi〉 6∈ dnd−(Vi)) or it will

be added to Vi by m itself (case [†]); (iv) t′T belongs to T
(which contains only DB relations that will not change if m
is performed); (v) t′ satisfies the where condition w, which
is necessary for it to be added to V. The last condition in
the formula ensures that t′ does not yet belong to V.

D. DND+ FOR VIEWS OF TYPE (2)
Below we give a step-by-step explanation of query

dnd+(V) in case view V is of type (2). Its most complex
part consists in the expression ‘[. . .]’, which may be regarded
as a dual of the differentiable data-structures in CBLS [7].
To explain its semantics in a more clear way, we follow the
example in Fig. 1(e), which shows the result of dnd+(Vcon2)

computed from Vcon2 and the outcomes of dnd−(Vconj
con2) and

dnd+(Vconj
con2). Vcon2 has g = {ws}, a = {count(∗)}, and

sath = count(∗)− 1 (modelling h = count(∗) ≥ 2).
(i) Subexpression Π〈m,g〉,a(dnd−(Vconj)) groups the tuples

produced by dnd−(Vconj) according to the move m and the
grouping attributes of V. Aggregates a are evaluated for
each such group. In the example this computes, for every
move m synthesised by dnd−(Vconj

con2), the number of tuples
(count(*)) that m would remove from each group of Vcon2.
Tuples t− produced by this sub-expression will be of the
form: 〈m, t.g, t.a〉.

(ii) Subexpression Π〈m,g〉,a(dnd+(Vconj)) makes an analo-

gous computation on dnd+(Vconj). In the example this com-

putes, for every move m synthesised by dnd+(Vconj
con2), the

number of tuples that m would add to each group of Vcon2.
Tuples t+ produced by this sub-expression will be of the
form: 〈m, t.g, t.a〉.

(iii) The full outer join ( m,g) returns the set of pairs of
tuples t− and t+ that agree on the move (m) and the group
(g). If there exist tuples t− (resp. t+) referring to a 〈move,
group〉 pair for which no matching counterpart t+ (resp. t−)
exists, the full outer join extends t− (resp. t+) with nulls.
The result set consists of tuples of the form 〈t−, t+〉 such
that t−.m = t+.m and t−.g = t+.g (unless one between t−

and t+ is null).
(iv) The right outer join ( g) matches the tuples t

(groups) currently in V with the tuples 〈t−, t+〉 above, by
considering only g as the matching criterion (as moves are
not mentioned in V). The result set consists of tuples of
the form 〈t, 〈t−, t+〉〉 whose non-null components refer to
the same group. If any tuple 〈t−, t+〉 has no counterpart
t in V, the right outer join enforces a match of 〈t−, t+〉 with
nulls. Intuitively, any tuple 〈t, 〈t−, t+〉〉 returned by expres-
sion ‘[. . .]’ encodes a group (stored in t.g, t−.g, and t+.g,
ignoring nulls) already existing (if t is not null) or that will
exist in V (if t is null), together with a move (stored in t−.m
and t+.m, ignoring those being null) and three values for
each aggregate in a: the current values (in t.a), and the val-
ues computed on the tuples that would be removed (in t−.a)
and added (in t+.a) from/to Vconj if the move is executed.

From each 〈t, 〈t−, t+〉〉, dnd+(V) predicts which tuples t′

will be added to V if the move is executed. These tuples
t′ = 〈t.g, t.a, t.e〉 will have the same values for t.g as t, t−,
and t+, but will have as values for the aggregates the output
of revise(t.a, t−.a, t+.a).

As an example, the third tuple in the result set of
dnd+(Vcon2) is computed as follows (see Fig. 1(e)): from

dnd−(Vconj
con2) we know that move m = 〈CH1, s2, 2〉 would

remove tuple t− = 〈s2, 1〉 from Vconj
con2. From dnd+(Vconj

con2) we
know that m would add no tuple with ws = 1. Hence execut-
ing m would (among other things) change the composition
of the tuple (group) with ws = 1 in Vcon2. In particular, the
value for the aggregate count(*) for this group (currently 2)
would be reduced by 1 (the value of count(*) as computed
on the set of tuples removed by m). Note that, as the same
move would change also the composition of the group with
ws = 2 (in particular it would add tuple 〈s1, 2〉 to Vconj

con2), it
occurs again in the result set of dnd+(Vcon2), this time paired
with tuple having ws = 2 and sath = 1, as the number of
tuples in group with ws = 2 upon the execution of move m
would become 2.

In general a move could both remove and add tuples
from/to a group: in this case the new value for count(∗)
would be computed accordingly (see the definition of func-
tion revise in the paper).
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