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Abstract. We explore the idea of using automata to implement new constraints for local search.
This is already a successful approach in constraint-based global search. We show how to maintain
the violations of a constraint and its variables via a deterministic finite automaton that describes a
ground checker for that constraint. We extend the approach to counter automata, which are often
much more convenient than finite automata, if not more independent of the constraint instance. We
establish the practicality of our approach on several real-life combinatorial problems.
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1. Introduction

When a high-level constraint programming (CP) language lacks a (possibly global) constraint that would
allow the formulation of a particular model of a combinatorial problem, then the modeller traditionally
has the choice of (1) switching to another CP language that has all the required constraints, (2) formu-
lating a different model that does not require the lacking constraint, or (3) implementing the lacking
constraint in the low-level implementation language of the chosen CP language. This paper addresses
the core question of facilitating the third option, and as a side effect often makes the first two options
unnecessary.

The user-level extensibility of CP languages has been an important goal for over a decade. In the
traditional global search approach to CP (namely heuristic-based tree search interleaved with propaga-
tion), higher-level abstractions for describing new constraints include indexicals [16]; (possibly enriched)
∗This paper is an extension of [6], which was also presented at RCRA’09.
†Address for correspondence: Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala,
Sweden
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Figure 1. An automaton for a simple work scheduling constraint.

deterministic finite automata (DFAs) via theautomaton [2] and regular [11] generic constraints; and
multi-valued decision diagrams (MDDs) via themdd [4] generic constraint. Usually, a general but effi-
cient propagation algorithm achieves a suitable level of local consistencyby processing the higher-level
description of the new constraint. In the more recent local search approach to CP (called constraint-based
local search, CBLS, in [13]), higher-level abstractions for describing new constraints include invariants
[10]; a subset of first-order logic with arithmetic via combinators [15] and differentiable invariants [14];
and existential monadic second-order logic for constraints on set variables [1]. Usually, a general but
incremental algorithm maintains the constraint and variable violations by processing the higher-level
description of the new constraint.

Example 1.1. In Figure 1 we give our running example. It is a deterministic finite automaton (DFA;
see [7], for example) that describes a simple work scheduling constraint.There are values for two work
shifts, namely day (d) and evening (e), as well as a value for enjoying a day off (x). Work shifts are
subject to the following four conditions: one must take at least one day offbefore a change of work shift;
if one works on a day shift, then one must do so for exactly two consecutive days; one can work on at
most two consecutive evening shifts; and one cannot enjoy more than two consecutive days off. The
initial state1 is marked by a transition entering from nowhere, while the final states1, 3, 4, 5, and6 are
marked by double circles. Missing transitions, say from state2 upon reading valuee, are assumed to go
to an implicit failure state, with a self-looping transition for every value (so thatno final state is reachable
from it). The set of strings accepted by the automaton defines the set of acceptable work shift sequences.

In this paper, we revisit the description of new constraints via automata, already successfully tried
within the global search approach to CP [2, 11], and show that it can alsobe successfully used within the
local search approach to CP, as also argued by [12]. The significance of this endeavour can be assessed
by noting that119 of the currently348 global constraints in theGlobal Constraint Catalogue[3] are
described by DFAs that are possibly enriched with counters [2], so thatall these constraints are instantly
made available in CBLS.

The automaton(X, A) generic constraint of this paper is satisfied when automatonA accepts the
sequenceX of variables (unknowns). The contributions and organisation of the remainder of this paper
are as follows:

• We present two new algorithms for maintaining the violation of theautomaton(X, A) constraint
(the automatonA is deterministic) and the violations of the variables of that constraint (Section 2).

• We extend the approach to counter automata, which save modelling time by being more compact if
not more generic, that is more independent of the instance of the described constraint. Our counter
automata generalise those in [2] (Section 3).
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• Our algorithm for unwinding a counter automaton (when it recognises a regular language) into a
counter-free automaton generalises many existing ad hoc constructions ofautomata from instances
of a constraint (Section 3.2).

• We present experimental results establishing the practicality of our results,also in comparison to
the prior CBLS results of [12] and to handcrafted constraints (Section 4).

• We propose violation algorithms for thestretch path and stretch path partition global con-
straints (Section 4.1).

Finally, in Section 5, we summarise this work and discuss related as well as future work.

2. Violation Maintenance with Counter-Free Automata

In CBLS [10, 13], constraints are used to describe and control local search. Given an initial assignment of
values to all the variables, CBLS tries to find a better assignment that decreases the amount of constraint
violation, by searching a neighbourhood of the current assignment, thatis a set of assignments that do
not differ much from the current one. A solution with zero (or minimal) violationis to be found. Meta-
heuristics are used to escape local minima. Search heuristics can be guidedby two related measures
of violation: for each constraint, a measure ofconstraint violationand a measure ofvariable violation.
Constraint violation measures how close the constraint is to being satisfied. Variable violation measures
for each variable in the constraint the variation of the constraint violation that could be achieved if that
variable was suitably modified. Although these terms are not formally defined here, it is possible for
a large number of constraints [13] to come up with heuristically useful definitions of constraint and
variable violations. Three things are required to implement a constraint: a method for calculating the
violation of the constraint and each of its variables for the initial assignment; amethod for computing
the differences of these violations upon a candidate move to a neighbouringassignment; and a method
for incrementally maintaining these violations when an actual move is made. Since inlocal search the
constraint and variable violations might need to be calculated thousands of times so as to pick the best
move, the algorithms implementing these must be very efficient and, where possible, incremental.

2.1. Violations of a Constraint

To define and compute the violations of a constraint described by an automaton, we first introduce the
notion of a segmentation of an assignment:

Definition 2.1. (Segmentation) Given a sequenceX = 〈X1, . . . , Xn〉 of n variables assigned to the
sequence〈d1, . . . , dn〉 of values, asegmentationis a possibly empty sequence of non-empty sub-strings
(referred to here assegments) σ1, . . . , σℓ of the stringd1 · · · dn such that for allk > j and segments
σj = dp · · · dq andσk = dr · · · ds we have thatr > q.

For example, given the sequence〈x, x, d, e, x, x〉 of values, a possible segmentation is〈x, x, d〉, 〈x, x〉;
note that, in this segmentation, the fourth character of the assignment is not part of any segment. In gen-
eral, an assignment has multiple possible segmentations. We are interested in segmentations that are
accepted by an automaton, in the following sense:
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Definition 2.2. (Acceptance)Given an automaton and a sequence〈d1, . . . , dn〉 of values, a segmenta-
tion σ1, . . . , σℓ is acceptedby the automaton if there exist stringsα1, . . . , αℓ+1, where onlyα1 andαℓ+1

may be empty, satisfying the following two conditions. First, the concatenated string

α1 · σ1 · α2 · · · · · αℓ · σℓ · αℓ+1 = e1 · · · en

is accepted by the automaton. Second, for all segmentsσj = dp · · · dq and for allp ≤ k ≤ q, we have
that ek = dk. That is, the stringsα1, . . . , αℓ+1 are of the correct length so that the new concatenated
stringe1 · · · en has the segmentsσ1, . . . , σℓ in the same place as ind1 · · · dn.

For example, given the automaton in Figure 1, the sequence〈x, x, d, e, x, x〉 of values has a seg-
mentation〈x, x, d〉, 〈x, x〉 with ℓ = 2 segments, which is accepted by the automaton via the string
〈x, x, d, d, x, x〉 with α1 = α3 = ǫ (the empty string) andα2 = 〈d〉.

Given an assignment, the constraint and variable violations are defined relative to a given segmenta-
tion.

Definition 2.3. (Violations) Given an automaton describing a constraintc and given a segmentation
σ1, . . . , σℓ of a sequence〈d1, . . . , dn〉 of values for a sequence ofn variables〈X1, . . . , Xn〉:

• Theconstraint violationof c is n−
∑ℓ

j=1 |σj | (where|σ| denotes the length of segmentσ).

• Thevariable violationof variableXi is 0 if there exists a segmentσj = dp · · · dq such thatp ≤
i ≤ q, and1 otherwise, in which case we say thatXi is violated.

Proposition 2.1. If the violation of a constraint with respect to a given segmentation is zero, then the
current assignment is a satisfying assignment.

Proof: Let the violation of a constraint be zero, and letα1 · σ1 · α2 · · · · · αℓ · σℓ · αℓ+1 be an accepted
string. According to Definition 2.3,n −

∑ℓ
j=1 |σj | is zero, soσ1 · σ2 · · · · · σℓ is of lengthn and is an

accepted string. Based on Definition 2.2, the current assignment is a satisfying assignment. ⊓⊔

In practice, in order to have a termination criterion, we want the violation of a constraint todecide
whether the current assignment is satisfying or not, that is we also want theconverse of Proposition 2.1.
In Section 2.2, we show that this is the case for the segmentations computed by our approach.

Proposition 2.2. The violation of a constraint with respect to a given segmentation is the sum ofthe
violations of its variables.

Proof: Observe that for an accepted stringα1 · σ1 · α2 · · · · · αℓ · σℓ · αℓ+1, as in Definition 2.2, each
violated variable only corresponds to someαi. The result then follows from the fact that

n =

ℓ+1
∑

i=1

|αi|+

ℓ
∑

i=1

|σi|

⊓⊔
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The Hamming distance between the current assignment and a satisfying assignment (an assignment
whose string is accepted by the automaton) is the number of variables whose values have to change in
order to satisfy the constraint described by the automaton. We have the following result:

Proposition 2.3. The violation of a constraint with respect to a given segmentation is at least the minimal
Hamming distance between the current assignment and any satisfying assignment.

Proof: Given a segmentationσ1, . . . , σℓ of the current assignment, there exists an accepted stringα1 ·
σ1 · α2 · · · · · αℓ · σℓ · αℓ+1, as in Definition 2.2. The constraint violation with respect to the given
segmentation isn−

∑ℓ
j=1 |σj |, which is the Hamming distance between the current assignment and the

accepted string. Then, the constraint violation can never be smaller than theminimal Hamming distance
to any accepted string (satisfying assignment). ⊓⊔

In other words, a segmentation never underestimates the number of variables that have to change to
reach a solution, and usually overestimates. A more precise measure often leads to fewer iterations to
find a solution; however if the computation of such a measure is costly, there may be overall a loss of
time. As shown in our experimental results in Section 4, our simple measure works much better than a
precise but computationally expensive measure.

Our approach, described in the next two sub-sections, greedily growsa segmentation from left to right
relative to a satisfying assignment, and makes stochastic choices whenevergreedy growth is impossible.

2.2. Calculating the Violations

Our algorithms calculate the constraint and variable violations stochastically, intime linear in the number
n of variables. The first version of the algorithm unrolls the automaton into a layered graph, specific to
n, in order to ease computation, as in [11].

Definition 2.4. (Layered Graph) Given a finite automaton withm states, thelayered graphover a
given numbern of variables is a graph withm · (n + 1) nodes. Each of then + 1 vertical layers has a
node for each of them states of the automaton. The node for the initial state of the automaton in layer 1
is called the start node. There is an arc labelledw from nodef in layer i to nodet in layer i + 1 if and
only if there is a transition labelledw from f to t in the automaton. A node in layern + 1 is marked as a
success node if it corresponds to a final state in the automaton.

The layered graph is further processed by removing all nodes and arcs that do not lead to a success
node. The resulting graph, seen as a DFA (or as an ordered MDD), neednot be minimised (or reduced)
for our approach (although this is a good idea for the global search approaches [2, 11], as argued in [8],
and would be a good idea for the local search approach of [12]), as the number of arcs of the graph does
not influence the time complexity of our algorithms below.

For instance, the unrolled version forn = 6 variables of the automaton in Figure 1 is given in
Figure 2. Note that a satisfying assignment that the variables are assignedto the sequence〈d1, . . . , dn〉
of values corresponds to a path from the start node in layer1 to a success node in layern + 1, such that
each arc from layeri to layeri + 1 of this path is labelleddi.

The algorithms to calculate the violations require a number of data structures. Throughout this sec-
tion, letm denote the number of states in the given automaton and letn denote the number of variables:
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Figure 2. The unrolled automaton of Figure 1. The number by each node is the number of paths from that node
to a success node in the last layer.

• nbrPaths[1 ≤ i ≤ n, 1 ≤ j ≤ m] records the number of paths from nodej in layeri to a success
node in the last layer, counted in the same way as in [20]; for example, see the numbers by each
node in Figure 2;

• ℓ is the number of segments in the current segmentation;

• σ1, . . . , σℓ are the segments of the current segmentation;

• Violation[1 ≤ i ≤ n] records the current violation of variableXi;

The nbrPaths matrix can be computed straightforwardly by dynamic programming. The other three
data structures are initialised (when the starting position iss = 1) and maintained (when variableXs is
changed, withs ≥ 1) by thecalcSegment(s) procedure of Algorithm 1. Via some initialisations (lines 2
and 3), it (re)visits only the variablesXs, . . . , Xn (line 4). If the value of the currently visited variableXi

triggers the extension of the currently last segment or the creation of a newsegment (lines 6 to 8), then
its violation is0 (line 9). Otherwise, its violation is1 and a successor node is picked with a probability
weighted according to the number of paths from the current node to a success node (lines 12 to 13).
Toward this, we maintain the nodes of the picked path (line 14). Picking a successor deterministically
(say always the first successor) is much less efficient and requires the search space to be highly connected.

The time complexity of Algorithm 1 is linear in the numbern of variables, because only one path
(from layers to layern+1) is explored, with a constant-time effort at each node. Once the pre-processing
is done, the time complexity of Algorithm 1 isdependenton the depth of the unrolled automaton and is
independentof the number of arcs of the unrolled automaton. Hence the minimisation (or reduction) of
the unrolled automaton would be merely for space savings (and for the convenience of human reading) as
well as for accelerating the pre-processing computation of thenbrPaths matrix. In our experiments (not
reported here for space reasons), these space and time savings are not warranted by the amount of time
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Algorithm 1 Initialisation and update of the segmentation from positions

1: procedurecalcSegment(s)
2: let ℓ be the number of segments picked for〈V1, . . . , Vs−1〉 at the previous run; assumeℓ = 0 at the

first run
3: node[1]← 1; inSegment← true

4: for all i← s to n do
5: if the current value, saya, of Vi is the label of an arc fromnode[i] to t then
6: if not inSegment then
7: ℓ← ℓ + 1; σℓ ← ǫ; inSegment← true {create a new segment}
8: σℓ ← σℓ · a
9: Violation[i]← 0

10: else
11: inSegment← false

12: Violation[i]← 1

13: pick a successort of node[i] with probability nbrPaths[i+1,t]
nbrPaths[i,node[i]]

14: node[i + 1]← t

required for minimisation (or reduction), and minimisation here never reducesthe depth of the unrolled
automaton.

Proposition 2.4. If the current assignment is a satisfying assignment, then the constraint violation with
respect to the segmentation computed by Algorithm 1 is zero.

Proof: Let a sequence〈X1, . . . , Xn〉 of n variables be assigned to a sequence〈d1, . . . , dn〉 of values,
and let the stringd1 · · · dn be accepted by the automaton. According to Definition 2.4, there exists a path
node[1] → · · · → node[n + 1] in the layered graph, wherenode[1] is the start node andnode[n + 1] is
a success node, such that there exists an arc labelled with valuedi betweennode[i] andnode[i + 1] for
any1 ≤ i ≤ n. The condition on line 5 of Algorithm 1 is always satisfied under the currentassignment,
and a segmentation with one segmentσ1 = 〈d1, . . . , dn〉 is computed. The constraint violation is zero
with respect to the segmentation. ⊓⊔

Example 2.1. In Figure 2, with the initial assignment that all variables are assigned to the sequence
〈x, e, d, e, x, x〉 of values and a first call to Algorithm 1 withs = 1, the first segment is〈x, e〉 (the first
dashed path). Next, the assignmentX3 := d triggers a violation of1 for variableX3 because there is no
arc labelledd that connects the current node 4 in layer 3 with any nodes in layer 4. However, node 4 in
layer 3 has two out-going (dotted) arcs, namely to nodes 3 and 5 in layer 4. In layer 4, there are7 paths
from node 3 to the last layer, compared to4 such paths from node 5, so node 3 is picked with probability
7
11 and node 5 is picked with probability411 (where the4, 7, and11 are the numbers by those nodes), and
we assume that node 3 in layer 4 is picked. From there, we get the second segment〈e, x, x〉 (the second
dashed path), which stops at success node6 in the last layer. The violation of the constraint is thus1,
because the value of one variable does not participate in any segment.

Assume now that variableX3 is changed to valuee, and hence we call Algorithm 1 withs = 3. Only
ℓ = 1 segment can be kept from the previous segmentation picked for〈X1, X2〉, namely〈x, e〉 (the first
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dashed path). Since there is an arc labellede from the current node 4 in layer 3, namely to node 5 in
layer 4, segmentσ1 is extended (line 8) to〈x, e, e〉. However, with variableX4 still having valuee, this
segment cannot be extended further, since there is no arc labellede from node 5 in layer 4, and hence
X4 is violated. The sole successor node 3 in layer 5 is chosen; as there is an arc labelledx from the
current node to node 6 in layer 6, a new segmentσ2 = 〈x〉 is created. However, variableX6 is violated,
and segmentσ2 cannot be extended further. Because the values of two variables do not participate
in any segment, the violation of the constraint is2. It is larger than the minimal Hamming distance
between the current assignment and any satisfying assignment, as there exists a satisfying assignment,
that the variables are assigned to〈x, e, x, e, x, x〉, and the Hamming distance between〈x, e, e, e, x, x〉
and〈x, e, x, e, x, x〉 is 1. Hence changing variableX3 from valued to valuee would not be considered
a good move, as the constraint violation increases from1 to 2. Changing variableX3 to valuex instead
would be a much better move, as the first segment〈x, e〉 is then extended to the entire current assignment,
that the variables are assigned to〈x, e, x, e, x, x〉, without detecting any violated variables, so that the
violation of the constraint is then0, meaning that a satisfying assignment was found.

2.3. Depth-First Search

Algorithm 1 requires that the automaton be unrolled, and further the unrolledgraph has to have all paths
removed that do not lead to a success node. The size of the unrolled automaton is proportional to the
product of the number of variables and the number of states of the automaton. If there is a large number
of variables, then the unrolled automaton could be very large. Using depth-first search (DFS), the graph
can be dynamically unrolled.

This can be done by simply modifying Algorithm 1 so that whenever a successor node is checked,
we perform a DFS to check for each outgoing arc if there is a path of the correct length to a success
node. The extra worst-case cost of DFS can be amortised by caching (often referred to as memorisation)
the results of previous DFSs. A further simplification is made to line 13, which picks a successor using a
weighted random choice based on the number of paths to a success node:as the layered graph contains
nodes and arcs that do not lead to a success node, we cannot cheaplycalculate dynamically the number
of paths to a success node as in Section 2.2, and we here simply pick a random successor node among
all the successor nodes that have been shown via DFS to have a path to a success node.

2.4. Related Work

The only related work we are aware of is a CBLS implementation [12] in COMET [13] of the regular

constraint [11], based on the ideas for the (global search) propagator of the soft regular constraint
[17]. The difference is that, upon a candidate move, they estimate the violationchange compared to
thenearestsatisfying assignment (in terms of Hamming distance from the current assignment), whereas
we estimate it compared toa randomly picked satisfying assignment. In our terminology (although
it is not implemented that way in [12]), they find a segmentation such that an accepted string for the
automaton has the minimal Hamming distance to the current assignment.

It is always possible to state a new global constraint using the differentiable invariants [14] of
COMET: it suffices to encode all the paths from the start node to a success nodeof the (ideally min-
imised) unrolled automaton for that constraint by using COMET’s conjunction and disjunction combina-
tors. However, as the automaton or the number of variables to unroll for gets larger, this expression can



J. He et al. / AnautomatonConstraint for Local Search 231

become too large to post, and even when it can be posted, our experiments (not reported here for space
reasons) show that our approach is much more efficient for large enough unrolled automata.

3. Violation Maintenance with Counter Automata

In Section 3.1, we propose the concept of counter automaton (cDFA) as amore convenient and generic
way of describing a new global constraint than a deterministic finite automaton (DFA). We show that
cDFAs accept also non-regular languages. In practice, we are hereonly interested in finite languages (of
words of a given length), so we will not exploit this additional expressiveness. There are two ways of
using counter automata in local search. In Section 3.2, we show how to unwind a cDFA (accepting a
regular language) into a DFA in an off-line pre-processing step, so thatthe methods in Section 2 can be
re-used and that the cDFA itself is purely for the convenience of modelling.In Section 3.3, we generalise
the DFS-based violation algorithm for DFAs of Section 2.3 to work directly on cDFAs.

3.1. Counter Automata

A counter automaton (cDFA) is defined just like a deterministic finite automaton (DFA), except that
the transitions can include assignment statements to counter variables and thatthe transitions and final
states can be guarded by conditions on these counters. The “transition” tothe initial state has unguarded
initialisations of the counters. Given the transition functionδ, a guarded transitionδ(q, a, α, β) = t,
whose graphical representation is an arc annotated with “a {α→ β}” from stateq to statet, means that
if symbol a is read and guardα holds at stateq, then statet is reached, upon also executing the counter
assignment statementsβ. In principle, a guardα can be any decidable logical expression of comparison
and membership atoms among counters and parameters of the constraint. Similarly, a counter assignment
statementβ can be any computable sequential or conditional composition of arithmetic operations on the
counters, or a no-operation (denotednop). The guards of transitions on the same symbol from the same
state must be mutually exclusive to make the counter automaton deterministic. A guarded final state
(q, α), whose graphical representation is “q : α” within a double ellipsis, means that stateq is final only
if guardα holds. As usual, we sometimes abbreviate the graphical representation of several arcs between
the same pair of states by a single arc annotated with the set of symbols of thosearcs, provided they have
the same guards and counter statements.

Counter automata provide a powerful tool for modelling. Indeed, a DFA is often specific to an
instance of that constraint, as seen in the following example:

Example 3.1. Reconsider the work scheduling constraint in Example 1.1: if we change just one param-
eter of that constraint, say that one cannot work for fewer than two or more than four consecutive days
on the day shift, instead of exactly two days, then the DFA in Figure 1 needs tobe changed. Although
the only difference of these two instances of the work constraint is just a single parameter, their DFAs
have many differences. It will require a lot of modelling work if every constraint instance needs a differ-
ent automaton. However, cDFAs are often independent of constraint instances. Figure 3 gives a cDFA
for all instances of the work constraint requiring that one cannot workfor fewer thand or more than
d consecutive days on the day shift; that one cannot work for fewer than e or more thane consecutive
days on the evening shift; and that between any change of work shifts, one must enjoy at leastx and at
mostx consecutive days off. The counterc maintains the number of consecutive days on the same shift.
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1

D : c ≥ d

X : c ≥ x

E : c ≥ e

d {c := 1}

x {c := 1}

e {c := 1}

d
{

c < d→ c := c + 1
}

x {c < x→ c := c + 1}

e {c < e→ c := c + 1}

x {c ≥ d→ c := 1}

d {c ≥ x→ c := 1}

x {c ≥ e→ c := 1}

e {c ≥ x→ c := 1}

Figure 3. A counter automaton for the work scheduling constraint in Figure 1.

StatesD, E, andX are guarded final states: for example,D is a final state only ifc ≥ d. The guarded
transitiond

{

c < d→ c := c + 1
}

from D to itself means that the transition on symbold fires if c < d
and incrementsc by one. The unguarded transitiond {c := 1} from state1 to D means that the transition
ond always fires and initialisesc to 1. In Section 3.2, we give a general algorithm that can automatically
unwind this cDFA for parameters〈d, d, e, e, x, x〉 = 〈2, 2, 1, 2, 1, 2〉 into the DFA of Figure 1.

Many more cDFAs, and their unwound DFAs, are given in the experiments of Section 4, which thus
also aims at showing the great modelling convenience of counter automata.

Every DFA is also a cDFA, namely a cDFA without counters and guards. Many classical algorithms
for DFAs, such as product (see [7], for example), straightforwardly generalise to cDFAs, as the guards
and counter assignments can be just carried along as annotations. Counter automata are more expressive
than DFAs, which can only recognise regular languages. Indeed, it is possible to design cDFAs to
recognise the languageanbn, which is context-free but not regular, and the languageanbncn, which is
not even context-free. Note that our abbreviation “cDFA” thus just indicates that a DFA was annotated
by counters, but not that only regular languages are recognised.

Our counter automata are more general than those of theGlobal Constraint Catalogue[2, 3], where
it is the counter assignments that are guarded (rather than the transitions) and where the transition on a
given symbol from a given state is unique and fires unconditionally.

3.2. Unwinding a Counter Automaton

We propose Algorithm 2 for unwinding a cDFAC into a counter-free DFAD in an off-line pre-
processing step, so that the violation algorithms in Section 2 can be re-used.The queueQ of pairs
made of a state ofC and corresponding tuple of counter values that still need to be unwound isinitialised
in line 2 to be empty. Lines 3 and 4 enqueue the initial states and initial counter valuesc of C into Q. A
partial mapm is maintained to map pairs of states and counter values ofC to states inD: the pair〈s, c〉
is mapped to the initial state1 of D in lines 5 and 6. The current numbern of states ofD is initialised
to 1 in line 7. In lines 8 to 20, each time an element can be dequeued fromQ, newly encountered states
and counter values are enqueued for future unwinding, while new statesand transitions are added to
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Algorithm 2 Unwinding a counter automatonC into a DFAD.
1: procedureunwinder(C, D)
2: Q← [ ]
3: 〈s, c〉 ← the initial state and counter values ofC
4: Q.enqueue(〈s, c〉)
5: m(s, c)← 1
6: create state1 as the initial state ofD
7: n← 1
8: while Q 6= [ ] do
9: 〈s, c〉 ← Q.dequeue()

10: if states is a final state ofC and its guard holds for counter valuesc then
11: markm(s, c) as a final state ofD
12: for all outgoing transitionst from states in C do
13: if the guard oft holds for counter valuesc then
14: s′ ← the target state oft in C
15: c′ ← the values ofc after executing the counter assignments oft
16: if m(s′, c′) is still undefinedthen
17: n← n + 1
18: m(s′, c′)← n
19: Q.enqueue(〈s′, c′〉)
20: add a transition fromm(s, c) to m(s′, c′) on the symbol oft to D

D. Line 10 checks whether the dequeued state with its counter values is a finalstate ofC; if yes, then
the corresponding state is marked as a final state ofD in line 11. Lines 12 to 20 examine all outgoing
transitions from the dequeued state: if a guarded transition can fire inC, then its counterpart is added to
D after enqueuing the corresponding target state if it has not been encountered yet, as in lines 16 to 19.

Example 3.2. Take the cDFA of Figure 3 where the parameters〈d, d, e, e, x, x〉 are set to〈2, 2, 1, 2, 1, 2〉.
Its initial state is state 1 with counterc having value0: the term〈1, 0〉 is enqueued into the empty queue,
and state(1, 0) is set to be the initial state of the result DFA. Next, term〈1, 0〉 is dequeued, making the
queue empty again: all the three unguarded transitions from state 1 can fireand reach new states, soD,
X, andE are enqueued with counter value1, yielding [〈D, 1〉 , 〈X, 1〉 , 〈E, 1〉], and three states(D, 1),
(X, 1), and(E, 1) are added to the result DFA with transitions from(1, 0) on d, x, ande respectively.
Next, D with counter value1 is dequeued: only the guarded transitiond

{

c < d→ c := c + 1
}

from
D can fire (becausec = 1 < 2 = d) and reach a new state, soD with counter value2 is enqueued,
yielding [〈X, 1〉 , 〈E, 1〉 , 〈D, 2〉], and state(D, 2) is added to the result DFA with a transition from
(D, 1) on d. Next, X with counter value1 is dequeued: all the three guarded transitions fromX can
fire, but only stateX with counter value2 has not been encountered before and is enqueued, yielding
[〈E, 1〉 , 〈D, 2〉 , 〈X, 2〉], and state(X, 2) is added to the result DFA with a transition from(X, 1) on x,
as well as a transition from(X, 1) on d to (D, 1) and a transition from(X, 1) on e to (E, 1). Next,E
with counter value1 is dequeued: both the two guarded transitions fromE can fire, but only stateE with
counter value2 has not been encountered before and is enqueued, yielding[〈D, 2〉 , 〈X, 2〉 , 〈E, 2〉], and
state(E, 2) is added to the result DFA with a transition from(E, 1) on e, as well as a transition from
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(E, 1) on x to (X, 1). Next,D, X, andE with counter value2 are dequeued one by one, but none of
them lead to any unencountered states, and the queue becomes empty, but transitions from(D, 2) and
(E, 2) on x to (X, 1) as well as from(X, 2) on d to (D, 1) and from(X, 2) on e to (E, 1) are added.
The states(1, 0), (D, 2), (X, 1), (X, 2), (E, 1), and(E, 2) are marked as final states. If we minimise
the resulting DFA, then states(D, 2) and (E, 2) are found to be equivalent and are thus merged: the
resulting DFA is the one of Figure 1, with states(1, 0), (D, 1), (X, 1), (E, 1), (D, 2) ≡ (E, 2), and
(X, 2) corresponding respectively to states1, 2, 3, 4, 5, and6.

As each possible combination of states and counter values in the cDFA is enqueued at most once, the
worst-case number of states of the resulting DFA is the maximum number of combinations of states and
counter values in the cDFA. If the cDFA hasm states andc counters, and ifr is the number of different
values reachable by the counters, then the worst-case number of states of the resulting DFA isO(m · rc).
In the cDFA of Figure 3, the value ofr can be determined by inspection to bemax(d, e, x) + 1 = 3.

3.3. DFS on Counter Automata

The process of unwinding and unrolling can be done dynamically on demand, as in Section 2.3, for
a given number of variables. We modify Algorithm 2 and combine it with Algorithm1. We again
incrementally maintain a partial mapm that maps pairs of states and counter values to already explored
unwound states. The goal, as in Algorithm 1, is to build a segmentation of the current assignment.
Remember that in Algorithm 1 there are two possible choices for each variableVi with valuedi in the
current assignment. Either there is a corresponding transition in the unwound automaton labelled withdi

or there is no corresponding transition and a random transition is picked. Each considered transition has
to be checked if there is a path to a success state of the automaton. To check ifthere is a path from the
current node to a success state, a DFS is performed, again updating the map m so as not to reexamine
needlessly already unwound states.

In the worst case, this algorithm will unwind the whole automaton, as in Algorithm2 and for a given
number of variables, but the cost will be amortised over many calls to the algorithm.

4. Experiments

We now investigate the practicality of the proposedautomaton constraint by comparing the designed
violation algorithms to each other as well as to the ones of theregular constraint [12] for CBLS and
handcrafted special-purpose global constraints. Note that the objective of our experiments is thusnot to
beat the state of the art of the considered benchmarks. Indeed, since we compare our general-purpose
violation algorithms with hand-crafted special-purpose ones, our purpose is to show that (expensive) hu-
man modelling time can be decreased drastically when a missing global constraintis needed, or when one
wants to study the impact of conjoining several global constraints that act on the same variables, without
getting too high an overhead in (cheap) computer solving time. If extra solvingefficiency is required
after figuring out a good model and search procedure that use the newglobal constraint, say because the
cost of hand-crafting special-purpose violation algorithms can be amortised over many runs, then one
can always hand-craft those algorithms. Our main objective with this work isthe rapid prototyping of
new global constraints.
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The choice of the heuristic and meta-heuristic for a search procedure is an entirelyorthogonalissue
to our concern for the constraint model of a combinatorial problem and for the violation algorithms of
its constraints. Hence, in our experiments, we often do not spend much effort on designing a particularly
good search procedure, since thesamesearch procedure will be applied to all ways of implementing the
constraints. One could even argue that a poorly designed search procedure gives a better approximation
of the worst-case overhead of using ourautomaton generic constraint instead of a hand-crafted special-
purpose constraint, as there will be an unusually high number of move evaluations and executions.

The experiments are also intended to highlight the modelling convenience of automata, especially
of the more compact and generic counter-automata. In particular, the composition of several global
constraints (even built-in ones) often becomes straightforward (contrary to the composition of violation
algorithms) and often yields better performance than when using the individual constraints. This is
especially useful when new constraints are added to a problem.

We have implemented all our algorithms and models in COMET [13], which is an object-oriented con-
straint programming language with a constraint-based local search back-end (available atdynadec.com).
We have re-implemented theregular constraint of [12], as its source code is reportedly not available.

All experiments were run under COMET (version 2.0-1) and Mac OS X 10.6.2 on a 2.8 GHz Intel
Core 2 Duo with a 4GB RAM. All runs in Sections 4.1 and 4.2 were allocated30 CPU seconds, and
the runs in Section 4.3 were allocated600 CPU seconds. The average performance was recorded for
each instance over25 runs, starting from the same initial assignments for all the ways of posting the
global constraints of a model. In each result table, each row first specifies a (possibly singleton) set of
known satisfiable instances, and then gives the performance of each way of posting the global constraints,
namely the average percentage of instances solved without timing out (denoted by %S), the average
runtime in seconds (denoted by Sec), and the average number of iterations(denoted by Iter).

The experiments were made for the construction of rotating schedules (seeSections 4.1), nurse roster-
ing (see Section 4.2), and car sequencing (see Section 4.3). All discussed global constraints are described
in theGlobal Constraint Catalogue[3], where references to their origins can be found.

4.1. Rotating Nurse Schedules

Many industries and services need to function around the clock. Rotating schedules such as the one in
Table 1 (a real-life example taken from [9]) are a popular way of guaranteeing a maximum of equity tot
work teams (see [9]). There are day (d), evening (e), and night (n) shifts of work, as well as days off (x).
Each team works maximum one shift per day. The scheduling horizon has as many weeks as there are
teams. In the first week, teami is assigned to the schedule in rowi. For any next week, each team moves
down to the next row, while the team on the last row moves up to the first row. Note how this gives almost
full equity to the teams, except, for instance, that team1 does not enjoy the six consecutive days off that
the other teams have, but rather three consecutive days off at the beginning of week1 and another three
at the end of week5. The daily workload may be uniform: for instance, in Table 1, each day hasexactly
one team on-duty for each work shift, and two teams off-duty; we denote this uniform daily workload by
(1d, 1e, 1n, 2x); assuming the work shifts average8h, each employee will work7 · 3 · 8 = 168h over the
five-week-cycle, or33.6h per week.
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Mon Tue Wed Thu Fri Sat Sun

1 x x x d d d d
2 x x e e e x x
3 d d d x x e e
4 e e x x n n n
5 n n n n x x x

Table 1. Five-week rotating schedule with uniform daily workload(1d, 1e, 1n, 2x)

4.1.1. The Model

Daily workload, whether uniform or not, can be enforced by global cardinality (gcc) constraints on the
columns; however, our model does not include thosegcc constraints, because of the search procedure
(discussed below). In our problem instances, any number of consecutive workdays must be between two
and seven, and any transition in work shift can only occur after two to seven days off. The shift transi-
tion constraint can be enforced by apattern(X, {(d, x), (e, x), (n, x), (x, d), (x, e), (x, n)}) constraint
(where a stretch of valued must be followed by a stretch of valuex; similarly for stretches of valuee orn;
a stretch of valuex can be followed by a stretch of valued, e, orn) on the table flattened row-wise into a
sequenceX[1, . . . , 7·t] of variables, together with the constraintX[1] = X[7·t]∨X[1] = x∨X[7·t] = x,
which enforces that the transition between the last and first elements ofX is legal. The shift length
constraint can be modelled by astretch circular(X, [d, e, n, x], [2, 2, 2, 2], [7, 7, 7, 7]) constraint (say-
ing that any stretch must have at least2 and at most7 elements), withX seen as a circular array. As
we will need the relatedstretch path constraint also in Section 4.2, we omit modelling the required
stretch circular constraint and approximate it by astretch path constraint (with the same arguments)
together with the symmetry-breaking constraintX[1] 6= X[7 · t] enforcing that the first and last stretches
are over different values.

4.1.2. The Global Constraints

COMET does not have thepattern andstretch path global constraints as built-ins. Figure 4 gives a DFA
for the mentionedpattern(X, {(d, x), (e, x), (n, x), (x, d), (x, e), (x, n)}) constraint. Figure 5 gives a
cDFA for anypattern(X, P ) constraint, where a stretch of valuev can be followed by a stretch of value
w if (v, w) ∈ P , whereP contains all the allowed patterns; it describes the same constraint as in Figure 4
when given parameterP = {(d, x), (e, x), (n, x), (x, d), (x, e), (x, n)}. A guarded arc annotated with
“∀γ ∈ Σ {α→ β}” in Figure 5 is just a convenience for drawing the counter DFA; it denotesmultiple
guarded arcs where each arc has a symbol from the alphabetΣ with the same guardα and counter
assignmentβ. Figure 6 gives a DFA for thestretch path(X, [d, e, n, x], [2, 2, 2, 2], [7, 7, 7, 7]) constraint.
Figure 7 gives a cDFA for anystretch path (X, O, O, O) constraint: it is much more compact (2 vs 29
states) and generic (the lower bounds need not all be2, and the upper bounds need not all be7) than
the DFA of Figure 6, so preferable if the bounds are likely to change. Indeed, unwinding the cDFA over
Σ = {d, e, n, x} for 〈O, O, O〉 = 〈[d, e, n, x], [2, 2, 2, 2], [7, 7, 7, 7]〉 with Algorithm 2 and minimising
the result gives the DFA in Figure 6. Alternatively, one can construct [3] a DFA directly from the given
instance of thestretch path constraint and minimise it: the resulting DFA is the same as the minimised
unwound one, but our unwinding is not specific to thestretch path constraint and thus more general.

When usingautomaton, our model uses the minimised product of thepattern and stretch path

(counter) automata, accepting the intersection of their two languages. Indeed, this has been determined
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Figure 4. An automaton for thepattern(X, {(d, x), (e, x), (n, x), (x, d), (x, e), (x, n)}) constraint over four-
letter alphabet{d, e, n, x} in the chosen instances for rotating nurse scheduling.

match
{ℓ := X[1]}

∀γ ∈ Σ {γ = ℓ → nop}

∀γ ∈ Σ {γ 6= ℓ ∧ (ℓ, γ) ∈ P → ℓ := γ}

Figure 5. A counter automaton for anypattern(X,P ) constraint, where a stretch of valuev can be followed by
a stretch of valuew if (v, w) ∈ P , whereP contains all the allowed patterns. The counterℓ records the value of
the current stretch, and is initialised to the value of variableX[1].

by our experiments (not reported here) to be much more efficient than using the two automata individu-
ally, no matter which implementation of theautomaton constraint we deploy. Figure 8 gives the min-
imised product of the cDFA of Figure 5 and the cDFA of Figure 7: this cDFA ispreferable since unwind-
ing it for 〈O, O, O, P 〉 = 〈[d, e, n, x], [2, 2, 2, 2], [7, 7, 7, 7], {(d, x), (e, x), (n, x), (x, d), (x, e), (x, n)}〉
with Algorithm 2 and minimising the result gives the minimised product of the DFAs in Figures 4 and 6.

When not usingautomaton, our model uses the handcraftedpattern andstretch path constraints
discussed below, though without combining their violation algorithms, as there currently is no calculus
for doing that.

A handcrafted violation algorithm for the presentpattern(X, [d, e, n, x], [{x}, {x}, {x}, {d, e, n}])
constraint instance was quickly designed using the differentiable invariants [14] of COMET, which lift
logical expressions into constraints. Indeed, the following formula captures this instance:

∀i ∈ [2, . . . , 7 · t] : X[i− 1] 6= X[i] ∨X[i− 1] = x ∨X[i] = x

4.1.3. Interlude: A Handcrafted stretch path Constraint

A handcrafted violation algorithm for anystretch path constraint instance was designed much more
laboriously, after several hours of thinking and experimentation with alternatives.

Consider astretch path constraint forn variablesXi overm valuesdj with lower boundsO[dj ] and
upper boundsO[dj ] on the lengths of stretches. In the proposed Algorithm 3, the local variables s ande
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Figure 6. An automaton for thestretch path(X, [d, e, n, x], [2, 2, 2, 2], [7, 7, 7, 7]) constraint over four-letter al-
phabet{d, e, n, x} in the chosen instances for rotating nurse scheduling.

out in : c ≥ O|ℓ|

∀γ ∈ Σ−O {nop} ∀γ ∈ O
{

γ = ℓ ∧ c < O[γ] → c := c + 1
}

∀γ ∈ O {γ 6= ℓ ∧ c ≥ O[ℓ] → ℓ := γ, c := 1}

∀γ ∈ O {ℓ := γ, c := 1}

∀γ ∈ Σ−O {c ≥ O[ℓ] → nop}

Figure 7. A counter automaton for anystretch path(X,O,O,O) constraint, each stretch of valuev ∈ O being
of a length between lower boundO[v] and upper boundO[v]; the counterℓ records the value of the current
stretch; the counterc maintains the length of the current stretch; most transitions and one final state are guarded by
comparisons betweenc and the length bounds on the current stretch.

respectively record the indices of the first and last variables of the mostrecent stretch, whose value and
length the local variablesd andℓ record. Line 2 initialisess andd for the first variable. Lines 3 and 4
respectively initialise the violation of the constraint and its variables (includingdummy variablesX0 and
Xn+1) to 0. Lines 5 to 17 scan the remaining variables from left to right: each time a stretchends (when
the test in line 6 succeeds), lines 7 and 8 first updatee andℓ, and then a case analysis is performed:

• The violation of the constraint is updated in lines 10 and 16 according to the following formula,
when there ares stretches of lengthsℓi and valuesdi in the current assignment:

Violation =
s

∑

i=1

max(ℓi −O[di], 0) + max(O[di]− ℓi, 0)

A too long (line 9) or too short (line 13) stretch contributes the length of its overflow (line 10) or
underflow (line 16) to the constraint violation.

• The violations of the variables cannot easily be captured in such an aggregating formula. If a
stretch is too long (line 9), then its first and last variables are considered tobe violated and have
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out in : c ≥ O|ℓ|
{ℓ := X[1]}

∀γ ∈ Σ−O {γ = ℓ ∨ (ℓ, γ) ∈ P → ℓ := γ}

∀γ ∈ O
{

γ = ℓ ∧ c < O[γ] → c := c + 1
}

∀γ ∈ O {γ 6= ℓ ∧ (ℓ, γ) ∈ P ∧ c ≥ O[ℓ] → ℓ := γ, c := 1}

∀γ ∈ Σ {ℓ := γ, c := 1}

∀γ ∈ Σ−O {γ 6= ℓ ∧ (ℓ, γ) ∈ P ∧ c ≥ O[ℓ] → ℓ := γ}

Figure 8. (Conjunctive) product of thepattern andstretch path counter automata of Figures 5 and 7.

their violations incremented by one (lines 11 and 12), so that the next move might change one of
those variables and thus possibly decrease the length of the stretch by one; a stretch overflowing
by more than one value can thus be trimmed to a suitable size in several moves. Conversely, if a
stretch is strictly shorter than allowed (line 13), then its preceding and succeeding variables (which
are possibly the dummy variables created in line 4) are considered to be violated and have their
violations incremented by one (line 14), so that the next move might change one of those variables
and thus possibly increase the length of the stretch by one; a stretch underflowing by more than
one value can thus be extended to a suitable size in several moves.

We argue that it is not a good idea only to increase the length of too short stretches, as we can also
decrease their length to eliminate them (that is, to add line 15 in Algorithm 3, making the first and last
variables of a too short stretch violated). Consider astretch path constraint overΣ = {d, e, x} with pa-
rameters〈O, O, O〉 = 〈[d, e, x], [2, 2, 2], [3, 3, 3]〉, and values〈d, d, e, x, x〉 for a sequence〈X1, . . . , X5〉
of 5 variables. It has three stretches:s1 = 〈d, d〉, s2 = 〈e〉, ands3 = 〈x, x〉. As s2 is the only stretch
that makes the constraint violated and as it is a too short stretch of valuee, the only way to enlarges2

is to change variableX2 to e, or to changeX4 to e. If the moveX2 := e is chosen, thens1 = 〈d〉 is
too short. In order to enlarges1 then, variableX2 may be changed back tod, ands2 = 〈e〉 becomes too
short again. Under this situation, enlarging a too short stretch will alwaysmake another stretch too short.
However, instead of enlargings2, eliminating it by changingX2 to d or x (since stretchess1 ands3 are
shorter than allowed) will make the constraint satisfied.

In practice, we use an incremental version of this algorithm, maintaining the values ofs, e, d, andℓ
for every stretch.

Example 4.1. Consider thestretch path([X1, . . . , X10], [d, e, x], [2, 2, 4], [3, 4, 5]) constraint overΣ =
{d, e, x}. Under the sequence〈d, d, d, x, e, e, d, d, d, d〉 of values, the violations of the constraint and all
variables are initialised to0. The first stretch, of valued, is of maximal length, so it does not affect any
violations. The singleton stretch of valuex is too short, so it increases the constraint violation to1; as is
it is shorter than allowed, the violations of its neighbour variablesX3 andX5 are increased to1; as its
first and last variables are the same (variableX4), so the violation ofX4 are increased to2. The stretch
of valuee is of allowed length, so it does not affect the constraint violation. The laststretch, of valued,
is too long, so it increases the constraint violation to2, and it increases the violations of its first and last
variablesX7 andX10 to 1. In summary, the constraint has violation2 and the most violated variable is
X4 with also violation2. The moveX4 := e will decrease the constraint violation to1 (because of the
still too long stretch ofd), decrease the violations ofX3, X4 andX5 to 0.
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Algorithm 3 Handcrafted violation algorithm for thestretch path constraint

1: procedurecalcViolations(stretch path([X1, . . . , Xn], O, O, O))
2: s← 1; d← X1

3: Violation ← 0
4: for all i = 0 to n + 1 doViolation[Xi]← 0 end for
5: for all i = 2 to n do
6: if Xi 6= d then
7: e← i− 1
8: ℓ← e− s + 1
9: if ℓ > O[d] then

10: Violation ← Violation + (ℓ−O[d])
11: Violation[Xs]← Violation[Xs] + 1
12: Violation[Xe]← Violation[Xe] + 1
13: else ifℓ < O[d] then
14: Violation[Xs−1]← Violation[Xs−1] + 1; Violation[Xe+1]← Violation[Xe+1] + 1
15: Violation[Xs]← Violation[Xs] + 1; Violation[Xe]← Violation[Xe] + 1
16: Violation ← Violation + (O[d]− ℓ)
17: s← i; d← Xi {start a new stretch}

4.1.4. The Search Procedure

A gcc constraint can be maintained by a neighbourhood containing only assignments that swap the
values of two of its variables. It is often much more efficient to enforce agcc constraint with such
a neighbourhood than to post it as a constraint in the model, using a built-in constraint, a DFA, or a
cDFA. This is the case here (comparisons are not given here for space reasons), so we omit thegcc
constraints from the model. Recall that Algorithm 1 greedily computes a segmentation under random
choices when greedy segment growth is impossible. Hence it might give different segmentations when
probing a swap and when actually performing that swap. Therefore, werecord the segmentation of each
swap probe, and at the actual swap, we just apply its recorded segmentation. Upon uniform workload,
we can deterministically construct a suitable initial assignment, which experiments(reported in [6]) have
shown to be much better than random initial assignments. For example, the initial assignment of instance
(16d, 8e, 8n, 16x) consists of8 vertically stacked copies of the initial assignment in Table 2 for instance
(2d, 1e, 1n, 2x), which itself was systematically obtained by satisfying thegcc constraint in each column
and thestretch path constraint in each row. We apply min-conflict on the most violated variable, because
this works well with the meta-heuristic discussed next.

Our chosen meta-heuristic is tabu search with restarts. At each iteration, thesearch procedure selects
a violated variablex (recall that the violation of a variable is here at most1) and another variabley of
distinct value in the same column so that their swap gives the greatest violation change. The length of
the tabu list is the maximum between6 and the sum of the violations of all constraints. The best solution
so far is maintained. Restarting is done every2 · |X| iterations. The expressions for the length of the tabu
list and the restart criterion were experimentally determined.
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Mon Tue Wed Thu Fri Sat Sun

1 d d d d d d d
2 e e e e e e e
3 n n n n n n n
4 x x x x x x x
5 d d d d d d d
6 x x x x x x x

Table 2. Non-random initial assignment for the rotating nurse schedule with uniform daily workload
(2d, 1e, 1n, 2x)

4.1.5. Results

We ran experiments over the eight satisfiable instances with uniform daily workload(1d, 1e, 1n, 1x) un-
til (8d, 8e, 8n, 8x), the latter being denoted by(1d, 1e, 1n, 1x) ·8, and over the eight satisfiable instances
with uniform daily workload(2d, 1e, 1n, 2x) ·1 until (2d, 1e, 1n, 2x) ·8. Table 3 compares the discussed
five ways of implementing thepattern andstretch path constraints. We observe that all theautomaton

implementations can solve the instances(1d, 1e, 1n, 1x)·1 to (1d, 1e, 1n, 1x)·8 more efficiently than the
handcraftedpattern andstretch path constraints; for instances(2d, 1e, 1n, 2x) ·1 to (2d, 1e, 1n, 2x) ·8,
theregular constraint [12] is less efficient than the other four implementations, which have similar run-
times. This shows the possibility that a generic constraint can even beat a carefully designed handcrafted
constraint. This is because it combines thepattern andstretch path constraints into one constraint, and
gives a better estimate of violations. Our threeautomaton implementations have close runtimes, and
there is no clear winner. Compared withregular [12], our methods tend to have a higher number of
iterations, as they are more stochastic; however, our runtimes are lower, as our cost of one iteration is
much smaller (linear in the number of variables, instead of linear in the number ofarcs of the unrolled
automaton).

4.2. The Nurse Scheduling Problem

NSPlib [19] is a very large repository of (artificially generated) instancesof thenurse scheduling problem
(NSP), which is about constructing a duty roster for nursing staff. LetN be the number of nurses,D the
number of days of the scheduling horizon, andS the number of shifts. The objective is to construct an
N ×D matrix of values in the integer interval[1, . . . , S], with valueS representing the off-duty “shift”.

4.2.1. The Model

In instance files, there are hardcoverage constraintsand soft preference constraints; we only use the for-
mer here (as optimisation is orthogonal to our modelling concerns, so that we want to keep the instances
solvable within a short amount of time): they give for each dayd and shifts the lower bound on the
number of nurses that must be assigned to shifts on dayd, and can be modelled byatLeast constraints
on the columns. There are instance files forN × 7 rosters withN ∈ {25, 50, 75, 100}, and forN × 28
rosters withN ∈ {30, 60}.

In case files, there are hard constraints on the rows. For each shifts, there are lower and upper bounds
on the number of occurrences ofs in any row (the daily assignment of some nurse): this can be modelled
by gcc constraints on the rows. There are even lower and upper bounds on thecumulative number of
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Unrolled DFA DFS on DFA DFS on cDFA [12] on DFA Handcrafted

Instance %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter

(1d, 1e, 1n, 1x) · 1 100 0.004 25 100 0.004 26 100 0.003 22 100 0.03 23 100 0.018 174

(1d, 1e, 1n, 1x) · 2 100 0.008 19 100 0.005 18 100 0.005 20 100 0.051 17 100 0.061 504

(1d, 1e, 1n, 1x) · 3 100 0.014 34 100 0.014 49 100 0.011 31 100 0.176 47 100 0.130 925

(1d, 1e, 1n, 1x) · 4 100 0.019 48 100 0.027 73 100 0.02 47 100 0.215 43 100 0.338 2113

(1d, 1e, 1n, 1x) · 5 100 0.027 66 100 0.033 61 100 0.033 65 100 0.303 50 100 0.494 2636

(1d, 1e, 1n, 1x) · 6 100 0.037 76 100 0.049 85 100 0.048 79 100 0.481 67 100 0.988 4704

(1d, 1e, 1n, 1x) · 7 100 0.049 130 100 0.061 90 100 0.068 99 100 0.625 77 100 1.605 6812

(1d, 1e, 1n, 1x) · 8 100 0.062 110 100 0.126 175 100 0.116 155 100 0.830 100 0 1.481 5691

(1d, 1e, 1n, 1x) 100 0.028 64 100 0.040 72 100 0.038 65 100 0.339 52 100 0.639 2945

(2d, 1e, 1n, 2x) · 1 100 0.005 8 100 0.001 9 100 0.003 13 100 0.031 9 100 0.010 42

(2d, 1e, 1n, 2x) · 2 100 0.019 21 100 0.009 24 100 0.011 31 100 0.091 22 100 0.026 108

(2d, 1e, 1n, 2x) · 3 100 0.029 41 100 0.029 63 100 0.024 50 100 0.223 38 100 0.041 100

(2d, 1e, 1n, 2x) · 4 100 0.033 78 100 0.055 96 100 0.036 56 100 0.426 57 100 0.074 128

(2d, 1e, 1n, 2x) · 5 100 0.064 142 100 0.082 107 100 0.073 96 100 0.714 80 100 0.088 167

(2d, 1e, 1n, 2x) · 6 100 0.076 126 100 0.119 136 100 0.104 112 100 1.051 100 100 0.128 214

(2d, 1e, 1n, 2x) · 7 100 0.096 156 100 0.205 211 100 0.19 185 100 1.449 119 100 0.128 222

(2d, 1e, 1n, 2x) · 8 100 0.134 235 100 0.208 178 100 0.307 270 100 2.157 157 100 0.182 280

(2d, 1e, 1n, 2x) 100 0.057 101 100 0.089 103 100 0.094 102 100 0.768 73 100 0.085 158

Table 3. Benchmark results on rotating nurse schedules

occurrences of the working shifts1, . . . , S−1 in any row: this can be modelled bygcc constraints on the
off-duty valueS and always gives tighter occurrence bounds onS than in the previousgcc constraints.
For each shifts, there are also lower and upper bounds on the length of any stretch of value s in any
row: this can be modelled bystretch path constraints on the rows. Finally, there are lower and upper
bounds on the length of any stretch of the working shifts1, . . . , S − 1 in any row: this can be modelled
by stretch path partition constraints on the rows. We stress that the constraints on any two rows are
thesame. There are8 case files for theN × 7 rosters, and another8 case files for theN × 28 rosters.

4.2.2. The Global Constraints

COMET does not have thestretch path andstretch path partition global constraints as built-ins. (Counter)
automata forstretch path were discussed in Section 4.1. A DFA for thestretch path partition(X,
[{d, e, n}], [2], [4]) constraint of NSPlib Case 8 is given in Figure 9. A cDFA (not given herefor space
reasons) for anystretch path partition(X, [{d, e, n}], [ℓ], [u]) constraint over an alphabet containing
{d, e, n} trivially generalises the cDFA of Figure 7 forstretch path. A handcrafted violation algorithm
(not given here for space reasons) for thestretch path partition constraint was designed by trivial gen-
eralisation of our handcrafted Algorithm 3 for thestretch path constraint.

COMET does not have a built-ingcc constraint, but it can be simulated, without loss of efficiency
compared to a handcrafted implementation, by conjoining theatLeast andatMost built-in constraints
of COMET. We have constructed DFAs (not given here for space reasons, asthey would be huge) for the
case-specific instances of thegcc constraint. We have also designed a cDFA (not given here for space
reasons)for any instance of thegcc constraint. Unwinding this cDFA for any instance with Algorithm 2
and minimising the result gives the same DFA as our specific construction for that instance.

Our model uses theatLeast built-in constraint of COMET on the columns of the duty roster.
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Figure 9. An automaton for thestretch path partition((X, [{d, e, n}], [2], [4])) constraint of Case 8 of NSPlib.

When usingautomaton, our model actually uses the minimised unwound product of thestretch path,
stretch path partition, andgcc cDFAs, accepting the intersection of their three languages. Indeed, this
has been determined by our experiments (not reported here) to be more efficient than using the three
automata individually, no matter which implementation of theautomaton constraint we deploy.

When not usingautomaton, our model uses our handcraftedstretch path andstretch path partition

constraints as well as the built-ingcc constraints on the rows of the duty roster, though without combining
their violation algorithms, as there currently is no calculus for doing that.

4.2.3. The Search Procedure

Our chosen heuristic is min-conflict on the most violated variable, starting from a random initial assign-
ment. As modifying the assignment of the most violated variable often helps to finda better solution,
and as only a small neighbourhood is searched in each iteration, this search heuristic is often successful.
This is the case here. We only consider assignment moves. Our chosen meta-heuristic is tabu search with
restarts, under the same settings as in Section 4.3.

4.2.4. Results

For each case and nurse countN , we used thefirst 10 instances for each configuration of the NSPlib
coverage complexity indicators, that is instances1–270 for the N × 7 rosters and1–120 for the N ×
28 rosters. We restricted ourselves to the instances shown to be satisfiable bya (propagation-based)
constraint program within one CPU minute on the same hardware.

Table 4 compares the discussed five ways of implementing the row constraints on the chosen satisfi-
able NSPlib instances of Cases 7 and 8 only (for space reasons). We observe that the handcrafted built-in
constraints are more efficient than theautomaton implementations thereof, but not by a wide margin on
Case8.

4.3. Car Sequencing

The car sequencing problem consists of sequencing the production ofn cars of the same basic model, but
with possibly different options (air-conditioning, sun-roof, etc) installed, so that the capacity constraints
of the stations on the assembly line are never exceeded. These capacity constraints are of the formu/q,
meaning that at mostu out of anyq successive cars can have a particular option installed at some station.
All the considered problem instances have the same capacity constraints, namely1/2, 2/3, 1/3, 2/5, and
1/5 for five options; the instances differ in the demand constraints, that is the numbers of cars of each
configuration of the five options that are to be assembled.
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Unrolled DFA DFS on DFA DFS on cDFA [12] on DFA Handcrafted

Case N %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter

7 25 73 9.298 154418 55 15.023 141283 55 15.013 129571 56 15.863 64987 88 4.206 44140

7 50 47 17.111 155676 37 19.943 122096 37 20.052 115776 11 28.099 87053 81 6.432 43548

7 75 32 21.207 152183 26 22.915 121479 26 22.991 111138 1 29.900 91029 77 8.150 46027

7 100 36 20.433 107148 33 21.316 84683 33 21.457 84521 0 30.044 75893 75 8.869 39479

8 25 95 2.001 31377 67 12.690 102612 65 13.197 95384 92 3.906 15307 91 3.412 33074

8 50 78 7.224 66941 55 14.427 106321 53 15.521 98974 71 11.415 36073 79 6.957 47984

8 75 80 7.173 52538 27 22.958 120967 24 23.766 75559 57 17.786 56597 81 6.648 39160

8 100 73 9.347 48841 24 24.093 94171 23 24.212 86653 19 26.959 73021 76 8.181 35905

Table 4. Benchmark results on NSPlib instances

1 2 3

Σ− S

S S

Σ− S Σ− S

Figure 10. An automaton for thesequence(X, 0, 2, 3, S) constraint used in instances of the car sequencing prob-
lem, whereΣ is the alphabet.

4.3.1. The Model

This problem can be modelled by an arrayX of n variables, with fivesequence(X, ℓ, u, q, S) constraints,
meaning that betweenℓ andu of anyq successive variables inX take a value in the setS (here a set of
options), with0 ≤ ℓ ≤ u ≤ q and1 ≤ q ≤ n. Each of the fivesequence constraints is weighted by
a factor indicating how heavily utilised the corresponding option is (see [13]for details). The demand
constraints can be enforced by one global cardinality (gcc) constraint onX; however, our model does
not include thatgcc constraint, because of the search procedure (discussed below).

4.3.2. The Global Constraints

COMET does have a built-insequence constraint, which actually omits the lower boundℓ (always0
here); its violation algorithm is fully described in [13].

A DFA for the 2/3 capacity constraint, that is thesequence(X, 0, 2, 3, S) constraint, is given in
Figure 10. A cDFA for anysequence(X, ℓ, u, q, S) constraint is given in Figure 11. Unwinding this
cDFA for 〈ℓ, u, q〉 = 〈0, 2, 3〉 with Algorithm 2 and minimising the result gives the DFA in Figure 10.
Alternatively, but only in caseS = {1} andΣ = {0, 1}, one can construct [18] a DFA directly from
an instance of thesequence constraint and minimise it: the resulting DFA is the same as our minimised
unwound one, but our unwinding is not specific to thesequence constraint and thus more general.

4.3.3. The Search Procedure

We use the very efficient heuristic (min-conflict on the most violated variable, starting from a random
permutation that satisfies the demand constraints, and maintaining those constraints via swap moves) and
meta-heuristic (tabu search with intensification, diversification, and restarts) given in [13].
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Figure 11. A counter automaton for thesequence(X, ℓ, u, q, S) constraint, whereΣ is the alphabet. The binary
representation of countercU , denoted bycU2, gives the content of the current window of lengthq that we slide
acrossX: bit i of cU2 is 1 if and only if symboli in the current window is an element ofS. Further,cwU records
the number of symbols ofS in the current window. The guardcU ≥ 2q−1 ∨ cwU < u tests whether another
symbol ofS can be read under any of the following two situations: (1) thefirst symbol of the current window
belongs toS; (2) the number of symbols ofS in the current window is smaller thanu. The counter operation
cU := (cU mod 2q−1) · 2 + 1 updatescU for the next window; similarlycwU is updated. In initialisation, both of
cU andcwL are0 , which corresponds to an initial dummy window to the left ofX with no symbols ofS. However,
this initial window does not satisfy the lower-bound requirement of the constraint, so another two counterscL and
cwL are used for the lower bound.cL is initialised to2q − 1, andcwL is initialised toq, which corresponds to
another initial dummy window, with only symbols ofS. They have a similar guarded transition tocU andcwU .

4.3.4. Results

Table 5 compares the discussed five ways of implementing thesequence constraint on the instance of [5],
as well as on the ten60–x instances and the first four satisfiablex/y instances atCSPlib.org. We
observe that the built-insequence constraint is much more efficient and successful than theautomaton

implementations thereof. On the hard instances, theautomaton implementations fail to find a solution
for most of the25 runs; on the easy instances, the runtimes are close, though. All this is not surprising
because the handcrafted violation algorithm [13] (for the upper-boundpart of the)sequence constraint
is very natural but is not approximated in any sense by the general-purpose violation algorithm of our
automaton constraint. We included this benchmark as an indicator that the gap between generality and
specificity can be very large.

5. Conclusion

In summary, we have shown that the idea of describing novel constraints by (counter) automata can
be successfully imported from classical (propagation-based global search) constraint programming to
constraint-based local search (CBLS). Our violation algorithms take time linearin the number of vari-
ables, whereas the propagation algorithms take amortised time linear in the numberof arcs of the unrolled
automaton [2, 11]. We have experimentally shown that our approach is competitive with the prior CBLS
approach of [12].
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Unrolled DFA DFS on DFA DFS on cDFA [12] on DFA Built-in Sequence

Instance %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter

[5] 100 0.015 37 100 0.036 34 100 0.048 39 100 0.099 109 100 0.010 32

60–01. . . 10 100 0.859 130 100 2.646 120 100 2.638 109 100 2.484 126 100 0.204 62

4/72 32 494 145434 4 583 51849 8 566 45860 16 571 57450 100 18.147 133473

16/81 0 600 174299 0 600 52979 4 591 46353 0 600 59400 80 153 1090803

41/66 60 295 94918 28 465 42973 60 316 27069 24 470 49219 100 3.014 23860

28/82 40 475 144873 20 565 51169 20 539 44958 16 551 56874 100 1.862 13113

Table 5. Benchmark results on car sequencing

There is of course a trade-off between using a (counter) automaton to describe a constraint and using
a handcrafted implementation of that constraint. On the one hand, a handcrafted implementation of a
constraint is normally more efficient, because properties of the constraintcan be exploited, but it may
take a lot of time to implement and verify it. On the other hand, the (violation or propagation) algorithm
processing a automaton is implemented and verified once and for all, and our assumption is that it takes
a lot less time to describe and verify a new constraint by an automaton than to implement and verify its
algorithm. We see thus opportunities for rapid prototyping with constraints described by automata: once
a sufficiently efficient model and search procedure have been experimentally determined with its help,
some extra efficiency may be achieved, if necessary, by handcrafting implementations of any constraints
described by automata.

As witnessed by our experiments, constraint composition (by conjunction) iseasy to experiment
with under the automaton approach, as there exist standard and efficientalgorithms for composing and
minimising automata, but there is no known systematic way of composing violation (orpropagation)
algorithms when decomposition is believed to obstruct efficiency.

In the global search approach to CP, the common modelling device of reification can be used to
shrink the size of DFAs describing constraints [2]. For instance, consider theelement([x1, . . . , xn], i, v)
constraint, which holds if and only ifxi = v. Upon reifying the variablesx1, . . . , xn into new Boolean
(0/1) variablesb1, . . . , bn such thatxi = v ⇔ bi = 1, it suffices to pose theautomaton([b1, . . . , bn], A)
constraint, where automatonA corresponds to the regular expression0∗1(0 + 1)∗, meaning that there
must be at least one1 in the sequence of thebi variables. However, such explicit reification constraints
are not necessary in constraint-based local search, as a total assignment of values to all variables is
maintained at all times: instead of processing thevaluesof the variables when computing the segments,
one can process theirreified values.

Future work includes investigating an extension to push-down automata in order to handle context-
free languages in a manner different from the counter automata of this paper. We also want to investigate
a violation measure for theautomaton constraint that is not based on Hamming distance (which only
allows assignment and swap moves) but, say, on Levenshtein distance, which also allows insertion and
deletion moves.
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