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We explore the idea of using finite automata to implement new constraints for local search (this is
already a successful technique in constraint-based globalsearch). We show how it is possible to
maintain incrementally the violations of a constraint and its decision variables from an automaton
that describes a ground checker for that constraint. We establish the practicality of our approach idea
on real-life personnel rostering problems, and show that itis competitive with the approach of [12].

1 Introduction

When a high-level constraint programming (CP) language lacks a (possibly global) constraint that would
allow the formulation of a particular model of a combinatorial problem, then the modeller traditionally
has the choice of (1) switching to another CP language that has all the required constraints, (2) formu-
lating a different model that does not require the lacking constraints, or (3) implementing the lacking
constraint in the low-level implementation language of thechosen CP language. This paper addresses
the core question of facilitating the third option, and as a side effect often makes the first two options
unnecessary.

The user-level extensibility of CP languages has been an important goal for over a decade. In the tra-
ditional global search approach to CP (namely heuristic-based tree search interleaved with propagation),
higher-level abstractions for describing new constraintsinclude indexicals [17]; (possibly enriched) de-
terministic finite automata (DFAs) via theautomaton[2] andregular [11] generic constraints; and multi-
valued decision diagrams (MDDs) via themdd [5] generic constraint. Usually, a generic but efficient
propagation algorithm achieves a suitable level of local consistency by processing the higher-level de-
scription of the new constraint. In the more recent local search approach to CP (called constraint-based
local search, CBLS, in [14]), higher-level abstractions for describing new constraints include invari-
ants [9]; a subset of first-order logic with arithmetic via combinators [16] and differentiable invariants
[15]; and existential monadic second-order logic for constraints on set decision variables [1]. Usually,
a generic but incremental algorithm maintains the constraint and variable violations by processing the
higher-level description of the new constraint.

In this paper, we revisit the description of new constraintsvia automata, already successfully tried
within the global search approach to CP [2, 11], and show thatit can also be successfully used within the
local search approach to CP. The significance of this endeavour can be assessed by noting that 108 of the
currently 313 global constraints in theGlobal Constraint Catalogue[3] are described by DFAs that are
possibly enriched with counters and conditional transitions [2] (note that DFA generators can easily be
written for other constraints, such as thepattern [4] andstretch[10] constraints, taking the necessarily
ground parameters as inputs), so that all these constraintswill instantly become available in CBLS once
we show how to implement fully the enriched DFAs that are necessary for some of the described global
constraints.

The rest of this paper is organised as follows. In Section 2, we present our algorithm for incre-
mentally maintaining both the violation of a constraint described by an automaton, and the violations of
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Figure 1: An automaton for a simple work scheduling constraint

each decision variable of that constraint. In Section 3, we present experimental results establishing the
practicality of our results, also in comparison to the priorapproach of [12]. Finally, in Section 4, we
summarise this work and discuss related as well as future work.

2 Incremental Violation Maintenance with Automata

In CBLS, three things are required of an implemented constraint: a method for calculating the violation
of the constraint and each of its decision variables for the initial assignment (initialisation); a method
for computing the differences of these violations upon a candidate local move (differentiability) to a
neighbouring assignment; and a method for incrementally maintaining these violations when an actual
move is made (incrementality). Intuitively, the higher theviolation of a decision variable, the more can
be gained by changing the value of that decision variable. Itis essential to maintain incrementally the
violations rather than recomputing them from scratch upon each local move, since by its nature a local
search procedure will try many local moves to find one that ideally reduces the violation of the constraint
or one of its decision variables.

Our running example is the following, for a simple work scheduling constraint. There are values for
two work shifts, day (d) and evening (e), as well as a value for enjoying a day off (x). Work shifts are
subject to the following three conditions: one must take at least one day off before a change of work shift;
one cannot work for more than two days in a row; and one cannot have more than two days off in a row.
A DFA for checking ground instances of this constraint is given in Figure 1. The start state 1 is marked
by a transition entering from nowhere, while the success states 5 and 6 are marked by double circles.
Missing transitions, say from state 2 upon reading valuee, are assumed to go to an implicit failure state,
with a self-looping transition for every value (so that no success state is reachable from it).

2.1 Violations of a Constraint

To define and compute the violations of a constraint described by an automaton, we first introduce the
notion of a segmentation of an assignment:

Definition 1 (Segmentation) Given an assignment V= 〈d1, . . . ,dn〉, a segmentationis a possibly empty
sequence of non-empty sub-strings (referred to here assegments) σ1, . . . ,σℓ of d1 · · ·dn such that for each
σ j = dp · · ·dq andσ j+1 = dr · · ·ds we have that r> q.

For example, a possible segmentation of the assignmentV = 〈x,e,d,e,x,x〉 is 〈x,e〉,〈e,x,x〉; note that
the third character of the assignment is not part of any segment. In general, an assignment has multiple
possible segmentations. We are interested in segmentations that are accepted by an automaton, in the
following sense:
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Definition 2 (Acceptance) Given an automaton and an assignment V= 〈d1, . . . ,dn〉, a segmentation
σ1, . . . ,σℓ is acceptedby the automaton if there exist stringsα1, . . . ,αℓ+1, where onlyα1 and αℓ+1 may
be empty, such that the concatenated string

α1 ·σ1 ·α2 · · · · ·αℓ ·σℓ ·αℓ+1

is accepted by the automaton.

For example, given the automaton in Figure 1, the assignmentV = 〈x,e,d,e,x,x〉 has a segmentation
〈x,e〉,〈e,x,x〉 with ℓ = 2, which is accepted by the automaton via the string〈x,e,x,e,x,x〉 with α1 = α3 =
ε (the empty string) andα2 = 〈d〉.

Given an assignment, the algorithm presented below initialises and updates a segmentation. The
violations of the constraint and its decision variables arecalculated relative to the current segmentation:

Definition 3 (Violations) Given an automaton describing a constraint c and given a segmentationσ1, . . . ,σℓ

of an assignment for a sequence of n decision variables V1, . . . ,Vn:

• Theconstraint violationof c is n−∑ℓ
j=1 |σ j |.

• Thevariable violationof decision variable Vi is 0 if there exists a segment index j in1, . . . , ℓ such
that i∈ σ j , and1 otherwise.

It can easily be seen that the violation of a constraint is also the sum of the violations of its decision
variables, and that it is never an underestimate of the minimal Hamming distance between the current
assignment and any satisfying assignment.

Our approach, described in the next three sub-sections, greedily grows a segmentation from left to
right across the current assignment relative to a satisfying assignment, and makes stochastic choices
whenever greedy growth is impossible.

2.2 Initialisation

A finite automaton is first unrolled for a given lengthn of a sequenceV = 〈V1, . . . ,Vn〉 of decision vari-
ables, as in [11]:

Definition 4 (Layered Graph) Given a finite automaton with m states, thelayered graphover a given
number n of decision variables is a graph with m· (n+1) nodes. Each of the n+1 vertical layers has a
node for each of the m states of the automaton. The node for thestart state of the automaton in layer 1
is marked as the start node. There is an arc labelled w from node f in layer i to node t in layer i+ 1 if
and only if there is a transition labelled w from f to t in the automaton. A node in layer n+1 is marked
as a success node if it corresponds to a success state in the automaton.

The layered graph is further processed by removing all nodesand arcs that do not lead to a success
node. The resulting graph, seen as a DFA (or as an ordered MDD), neednot be minimised (or reduced)
for our approach (although this is a good idea for the global search approaches [2, 11], as argued in [7],
and would be a good idea for the local search approach of [12]), as the number of arcs of the graph does
not influence the time complexity of our algorithm below. Forinstance, the minimised unrolled version
for n = 6 decision variables of the automaton in Figure 1 is given in Figure 2. Note that a satisfying
assignment〈d1, . . . ,dn〉 corresponds to a path from the start node in layer 1 to a success node in layer
n+1, such that each arc from layeri to layeri +1 of this path is labelleddi .

Further, we require a number of data structures, wherem is the number of states in the given automa-
ton andn is the number of decision variables it was unrolled for:
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Figure 2: The minimised unrolled automaton of Figure 1. The number by each node is the number of
paths from that node to the success node in the last layer. Thecolour coding is purely for the convenience
of the reader to spot a particular path mentioned in the running text.

• nbrPaths[1≤ i ≤ n,1≤ j ≤ m] records the number of paths from nodej in layer i to a success
node in the last layer; for example, see the numbers by each node in Figure 2;

• ℓ is the number of segments in the current segmentation;

• segmentsσ1, . . . ,σℓ record the current segmentation;

• Violation[1≤ i ≤ n] records the current violation of decision variableVi (see Definition 3);

ThenbrPathsmatrix can be computed in straightforward fashion by dynamic programming. The other
three data structures are initialised (when the starting position iss= 1) and maintained (when decision
variableVs is changed, withs≥ 1) by thecalcSegment(s) procedure of Algorithm 1. Upon some ini-
tialisations (lines 2 and 3), it (re)visits only the decision variablesVs, . . . ,Vn (line 4). If the value of the
currently visited decision variableVi triggers the extension of the currently last segment (lines6 and 9)
or the creation of a new segment (lines 6 to 9), then its violation is 0 (line 10). Otherwise, its violation is
1 and a successor node is picked with a probability weighted according to the number of paths from the
current node to a success node (lines 11 to 14). Toward this, we maintain the nodes of the picked path
(line 16).

The time complexity of Algorithm 1 is linear in the numbern of decision variables, because only
one path (from layers to layern+ 1) is explored, with a constant-time effort at each node. Once the
pre-processing is done, the time complexity of Algorithm 1 is thusindependentof the number of arcs
of the unrolled automaton! Hence the minimisation (or reduction) of the unrolled automaton would be
merely for space savings (and for the convenience of human reading) as well as for accelerating the pre-
processing computation of thenbrPathsmatrix. In our experiments, these space and time savings arenot
warranted by the time required for minimisation (or reduction).

Note that this algorithm workswithout change or loss of performance onnon-deterministic finite
automata (NFAs). This is potentially interesting since NFAs are often smaller than their equivalent
DFAs, but (as just seen) the number of arcs has no influence on the time complexity of Algorithm 1.
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Algorithm 1 Computation and update of the current segmentation from position s
1: procedure calcSegment(s : 1, . . . ,n)
2: let ℓ be the number of segments picked for〈V1, . . . ,Vs−1〉 at the previous run; assumeℓ = 0 at the

first run
3: node[1]← 1; inSegment← true
4: for all i← s to n do
5: if the current value, saya, of Vi is the label of an arc fromnode[i] to some nodet then
6: if not inSegmentthen
7: ℓ← ℓ+1; σℓ← ε ; inSegment← true {c}reate a new segment
8: end if
9: σℓ← σℓ ·a

10: Violation[i]← 0
11: else
12: inSegment← false
13: Violation[i]← 1
14: pick a successort of node[i] with probabilitynbrPaths[i +1, t] / nbrPaths[i,node[i]]
15: end if
16: node[i +1]← t
17: end for

For example, in Figure 2, with the initial assignmentV = 〈x,e,d,e,x,x〉 and a first call to Algorithm 1
with s= 1, the first segment will be〈x,e〉 (the red path). Next, the assignmentV3 = d triggers a violation
of 1 for decision variableV3 (we say that it is aviolated variable) because there is no arc labelledd that
connects the current node 4 in layer 3 with any nodes in layer 4. However, node 4 in layer 3 has two
out-going arcs, namely to nodes 3 and 5 in layer 4 (in blue). Inlayer 4, there are 4 paths from node 3 to
the last layer, compared to 2 such paths from node 5, so node 3 is picked with probability4

6 and node 5 is
picked with probability2

6 (where the 2, 4, and 6 are the purple numbers by those nodes), and we assume
that node 3 in layer 4 is picked. From there, we get the second segment〈e,x,x〉 (the green path), which
stops at success node 5 in the last layer. The violation of theconstraint is thus 1, because the value of
one decision variable does not participate in any segment.

Continuing the example, we assume now that decision variableV3 is changed to valuee, and hence
we call Algorithm 1 withs= 3. Onlyℓ = 1 segment can be kept from the previous segmentation picked
for 〈V1,V2〉, namely〈x,e〉 (the red path). Since there is an arc labellede from the current node 4 in
layer 3, namely to node 5 in layer 4, segmentℓ is extended (line 9) to〈x,e,e〉. However, with decision
variableV4 still having valuee, this segment cannot be extended further, since there is no arc labelled
e from node 5 in layer 4, and henceV4 is violated. Similarly, decision variablesV5 = x andV6 = x are
violated no matter which successors are picked, so no new segment is ever created. The violation of
the constraint is thus 3 because the value of three decision variables do not participate in any segment.
Hence changing decision variableV3 from valued to valueewould not be considered a good local move,
as the constraint violation increases from 1 to 3. Changing decision variableV3 to valuex instead would
be a much better local move, as the first segment〈x,e〉 is then extended to the entire current assignment
〈x,e,d,e,x,x〉, without detecting any violated variables, so that the violation of the constraint is then 0,
meaning that a satisfying assignment was found.

In Section 3, we experiment with a deterministic method [12]for picking the next node and experi-
mentally show that our random pick is computationally quicker at finding solutions.
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Mon Tue Wed Thu Fri Sat Sun
1 x x x d d d d
2 x x e e e x x
3 d d d x x e e
4 e e x x n n n
5 n n n n x x x

Table 1: A five-week rotating schedule with uniform daily workload(1d,1e,1n,2x)

2.3 Differentiability

At present, the differences of the (constraint and variable) violations upon a candidate local move are
calculated naı̈vely by first making the candidate move and then undoing it.

2.4 Incrementality

Local search proceeds from the current assignment by checking a number of neighbours of that assign-
ment and picking a neighbour that ideally reduces the violation: the exact heuristics are often problem
dependent. But in order to make local search computationally efficient, the violations of the constraint
and its decision variables have to be computed in an incremental fashion whenever a decision variable
changes value. As shown in Subsection 2.2, our initialisation Algorithm 1 can also be invoked with an
arbitrary starting positionswhen decision variableVs is assigned a new value.

We have implemented this algorithm inComet[14], an object-oriented CP language with among
others a CBLS back-end (available atwww.dynadec.com).

3 Experiments

We now establish the practicality of the proposed violationmaintenance algorithm by experimenting
with it. All local search experiments were conducted underComet(version 2.0 beta) on an Intel 2.4 GHz
Linux machine with 512 MB memory while the constraint programming examples where implemented
using SICStus Prolog.

Many industries and services need to function around the clock. Rotating schedules such as the one
in Table 1 (a real-life example taken from [8]) are a popular way of guaranteeing a maximum of equity
to the involved work teams (see [8]). In our first benchmark, there are day (d), evening (e), and night
(n) shifts of work, as well as days off (x). Each team works maximum one shift per day. The scheduling
horizon has as many weeks as there are teams. In the first week,teami is assigned to the schedule in
row i. For any next week, each team moves down to the next row, whilethe team on the last row moves up
to the first row. Note how this gives almost full equity to the teams, except, for instance, that team 1 does
not enjoy the six consecutive days off that the other teams have, but rather three consecutive days off at
the beginning of week 1 and another three at the end of week 5. The daily workload may be uniform: for
instance, in Table 1, each day has exactly one team on-duty for each work shift, and two teams entirely
off-duty; we denote this as(1d,1e,1n,2x); assuming the work shifts average 8h, each employee will
work 7·3 ·8 = 168h over the five-week-cycle, or 33.6h per week. Daily workload, whether uniform or
not, can be enforced by global cardinality (gcc) constraints [13] on the columns. Further, any number of
consecutive workdays must be between two and seven, and any change in work shift can only occur after

www.dynadec.com
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Algorithm 2 The search procedure
1: void search(var{int}[] V, ConstraintSystem<LS> S, var{int} violations,

2: Solution bestSolution, Counter it, int best, int[,] tabu,

3: int restartIter){

4: select(x in 1..n : S.violation(V[x]) > 0)

5: selectMin(y in 1..n : (x-y) % 7 == 0 && V[x] != V[y],

6: nv = S.getSwapDelta(V[x],V[y]) :

7: tabu[x,y] <= it || (violations+nv) < best)(nv){

8: V[x] :=: V[y];

9: tabu[x,y] = it + max(violations,6);

10: tabu[y,x] = tabu[x,y];

11: if(best > violations){

12: best = violations;

13: bestSolution = new Solution(ls);

14: }

15: it++;

16: if(it % restartIter == 0) restart();

17: }

18: }

two to seven days off. This can be enforced by apattern(X,{(d,x),(e,x),(n,x),(x,d),(x,e),(x,n)}) con-
straint [4] and a circularstretch(X, [d,e,n,x], [2,2,2,2], [7,7,7,7]) constraint [10] on the table flattened
row-wise into a sequenceX.

Our model posts thepatternandstretchconstraints described by automata. Thegccconstraints on
the columns of the matrix are kept invariant: the first assignment is chosen so as to satisfy them, and
then only swap moves inside a column are considered. As a meta-heuristic, we use tabu search with
restarting. At each iteration, the search procedure in Algorithm 2 selects a violated variablex (line 4;
recall that the violation of a decision variable is here at most 1) and another variabley of distinct value in
the same column so that their swap (line 8) gives the greatestviolation change (lines 5 to 7). The length
of the tabu list is the maximum between 6 and the sum of the violations of all constraints (lines 9 and 10).
The best solution so far is maintained (lines 11 to 14). Restarting is done every 2· |X| iterations (lines 15
and 16). The expressions for the length of the tabu list and the restart criterion were experimentally
determined.

Recall that Algorithm 1 computes a greedy random segmentation; hence it might give different seg-
mentations when used for probing a swap and when used for actually performing that swap. Therefore,
we record the segmentation of each swap probe, and at the actual swap we just apply its recorded seg-
mentation.

We ran experiments over the eight instances from(2d,1e,1n,2x) to (16d,8e,8n,16x) (we write the
latter as(2d,1e,1n,2x) · 8) with uniform daily workload, where the weekly workload is37.3h. For
example, instance(2d,1e,1n,2x) ·3 has the uniform daily workload of 2·3 teams on the day shift, 1·3
teams on the evening shift, 1·3 teams on the night shift, and 2·3 teams off-duty. Table 2 gives statistics
on the run times and numbers of iterations to find the first solutions over 100 runs from random initial
assignments.

Posting the product of thepatternandstretchautomata (accepting the intersection of their two reg-
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optimisation time (ms) number of iterations
instance min max avg σ min max avg σ
(2d,1e,1n,2x) ·1 6 100 22 20 9 528 115 108
(2d,1e,1n,2x) ·2 12 692 168 154 32 2484 585 561
(2d,1e,1n,2x) ·3 32 2588 688 611 44 6612 1726 1571
(2d,1e,1n,2x) ·4 80 6553 1199 1275 86 11212 2125 2303
(2d,1e,1n,2x) ·5 60 9373 1417 1545 72 15604 2292 2556
(2d,1e,1n,2x) ·6 160 5901 1527 1227 161 8051 2051 1681
(2d,1e,1n,2x) ·7 176 9896 1720 1686 157 11680 1966 1981
(2d,1e,1n,2x) ·8 216 12472 2620 2309 150 12588 2603 2354

Table 2: Minimum, maximum, average, standard deviation of optimisation times (in milliseconds) and
numbers of iterations to the first solutions of rotating nurse schedules (100 runs) fromrandom initial
assignments.

optimisation time (ms) number of iterations
instance min max avg σ min max avg σ
(2d,1e,1n,2x) ·1 1 16 2 3 6 61 11 9
(2d,1e,1n,2x) ·2 1 64 12 12 13 235 34 46
(2d,1e,1n,2x) ·3 12 76 25 13 21 173 46 29
(2d,1e,1n,2x) ·4 28 172 51 27 32 297 72 49
(2d,1e,1n,2x) ·5 28 200 79 42 34 286 106 61
(2d,1e,1n,2x) ·6 56 368 135 76 61 487 156 101
(2d,1e,1n,2x) ·7 84 768 188 123 69 848 189 140
(2d,1e,1n,2x) ·8 112 764 233 112 72 736 202 113

Table 3: Minimum, maximum, average, standard deviation of optimisation times (in milliseconds) and
numbers of iterations to the first solutions of rotating nurse schedules (100 runs) fromnon-randominitial
assignments.

ular languages) has been experimentally determined to be more efficient than posting the two automata
individually, hence all experiments in this paper use the product automaton.

Further improvements can be achieved by using a non-random initial assignment. Table 3 gives
statistics on the run times and numbers of iterations to find the first solutions over 100 runs, where the
initial assignment of instance(2d,1e,1n,2x) · i consists ofi copies of Table 4. The results show that
this non-random initialisation provides a better startingpoint. Although much more experimentation is
required, these initial results show that even on the instance(2d,1e,1n,2x) ·8 with 336 decision variables
it is possible to find solutions quickly.

The only related work we are aware of is aCometimplementation [12] of theregular constraint [11],
based on the ideas for the propagator of the softregularconstraint [6]. The difference is that they estimate
the violation change compared to thenearestsolution (in terms of Hamming distance from the current
assignment), whereas we estimate it compared toone randomly picked solution. In our terminology
(although it is not implemented that way in [12]), they find a segmentation, such that an accepting string
for the automaton has the minimal Hamming distance to the current assignment.

Tables 5 and 6 give comparisons between (our re-implementation of) regular [12], our method, and
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Mon Tue Wed Thu Fri Sat Sun
1 d d d d d d d
2 e e e e e e e
3 n n n n n n n
4 x x x x x x x
5 d d d d d d d
6 x x x x x x x

Table 4: Non-random initial assignment for the instance(2d,1e,1n,2x)

optimisation time (ms) number of iterations
instance our method regular [12] CP our method regular [12]

avg σ avg σ avg σ avg σ
(2d,1e,1n,2x) ·1 22 20 395 378 10 115 108 98 100
(2d,1e,1n,2x) ·2 168 154 1584 1187 10 585 561 223 170
(2d,1e,1n,2x) ·3 688 611 3441 2871 10 1726 1571 333 287
(2d,1e,1n,2x) ·4 1199 1275 5584 4423 40 2125 2303 399 319
(2d,1e,1n,2x) ·5 1417 1545 8828 7606 100 2292 2556 514 444
(2d,1e,1n,2x) ·6 1527 1227 13888 10863 510 2051 1681 672 529
(2d,1e,1n,2x) ·7 1720 1686 13170 9814 3520 1966 1981 536 485
(2d,1e,1n,2x) ·8 2620 2309 20202 11530 25820 2603 2354 745 602
St Louis Police 12740 11199 50261 48026 – 20287 17952 3248 2498

Table 5: Comparison between our method,regular [12], and a SICStus Prolog program using the
automaton[2] constraint: average and standard deviation of optimisation times (in milliseconds) and
numbers of iterations to the first solutions; rotating nurseschedules (100 runs) and the St Louis Police
instance (50 runs), fromrandominitial assignments.

a SICStus Prolog constraint program (CP) where the product automaton of thepatternandstretchcon-
straints was posted using the built-in propagation-based implementation of theautomatonconstraint [2].
These experiments show:

• Compared withregular [12], our method has a higher number of iterations, as it is more stochastic.
However, our run times are lower, as our cost of one iterationis much smaller (linear in the number
of decision variables, instead of linear in the number of arcs of the unrolled automaton).

• Compared with the CP method, both local search methods need more time to find the first solution
when the number of weeks is small. However, when the number ofweeks increases, the runtime of
CP increases sharply. From the instance(2d,1e,1n,2x) ·7, the runtime of CP exceeds the average
runtime of our method. From the instance(2d,1e,1n,2x) ·8, the runtime of CP exceeds also the
average runtime ofregular [12].

Besides the rotating nurse instances, we ran experiments onanother, harder real-life scheduling in-
stance. The St Louis Police problem (described in [12]) has aseventeen-week-cycle; however it has
more constraints than the rotating nurse problem. It has non-uniform daily workloads. For example, on
Mondays, five teams work during the day, five at night, four in the evening, and three teams enjoy a day
off; while on Sundays, three teams work during the day, four at night, four in the evening, and six teams
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optimisation time (ms) number of iterations
instance our method regular [12] our method regular [12]

avg σ avg σ avg σ avg σ
(2d,1e,1n,2x) ·1 2 3 44 26 11 9 10 7
(2d,1e,1n,2x) ·2 12 12 182 65 34 46 22 9
(2d,1e,1n,2x) ·3 25 13 478 201 46 29 41 17
(2d,1e,1n,2x) ·4 51 27 834 254 72 49 56 18
(2d,1e,1n,2x) ·5 79 42 1546 876 106 61 87 51
(2d,1e,1n,2x) ·6 135 76 2414 1233 156 101 113 59
(2d,1e,1n,2x) ·7 188 123 4517 3276 189 140 181 134
(2d,1e,1n,2x) ·8 233 112 4473 1958 202 113 160 71
St Louis Police 3990 4012 67159 55632 5389 5598 3949 3159

Table 6: Comparison between our method andregular [12]: average and standard deviation of optimi-
sation times (in milliseconds) and numbers of iterations tothe first solutions; rotating nurse schedules
(100 runs) and the St Louis Police instance (50 runs), fromnon-randominitial assignments.

enjoy a day off. Any number of consecutive workdays must be between three and eight, and any change
in work shift can only occur after two to seven days off. The problem has other vertical constraints; for
example, no team can work in the same shift on four consecutive Mondays. Further, the problem has
complexpattern constraints that limit possible changes of work shifts; forexample, only the patterns
(d,x,d), (e,x,e), (n,x,n), (d,x,e), (e,x,n), and(n,x,d) are allowed. For this hard real-life problem, our
method still works well: experimental results can also be found in Tables 5 and 6.

It is possible to post (see Figure 3) the constraints of the rotating nurse problem using the differen-
tiable invariants [15] ofComet. This is possible in general for any automaton by encoding all the paths
to a success state by usingComet’s conjunction and disjunction combinators. As the automata get larger,
these expressions can become too large to post, and even whenit is possible to post these expressions
our current experiments show that our approach is more efficient.

4 Conclusion

In summary, we have shown that the idea of describing novel constraints by automata can be successfully
imported from classical (global search) constraint programming to constraint-based local search (CBLS).
Our violation algorithms take time linear in the number of decision variables, whereas the propagation
algorithms take amortised time linear in the number of arcs of the unrolled automaton [2, 11]. We have
also experimentally shown that our approach is competitivewith the CBLS approach of [12].

There is of course a trade-off between using an automaton to describe a constraint and using a hand-
crafted implementation of that constraint. On the one hand,a hand-crafted implementation of a constraint
is normally more efficient during search, because properties of the constraint can be exploited, but it may
take a lot of time to implement and verify it. On the other hand, the (violation or propagation) algorithm
processing the automaton is implemented and verified once and for all, and our assumption is that it takes
a lot less time to describe and verify a new constraint by an automaton than to implement and verify its
algorithm. We see thus opportunities for rapid prototypingwith constraints described by automata: once
a sufficiently efficient model, heuristic, and meta-heuristic have been experimentally determined with
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Figure 3: A model for the unrolled DFA in Figure 2 withCometcombinators

its help, some extra efficiency may be achieved, if necessary, by hand-crafting implementations of any
constraints described by automata.

As witnessed in our experiments, constraint composition (by conjunction) is easy to experiment with
under the DFA approach, as there exist standard and efficientalgorithms for composing and minimising
DFAs, but there is no known systematic way of composing violation (or propagation) algorithms when
decomposition is believed to obstruct efficiency.

In the global search approach to CP, the common modelling device of reification can be used to shrink
the size of DFAs describing constraints [2]. For instance, consider theelement([x1, . . . ,xn], i,v) constraint,
which holds if and only ifxi = v. Upon reifying the decision variablesx1, . . . ,xn into new Boolean
decision variablesb1, . . . ,bn such thatxi = v⇔ bi = 1, it suffices to pose theautomaton([b1, . . . ,bn],DFA)
constraint, whereDFAcorresponds to the regular expression 0∗1(0+1)∗, meaning that at least one 1 must
be found in the sequence of thebi decision variables. However, such explicit reification constraints are
not necessary in constraint-based local search, as a total assignment of values to all decision variables is
maintained at all times: instead of processing thevaluesof the decision variables when computing the
segments, one can process theirreified values.

It has been shown that the use of counters (initialised at thestart state and evolving during possibly
conditional transitions) to enrich the language of DFAs andthereby shrink the size of DFAs can be
handled in the global search approach to CP [2], possibly upon some concessions at the level of local
consistency that can be achieved. In theGlobal Constraint Catalogue[3], some 31 of the currently 108
constraints described by DFAs use lists of counters, and another 25 constraints use arrays of counters.
We need to investigate the effects on our violation maintenance algorithm of introducing counters and
conditional transitions.
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