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Some constraint problems have a combinatorial structure where the constraints allow
the sequence of variables to be rotated (necklaces), if not also the domain values to
be permuted (unlabelled necklaces), without getting an essentially different solution. We
bring together the fields of combinatorial enumeration, where efficient algorithms have
been designed for (special cases of) some of these combinatorial objects, and constraint
programming, where the requisite symmetry breaking has at best been done statically
so far. We design the first search procedure and identify the first symmetry-breaking
constraints for the general case of unlabelled necklaces. Further, we compare dynamic and
static symmetry breaking on real-life scheduling problems featuring (unlabelled) necklaces.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In combinatorics, a necklace of n beads over k colours is the lexicographically smallest element in an equivalence class of
the set of k-ary n-tuples under rotations; the underlying symmetry group is the cyclic group Cn acting on the indices. For
example, the binary triple 001 is the representative necklace of {001,010,100}. Combinatorial objects are enumerated under
some chosen total order. For example, under the lexicographic order, the binary 3-bead necklaces are 000, 001, 011, and 111.
If the values (colours) of a tuple are interchangeable, then we speak of unlabelled tuples (symmetric group Sk acting on the
values) and unlabelled necklaces (product group Cn × Sk). For example, under the lexicographic order, the unlabelled binary
3-tuples are 000, 001, 010, and 011, while the unlabelled binary 3-bead necklaces are 000 (representing the necklaces 000
and 111) and 001 (representing the necklaces 001 and 011). Note that the set of unlabelled necklaces is a subset of the
intersection of the sets of necklaces and unlabelled tuples. For example, 011 is both a necklace and an unlabelled tuple, but
not an unlabelled necklace. The generating functions for counting (unlabelled) necklaces are given in [13], and the sequences
of their counts (for k � 6) can be found in [29].

A constraint satisfaction problem (CSP) is a triplet 〈X, D, C〉, where X is a sequence of n variables, D is a set of k possible
values for these variables and is called their domain, and C is the set of constraints specifying which assignments of values
to the variables are solutions. If the constraint set C allows the variable sequence X to be rotated, then a necklace is a
combinatorial sub-structure of the CSP and we say that the CSP has rotation variable symmetry. If the constraint set C has a
domain D containing interchangeable elements, then we say that the CSP has full value symmetry. Exploiting such symmetry
is important in order to solve a CSP efficiently. For example, compare the ternary object counts in Table 1 (a few pages
down) with the values of 3n .

CSPs with an (unlabelled) necklace as a combinatorial sub-structure are not unusual. For example, Gusfield [16, page 12]
states that “circular DNA is common and important. Bacterial and mitochondrial DNA is typically circular, both in its genomic
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DNA and in additional small double-stranded circular DNA molecules called plasmids, and even some true eukaryotes (higher
organisms whose cells contain a nucleus) such as yeast contain plasmid DNA in addition to their nuclear DNA. Consequently,
tools for handling circular strings may someday be of use in those organisms. Viral DNA is not always circular, but even
when it is linear some virus genomes exhibit circular properties”. One such problem is studied in [5]. Necklaces occur in
coding theory [14], genetics [14], and music [13], while unlabelled necklaces occur in switching theory [13]. We study a
real-life problem with (unlabelled) necklaces in scheduling, different from the one in [15].

Note that, throughout this paper, we focus on unconditional (or global) symmetries, that is we do not handle any sym-
metries that appear during search.

In this paper (which revises and extends [9]), we propose to bring together combinatorial enumeration and constraint
programming (CP). Very efficient combinatorial enumeration algorithms exist for some of the mentioned combinatorial
objects, but not for unlabelled necklaces (except over two colours [4]). These algorithms can be used as CP search procedures
for CSPs having those objects as combinatorial sub-structures, thereby breaking a lot of symmetry dynamically. This has
also been advocated in [11,23,30], say, where CP search procedures are proposed for symmetry groups acting on the values;
however, except for [10,11,28] not much dynamic symmetry breaking seems to have been done for groups acting on the
variables, and hence not for product groups acting on the values and variables. Conversely, CP principles can be used for
devising enumeration algorithms for the combinatorial objects where efficient algorithms have remained elusive to date.
The contributions of this paper can be summarised as follows:

– Design of an enumeration algorithm, and hence a CP search procedure, for (partially) unlabelled k-ary necklaces (Sec-
tions 2 and 4).

– Identification of symmetry-breaking constraints for (partially) unlabelled k-ary necklaces, including ways of generating
filtering algorithms for the identified new global constraints (Sections 3 and 4).

– Experiments on real-world problems validating the usefulness of the proposed dynamic and static symmetric-breaking
methods for (partially unlabelled) k-ary necklaces (Section 4).

Finally, in Section 5, we conclude and discuss future research.

2. Dynamic symmetry breaking

Consider a CSP 〈X, D, C〉 where X is a sequence of n � 2 variables and D is a set of k � 1 domain values. For simplicity
of notation, we assume that D = {0, . . . ,k − 1}; this also has the advantage that the order is obvious whenever we require
D to be totally ordered.

2.1. Unlabelled tuples

If the domain values of D are interchangeable, then we impose a total order on D , and the enumeration algorithm of [7],
say, can be used to generate all unlabelled tuples (modulo the full value symmetry). We present it as Algorithm 1 in the
style of a search procedure in constraint programming (CP), so that it can interact with any problem constraints. The initial
call is uTuple(1,−1). At any time, j is the index of the next variable to be assigned (and j = n+1 when none remains) while
u is the largest value used so far (and u = −1 when none was used yet). The idea is to try for each variable all the values
used so far plus one unused value, since all unused values are still interchangeable at that point. Upon backtracking, the try
all construct non-deterministically tries all the alternatives, in the given value order (line 6). Each alternative contains the
assignment of the chosen value i to the chosen variable X[ j] (line 7) and a recursive call for the next variable (line 8). Note
that we have fixed the variable order to be from left to right across X , and the tuples are thus generated in lexicographic
order; this is an unnecessary restriction, but the reason for this choice will become clear in a few lines. This algorithm takes
constant amortised time and space, and the number of objects generated is actually equal to the number of unlabelled
tuples.

1: procedure uTuple( j, u : integer)
2: var i : integer
3: if j > n then
4: return true
5: else
6: try all i = 0 to min(u + 1,k − 1) do
7: X[ j] ← i;
8: uTuple( j + 1,max(i, u))

9: end
10: end if

Algorithm 1. Search procedure for unlabelled tuples [7].
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1: procedure necklace( j, p : integer)
2: var i : integer
3: if j > n then
4: return n mod p = 0
5: else
6: try all i = X[ j − p] to k − 1 do
7: X[ j] ← i;
8: necklace( j + 1, if i = X[ j − p] then p else j)
9: end

10: end if

Algorithm 2. Search procedure for necklaces [4].

2.2. Necklaces

If the variable sequence X is circular, then the enumeration algorithm of [4], say, can be used to generate all necklaces
(modulo the rotation variable symmetry). We present it as a CP search procedure in Algorithm 2. The initial call is X[0] ← 0;
necklace(1,1), where X[0] is a dummy element. At any time, j is the index of the next variable to be assigned (and j = n+1
when none remains) while p is the period, explained next. The idea is either to try and keep replicating the values at the
previous p positions, or to try all larger values with a new period of j. At any time, the prefix X[1, . . . , j] is a pre-necklace,
that is a prefix of some necklace, which may however be longer than n. The variable order is necessarily from left to right
across X , due to the role of p, and the necklaces are thus generated in lexicographic order. This algorithm takes constant
amortised time and space, and the number of objects generated is proportional by a constant factor (tending down to
(k/(k − 1))2 as n → ∞) to the number of necklaces: note that only n-tuples where the period p divides n actually are
necklaces (line 4). In other words, not all symmetry is broken at every node of the search tree, and some backtracking is
forced (by a constant-time test on p) only at leaf level; at present, loop-less or memoryless necklace enumeration remains
elusive.

2.3. Unlabelled necklaces

If the variable sequence X is circular and the domain values of D are interchangeable, then a constant-amortised-time
enumeration algorithm [4] only exists for generating all binary (k = 2) unlabelled necklaces (modulo the symmetries). We do
not present it here, but instead construct a novel enumeration algorithm for any amount of colours. Noting that unlabelled
necklaces are a subset of the necklaces (Algorithm 2) that are unlabelled tuples (Algorithm 1), and observing that the control
flows of those two algorithms match line by line, the skeleton of an enumeration algorithm for unlabelled necklaces can
be obtained simply by “intersecting” those two algorithms, which yields all but lines 7 and 10 of the CP search procedure
uNecklace in Algorithm 3. The initial call is X[0] ← 0;uNecklace(1,1,−1), where X[0] is a dummy element.

We now gradually refine the probe( j, i, p) function (called in line 7), guarding the non-deterministic assignment of
value i to the current variable X[ j] followed by the continued enumeration.

Leaf probing. If probe always returns true, then uNecklace will enumerate a superset of the unlabelled necklaces, as their
symmetry group is the product rather than just the union of the symmetry groups for necklaces and unlabelled tuples.
For example, the binary necklace 011 will erroneously be returned, even though it can be transformed into the unlabelled
necklace 001 (by first rotating the second position of the circular sequence 011 into first position, giving 110, and then

1: procedure uNecklace( j, p, u : integer)
2: var i : integer
3: if j > n then
4: return n mod p = 0
5: else
6: try all i = X[ j − p] to min(u + 1,k − 1)

7: if probe( j, i, p) then
8: X[ j] ← i;
9: uNecklace( j + 1, if i = X[ j − p] then p else j,max(i, u))

10: end if
11: end
12: end if
13: function probe( j, i, p : integer) : boolean
14: X[ j] ← i;
15: if j = n ∧ n mod (if i = X[ j − p] then p else j) = 0 then
16: return

∧q=n
2 X[q, . . . ,n,1, . . . ,q − 1] �lex X[1, . . . ,n]

17: else if j < n

18: return
∧ j−1

q=2 X[ j − q + 1, . . . , j] �lex X[1, . . . ,q]
19: else
20: return false
21: end if

Algorithm 3. Search procedure for unlabelled necklaces.
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Table 1
Numbers of objects of length n over 3 colours.

n sequence
A2076:
u-necklaces

probing sequence
A1867:
necklaces

sequence
A124302:
u-tuples

internal + leaf leaf only

n mod p = 0 leaves n mod p = 0 leaves

1 1 1 1 1 1 3 1
2 2 2 2 2 2 6 2
3 3 4 5 4 5 11 5
4 6 8 10 10 13 24 14
5 9 15 22 24 36 51 41
6 26 34 48 66 97 130 122
7 53 80 121 172 268 315 365
8 146 196 293 474 732 834 1094
9 369 490 744 1289 2017 2195 3281

10 1002 1267 1920 3560 5552 5934 9842
11 2685 3357 5104 9820 15371 16107 29525
12 7434 8996 13635 27327 42624 44368 88574
13 20441 24403 37030 76108 118731 122643 265721
14 57046 66886 101354 213106 331664 341802 797162
15 159451 184770 279895 598246 929883 956635 2391485

minimally renaming its colours, giving 110 = 001); however, the necklace 111 will correctly not be returned, since it is not
an unlabelled tuple.

Consider Table 1, giving the numbers of various combinatorial objects of length n over 3 colours: column 8 counts the
unlabelled tuples (sequence A124302 in [29]); column 7 counts the necklaces (fewer than the unlabelled tuples for n � 7;
sequence A1867); column 6 counts the objects when probe always returns true; column 5 counts the necklaces that are
unlabelled tuples, that is the number of objects when probe always returns true and the period condition is met; and
column 2 counts the unlabelled necklaces (sequence A2076), that is the number of objects when probing is actually done.
The difference between columns 5 and 7 (or 8) is the gain obtained so far for free by Algorithm 3 over Algorithm 2 (or
Algorithm 1), and the difference between columns 5 and 6 is the leaf pruning obtained (in constant time!) by the period
condition, but the difference between columns 5 and 2 is the amount of leaf pruning that leaf probing has to do.

The least thing probe( j, i, p) should thus do is to make sure only unlabelled necklaces are enumerated. This is at the
latest done when trying to assign the last variable (when j = n) of the CSP: at that moment, the entire circular sequence X
is known, so probe must return true if X cannot be transformed (by position rotation and colour renaming) into an object
that has already been tried in the enumeration. Since objects are enumerated in lexicographic order (as an inherited feature
of the two underlying algorithms), this can be done by checking whether the minimal renaming of every (non-identity)
rotation of X is lexicographically larger than or equal to X . Computing the minimal renaming Y of an n-tuple Y takes Θ(n)

time, and can be merged into the O (n)-time lexicographic comparison; at most n − 1 such renamings and comparisons are
done, hence this probing takes O (n2) time at worst. Note that a successful probe incurs the highest cost. The algorithmic
details are straightforward, so we just write a specification into line 16. Lazy evaluation of the conjunction should be made,
returning false as soon as one conjunct is false. Also, experiments have revealed that failure is detected earlier on average
if the starting positions of the rotations recede from right to left across X .

An improvement of this leaf probing comes from observing what happens when the lowest value, namely X[ j − p],
is tried for X[ j] when j = n: the recursive call (line 9) then is uNecklace(n + 1, p, u) and everything hinges on whether
n mod p = 0 or not. But the latter check can already be done before probing (in O (n2) time, recall) whether X[ j − p] actually
is a suitable value for X[n]. For any other tried value i > X[ j − p] for X[n], the recursive call (line 9) is uNecklace(n + 1,

n,max(i, u)) and we then know that n mod n = 0. Hence the test in line 15, as well as lines 19 and 20.

Internal probing. The leaf probing discussed so far assumes that line 18 is replaced by return true. This is unsatisfactory, as
no pruning (other than via the p and u parameters) takes place at the internal nodes of the search tree, so that many more
leaves are generated than necessary (recall the difference between columns 5 and 2 in Table 1). In the spirit of constraint
programming, we ought to perform more pruning when j < n. The idea is the same as for leaves (where j = n) except
that only a strict prefix X[1, . . . , j] of the circular sequence X is known, so that we can only check whether the minimal
renaming of every suffix of X[1, . . . , j] is lexicographically larger than or equal to X[1, . . . , j]. For example, when searching
for a ternary 6-bead unlabelled necklace, assume we have already constructed the pre-necklace 010 and probe(4,2,4)

is now called to check whether at position j = 4 < 6 = n the variable X[4] can be assigned the (so far unused) value
i = 2 = u + 1 = k − 1 under period p = 4, so the following comparisons must be made:

2 = 0 �lex 0 (4)

02 = 01 �lex 01 (3)

102 = 012 �lex 010 (2)

0102 = 0102 � 0102 (1)
lex
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The first and last comparisons will always succeed and can be omitted. Exactly j − 2 such renamings and comparisons of
tuples of length O ( j −1) are thus to be done, hence this internal probing also takes O (n2) time at worst, since j = O (n). The
algorithmic details are straightforward, so we just write a specification into line 18. Again, lazy evaluation of the conjunction
should be made. Also, experiments have revealed that failure is detected earlier on average if the starting positions of the
suffixes recede from right to left across X[1, . . . , j], as in the top–down order of the sample comparisons above.

To assess the impact of internal probing, consider again Table 1: column 4 counts the objects when internal probing is
on but leaf probing is off (much lower than in column 5); column 3 counts the objects when internal probing is on, leaf
probing is off, and the period condition is met; and column 2 counts the unlabelled necklaces, that is the number of objects
when internal probing and leaf probing are on. The difference between columns 3 and 2 is the amount of pruning that leaf
probing now has to do, and the difference between columns 4 and 3 is the leaf pruning obtained by the period condition.
Note that the constant-time period test on the leaves prunes much more than the subsequent quadratic-time leaf probing
has to do.

Incremental internal probing. Empirically, the internal probing just proposed is on average much more efficient than its
O (n2) worst time suggests, due to the nature of unlabelled necklaces. We now optimise this internal probing into an
algorithm taking O (n) time at worst, leading to an enumeration that is systematically faster by a constant factor (namely
17% faster in our implementation). The idea is to trade time for space and make the comparisons incremental. Continuing
our previous example, having so far constructed the pre-necklace 0102 of a ternary 6-bead unlabelled necklace, probe(5,1,5)

is eventually called at the next iteration to check whether at position j = 5 < 6 = n the variable X[5] can be assigned the
value i = 1 under period p = 5, so the following comparisons must be made:

1 = 0 �lex 0 (5′)
21 = 01 �lex 01 (4′)

021 = 012 �lex 010 (3′)
1021 = 0120 �lex 0102 (2′)

01021 = 01021 �lex 01021 (1′)

Note that the last four comparisons correspond to the ones given earlier, that the considered suffixes of X[1, . . . , j] got
longer at the end by the new (boldfaced) value i = 1, and that the minimal renamings of the (non-boldfaced) prefixes
remained the same. In other words, only the scalar comparisons of the (boldfaced) last values matter, since the lexicographic
�lex comparisons of the (non-boldfaced) prefixes have already been made until the previous iteration. If the lexicographic
comparison until the previous iteration is =lex, as in formulas (1), (3), and (4), then the scalar comparison operator is � at
the current iteration; if the lexicographic comparison until the previous iteration is >lex, as in formula (2), then no scalar
comparison need be made at the current iteration. We incrementally maintain a global k × n matrix m, where m[i, j] gives
the minimal renaming of value i if the renaming starts at position j. We also incrementally maintain locally to every search-
tree node an n-tuple c of Booleans, where c[ j] = true if the lexicographic comparison from position j until the previous
iteration is =lex, that is if the comparison from j is to continue at the current iteration. For example, since the scalar
comparison in formula (3′) gives 2 > 0, we set c[3] ← false for the next iteration. Using these incremental data structures,
the internal probing in line 18 can be replaced by the following specification

return
q= j−1∧

2

(
if c[q] then m[i,q] � X[ j + 1 − q] else true

)

which can be implemented as in Algorithm 4. At most j − 2 scalar comparisons are to be done, hence this incremental
internal probing takes O (n) time at worst, since j = O (n) and the incremental maintenance of m[i,1 . . . j] (in lines 1
to 13) and c[1 . . . j] (in lines 14 to 23) takes O (n) time at worst. Lazy evaluation of the conjunction should be made. Also,
experiments have revealed that failure is detected earlier on average if the starting positions of the suffixes recede from
right to left across X[1, . . . , j], as in the top–down order of the sample comparisons above.

Discussion. An analysis of the amortised time complexity of Algorithm 3 is beyond the scope of this paper. Its correctness
follows from line 16 capturing the essence of unlabelled necklaces and the correctness of Algorithms 1 and 2:

Theorem 1. Algorithm 3 correctly enumerates unlabelled necklaces.

Proof. First assume that probe always returns true. We prove that Algorithm 3 then returns the intersection of the sets
of necklaces and unlabelled tuples. (⊆) Algorithm 3 returns a subset of the set of unlabelled tuples, because line 4 does
not systematically return true (unlike line 4 of Algorithm 1) and because the lowest value to be tried in line 6 is at least
(instead of exactly, as in line 6 of Algorithm 1) the lowest available value. Similarly, Algorithm 3 returns a subset of the set
of necklaces, because the largest value to be tried in line 6 is at most (instead of exactly, as in line 6 of Algorithm 2) the
largest available value. Hence Algorithm 3 returns a subset of the intersection of the sets of necklaces and unlabelled tuples.
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1: m[i, j] ← 0;
2: a[0 . . .k − 1] ← false;
3: s ← 0; q ← j − 1;
4: while q � 1 ∧ X[q] �= i do {scan backwards in X until previous occurrence of i, if any}
5: {Invariant: ∀� ∈ D : a[�] ≡ � ∈ X[q + 1 . . . j − 1]}
6: {Invariant: s is the number of values distinct from i in X[q + 1 . . . j − 1]}
7: if a[X[q]] then
8: m[i,q] ← s
9: else

10: s ← s + 1; m[i,q] ← s; a[X[q]] ← true
11: end if;
12: q ← q − 1
13: end while; {Assertion: m[i,1 . . . j] is correctly initialised}
14: c[ j] ← true;
15: probe ← true;
16: for q = j − 1 downto 2 do
17: if m[i,q] > X[ j + 1 − q] then
18: c[q] ← false
19: else if c[q] ∧ m[i,q] < X[ j + 1 − q] then
20: probe ← false;
21: break
22: end if
23: end;
24: return probe

Algorithm 4. Incremental internal probing for searching unlabelled necklaces.

(⊇) Conversely, assume a tuple is returned by both Algorithm 1 and Algorithm 2. This means that for each X[ j] there was
a value i in common in the try all statement in line 6 of Algorithm 1 and Algorithm 2, and that the tuple satisfies the test
in line 4 of Algorithm 2. Hence the tuple will also be returned by Algorithm 3, because it passes the test in its line 4 and
the same values for each X[ j] will be tried in the try all statement at its line 6.

Now assume there is only leaf probing (i.e., only line 18 of the probe function is replaced by return true). By Theorem 2
in Section 3.3 below, line 16 guarantees that only unlabelled necklaces are enumerated among the tuples that are both
necklaces and unlabelled necklaces.

Finally, assume there is also probing at internal nodes. The internal probing will then only return true on branches of
the search tree that lead to an unlabelled necklace that has not been seen before. �

To assess the runtime impact of internal probing, consider Table 2: columns 4 and 5 give the enumeration times (in
seconds) if there is only leaf probing and also internal probing, respectively. (All experiments in this paper were performed
under SICStus Prolog v4.0.3 on a 2.53 GHz Pentium 4 machine with 512 MB running Linux 2.6.24-19.)

Note that we can also wrap the probe( j, i, p) test around lines 7 and 8 of Algorithm 1 only, or of Algorithm 2 only,
instead of their “intersection” (Algorithm 3), and still correctly enumerate unlabelled necklaces, since this probing currently
exploits neither the semantics of its parameter p nor the fact that it is given a pre-necklace that is an unlabelled tuple.
However, the number of unlabelled tuples always exceeds the number of necklaces when n gets sufficiently large (namely
n � 7 for objects over three colours: recall Table 1), so that, in general, it is preferable to start from the intersection of
necklaces and unlabelled tuples, since a lot of pruning is then obtained for free.

Table 2
Enumeration times (in seconds) of objects of length n over 3 colours via dynamic & static (constraint-based) symmetry breaking.

n necklaces unlabelled necklaces

Algorithm 2 Constraints (3) Algorithm 3 Constraints (1) and (4)

time time time (leaf) time (all) time fails

1 0.00 0.00 0.00 0.00 0.00 0
2 0.00 0.00 0.00 0.00 0.00 0
3 0.00 0.00 0.00 0.00 0.01 0
4 0.00 0.00 0.00 0.00 0.01 2
5 0.00 0.00 0.00 0.00 0.01 6
6 0.00 0.01 0.00 0.00 0.02 9
7 0.01 0.01 0.00 0.00 0.05 29
8 0.02 0.02 0.02 0.02 0.14 69
9 0.05 0.04 0.06 0.05 0.40 181

10 0.13 0.11 0.18 0.14 1.14 469
11 0.31 0.25 0.58 0.46 3.78 1240
12 0.90 0.83 1.75 1.42 11.51 3298
13 2.40 2.34 5.64 4.53 34.85 8919
14 6.87 6.24 16.67 13.61 107.80 24329
15 18.60 17.23 52.42 42.36 328.40 66869
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Fig. 1. DFA checker for intValuePrecedeChain(D, X), where decision variable U [i] ∈ D ∪ {k} is the smallest unused value after looking up X[1 . . . i − 1].

3. Static symmetry breaking

Consider a CSP 〈X, D, C〉 where X is a sequence of n � 2 variables and D is a set of k � 1 domain values. For simplicity
of notation, we assume that D = {0, . . . ,k − 1}; this also has the advantage that the order is obvious whenever we require
D to be totally ordered.

3.1. Unlabelled tuples

To break full value symmetry, it suffices to order the positions of the first occurrences, if any, of each value. Letting
firstPos(i, X) denote the first position, if any, of value 0 � i < k in X under the current assignment, and n + 1 + i otherwise,
the following k − 1 constraints break full value symmetry [18]:

firstPos(0, X) < firstPos(1, X) < · · · < firstPos(k − 1, X)

where each firstPos(i, X) < firstPos( j, X) is encoded in [18] by the global constraint intValuePrecede(i, j, X), for which domain
consistency can be achieved. A more efficient filtering algorithm can be designed for the entire conjunction of these global
constraints, giving the following global constraint [2,18] (called precedence in [32]):

intValuePrecedeChain(D, X) (1)

meaning that the order of any two values in the value sequence D is respected in the decision variable sequence X . Unlike
the original constraint, in the context of this paper we have that the value sequence to be respected is the entire totally
ordered domain D , so that we need not disregard any values not in D; generalising the following observations to a value
sequence strictly included in D is straightforward.

A ground checker for this global constraint can be specified as the deterministic finite automaton (DFA) of Fig. 1, so
that we get a filtering algorithm using the automaton global constraint [1]. The idea is to create a sequence U of n + 1
additional decision variables in D ∪ {k}, so that U [i] is the smallest unused value after looking up X[1 . . . i − 1], with
U [1] = 0. As long as X[i] � U [i], for i running from 1 to n, we stay in the start state s, which is also an accepting state. If
X[i] > U [i] for some i, then we move to an (undrawn) failure state and stay there for any relationship between X[i] and
U [i] until i = n. The constraint in curly braces ({. . .}) defines U across the transitions. (Note that the present version of
SICStus Prolog does not support counter arrays for automaton, so that U cannot be defined explicitly in the transitions as
depicted here, but only in conjunction with the X[i] � U [i] constraints.) Since the constraint hypergraph corresponding to
this DFA is not Berge-acyclic (because each X[i] � U [i] constraint shares more than one variable with the corresponding
U [i + 1] = max(U [i], X[i] + 1) constraint), we are not guaranteed that domain consistency is achieved, but we can enforce
domain consistency on the conjunction of these two constraints, using either the table constraint (yielding a DFA that
directly corresponds to the encoding in [32]) or the problem-specific DFA checker with |D| + 1 states in the February 2008
on-line edition of the Global Constraint Catalogue [2].

3.2. Necklaces

To break rotation variable symmetry, we apply the so-called lex-leader scheme [6], which says that any variant of a
wanted solution under all the symmetries of the considered symmetry group must be lexicographically larger than or equal
to (a flattening into a linear sequence of) that solution. For necklaces, this means that all the (non-identity) rotations of the
sequence X must be lexicographically larger than or equal to X itself [32]:

n∧

q=2

X[q, . . . ,n,1, . . . ,q − 1] �lex X[1, . . . ,n] (2)

These n − 1 constraints over sequences of exactly n elements have been logically minimised in [15] to the following n − 1
constraints over sequences of at most n − 1 elements:

n∧

q=2

X
[
q, . . . , (2q − 3) mod n + 1

]
�lex X[1, . . . ,q − 1] (3)

Reading from right to left, this constrains the first q − 1 elements of X to be lexicographically smaller than or equal to the
cyclically next q − 1 elements of X , for 2 � q � n. The DFA for the �lex constraint in [1–3] is historically the first automaton
from which a (domain consistent) propagator was derived.
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Note however that up to n decision variables are shared here between the two arguments of each �lex constraint, so
that the constraint hypergraph corresponding to this DFA is not Berge acyclic here: even though it is known how to achieve
domain consistency in the presence of such variable aliasing [3], this is not implemented in the built-in lex_chain constraint
of the current version of SICStus Prolog.

Generalising this to partial rotational variable interchangeability, where X is partitioned into subsets with rotational
interchangeability, is straightforward.

Future work includes designing a more efficient filtering algorithm for the entire conjunction (3) of global lexicographic
constraints, giving a new global constraint, which we propose to call lexAllRot(X).

3.3. Unlabelled necklaces

The conjunction of the constraints (1) and (3) accepts all necklaces that are unlabelled tuples (just like Algorithm 3
without probing), and therefore accepts a superset of the unlabelled necklaces [32]. For example, the binary necklace 011 is
also an unlabelled tuple, but not an unlabelled necklace, because it can be transformed (by rotation and minimal renaming)
into the unlabelled necklace 001.

In fact, the rotation variable symmetry and full value symmetry can be broken by the conjunction of constraint (1) with
the probing tests in line 16 of Algorithm 3 seen as constraints, ensuring that the minimal renaming of every (non-identity)
rotation of the sequence X is lexicographically larger than or equal to X itself:

n∧

q=2

X[q, . . . ,n,1, . . . ,q − 1] �lex X[1, . . . ,n] (4)

Note that (4) by itself does not suffice, as it accepts the ternary necklace 002, which is not unlabelled: we can only drop (1)
if we relax the lower bound on q in (4) from 2 to 1. However, on q = 1, we have that (4) is logically equivalent to (1),
because (4) is then violated if and only if X[i] < X[i] at some position i, which means that X[i] > max(X[1 . . . i − 1]) + 1
and hence that (1) is also violated, as X is not an unlabelled tuple because the value of X[i] occurs in X before the value
X[i] − 1. Domain consistency of (4) on q = 1 is cheaper to achieve on the simpler formulation (1), and this has been
confirmed by experiments. The difference of (4) with (2) and (3) lies in the minimal renaming of the left-hand side. The
logic minimisation of (2) into (3) does not apply to (4), for the same reason, but such a logic minimisation should be
attempted.

We now establish the correctness and completeness of the introduced symmetry-breaking constraints, using (4) for
q ∈ {1, . . . ,n} for simplicity of argument. Since the proof is independent of the symmetry group on the decision variables
(the cyclic group here), we state the result in generalised form:

Theorem 2. Given a CSP 〈X, D, C〉 with full symmetry on the values D and a symmetry group G acting on the indices of the n
variables X, the constraints:

∧

π∈G

X
[
π(1), . . . ,π(n)

]
�lex X[1, . . . ,n] (5)

break all variable and value symmetry.

Proof. The proof is in two stages: first, we show that given an assignment X[1, . . . ,n] = [d1, . . . ,dn] there exists a symmetric
assignment [σ(dπ(1)), . . . , σ (dπ(n))] that satisfies (5) for some π in G and some bijection on values σ in D → D; second,
we show that if two symmetric assignments satisfy (5) then they are equal.

First, given X[1, . . . ,n] = [d1, . . . ,dn], consider all permutations [dπ(1), . . . ,dπ(n)], for all π ∈ G , and then further con-
sider the minimal renamings [dπ(1), . . . ,dπ(n)] of these permutations: the lexicographically smallest element in this list
satisfies (5). Second, since the lexicographic order is a total order there is a unique lexicographically smallest element,
hence if two assignments that are symmetrically equivalent both satisfy (5) then they must be equal. �

The lex-leader scheme for breaking variable symmetry [6] was adapted in [20] to a particular case of value symmetry.
This was later generalised to arbitrary value symmetry groups in [21,31]. Further, in [31], a genLexLeader constraint was
proposed that breaks arbitrary symmetries acting on both variables and values simultaneously. Applying this in our case
would require |G| · |D|! such constraints to guarantee full symmetry breaking, whereas in (5) only |G| constraints need to
be posted.

A ground checker for the required A �lex B global constraint, called geqLexMin(A, B), can be specified as the DFA of
Fig. 2, so that we get a filtering algorithm using the automaton global constraint [1]. The idea is to augment the classical
DFA for �lex [1–3] with a sequence U of n + 1 additional decision variables in D ∪ {k}, so that U [i] is the smallest unused
value after looking up X[1 . . . i − 1], with U [1] = 0, as well as with a minimal-renaming bijection M on D (encoded by an
allDifferent constraint). As long as M[A[i]] = B[i], for i running from 1 to n, we stay in the start state s, which is also an
accepting state. If M[A[i]] > B[i] for some i, then we move to state t , which is an accepting state, and stay there for any
relationship between M[A[i]] and B[i] until i = n. If M[A[i]] < B[i] for some i, then we move to an (undrawn) failure state
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Fig. 2. DFA checker for A �lex B , denoted by geqLexMin(A, B), where decision variable U [i] ∈ D ∪ {k} is the smallest unused value after looking up X[1 . . .

i − 1], and decision variable M[A[i]] ∈ D represents A[i], so that M is a bijection on D .

and stay there for any relationship between M[A[i]] and B[i] until i = n. The constraint in curly braces ({φ}) defines U and
M across all these transitions. Since the constraint hypergraph corresponding to this DFA is not Berge-acyclic (because each
M[A[i]] � U [i] constraint shares more than one variable with the corresponding U [i + 1] = max(U [i], X[i] + 1) constraint,
and because the entire M is shared for every i), we are not guaranteed that domain consistency is achieved.

Note also that all n decision variables are shared here between the two arguments of each geqLexMin constraint, so that
the constraint hypergraph corresponding to this DFA is also not Berge acyclic for this variable aliasing reason.

In fact, Algorithm 4 for internal probing while searching for unlabelled necklaces is a starting point for a custom filtering
algorithm for the geqLexMin constraint.

Future work includes designing a more efficient filtering algorithm for the entire conjunction (4) of geqLexMin global
constraints, giving a new global constraint, which we propose to call lexAllMinRot(X).

3.4. Discussion

To assess the runtimes (in seconds) of dynamic and static symmetry breaking, consider Table 2 again. Unmentioned
numbers of backtracks are zero.

For necklaces, columns 2 and 3 reveal an insignificant advantage of the lexicographic constraints (3), under less than
domain consistency, over the constant-amortised-time Algorithm 2.

For unlabelled necklaces, the last three columns reveal a huge advantage of Algorithm 3 over constraints (1) and (4).
Interestingly, the runtimes are about the same whether we use domain-consistent propagators for (1) or not.

However, these runtimes were obtained in the absence of any problem-specific constraints, and static symmetry breaking
usually performs better than dynamic symmetry breaking in the presence of problem-specific constraints. We address this
issue in the next section.

4. Experiments

We now experimentally compare the proposed dynamic and static symmetry-breaking methods on real-life scheduling
problems containing an (unlabelled) necklace as a combinatorial sub-structure.

4.1. Example: Rotating schedules

Many industries and services need to function around the clock. Rotating schedules, such as the one in Fig. 3(a) (a real-
life example taken from [17]) are a popular way of guaranteeing a maximum of equity to the involved work teams. In our
example, there are day (d), evening (e), and night (n) shifts of work, as well as days off (x). Each team works maximum
one shift per day. The scheduling horizon has as many weeks as there are teams. In the first week, team i is assigned
to the schedule in row i. For any next week, each team moves down to the next row, while the team on the last row
moves up to the first row. Note how this gives almost full equity to the teams, except, for instance, that team 1 does not
enjoy the six consecutive days off that the other teams have, but rather three consecutive days off at the beginning of
week 1 and another three at the end of week 5. We here assume that the daily workload is uniform. In our example, each
day has exactly one team on-duty for each work shift, and hence two teams entirely off-duty; assuming the work shifts
average 8 h, each employee will work 7 · 3 · 8 = 168 h over the five-week-cycle, or 33.6 h per week. Daily workload can
be enforced by global cardinality (gcc) constraints [22] on the columns. Further, any number of consecutive workdays must
be between two and seven, and any change in work shift can only occur after two to seven days off. This can be enforced
by stretch constraints [19] on the table flattened row-wise into a sequence. (A filtering algorithm for the stretch constraint,
which is not a built-in of SICStus Prolog, was automatically obtained from a DFA model of a constraint checker using the
(built-in) automaton global constraint [1].) We assume that soft constraints and cost functions, such as full weekends off as
numerous and well-spaced as possible, are enforced by manual selection among schedules satisfying the hard constraints.
In our example, there are two full weekends off, in the optimally spaced rows 2 and 5.

4.2. Necklaces

Under the given assumption (uniform workload) and constraints (gcc and stretch), any rotating schedule has the sym-
metries of necklaces, when we view it flattened row-wise into a sequence. For example, the schedule in Fig. 3(b) is the
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Mon Tue Wed Thu Fri Sat Sun
1 x x x d d d d
2 x x e e e x x
3 d d d x x e e
4 e e x x n n n
5 n n n n x x x

(a) Classical rotating schedule

Mon Tue Wed Thu Fri Sat Sun
1 d d d d x x e
2 e e x x d d d
3 x x e e e e x
4 x n n n n n n
5 n x x x x x x

(b) Lex-minimal rotation thereof

Fig. 3. A five-week rotating schedule with uniform workload, and its lexicographically minimal rotation.

lexicographically smallest element of the equivalence class to which the schedule in Fig. 3(a) belongs, assuming the values
are ordered alphabetically (d < e < n < x): the former is obtained from the latter by a cyclic left-shift by three positions.
Note that the cyclic x stretch in rows 5 and 1 is now entirely on row 5, and that the two optimally spaced ‘weekend’ days
are now Wednesday and Thursday. In other words, it does not matter from what weekday one names the columns, as one
can obtain alternative schedules by rotating the circular sequence: 5 · 7 = 35 schedules, including the one of Fig. 3(a), are
summarised by the necklace in Fig. 3(b).

In addition to the classical instances in Fig. 3, here denoted 1d,1e,1n,2x, we ran experiments over other instances,
namely those over 4 to 10 weeks where the weekly workload is reasonable (33 h to 42 h) and there are fewer than 100000
unique solutions. For example, instance 2d,2e,1n,2x has the uniform daily workload of 2 teams on the day shift, 2 teams
on the evening shift, 1 team on the night shift, and 2 teams off-duty; assuming the work shifts average 8 h, each employee
will work 7 · 5 · 8 = 280 h over the seven-week-cycle, or 40 h per week.

Table 3 gives the runtimes (in seconds) and numbers of backtracks (fails) over all solutions. On average, when breaking
these symmetries statically, the default variable ordering (trying the leftmost variable) is better than first-fail (trying the left-
most variable with the smallest domain) and most-constrained (trying the leftmost variable with the smallest domain that
has the most constraints suspended), with the default bottom-up value ordering, hence the runtimes for static symmetry-
breaking are given for the default orderings. Static symmetry-breaking for necklaces, in the presence of the problem-specific
constraints, is now a lot faster than dynamic symmetry-breaking.

The reason why we have compared the performance over all solutions is as follows. The performance to the first solution
is approximately the same on all these instances (about 0.01 seconds), whether the symmetries are broken dynamically,
statically, or not at all. Hence, for this problem, symmetry breaking is not justified if one is only interested in the first
solution, even if symmetric non-solutions are also eliminated in the search for it. However, in general, the time ratio to all
solutions between symmetry breaking and no symmetry breaking is usually a good indicator of that time ratio to the first
optimal solution, as branch-and-bound essentially iterates over increasingly better solutions in order to pick the best.

To illustrate this claim, Table 4 gives the runtimes and numbers of backtracks to the first optimal solution of a sample
cost function, namely the maximum number of full weekends off (considering a weekend to be the sixth and seventh days
of the week, to avoid having a more complex cost function when breaking symmetries). Indeed, the performance ratios are
quite similar to those observed in Table 3, namely a speed-up by a factor of 2 to 5 when breaking symmetries, dynamically
or statically. Note that dynamic symmetry breaking is fastest on the last and largest instance.

Table 3
Performance comparison over all solutions on necklace schedules.

instance unique
solutions

Algorithm 2 Constraints (3) no symmetry breaking

time fails time fails solutions time fails

1d,1e,1n,1x 14 0.10 2488 0.04 106 114 0.17 391
1d,1e,1n,2x 2274 6.66 228823 3.52 9140 17142 18.68 43448
2d,1e,1n,2x 4115 47.71 959970 25.01 69704 51014 143.80 419746
2d,2e,1n,2x 4950 194.24 2922846 136.56 408669 64556 697.68 2314796
2d,2e,2n,2x 3444 587.19 7526564 549.86 1587888 38484 2315.36 8150876

Table 4
Performance comparison to the first optimal solution (with the maximum number of full weekends off) on necklace schedules.

instance maximum
weekends off

Algorithm 2 Constraints (3) no symmetry breaking

time fails time fails time fails

1d,1e,1n,1x 1 0.06 438 0.02 61 0.08 241
1d,1e,1n,2x 2 1.40 17002 1.06 4407 3.79 17183
2d,1e,1n,2x 2 10.95 140810 8.10 29013 35.36 150980
2d,2e,1n,2x 2 48.35 624706 43.97 152175 179.75 768309
2d,2e,2n,2x 2 139.58 1833758 147.88 505841 565.96 2470481
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Table 5
Performance comparison over all solutions on partially unlabelled necklace schedules.

instance unique
solutions

Algorithm 3′ Constraints (6) and (4′) no symmetry breaking

time fails time fails solutions time fails

1d,1e,1n,1x 1 0.09 350 3.13 48 114 0.17 391
1d,1e,1n,2x 402 12.19 35969 194.94 2964 17142 18.68 43448
2d,2e,2n,2x 274 644.47 1380876 29246.82 313587 38484 2315.36 8150876

Table 6
Performance comparison to the first optimal solution (with the maximum number of full weekends off) on partially unlabelled necklace schedules.

instance maximum
weekends off

Algorithm 3′ Constraints (6) and (4′) no symmetry breaking

time fails time fails time fails

1d,1e,1n,1x 1 0.04 122 1.30 24 0.08 241
1d,1e,1n,2x 2 0.76 3301 29.28 1078 3.79 17183
2d,2e,2n,2x 2 147.66 350139 5012.51 91937 565.96 2470481

4.3. Partially unlabelled necklaces

Under the uniform workload assumption, some rotating schedules even have many of the symmetries of unlabelled neck-
laces. In our instances for 4, 5, and 8 weeks, the constraints do not distinguish between the d, e, n work shifts, so that
those values are interchangeable.

To break such partial value symmetry dynamically, recalling that x is the largest value here (k − 1 in general), it here
suffices to replace line 6 of Algorithm 3 by

try all i ∈ {
X[ j − p], . . . ,min(u + 1,k − 2)

} ∪ {k − 1}
and to make the minimal renamings Y in lines 16 and 18 respect the subsets D� ⊆ D of interchangeable values; in our case
D = {d, e,n} ∪ {x}. We denote the resulting search procedure by Algorithm 3′ .

To break this partial value symmetry statically, an intValuePrecedeChain(D�, X) constraint for each subset D� hinders
propagation: a counterexample for partially unlabelled tuples (without the rotation variable symmetry) is given in [32,
Section 5]. However, in our case, we conjecture that this does suffice, as D is partitioned into only two blocks, one of which
is a singleton, hence:

intValuePrecedeChain
({d, e,n}, X

)
(6)

Together with an adaptation, denoted (4′), of the constraints (4) where Y respects the D� , we have a static symmetry-
breaking method for such partially unlabelled necklace schedules.

Table 5 gives the runtimes (in seconds) and numbers of backtracks (fails) over all solutions. Static symmetry breaking,
in the presence of the problem-specific constraints, is still a lot slower than dynamic symmetry breaking, and even slower
than no symmetry breaking (the rightmost three columns are copied from Table 3 for the reader’s convenience). Dynamic
symmetry breaking for partially unlabelled necklaces (Algorithm 3′), while faster than no symmetry breaking, is however
slower on the last two, larger instances than dynamic symmetry breaking for necklaces (compare with Algorithm 2 in
Table 3).

Table 6 gives the runtimes and numbers of backtracks to the first optimal solution of a sample cost function, namely
the maximum number of full weekends off. Again, and ignoring the poor performance of static symmetry breaking, the
performance ratios are quite similar to those observed in Table 5, namely a speed-up by a factor of 2 to 5 when breaking
symmetries dynamically rather than not at all (the rightmost two columns are copied from Table 4 for the reader’s conve-
nience). Dynamic symmetry breaking for partially unlabelled necklaces (Algorithm 3′) is however slower on the last, largest
instance than dynamic symmetry breaking for necklaces (compare with Algorithm 2 in Table 4).

5. Conclusions

By bringing together the fields of combinatorial enumeration and constraint programming, we have extended existing
results for dynamically and statically breaking the rotation variable symmetry of necklaces into new symmetry-breaking
methods dealing also with the additional full value symmetry of unlabelled necklaces. On an example, we have also shown
how to specialise these methods when the value symmetry of unlabelled necklaces is only partial. In the absence of
problem-specific constraints, the dynamic symmetry-breaking methods outperform the static ones, narrowly for necklaces
but largely for unlabelled necklaces. On a real-life scheduling problem we have shown that, in the presence of problem-
specific constraints, the static method becomes faster for necklaces, but not for partially unlabelled necklaces.

Most related work was discussed on-the-fly. Furthermore, one should be aware of existing enumeration algorithms for
special cases, such as the constant-amortised-time algorithms for unlabelled binary necklaces [4], or for necklaces with fixed
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content [27] or forbidden substrings [25]. For instance, under the given assumption (uniform workload) and constraints,
rotating schedules are necklaces with fixed content, so the algorithm of [27] should be tried instead of Algorithm 2.

Note the difference between our lexAllRot(X) global constraint and the allperm(M) global constraint [12] on an m × n
matrix M of variables, which enforces that the first row of M is lexicographically smaller than or equal to all permutations
of all other rows of M . The allperm(M) constraint was introduced to aid in the incomplete symmetry breaking of the
lex2(M) global constraint [8], which imposes lexicographic orders on the rows and columns of a matrix M of variables
where all rows and all columns are assumed interchangeable. Since n of the n! permutations of any row Mi of M are
rotations, it would be interesting to compare, in this helper task, the performance of allperm(M) with the performance of
the conjunction lexAllRot(M0, M1) ∧ · · · ∧ lexAllRot(M0, Mm−1), assuming a suitable binary variant of lexAllRot.

Future work includes the quest for a constant-amortised-time enumeration algorithm for unlabelled k-ary necklaces. The
fact that all necklaces can be enumerated faster than all unlabelled necklaces (see Table 2 and compare Tables 3 and 5)
indicates that such an algorithm might exist.

Also, the simultaneous consideration of reflection symmetries and rotation symmetries gives rise to the dihedral sym-
metry group on the indices and to combinatorial objects known as (unlabelled) bracelets. Logically minimised symmetry-
breaking constraints for this group have been identified [15], but efficient enumeration algorithms only exist so far for
distinguishable values [26].

Furthermore, rotation symmetries on multi-dimensional matrices of variables should be considered.
Finally, since the generator functions for (unlabelled) necklaces are known [13], we can add a test to our search proce-

dures that decides in constant time whether to continue enumerating or not, thereby accelerating any proofs of optimality,
for instance.
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