
Constraints (2009) 14:506–538
DOI 10.1007/s10601-008-9059-7

Dynamic structural symmetry breaking for constraint
satisfaction problems

Pierre Flener · Justin Pearson · Meinolf Sellmann ·
Pascal Van Hentenryck · Magnus Ågren

Published online: 30 September 2008
© Springer Science + Business Media, LLC 2008

Abstract In recent years, symmetry breaking for constraint satisfaction problems
(CSPs) has attracted considerable attention. Various general schemes have been
proposed to eliminate symmetries. In general, these schemes may take exponential
space or time to eliminate all the symmetries. We identify several classes of CSPs
that encompass many practical problems and for which symmetry breaking for
various forms of value or variable interchangeability is tractable using dedicated
search procedures. We also show the limits of efficient symmetry breaking for
such dominance-detection schemes by proving intractability results for some classes
of CSPs.

Keywords Symmetry breaking · Dominance detection · Tractability · CSP

The authors’ names are ordered according to the Swedish alphabet.

P. Flener (B) · J. Pearson
Department of Information Technology, Uppsala University,
Box 337, 751 05 Uppsala, Sweden
e-mail: pierref@it.uu.se

J. Pearson
e-mail: justin@it.uu.se

M. Sellmann · P. Van Hentenryck
Department of Computer Science, Brown University,
Box 1910, Providence, RI 02912, USA

M. Sellmann
e-mail: sello@cs.brown.edu

P. Van Hentenryck
e-mail: pvh@cs.brown.edu

M. Ågren
SICS, Box 1263, 164 29 Kista, Sweden
e-mail: agren@sics.se

Constraints (2009) 14:506–538 507

1 Introduction

Many constraint satisfaction problems (CSPs) naturally exhibit symmetries. Sym-
metry breaking may drastically improve performance [3, 22, 24, 31]. An important
contribution in this area has been the development of various general schemes for
symmetry breaking during search in CSPs (e.g., symmetry breaking during search
(SBDS) [2, 17] and symmetry breaking by dominance detection (SBDD) [9, 15, 24],
the latter being described briefly in Section 3). Unfortunately, in general, these
dynamic symmetry-breaking schemes may require exponential resources to break
all the symmetries. Indeed, some schemes may require exponential space to store
all the nogoods generated through symmetries, while others may take exponential
time to discover whether a partial assignment is symmetric to one of the existing
nogoods. As a consequence, practical applications often place limits on how many
nogoods can be stored and/or which symmetries to break. Other than eliminating
symmetries by re-modelling the problem (see, e.g., [30]), another important ap-
proach is to break symmetries statically by adding constraints before search starts
(e.g., [7, 23]). Unfortunately, in general, a super-exponential number of constraints
may be needed to break all the symmetries. For instance, the lex-leader scheme of
[7] adds one constraint per symmetry, but the number of symmetries is often super-
exponential (an m × n matrix with fully interchangeable rows and columns has m! · n!
symmetries). As a consequence, practical applications often add only some of these
symmetry-breaking constraints (see, e.g., [11, 29]).

We approach symmetry breaking from a different, orthogonal standpoint. Our
goal is to identify classes of CSPs that are practically relevant and for which symmetry
breaking is tractable, i.e., polynomial in time and space, using dedicated search
procedures exploiting the problem structure. We identify several such classes whose
CSPs feature various forms of value or variable interchangeability and encompass
many practical problems. For some of them, such dynamic structural symmetry
breaking can even be performed with a constant overhead with respect to both time
and space at every node explored. We also introduce the new notion of abstract
nogood, which is used to derive the results for some of the CSP classes. We believe
that this notion is helpful to derive many other classes of tractable symmetries.
As such, this paper should be viewed only as a first step in this fascinating area.
Finally, we also show the limits of efficient dynamic structural symmetry breaking for
dominance-detection schemes like SBDD by proving intractability results for certain
classes of CSPs.

The main objective of this theoretical paper is to establish the bounds of tractabil-
ity of dynamic symmetry breaking for a landscape of CSP classes (see Table 1 in the
conclusion). A runtime comparison with static symmetry breaking, even if structural
[12, 13], is beyond the scope of this paper.

It is useful to contrast our approach with the research avenue pioneered by
Freuder [16] on value interchangeability. He also introduced various forms of value
interchangeability. However, his goal was to discover symmetries inside CSPs and
to remove them through a preprocessing reformulation. Unfortunately, discovering
symmetries in CSPs is not tractable for many interesting classes of CSPs. This paper,
in contrast, assumes that the symmetries in a CSP are known. It focuses on how to ex-
ploit this knowledge during search to break symmetries efficiently. In [34], we address
the companion issue of how to automatically detect symmetries in CSP models.

508 Constraints (2009) 14:506–538

Example 1 Consider the scene allocation problem featured in [32]. It aims at pro-
ducing a movie (or a series) at minimal cost by deciding when to shoot which scenes.
Each scene involves a number of actors and at most five scenes a day can be shot.
All the actors of a scene must be present on the day the scene is shot. The actors
have fees representing the amount to be paid per day they spend in the studio. An
optimal solution can be modelled as an assignment of scenes to days that minimises
the production costs. The exact days assigned to the scenes have no importance
and are fully interchangeable. What is important is how the scenes are clustered.
In fact, the original problem formulation only has a number, say n, of days. It is the
often necessary naming of these days while modelling the problem, say as 1 . . . n,
that induces these symmetries. Our dynamic structural symmetry breaking approach
does not aim at discovering this fact; it rather focuses on how to exploit it to break
the symmetries it induces.

This theoretical paper, which unites and extends1 our work published in [27, 33],
is structured as follows. First, in Section 2, we define CSPs and assignments in a
non-standard way that gives rise to elegant formulations and proofs of our results.
Then, in Sections 3 to 7, we formally establish those results, for various forms of
value and/or variable interchangeability. Finally, Section 8 summarises the results
and concludes this paper.

2 Preliminaries

Our definition of CSPs, although it captures their informal meaning, is non-standard
but simplifies the proofs and other definitions considerably. The basic idea is that
the set of constraints of a CSP is abstracted by a Boolean function that returns
true if all these constraints are satisfied. We are not interested in the constraint
structure. Solutions are then also represented as functions, namely from the variables
to the possible values.

Definition 1 (CSP, Assignment, Solution) A CSP is a triplet 〈V, D, C〉, where V
denotes the set of variables, D denotes the set of possible values for these variables
and is called their domain, and C : (V → D) → Bool is a constraint that specifies
which assignments of values to the variables are solutions. An assignment for a CSP
P = 〈V, D, C〉 is a function α : V → D. If the domain D is the power-set of some
other set, called the universe, we say that the CSP is a set-CSP and has set variables,
while we call α a set assignment; otherwise, we say that the CSP has scalar variables.
A solution to a CSP P = 〈V, D, C〉 is an assignment σ for P such that C(σ) = true.
The set of all the solutions to a CSP P is denoted by Sol(P).

1Sections 5.3, 7.2, 7.3, and the epilogue to Corollary 2 are new, while Section 5.2 was generalised.
The originally omitted proofs of Proposition 1, Proposition 2, and Theorem 3 are now provided,
while the proofs of Theorem 1 and Corollary 1 were expanded into greater detail. The full version of
this paper, including other originally omitted proofs, but excluding Section 7.3, is in [14].

Constraints (2009) 14:506–538 509

Algorithms to solve CSPs manipulate partial assignments. It is often important
to reason about which variables are already assigned (the scope of the partial
assignment) and the set of values they are assigned to (the image of the partial
assignment).

Definition 2 (Partial Assignment, Scope, Image) A partial assignment for a CSP
P = 〈V, D, C〉 is a function α : W → D, where W ⊆ V. The scope of α, denoted by
scope(α), is W. The image of α, denoted by image(α), is the set {α(v) | v ∈ scope(α)}.
For each value d ∈ image(α), we use α−1(d) to denote the set {v | v ∈ scope(α) &
α(v) = d}. We denote the empty partial assignment by ε.

Note that every assignment and solution to a CSP P = 〈V, D, C〉 is a partial
assignment for P , with scope V. We often denote a partial assignment α by a
conjunction of equations, and then see it as a constraint:

vi1 = α(vi1) & · · · & vik = α(vik)

where scope(α) = {vi1 , . . . , vik}.

Example 2 The partial assignment v1 = 1 & v2 = 2 & v3 = 3 represents the func-
tion whose scope is {v1, v2, v3} and that assigns the value i to vi.

Definition 3 (Extension of a Partial Assignment) A partial assignment θ for a CSP
P is an extension of a partial assignment α for P if scope(α) ⊆ scope(θ) and ∀v ∈
scope(α) : θ(v) = α(v).

Definition 4 (Completion of a Partial Assignment) A completion of a partial assign-
ment α for a CSP P = 〈V, D, C〉 is an extension θ of α with scope(θ) = V. The set of
all the completions of α for P is denoted by Comp(α,P).

Note that the set of all the completions of a solution σ is the singleton {σ }.

Definition 5 (Nogood) A nogood for a CSP P is a partial assignment α for P that
cannot be extended into a solution, that is Comp(α,P) ∩ Sol(P) = ∅.

The idea behind the noun ‘nogood’ is that no partial assignment should ever
extend any previously identified nogood.

Definition 6 (Violating a Nogood) A partial assignment θ for a CSP P violates a
nogood α for P if θ is an extension of α.

The verb ‘violates’ is justified here, as we also view a partial assignment, and
hence a nogood, as a constraint, with the form of a conjunction of equations. Strictly
speaking, this notion of nogood violation is redundant with the notion of nogood
extension, but we keep it for its more intuitive appeal.

Any extension of a nogood is itself a nogood:

Proposition 1 If a partial assignment θ for a CSP P violates a nogood for P , then θ is
itself a nogood for P .

510 Constraints (2009) 14:506–538

Proof Assume that a partial assignment θ for P violates a nogood α for P and
assume that θ is not a nogood for P . Then there exists a completion γ of θ such
that γ ∈ Sol(P). Since γ is a completion of θ and θ is an extension of α, we have, by
transitivity of ⊆ and =, that γ is a completion of α. But then α cannot be a nogood,
since γ ∈ Sol(P). This is a contradiction, so θ must be a nogood.
�

Furthermore, a partial assignment that can only be extended into a nogood is itself
a nogood:

Proposition 2 Let P = 〈V, D, C〉 be a CSP where D = {d1, . . . , dm}. Let α be a partial
assignment for P with scope(α) = {vi1 , . . . , vik}. If every α & vik+1 = di (1 ≤ i ≤ m) is
a nogood for P , then α is itself a nogood for P .

Proof Assume that α is not a nogood for P . Then there exists an extension γ of
α such that γ ∈ Sol(P). But γ must include α & vik+1 = di for some 1 ≤ i ≤ m. But
then γ is also an extension of α & vik+1 = di for that i. But α & vik+1 = di is a nogood
for every 1 ≤ i ≤ m, so there cannot exist such a γ . Hence α is a nogood for P .
�

In other words, nogoods can be lifted from the children to their parent in a search
tree: when all the child nodes have been explored, their nogoods can be forgotten
and only the parent nogood needs to be kept.

With respect to the symmetry considered in this paper, in [5], two definitions of
symmetry are presented: solution symmetries, which are essentially bijections on the
set of variable-value pairs that make up assignments and preserve solutions; and
constraint symmetries, which are bijections on the structure of the constraints in the
problem. It is shown that the group of constraint symmetries of a CSP is a subgroup
(most often strict) of the group of solution symmetries. In this paper, the symmetries
are defined as subgroups of the set of solution symmetries without reference to the
constraint symmetries. Specific definitions of the particular symmetry considered are
given in the respective parts of the paper.

3 Structural symmetry breaking for variable and value symmetry

We start our investigation by showing that there exists an efficient structural
symmetry-breaking algorithm for CSPs where both the set of values and the set of
variables can be partitioned into subsets such that, within each subset, all variables
or values, respectively, are interchangeable. We call these problems piecewise inter-
changeable CSPs:

Definition 7 (Piecewise Bijection) Let S = ∪i Pi such that the sets Pi are disjoint, i.e.,
Pi ∩ Pj �= ∅ implies i = j. Then, we write S = ∑

i Pi and call
∑

i Pi a partition of S.
A bijection b : S → S is a piecewise bijection over

∑
i Pi if and only if b(Pi) = Pi,

where b(Pi) = {b(e) | e ∈ Pi}.

Definition 8 (Piecewise / Fully Interchangeable CSP) A CSP P=〈∑m
k=1Vk,

∑n
�=1D�,C〉

is a piecewise interchangeable CSP if and only if, for each solution σ ∈ Sol(P),
each piecewise bijection a over

∑
k Vk, and each piecewise bijection b over

Constraints (2009) 14:506–538 511

∑
� D�, we have b ◦ σ ◦ a ∈ Sol(P). If the only piecewise bijection over

∑
k Vk

(or
∑

� D�) is the identity, then the CSP is a piecewise value-interchangeable (or
variable-interchangeable) CSP. If m = 1 (or n = 1), then the CSP is a fully value-
interchangeable CSP (or a fully variable-interchangeable CSP). If m = 1 = n, then
the CSP is a fully interchangeable CSP.

We will show how to break all symmetry in piecewise interchangeable CSPs by
means of SBDD [9, 15]. SBDD is a technique to break symmetries during search.
The idea is as follows: At any given choice point during search, we check whether
the subtree rooted at the current node maps, under application of symmetry, into
another subtree that has been fully explored earlier. If so, then the current node need
not be investigated further and can be pruned. Different ways to control and limit
the number of previously expanded subtrees that must be checked against have been
developed in [9, 15]. With these results, the core procedure of any SBDD code that
determines its efficiency is the dominance detection algorithm that checks whether a
given partial (set) assignment is dominated by another one. Formally, we define:

Definition 9 (Dominating an Assignment) Let P = 〈∑k Vk,
∑

� D�, C〉 be a piece-
wise interchangeable CSP. Assignment α dominates assignment β if and only if
there exist piecewise bijections a over

∑
k Vk and b over

∑
� D� such that for every

v ∈ scope(α) we have β(a(v)) = b(α(v)).

Given two assignments α and β for a piecewise interchangeable CSP, we call the
problem of determining whether α dominates β the dominance detection problem.
Consequently, if we can solve the dominance detection problem efficiently, then we
can also break symmetries efficiently.

The key idea to tackle the dominance detection problem for piecewise inter-
changeable CSPs consists in the introduction of structural abstractions: to model a
CSP, we need to name uniquely each value and each variable. When certain variables
and certain values are actually interchangeable, such a naming is of course not
natural. We can rectify this by viewing each variable and each value as a member
of a symmetry class. In the beginning, these classes correspond directly to the sets Vk

and D�. When assignments are committed, though, some of those initial symmetries
are broken. Then, in order to check which CSP objects are still interchangeable,
we need to introduce subclasses of the original symmetry classes. We will see that
we can detect the remaining symmetries by naming each of those subclasses with
an appropriate signature that is defined by the set of initial symmetries and the
given assignments. We will see also that it is really these signatures that capture our
intuitive wish to abstract from the CSP model at hand to the actual structure of the
problem.

3.1 Signatures

First consider the following example.

Example 3 Take variables V = {v1, . . . , v8} over the domain D = {d1, . . . , d6}. As-
sume that the first four and the last four variables are interchangeable: V1 =
{v1, . . . , v4} and V2 = {v5, . . . , v8}. Assume that the first three and the last three val-

512 Constraints (2009) 14:506–538

ues are interchangeable: D1 = {d1, . . . , d3} and D2 = {d4, . . . , d6}. Consider the fol-
lowing two partial assignments (see Fig. 1a): α1 =(v1 =d1 & v2 =d1 & v3 =d2 &
v6 = d5 & v7 = d1 & v8 = d2) and α2 = (v1 = d6 & v2 = d1 & v3 = d2 & v4 =
d2 & v5 = d1 & v6 = d6 & v7 = d2 & v8 = d2). When looking at α1, we see that:

1. There is one value (namely d1) in D1 that is taken by two variables in V1 and one
variable in V2.

2. There is one value (namely d2) in D1 that is taken by one variable in V1 and one
variable in V2.

3. There is one value (namely d5) in D2 that is taken by one variable in V2.

Fig. 1 Part a illustrates
assignments α1 and α2. Part b
gives the signatures for each
value, links pairs of values
where the one in assignment
α1 dominates the one in α2,
and designates by solid lines a
perfect matching that proves
that α1 dominates α2

v1

v2

v3

v4

V1

v5

v6

v7

v8

V2

d1

d2

d3

D1

d4

d5

d6

D2

v5

v6

v7

v8

V2

v1

v2

v3

v4

V1

d1

d2

d3

D1

d4

d5

d6

D2

α1 α2

d4

d5

d6

d4

d5

d6

d1

d2

d3

d1

d2

d3(0,0)

(1,1)

(2,1)

(0,0)

(0,0)

(0,1)

(0.0)

(1,1)

(2,2)

(0,0)

(0,0)

(1,1)

α1 α2

a

b

Constraints (2009) 14:506–538 513

On the other hand, in α2, we see that:

I. There is one value (namely d2) in D1 that is taken by two variables in V1 and
two variables in V2.

II. There is one value (namely d1) in D1 that is taken by one variable in V1

and one variable in V2.
III. There is one value (namely d6) in D2 that is taken by one variable in V1 and

one variable in V2.

Lining up 1-I (d1 �→ d2, {v1, v2} �→ {v3, v4}, {v7} �→ {v7, v8}), 2-II (d2 �→ d1, {v3} �→
{v2}, {v8} �→ {v5}), and 3-III (d5 �→ d6, {v6} �→ {v6}), we see that α2 is structurally a
partial assignment extended from α1, or, in other words, that α1 dominates α2 (see
also Fig. 1b).

What we have done in this small example is to abstract from the given model
and the (arbitrary) names of the variables and values to the actual structure of
the problem. That is, instead of talking about specific variables and values, we
have considered members of classes. Specifically, for each partial assignment, we
implicitly assigned each value a signature that captures by how many members of
each variable-symmetry class it was taken. For instance, in α1, the value d1 has
the signature (2 × V1, 1 × V2), or, in shorter writing, the signature of d1 under α1

is sigα1(d1) = (2, 1). Under α2, on the other hand, the signature of d2 is sigα2(d2) =
(2, 2). Consequently, d2 in α2 can be viewed as more specialised than d1 in α1, or
one may also say that d1 in α1 dominates d2 in α2. In this terminology, d1 in α2

has signature sigα2(d1) = (1, 1) and therefore dominates d1 in α1. Note that sigα2(d6)

is also (1, 1), but that d6 in α2 does not dominate d1 in α1 since d6 ∈ D2 whereas
d1 ∈ D1. In general:

Definition 10 (Dominating a Value) A value d in a partial assignment α dominates
a value e in a partial assignment β if and only if d and e belong to the same value-
symmetry class and sigα(d) ≤ sigβ(e).2

A value d in a partial assignment α is structurally equivalent to a value e in a partial
assignment β if and only if d and e belong to the same value-symmetry class and
sigα(d) = sigβ(e).

In the following sub-section, we will show how these notions of dominance and
structural equivalence can be exploited to devise a polynomial-time algorithm that
solves the dominance detection problem on piecewise interchangeable CSPs.

3.2 Dominance detection using signatures

The following lemma shows how signature abstractions can help to detect dominance
relations among partial assignments:

Lemma 1 A partial assignment α dominates another partial assignment β in a piece-
wise interchangeable CSP if and only if there exists a piecewise bijection b over
D = ∑

� D� such that d in α dominates b(d) in β for every d ∈ D.

2The ≤-relation on vectors is defined as the usual component-wise comparison that yields the
so-called dominance ordering, which is different from a lexicographic ordering.

514 Constraints (2009) 14:506–538

Proof First, assume that α dominates β. Then, there exist piecewise bijections
a over

∑
k Vk and b over

∑
� D� such that for every v ∈ scope(α) we have β(a(v)) =

b(α(v)). Since both v and a(v) belong to the same symmetry class, we have sigα(d) ≤
sigβ(b(d)) for all values d ∈ D, which is the same as to say that d in α dominates
b(d) in β.

Second, assume that there exists a piecewise bijection b over
∑

� D� such that
sigα(d) ≤ sigβ(b(d)) for every d ∈ D. Then, since each variable is assigned to at most
one value, there exists a piecewise bijection a over

∑
k Vk such that β(a(v)) = b(α(v))

for every v ∈ scope(α). Thus, we have that α dominates β.
�

Consequently, we have that α dominates β if and only if there exists a perfect
matching in a bipartite graph where the edges are defined by the signature relation
of values (see Fig. 1b). Let us denote by D′ a set of duplicates of the values in D
obtained by appending a prime sign to their names (that is, D′ := {d′ | d ∈ D}).

Definition 11 (Dominance Detection Graph) Given two partial assignments α and
β, the dominance detection graph DDG(α, β) is (D ∪ D′, E), where E := {(d, e′) |
d in α dominates e in β} denotes the set of arcs.

Theorem 1 The dominance detection problem between two partial assignments α

and β for a piecewise interchangeable CSP has complexity O(M + m2 + mn), where
M = O(m2.5) is the time needed to determine whether there exists a perfect matching
in DDG(α, β), with m being the number of values and n the number of variables.
Hence all symmetric subtrees caused by value and variable symmetries of a piecewise
interchangeable CSP can be eliminated with a polynomial time overhead at every node
explored.

Proof With Lemma 1, it is clear that the dominance detection problem can be
solved basically by determining whether there exists a perfect bipartite matching
in DDG(α, β). The additional complexity denoted in the theorem is due to the
necessity of constructing DDG(α, β) first. This can be achieved in time O(nm2),
which already proves that symmetry breaking in this scenario is tractable. However,
the runtime can be improved to the complexity that is claimed here by using sparse
representations of signatures. Instead of writing down entire signatures, for each
value we hold a sparse list that only contains the non-zero entries of a signature,
together with the information to which variable partition an entry in the sparse list
belongs. To set up this sparse representation, we first order the variable instantiations
in a given partial assignment according to the partition that the corresponding
variable belongs to. This can be done in time linear in the number of variables, since
this is also the maximum number of symmetry classes that can exist. In this order, we
now scan through the partial assignments and set up the sparse signatures. Then, we
iterate through the signatures of all the values in α and compare them with all the
signatures of the values in β. With the sparse representation of signatures, this takes
time O(m(|α| + |β|)).
�

This was the first result establishing that all the symmetries of a piecewise
interchangeable CSP can be broken in polynomial time, in the sense that there are

Constraints (2009) 14:506–538 515

no symmetrical subtrees in the remaining search tree. Note that this fact does not
contradict the results from [35], which show that filtering all assignments that do
not obey static constraints for breaking piecewise symmetry is NP-hard. As it is the
case with some constraints (see for example the shorter path constraints [28]) where
the constraint check is tractable while the filtering problem is not, we have shown
that detecting a symmetrically dominated search node can be done in polynomial
time while [35] has shown that identifying assignments that must eventually lead
to a symmetrically dominated solution (in the sense that it is not the selected
representative of an equivalence class of solutions) is hard.

Interestingly, it can also be shown that every bipartite graph can also be viewed
as a dominance detection graph of a CSP and assignments α and β that can be
determined in time linear in the size of the given graph. Therefore, a perfect bipartite
matching exists if and only if α dominates β, which makes the dominance detection
problem at least as hard as bipartite matching. In other words, we can show that
dominance detection takes time T, where T ∈ 	(M) ∩ O(M + m2 + mn).

Theorem 1 trivially has two interesting consequences. First, dropping the as-
sumed piecewise value interchangeability or tightening the assumed piecewise
interchangeabilities into full interchangeabilities will not worsen its tractability
result, hence all symmetric subtrees caused by the symmetries of fully or piece-
wise variable-interchangeable CSPs and of fully value- and variable-interchangeable
CSPs can be eliminated with a polynomial time overhead at every node explored.
Conversely, when dropping the assumed piecewise variable interchangeability, we
achieve tractability for the symmetries of fully and piecewise value-interchangeable
CSPs. We will study these special cases later where we will devise highly efficient
symmetry breaking methods that do not require complex matchings to be solved and
that minimise the computational overhead needed for symmetry breaking in these
special cases.

Second, dropping the assumed piecewise value interchangeability and switching to
set-CSPs will not worsen the tractability result. Indeed, set variables that take subsets
of a universe of non-interchangeable values can be seen as scalar variables that take
scalar values from a domain of non-interchangeable values, hence the tractability
results of symmetry breaking are those for fully or piecewise variable interchange-
ability of (scalar) CSPs: all symmetric subtrees caused by the symmetries of fully
or piecewise variable-interchangeable set-CSPs can be eliminated with a polynomial
time overhead at every node explored. These are special cases of Theorem 10 in
Section 7.3.

4 Symmetry-based filtering

With Theorem 1, we can eliminate all symmetric subtrees caused by the symmetries
of a piecewise interchangeable CSP in polynomial time at every node explored when
using a symmetry-breaking by dominance detection (SBDD) approach [9, 15]. What
is annoying in this setting is that we still have to check at every choice point to see
whether it is not dominated by one that was previously expanded, that is we still
have to touch the garbage in order to see that it is garbage. We will now develop an
algorithm that does not suffer from this disadvantage.

516 Constraints (2009) 14:506–538

We achieve this goal by using dominance detection also for filtering rather than
just for pruning.3 A brute-force approach could try assignments out and use the
dominance detection algorithm above to perform filtering as well. This procedure
would lead to a very poor runtime, though. In the following, we will show that
filtering based on symmetry can be performed much more efficiently.

Within SBDD, there exists a natural distinction between two types of filtering
that apply: The first consists in making sure that none of the newly created children
are symmetric to a node that was fully expanded before the node that is currently
branching off. When applying unary branching constraints (which we assume are
used here), this can be achieved by shrinking the domains of variables accordingly.
The other, fundamentally different type of “filtering” consists in the creation of
children that are also not symmetric to each other. Both types need to be addressed to
achieve a symmetry-free search tree (which corresponds to the GE-trees in [26]). We
distinguish the two types of filtering by naming them differently: symmetric-ancestor
based filtering and symmetric-sibling based filtering.

4.1 Symmetric-ancestor based filtering

The goal of symmetric-ancestor based filtering is to shrink the domains such that
instantiating a variable with one of its domain values will not result in the creation of
a search node that is symmetric to one that was previously expanded.

Definition 12 (Ancestor-Symmetry Resistance) Given a depth-first-search tree T,
we say that a choice point β (associated with its homonymous partial assignment β

that captures previously committed unary branching decisions) is ancestor-symmetry
resistant if and only if for all previously fully expanded nodes α ∈ T (where α is called
an ancestor of β) and for all variables v and values d ∈ Dom(v) we have that α does
not dominate β & (v = d).

Assume that we are currently investigating choice point β and that α is some
ancestor node that does not dominate β. Observe that instantiating one more
variable v ∈ Vk for some k by setting v �→ e ∈ D� for some � will change only the
signature of e from sigβ(e) to sigβ(e) + ek, where ek denotes the unit vector with a
1 in the kth component. We set β ′ := β & (v = e). Then, G1 := DDG(α, β) and
G2 := DDG(α, β ′) only differ in that the latter bipartite graph may contain some
additional edges that must all be incident to e′ in the right partition. If G2 contains
an m-matching, this matching must contain exactly one of those additional edges.
Consequently, if α dominates β ′, then G1 must contain an (m − 1)-matching. Only if
this is the case, work needs to be done to make β ancestor-symmetry resistant with
respect to α.

So let us assume that G1 contains an (m − 1)-matching. Provided with that
matching, using some straightforward matching theory we can identify efficiently
those and only those additional edges that would allow us to transform the existing

3With ‘filtering’, we refer to the idea of domain reduction in constraint programming, whereas with
‘pruning’, we refer to the detection of a sufficient reason for backtracking.

Constraints (2009) 14:506–538 517

Fig. 2 Ancestor-based
filtering: to the left and right
of the bipartite graph are the
signatures of symmetric values
v1, v2, and v3 under two
assignments α1 and α2 for a
problem where the variable
partition has three parts.
Solid lines indicate dominance
relationships between values.
Dashed lines indicate critical
edges

v1

v2

v3

v1

v2

v3

(2,2,0)

(0,2,2)

(1,0,1)(0,0,2)

(2,0,0)

(0,2,0)

α1 α2

matching into a perfect one (for an introduction to matching theory we refer to [1]):
a matching can be viewed as a flow in some network that closely corresponds to the
bipartite graph. We consider the usual residual network with respect to that flow that
has an additional source node s that connects to all nodes in the first partition, and
a sink node t that is connected from all nodes in the second partition. The capacities
of the residual network are given by the residual capacity of edges after the flow has
been routed, including reverse edges for edges with positive flow.

Then, a maximum matching (corresponding to a maximum flow) defines two cuts.
The first is given by the nodes that are reachable from the source in the residual
network. If we denote this set with S, then (S, SC) is an s-t-cut. The second cut is
given by the set of nodes from which the sink is reachable in the residual network.
If we denote this set with T, then (TC, T) is also an s-t-cut. Note that both cuts can
be computed in time linear in the size of the given networks after the maximum
matching has been computed.

Now, the core observation is that, given those two cuts, the critical edges are
exactly those that run from S ∩ D to T ∩ D′: clearly, adding such an edge yields
an improving path in the residual network and therefore an m-matching. On the
other hand, note that T ⊆ SC and S ⊆ TC. Any edge added from S to SC \ T would
leave the cut (TC, T) untouched, which proves that no such edge can improve the
matching. Edges that run from TC \ S to T follow analogously.

Among those critical edges that, if added, would allow us to construct an m-
matching, the only ones that we need to consider are those that run between
nodes d and e′ with d, e ∈ D� for some � and for which there exists k such that
sigα(d) ≤ sigβ(e) + ek. If and only if we find such a pair of nodes, a single extra
assignment added to β will result in a successful dominance detection. Precisely,
every assignment of e to a previously unassigned variable v ∈ Vk will result in a
dominated choice point. Thus, if we remove e from the domain of v for every un-
assigned v ∈ Vk, we keep the unique parts of the search space and we never produce
any choice points that are symmetric to one that was expanded previously to β.

Example 4 We illustrate ancestor-based filtering in Fig. 2. We consider a problem
where the variable partition has three parts and where all three values are sym-
metric. The solid lines indicate the matching graph that yields an almost-perfect
matching. The dashed lines indicate critical edges whose addition to the graph would
yield a perfect matching. Our algorithm implicitly enumerates those critical edges
(of which there may exist an exponential number) to find critical assignments that

518 Constraints (2009) 14:506–538

would lead to a successful dominance check. In this example, any assignment of
value v3 to any unassigned variable in variable parts 1 or 3 would lead to a successful
dominance check. Consequently, value v3 must be removed from the domains of all
such variables.

In summary, with Theorem 1, the runtime needed for the initial value-matching
algorithm is bounded by O(m2.5 + mn). Then, the entire filtering algorithm runs in
time O(m2 + mn). Therefore, since within SBDD at most n(m − 1) ancestor nodes
need to be considered, we can prove the following theorem:

Theorem 2 For a piecewise interchangeable CSP, we can achieve ancestor-symmetry
resistance for a given search node in time O(nm3.5 + n2m2).

4.2 Symmetric-sibling based filtering

To achieve full symmetry prevention, we also need to guarantee that newly created
siblings are not symmetric to each other. Therefore, after choosing the next variable
to be assigned, but before branching on it, we need to perform one more “filtering”
step (it is actually more of an implicit pruning step), where we choose a single
representative value out of each equivalence class of values that, when assigned
to the chosen variable, would result in the creation of symmetric choice points.
Due to the fact that, whenever a sibling dominates another one, they both must
already be structurally equivalent (see Definition 10), we can avoid producing
symmetric siblings by choosing exactly one representative value among those that
are structurally equivalent. The complexity of this filtering step is dominated by that
of symmetric-ancestor based filtering.

Putting ancestor and sibling-based filtering together, we have completed our de-
velopment of an effective symmetry-breaking algorithm for piecewise interchange-
able CSPs that runs in polynomial time. Note that the practical performance of the
algorithms sketched can be enhanced in practise: for example, it is fully sufficient
to check against previously expanded nodes for which an (m − 1 − h)-maximum
matching was found only after variable instantiations to h different values have been
committed [18].

5 Fast algorithms to break value symmetry

We review the special case of piecewise interchangeable CSPs with no variable
symmetry, which we call piecewise value-interchangeable CSPs. With the results
of the previous section, we know that this symmetry breaking can be achieved in
polynomial time. Now, we focus on the development of specialised algorithms that
break value symmetry with minimal overhead. First, in Section 5.1, we describe
our new approach on the class of fully value-interchangeable CSPs, showing how it
leads to the well-known result from combinatorial enumeration (e.g., [8, 19]) that
all symmetric subtrees caused by their value symmetries can be eliminated by a
dedicated search procedure with a constant overhead with respect to both time and
space at every node explored (Theorem 4). Then, following the same approach,
we show in Sections 5.2 and Section 5.3 that this result actually generalises to

Constraints (2009) 14:506–538 519

piecewise value-interchangeable CSPs (Theorem 5) and even holds for fully value-
interchangeable set-CSPs (Theorem 6).

5.1 Fully value-interchangeable CSPs

When all values are interchangeable and no variable symmetry is present, we speak
of a fully value-interchangeable CSP.

Definition 13 (Fully Value-Interchangeable CSP) A CSP P = 〈V, D, C〉 is a fully
value-interchangeable CSP if, for each solution σ ∈ Sol(P) and each bijection b over
D, we have b ◦ σ ∈ Sol(P).

In the following, we show that in this case symmetry breaking can be performed
with constant overhead with respect to both time and space at every node explored.
Our method is based on nogoods. The following theorem gives a fundamental
characterisation of nogoods for fully value-interchangeable CSPs. It states that
nogoods are preserved under value interchanges:

Theorem 3 Let α be a nogood for a fully value-interchangeable P = 〈V, D, C〉 and
let b : D → D be a bijection. Then b ◦ α is a nogood for P .

Proof Let g be a completion of b ◦ α and assume that g ∈ Sol(P). Since b is a
bijection, we have b−1 ◦ g ∈ Sol(P). But (b−1 ◦ g)(v) = (b−1 ◦ (b ◦ α))(v) = α(v), for
all v ∈ scope(α), by the definition of a completion, that is α can be extended into a
solution. This contradicts the fact that α is a nogood. Hence b ◦ α cannot be extended
into a solution and is thus actually a nogood.
�

The closure of a nogood α for a fully value-interchangeable CSP is the set of
nogoods obtained from α by applying each possible value interchange, or value
symmetry, to α:

Definition 14 (Closure of a Nogood) Let α be a nogood for a fully value-
interchangeable P = 〈V, D, C〉. The closure of α for P , denoted by Closure(α,P),
is the set {b ◦ α | b is a bijection over D}.

The main idea of our approach is to try and abstract such closures of nogoods so
that their representation takes polynomial space and that membership to a closure
can be tested during search in polynomial time. It will then become possible to
write a search procedure that eliminates all symmetric subtrees caused by the value
symmetries by never extending any member of the closures of all the nogoods
generated during search.

5.1.1 Abstract nogoods

We first show that the closure of a nogood for a fully value-interchangeable CSP can
be characterised compactly.

Definition 15 (Abstract Nogood) Let α be a nogood for a fully value-
interchangeable P = 〈V, D, C〉. Let image(α) = {d1, . . . , dk} and let vri ∈ α−1(di), for

520 Constraints (2009) 14:506–538

1 ≤ i ≤ k. The abstract nogood of α with respect to P , denoted by Anogood(α,P), is
the set of all functions γ : scope(α) → D satisfying the condition

∀i ∈ 1 . . . k : allequal
(
γ (v j) | v j ∈ α−1(di)

)
& alldiff (γ (vr1), . . . , γ (vrk))

where allequal(a1, . . . , an) holds if all the ai are the same value, and alldiff (a1, . . . , an)

holds if all the ai are different values (and is not to be mixed up with the allDifferent
global constraint).

By abuse of language, we identify an abstract nogood, which is a set of functions,
with the condition that its members have to satisfy.

Example 5 Consider a nogood β, written as a conjunction of equations:

β(v1) = 1 & β(v2) = 2 & β(v3) = 3 & β(v4) = 1 & β(v5) = 2

The abstract nogood of β is the following condition:

allequal
(
γ (v1), γ (v4)

)
& allequal

(
γ (v2), γ (v5)

)
& alldiff

(
γ (v1), γ (v2), γ (v3)

)

or, more precisely, the set of functions γ : scope(β) → D satisfying this condition.

An abstract nogood precisely captures the closure of its nogood [14, Lemmas 2
and 3], and membership to the closure of a nogood can be tested in linear time
[14, Lemmas 4 and 5]. Abstract nogoods are needed only for the current frontier
nodes of the search tree (i.e., the closed nodes whose parents are open). Once its
child nodes are explored, the abstract nogood of a parent node subsumes the abstract
nogoods of these child nodes. Hence, maintaining the nogood takes space O(|F||V|),
where F is the set of frontier nodes [14, Theorem 4].

5.1.2 Maintaining nogoods

We now show that search procedures exploring a search tree for a fully value-
interchangeable CSP can remove all the value symmetries while causing only con-
stant overhead with respect to both time and space at every node explored. Before
presenting the theoretical results, we illustrate the idea using an example with depth-
first search. The basic intuition comes from the structure of the abstract nogoods.

Example 6 Consider the partial assignment

θ(v1) = 1 & θ(v2) = 2 & θ(v3) = 3 & θ(v4) = 1 & θ(v5) = 2

and assume that depth-first search tries next to label variable v6, whose set of possible
values is 1 . . . 10. The failure of v6 = 1 produces the abstract nogood

allequal(γ (v1), γ (v4), γ (v6)) & allequal(γ (v2), γ (v5)) & alldiff (γ (v1), γ (v2), γ (v3)).

Since v1, . . . , v5 remain instantiated when the next value is tried for v6, the abstract
nogood for this part of this next branch simplifies to γ (v6) = 1, imposing that v6 be
labelled with a value different from 1. The failures of v6 = 2 and v6 = 3 produce

Constraints (2009) 14:506–538 521

Fig. 3 A labelling procedure
for fully value-interchangeable
CSPs

similar abstract nogoods for the other values already used in θ . Now consider the
values not already used in θ and observe what happens for a failed labelling of v6

with a value in 4 . . . 10, say 6. The abstract nogood then is

allequal(γ (v1), γ (v4)) & allequal(γ (v2), γ (v5)) & alldiff
(
γ (v1), γ (v2), γ (v3), γ (v6)

)

which simplifies to alldiff (1, 2, 3, γ (v6)). The disjunction of the four simplified ab-
stract nogoods obtained so far is the condition

γ (v6) = 1 ∨ γ (v6) = 2 ∨ γ (v6) = 3 ∨ alldiff (1, 2, 3, γ (v6))

which must not be satisfied by any labelling of v6. It follows that v6 need only be
labelled with the previously used values in 1 . . . 3 or with exactly one new value
in 4 . . . 10.

In other words, in a search tree, only some of the child nodes of a partial
assignment θ need to be explored, namely those that label the next variable vik+1

with a value in image(θ) or with exactly one other value. Clearly, deciding in
this fashion which child nodes to explore only takes constant time. Note that this
result is independent of the set of constraints. It is the essence of the labelling
procedure for graph colouring in [19] and of the set-partition enumeration procedure
in [8]. This procedure, which eliminates all symmetric subtrees caused by the value
symmetries for fully value-interchangeable CSPs, is formalised in Fig. 3 as procedure
fValIlabel. It uses a function Failure(P, θ), which returns false if at least one
extension of the partial assignment θ is a solution to the CSP P = 〈V, D, C〉. In other
words, it satisfies the property

Failure(P, θ) ⇒ ∀β ∈ Comp(θ,P) : ¬C(β).

522 Constraints (2009) 14:506–538

We establish the correctness of fValIlabel:

Theorem 4 Procedure fValIlabel eliminates all symmetric subtrees caused by the
value symmetries of a fully value-interchangeable CSP with a constant overhead with
respect to both time and space at every node explored, i.e., it never extends any member
of the closure of any nogood generated during search.

Proof See the proof of Theorem 5 in [14].

Other search strategies, e.g., limited-discrepancy search, can also be adapted to
remove all the value symmetries of fully value-interchangeable CSPs with a constant
overhead with respect to both time and space at every node explored.

Experiments establishing speed-ups of several orders of magnitude with this
known labelling procedure have been reported elsewhere, e.g., in [19, 32, 33].

5.2 Piecewise value-interchangeable CSPs

We now present a generalisation for piecewise value-interchangeable CSPs of the
previous results.

Definition 16 (Piecewise Value-Interchangeable CSP) A CSP P = 〈V,
∑

� D�, C〉 is
a piecewise value-interchangeable CSP if, for each solution σ ∈ Sol(P) and each
piecewise bijection b over

∑
� D�, we have b ◦ σ ∈ Sol(P).

Example 7 For scene allocation (see Example 1), we can imagine a version of the
problem where the days are divided into morning and afternoon sessions. The actors
probably have strong preferences (and thus different fees for these sessions), but the
day of the session may still not matter.

Definition 17 (Closure of a Nogood) Let α be a nogood for a piecewise value-
interchangeable CSP P = 〈V,

∑
� D�, C〉. The closure of α for P , denoted by

Closure(α,P), is the set {b ◦ α | b is a piecewise bijection over
∑

� D�}.

We now define abstract nogoods for piecewise value-interchangeable CSPs. The
key intuition is to separate the values from each D�.

Definition 18 (Abstract Nogood) Let α be a nogood for a piecewise value-
interchangeable CSP P = 〈V, D, C〉, where D = ∑

�≤s D�. Let image(α) = {d1
1, . . . ,

d1
s1
, . . . , ds

1, . . . , ds
ss
}, where d�

i ∈ D�, and let vr�
i
∈ α−1(d�

i), for 1 ≤ i ≤ s� and 1 ≤ � ≤ s.
The abstract nogood of α with respect to P , denoted by Anogood(α,P), is the set of
all functions γ : scope(α) → ∑

� D� satisfying the condition

∀i ∈ 1 . . . s� : allequal
(
γ (v j) | v j ∈ α−1

(
d�

i

))
&

∀i ∈ 1 . . . s� : ∀v j ∈ α−1
(
d�

i

) : v j ∈ D� & alldiff
(
γ
(
vr�

1

)
, . . . , γ

(
vr�

s�

))

for 1 ≤ � ≤ s.

Constraints (2009) 14:506–538 523

Figure 4 depicts the labelling procedure pValIlabel for piecewise value-
interchangeable CSPs. It generalises fValIlabel of Fig. 3 by considering the
already assigned values in the sets D�, as well as one new value (if any) from each
set: the procedure fValIlabel is obtained when the partition of D has only one
part (that is, when s = 1). Its correctness proof is similar to the one of Theorem 4.

Theorem 5 Procedure pValIlabel eliminates all symmetric subtrees caused by the
value symmetries of a piecewise value-interchangeable CSP with a constant overhead
with respect to both time and space at every node explored.

Experiments establishing significant speed-ups have been reported elsewhere, e.g.,
for partitioned graph colouring in [33].

5.3 Fully value-interchangeable set-CSPs

We now show that symmetry breaking for fully value-interchangeable set-CSPs is
tractable. Given a finite set S, we denote by 2S the set of subsets of S.

Definition 19 (Set Bijection) A bijection b : 2S → 2S is a set bijection over 2S if
b(T) = {b ′(ei) | ei ∈ T} for T ∈ 2S, where b ′ : S → S is a bijection. We say that b
is induced by b ′.

Definition 20 (Fully Value-Interchangeable Set-CSP) A set-CSP P = 〈V, 2D, C〉 is
a fully value-interchangeable set-CSP if, for each solution σ ∈ Sol(P) and each set
bijection b over 2D, we have b ◦ σ ∈ Sol(P).

Fig. 4 A labelling procedure
for piecewise value-
interchangeable CSPs

524 Constraints (2009) 14:506–538

To get an impression where such problems can be of interest, consider the
following example.

Example 8 Let V be any set of v elements, called varieties. A balanced incomplete
block design (BIBD) [6] is a multi-set of b subsets of V, called blocks, each of size
k (constraint C1), such that each pair of distinct varieties occurs together in exactly
λ blocks (constraint C2), with 2 ≤ k < v. Implied constraints are that each variety
occurs in the same number of blocks (constraint C3), namely r = λ(v − 1)/(k − 1), as
well as that bk = vr and λ < r. A BIBD is parametrised by a 5-tuple 〈v, b , r, k, λ〉 of
parameters, not all of which are independent. Originally intended for the design of
statistical experiments, BIBDs also have applications in cryptography and elsewhere.
Note that the varieties and the blocks are fully interchangeable. Finding a BIBD
means finding a fixed number of same-size subsets of a fully interchangeable set:
either find b subsets of size k of the set V, or, dually, find v subsets of size r of the set
{1, . . . , b}, subject to the constraint C2.

Definition 21 (Closure of a Nogood) Let α be a nogood for a fully interchangeable
set-CSP P = 〈V, 2D, C〉. The closure of α for P , denoted by Closure(α,P), is the set
{b ◦ α | b is a set bijection over 2D}.

5.3.1 Abstract nogoods

We now define abstract nogoods for fully value-interchangeable set-CSPs, first
showing the intuition using Example 8. We take the first mentioned modelling
approach (namely finding v subsets of size r of the set {1, . . . , b}) and, for simplicity,
only tackle the full interchangeability of the blocks. We will come back to the full
interchangeability of the varieties just after Theorem 6.

Consider the 〈6, 10, 5, 3, 2〉 BIBD (which has one solution modulo all symmetries):
we want to find v = 6 subsets vi of size r = 5 of the universe D = {1, . . . , 10(= b)},
each giving the blocks to which variety i of V belongs, such that each block is
mentioned in k = 3 subsets and any two subsets have an intersection of size λ = 2.
Consider the (consistent) partial assignment:

α(v1) = {
1, 2, 3, 4, 5

}
& α(v2) = {

1, 2, 6, 7, 8
}

& α(v3) = {
1, 3, 6, 9, 10

}

and assume that α becomes a nogood on backtracking. Note that the values 4 and 5
are indistinguishable because they are the only ones to appear only in the first set.
Similarly, the value 6 is not indistinguishable from any other value because it is the
only value that appears only in the second and third sets. Formally:

Definition 22 (Indistinguishable Values, Cluster) The values x and y are indistin-
guishable under a partial assignment θ , which is denoted by x ∼ y, if x ∈ θ(v) ↔ y ∈
θ(v) for all v ∈ scope(θ). The clusters of values that always appear together, and are
thus indistinguishable, are the equivalence classes of ∼ in D under α.

In our example, there are seven clusters:

{1}, {2}, {3}, {4, 5}, {6}, {7, 8}, {9, 10}. (1)

Constraints (2009) 14:506–538 525

Definition 23 (Signature of a Cluster) The signature of a cluster c relative to a partial
assignment θ , denoted by sig(c, θ), is the list of indices i of the variables vi, which
are given a set value by θ , of which c is a subset: sig(c, θ) = {i | vi ∈ scope(θ) & c ⊆
θ(vi)}.

For instance, sig({3}, α) = [1, 3] because {3} is a subset of both α(v1) and α(v3).
The signatures of the seven clusters in (1) relative to α respectively are:

[1, 2, 3], [1, 2], [1, 3], [1], [2, 3], [2], [3]. (2)

We get the following condition for the abstract nogood of α:

partition
(
D,

[(
γ (v1) ∩ γ (v2) ∩ γ (v3)

)
,

(
γ (v1) ∩ γ (v2)

) \ γ (v3),
(
γ (v1) ∩ γ (v3)

) \ γ (v2), γ (v1) \ (
γ (v2) ∪ γ (v3)

)
,

(
γ (v2) ∩ γ (v3)

) \ γ (v1),

γ (v2) \ (
γ (v1) ∪ γ (v3)

)
, γ (v3) \ (

γ (v1) ∪ γ (v2)
)]

, [1, 1, 1, 2, 1, 2, 2])

where the order of the clusters is the same as in (1), and where partition(S, P, N)

holds if the elements Pi of the set list P are non-empty, mutually disjoint, union
up to the set S, and have Ni elements respectively, with the Ni being the elements
of the integer list N. Note that the cluster size conditions are necessary in general,
but actually implied in this example.4 If there had been values of D that do not
appear in any of the set values for the variables in the scope of α, then their
cluster, which would have the empty list as signature, would have been equal to
D \ (γ (v1) ∪ γ (v2) ∪ γ (v3)), as D is the intersection of an empty collection of sets
drawn from D.

We first show that the closure of a nogood for a fully value-interchangeable set-
CSP can be characterised compactly and that membership to the closure of a nogood
can be tested in polynomial time in this case.

Definition 24 (Abstract Nogood) Let α be a nogood for a fully value-
interchangeable set-CSP P = 〈V, 2D, C〉. Let I be the set of indices of the variables of
V that are in scope(α). Let E be the list of equivalence classes of ∼ in the universe D
under α, and let N be the list of their respective sizes. The abstract nogood of α with
respect to P , denoted by Anogood(α,P), is the set of all functions γ : scope(α) → 2D

satisfying the condition

partition

⎛

⎝D,

⎡

⎣
⋂

j∈sig(e,α)

γ (v j) \
⋃

j∈I\sig(e,α)

γ (v j) | e ∈ E

⎤

⎦ , N

⎞

⎠ .

An abstract nogood precisely captures the closure of its nogood [14, Lemmas 8
and 9].

4Consider a domain of five elements and a partial assignment for two set variables, S1 and S2, of size
3 that have one or two elements in common, that is S1 = e1 ∪ e2 and S2 = e1 ∪ e3 where e1, e2, e3 are
disjoint. Then e1 can be of size 1 or 2.

526 Constraints (2009) 14:506–538

5.3.2 Maintaining nogoods

Let us now consider depth-first search, for instance, and see what happens when the
assignment to v3 is undone, making α a nogood. By the definition of clusters, the
search procedure should treat the elements of a cluster as indistinguishable. Then,
imposing an ordering on the elements of each cluster, the idea is to select the ith

element of a cluster only when the (i − 1)st element of that cluster has already been
selected as a member for the next subset variable.

Figure 5 depicts the labelling procedure fValIsetLabel for fully value-
interchangeable set-CSPs. It uses a function Failure′(P, θ, v, S), which returns false
if at least one extension of the partial assignment θ & v = S ∪ T for some T ⊆ D is
a solution to P = 〈V, 2D, C〉. In other words, it satisfies the property

Failure′(〈V, 2D, C〉, θ, v, S) ⇒
∀T ⊆ D : |S ∪ T| = n : ∀β ∈ Comp(θ & v = S ∪ T, 〈V, 2D, C〉) : ¬C(β).

Procedure fValIsetLabel also uses a procedure UPDATE(E,S), which returns
the equivalence classes (clusters) of T ∪ S, with those of T being E.

Theorem 6 Procedure fValIsetLabel eliminates all symmetric subtrees caused by
the value symmetries of a fully value-interchangeable set-CSP with a constant overhead
with respect to both time and space at every node explored.

Proof See the proof of Theorem 7 in [14].

Procedure fValIsetLabel performs what is called canonical labelling in [10].
There, it is also shown that canonically labelling along one dimension of a matrix of
variables amounts to lexicographically ordering (a flattening of) the other dimensions
of that matrix. Experimental results have been reported elsewhere, e.g., in [10]. We
conjecture that Theorem 6 generalises to piecewise value-interchangeable set-CSPs.

Let us now return to the full interchangeability of the v varieties. Breaking these
extra v! symmetries at the same time is hard, as they compose with the b ! block
symmetries into v! · b ! symmetries. Lexicographically ordering both the rows and
the columns of the mentioned v × b matrix of zero/one variables does not break all
these symmetries, but gives reasonable performance due to the constraint C2 [11].
This leads to the issue whether a suitable abstract nogood can be formulated and a
tractable labelling procedure be derived. In this case, it is not sufficient to store only
the nogoods at the frontier nodes in the search tree; nogoods have to be stored from
higher up in the search tree, as in SBDS [17] and SBDD [9]. Further, testing if a
partial assignment extends a nogood is NP-complete. To see this, consider a BIBD
where the blocks are of size 2; a nogood can then be thought of as a graph, each block
specifying an edge. Then testing if a partial assignment is in the closure of the nogood
is equivalent to subgraph isomorphism, which is NP-complete. A formal proof of this
result will be given in the next section.

Constraints (2009) 14:506–538 527

Fig. 5 A labelling procedure for fully value-interchangeable set-CSPs

6 Limits of efficient symmetry breaking

Until now, we have dealt with cases where symmetric subtrees could be eliminated
efficiently. Particularly, we have shown how symmetric subtrees caused by piecewise
variable and value symmetries can be eliminated efficiently, and we have given
extremely low-overhead algorithms for some cases of value symmetry only. Unfortu-
nately, as we will see in this section, there are limits to efficient symmetry breaking.
We consider set-CSPs with interchangeable variables and values:

Definition 25 (Piecewise Interchangeable Set-CSP) A set-CSP P = 〈∑k Vk,

2
∑

� D� , C〉 is a piecewise interchangeable set-CSP if, for each solution σ ∈ Sol(P),
each piecewise bijection a over

∑
k Vk, and each piecewise set bijection b over

2
∑

� D� , we have b ◦ σ ◦ a ∈ Sol(P).

528 Constraints (2009) 14:506–538

When trying to break the symmetry in piecewise interchangeable set-CSPs by
means of SBDD, we need to solve the following dominance detection problem
efficiently.

Definition 26 (Dominating a Set Assignment) Let P = 〈∑k Vk, 2
∑

� D� , C〉 be a
piecewise interchangeable set-CSP. Set assignment α dominates set assignment β if
and only if there exist a piecewise bijection a over

∑
k Vk and a piecewise set bijection

b over 2
∑

� D� such that for every v ∈ scope(α) we have β(a(v)) = b(α(v)).

We will show that solving this problem is NP-hard, thus proving that SBDD is
not able to break piecewise symmetry in set-CSPs efficiently. More precisely, we
reduce the corresponding dominance detection problem to subgraph-isomorphism.
To achieve the desired reduction, we construct a set assignment from a graph in the
following way:

Definition 27 (Set Assignment αG) Given an undirected graph G = (V, E) with
c := |V|, we create a set of interchangeable values N := {n1, . . . , nc} and a set
of interchangeable variables V := {pij | {i, j} ∈ E}. Then, the set assignment αG is
defined as αG := ∧

{i, j}∈E(pij = {ni, n j}).

Theorem 7 Given two undirected graphs G1 = (V, E1) and G2 = (V, E2), we have
that G1 is sub-isomorphic to G2 if and only if αG1 dominates αG2 when all variables
and values are considered to be interchangeable.

Proof We start by showing that αG1 dominates αG2 if G1 is sub-isomorphic to G2.
Let σ : V → V be bijective such that {i, j} ∈ E1 implies {σ(i), σ (j)} ∈ E2. Then, for
all pij ∈ scope(αG1) with αG1(pij) = {ni, n j} we have that αG2(pσ(i),σ (j)) = {nσ(i), nσ(j)}.
Therefore, αG1 dominates αG2 .

Now, let us assume that αG1 dominates αG2 . Then, there exist functions a : E1 → E2

and b : V → V such that for all pij ∈ scope(αG1) with αG1(pij) = {ni, n j} we have that
αG2(pa({i, j})) = {nb(i), nb(j)}. By construction of αG2 , this is equivalent to {nb(i), nb(j)} ∈
E for all {i, j} ∈ E. Thus, b is a sub-isomorphism between G1 and G2.
�

With Theorem 7, it is possible to prove the following corollary:

Corollary 1 The dominance detection problem for piecewise interchangeable set-CSPs
is NP-hard.

Proof We reduce the problem to subgraph-isomorphism. In order to apply
Theorem 7, we need to ensure that both graphs operate over the same set of nodes.
When the sets of nodes of the given graphs differ, it is possible to see that G1 cannot
be sub-isomorphic to G2 if G1 contains more nodes than G2. When G1 actually
contains fewer nodes than G2, it is possible to see that we can add isolated nodes to
G1 without affecting subgraph-isomorphism. Then, we have that both graphs contain
the same number of nodes, and, by relabelling the nodes in both graphs, we may
assume that both graphs operate on the same set of nodes.
�

Constraints (2009) 14:506–538 529

Note that, despite this negative result, in some important special cases the dom-
inance detection problem for piecewise interchangeable set-CSPs is still tractable.
For example, when the set variables cannot take overlapping sets as values, the
algorithm developed in Section 3 can be adapted (by exchanging the roles of values
and variables) to break all the symmetries efficiently. Hence the following corollary
of Theorem 1:

Corollary 2 The dominance detection problem for piecewise interchangeable set-CSPs
is tractable for non-overlapping sets.

Note that the dominance detection problem as we consider it here regards
arbitrary partial assignments. This implies that, when the detection problem is
tractable, we can break symmetries efficiently. However, the situation changes when
we achieve an intractability result like the previous one.

Within methods like SBDD, the partial assignments that need to be compared
can only differ in a rather specific fashion. We can also show that these more specific
dominance detection problems are NP-hard as well, therefore proving that SBDD
in its general form is incapable of breaking symmetries in piecewise interchangeable
set-CSPs efficiently. The specific dominance detection problems that SBDD consid-
ers differ from the general dominance detection problem by the fact that the partial
assignments α and β that are compared are not arbitrary. We know that there exists
exactly one assignment v = d such that α = γ & (v = d), while β = γ & δ, and
v ∈ Dom(δ) for some partial assignments γ and δ.

We prove that dominance detection even for this limited problem is still NP-hard
by using the same idea as before, but this time we only consider complete subgraphs,
i.e., we reduce to the clique problem rather than to arbitrary subgraph isomorphism.
Given a graph G and a value k, the first assignment is based on a complete graph of
size k and it is defined in accordance with Definition 27. The second assignment is
based on G with an additional, disconnected component that is a complete graph of
size k with just one edge missing. With this setting, the first and second assignments
have the same structural relationship as assignments that need to be compared within
SBDD. Moreover, the given graph contains a clique of size k if and only if the first
assignment dominates the second. Consequently, for piecewise interchangeable set-
CSPs, SBDD is not capable of breaking symmetries efficiently.

As a final note on this negative result, we would like to stress that this does not
imply that symmetry breaking is NP-hard in general since we do not consider other
methods here like remodelling or the adaptation of the branching scheme.

7 Generalisations: wreath interchangeability

So far, we have focused on piecewise symmetry only. In this section, we generalise
some of our tractability results to the more complex class of CSPs where each
variable is assigned a pair of values (d1, d2) from a domain D1 × D2. All values in D1

are interchangeable and, for a fixed value in D1, all values in D2 are interchangeable
as well. These problems are here called wreath value-interchangeable CSPs, because

530 Constraints (2009) 14:506–538

the symmetry group corresponds to a wreath product of groups [4]. Such problems
arise naturally in a variety of applications, e.g., in resource allocation and scheduling.

Example 9 Consider the problem of scheduling a meeting where different groups
must meet some day of the week in some room, subject to constraints. The days are
fully interchangeable and, on a given day, the rooms are fully interchangeable.

7.1 Wreath value-interchangeable CSPs

We now formally define the class of wreath value-interchangeable CSPs. Our defini-
tions and results only consider two sets of fully interchangeable values, for simplicity.
They can be generalised to an arbitrary fixed number of sets, and to sets of piecewise
interchangeable values.

Definition 28 (Wreath Bijection) Let S = S1 × S2 be a Cartesian product. A bijec-
tion b : S → S is a wreath bijection over S1 × S2 if b(〈e1, e2〉) = 〈b1(e1), b e1

2 (e2)〉,
where b1 : S1 → S1 is a bijection and each b e1

2 : S2 → S2 (for e1 ∈ S1) is a bijection.

Definition 29 (Wreath Value-Interchangeable CSP) A CSP P = 〈V, D1 × D2, C〉 is
a wreath value-interchangeable CSP if, for each solution σ ∈ Sol(P) and each wreath
bijection b over D1 × D2, we have b ◦ σ ∈ Sol(P).

Thus, in a wreath value-interchangeable CSP, a value in the domain D1 × D2 is
assigned to each variable, where the values in D1 are fully interchangeable, and, for
a fixed value in D1, the values in D2 are fully interchangeable as well.

We now propose a highly efficient symmetry breaking algorithm for wreath value-
interchangeable CSPs.

We use the following notations. If d = (d1, d2) is a pair, then d[1] = d1 and
d[2] = d2. If T is a set of tuples, then T[i] denotes the set {d[i] | d ∈ T} and
filter(T, i, di) denotes the set {d | d ∈ T & d[i] = di}. If α : D1 × D2 → D1 × D2 is
an assignment, then α−1(d1, D2) denotes the set {α−1(d1, d2) | d2 ∈ D2}.

Definition 30 (Closure of a Nogood) Let α be a nogood for a wreath value-
interchangeable CSP P = 〈V, D1 × D2, C〉. The closure of α for P , denoted by
Closure(α,P), is the set {b ◦ α | b is a wreath bijection over D1 × D2}.

We now define the relevant abstract nogoods.

Definition 31 (Abstract Nogood) Let α be a nogood for a wreath value-
interchangeable CSP P = 〈V, D1 × D2, C〉. Let image(α)[1]={d1, . . . , dk}, let
filter(image(α), 1, di)={di

1, . . . , di
�i
}, let vri ∈ α−1(di, D2), for 1 ≤ i ≤ k, and let vri

j
∈

α−1(di, d j), for 1 ≤ i ≤ k and 1 ≤ j ≤ �i. The abstract nogood of α with respect to
P , denoted by Anogood(α,P), is the set of all functions γ : scope(α) → D1 × D2

Constraints (2009) 14:506–538 531

satisfying the condition

∀i ∈ 1 . . . k : allequal(γ (v j)[1] | v j ∈ α−1(di, D2)) &

alldiff (γ (vr1)[1], . . . , γ (vrk)[1]) &

∀i ∈ 1 . . . �1 : allequal(γ (v j)[2] | v j ∈ α−1(d1, d1
i)) &

alldiff (γ (vr1
1
)[1], . . . , γ (vr1

�1
)[1]) &

. . .

∀i ∈ 1 . . . �k : allequal(γ (v j)[2] | v j ∈ α−1(d1, dk
i)) &

alldiff (γ (vrk
1
)[1], . . . , γ (vrk

�k
)[1])

Figure 6 depicts the labelling procedure wValIlabel for wreath value-
interchangeable CSPs. Its correctness proof is similar to the one of Theorem 4.

Theorem 8 Procedure wValIlabel eliminates all symmetric subtrees caused by the
value symmetries of a wreath value-interchangeable CSP with a constant overhead with
respect to both time and space at every node explored.

7.2 Wreath value-interchangeable set-CSPs

Symmetry breaking for wreath value-interchangeable set-CSPs is also tractable.

Definition 32 (Wreath Set Bijection) Let S = S1 × S2 be a Cartesian product. A
bijection b : 2S → 2S is a wreath set bijection over 2S1×S2 if b is induced by a wreath
bijection over S1 × S2.

Fig. 6 A labelling procedure
for wreath value-
interchangeable CSPs

532 Constraints (2009) 14:506–538

Definition 33 (Wreath Value-Interchangeable Set-CSP) A set-CSP P=〈V,2D1×D2 ,

C〉 is a wreath value-interchangeable set-CSP if, for each solution σ ∈ Sol(P) and each
wreath set bijection b over 2D1×D2 , we have b ◦ σ ∈ Sol(P).

Consider the following example.

Example 10 Take the set V = {v1, v2} of set variables over the universe D1 × D2,
with D1 = {d1, d2} and D2 = {e1, e2, e3}, such that the set-CSP P = 〈V, 2D1×D2 , C〉 is
wreath value-interchangeable, the constraint set C being arbitrary. Suppose that we
have already tried the partial assignment

α1 = (
v1 = {

(d1, e1), (d1, e2), (d2, e2), (d2, e3)
}

& v2 = {
(d2, e1), (d2, e2)

})

and that now we are about to investigate the partial assignment

α2 = (
v1 = {

(d1, e1), (d1, e2), (d2, e1), (d2, e2)
}

& v2 = {
(d1, e2), (d1, e3)

})
.

How can we decide whether α2 is a symmetric variant of α1 or not? One way to do
that is to construct a permutation of D1, as well as corresponding permutations of
D2, so that the sets in α2 are transformed into those of α1.

In order to construct a permutation σ of D1, let us assess whether d1 can be
mapped to itself. If σ(d1) = d1, then v2 = {(d1, e2), (d1, e3)} in α2 cannot be mapped
to v2 = {(d2, e1), (d2, e2)} in α1, no matter how we permute D2. Algorithmically, we
can infer this by checking whether the number of tuples starting with d1 in α2 is the
same as the number of tuples starting with σ(d1) in α1 for all assigned set variables.
For v1, the important tuples in α2 are (d1, e1) and (d1, e2). That means that there are
two such tuples, which matches the number of respective tuples for v1 in α1, namely
(d1, e1) and (d1, e2). For v2, the respective tuples in α2 are (d1, e2) and (d1, e3), i.e.,
there are two such tuples. In α1, on the other hand, there are no tuples starting with
σ(d1) = d1 at all, which shows that d1 cannot be mapped to itself.

Now let us investigate whether d1 can be mapped to d2. First, we check whether
the numbers of tuples match. For v1 we have two tuples starting with d1 in α2, and
in α1 we have two tuples starting with d2. Moreover, for v2 we have two tuples
starting with d1 in α2, and also two tuples starting with d2 in α1. Therefore, the
initial check on setting σ(d1) = d2 is inconclusive. To check fully whether we can
construct a permutation σ of D1 with σ(d1) = d2, we need to find out whether there
exists a permutation of D2 such that the respective tuple sets map exactly, and not
just in number. That is, we need to construct a permutation τ of D2 such that, with
σ(d1) = d2, we have

{(
σ(d1), τ (e1)

)
,
(
σ(d1), τ (e2)

)} = {(
d2, e2

)
,
(
d2, e3

)}
(3)

and
{(

σ(d1), τ (e2)
)
,
(
σ(d1), τ (e3)

)} = {(
d2, e1

)
,
(
d2, e2

)}
, (4)

or we need to show that no such permutation exists. The equations above pose the
following constraints on the permutation τ that we are trying to construct: τ(e1) ∈
{e2, e3}, τ(e2) ∈ {e2, e3} ∩ {e1, e2}, and τ(e3) ∈ {e1, e2}.

Fortunately, constructing τ or proving that no such permutation exists can be done
by solving a maximum matching problem in a bipartite graph. The node set N is

Constraints (2009) 14:506–538 533

defined as the union of the sets N1 := {e1, e2, e3} and N2 := {e′
1, e′

2, e′
3}, where the e′

i
are copies of the ei. We define the edge set E in accordance with the constraints as
given before, i.e., we add an edge (ei, e′

j) ∈ N1 × N2 to E if and only if τ(ei) = e j is
allowed. Then, a perfect matching in G = (N, E) exists if and only if there exists
a permutation τ that satisfies equations (3) and (4). As we can see in Fig. 7a, a
maximum matching, and consequently a permutation τ , exists that shows that we
can potentially set σ(d1) = d2.

We continue to check whether setting σ(d2) = d1 and σ(d2) = d2 are possible. We
find that for both these mappings we can construct a corresponding legal permutation
τ of D2.

Now, equipped with that knowledge, we can try at last to construct σ where we
must ensure that σ(d1) ∈ {d2} and σ(d2) ∈ {d1, d2}. Following the same idea as before,
we check whether such a permutation exists by solving a maximum matching problem
in a bipartite graph: see Fig. 7b. Since a perfect matching exists, we have a proof that
indeed assignment α2 is symmetric to α1. On the other hand, the construction of σ

could only have failed if no permutation of D1 and corresponding permutations of
D2 existed.

Generally, we state:

Theorem 9 All symmetric subtrees caused by the value symmetries of a wreath value-
interchangeable set-CSP can be eliminated with a polynomial time overhead at every
node explored.

Proof As in all pure cases of value symmetry, we only need to check search nodes
against their previously expanded siblings. We show how this dominance check can
be performed by abstracting from the concrete example above. For all potential
mappings σ(d) = e, and for all set variables vi that were assigned values in α1, we
first check whether the number of tuples in the set α1(vi) starting with e matches
the number of tuples in the set α2(vi) starting with d. If that is not the case, we
note that setting σ(d) = e is not feasible. Otherwise, we set up a bipartite graph
Gd,e = (Nd,e, Ed,e) where Nd,e consists of all possible second tuple entries f and their
copies f ′. An edge (f, g′) is an element of Ed,e if and only if, for all set variables vi that
were assigned values in α1, either (d, f) /∈ α2(vi) or (d, f) ∈ α2(vi) & (e, g) ∈ α1(vi).
We note σ(d) = e as feasible if and only if there exists a perfect matching in Gd,e.
Finally, we set up a bipartite graph G = (N, E) where N consists of all possible first
tuple entries d and their copies d′. An edge (d, e′) is an element of E if and only if

Fig. 7 Part a gives the
bipartite graph constructed
to assess whether d1 can be
mapped to d2. Part b shows the
bipartite graph constructed to
find a feasible permutation of
D1 or to show that none exists

e1

e2

e3 e3'

e2'

e1' d1

d2

d1'

d2'

a b

534 Constraints (2009) 14:506–538

σ(d) = e is feasible. Then, we report α2 as dominated by α1 if and only if there exists
a perfect matching in G.

This method either constructs permutations that prove the dominance of α1 or
shows that no such permutation exists. When p denotes the number of possible first
tuple entries and q the number of possible second tuple entries, our algorithm can be
implemented to run in O(p2q2.5) time.
�

Note that the dominance checker that we outlined in the proof above can be
generalised for tuples with k entries. However, the run-time is then exponential in k.
We leave open whether an efficient labelling algorithm can be formulated to break
this type of value symmetry. The point here was to show that wreath value symmetry
allows tractable symmetry breaking for set-CSPs.

Also note that this tractability results subsumes the special case discussed in
Section 5.3, where a very efficient symmetry-breaking method was given for fully
value-interchangeable set-CSPs.

7.3 The grapes of wreath:5 wreath variable-interchangeable (Set-)CSPs

The previous ideas transfer to wreath variable-interchangeable CSPs, which were
not considered in [27, 33]. A variable set V = V1 × V2 is a two-dimensional matrix
of variables, with index sets V1 for the rows and V2 for the columns. Wreath variable
interchangeability in such a matrix means that the rows are piecewise interchange-
able and, for a given row index in V1, the row variables with column indices in V2 are
piecewise interchangeable as well. Such problems also arise naturally in a variety of
applications.

Example 11 Consider Steiner triple systems, where there is a set B of 3-element
subsets, called triples, of a set X of v ≥ 3 elements, such that every pair of distinct
elements of X appears in exactly one triple of B. If we use a v(v−1)

6 -by-3 matrix
of scalar variables in X to represent the triples, then the triples (rows) are fully
interchangeable and, in a given triple, the elements are fully interchangeable. (Note
that the values in X are also fully interchangeable.)

Definition 34 (Wreath Variable-Interchangeable CSP) A CSP P = 〈V1 × V2, D, C〉
is a wreath variable-interchangeable CSP if, for each solution α ∈ Sol(P) and each
wreath bijection σ over V1 × V2, we have α ◦ σ ∈ Sol(P).

Let us start from just wreath variable interchangeability, and it then does not
matter whether it is a scalar CSP or a set-CSP.

Theorem 10 The dominance detection problem for wreath variable-interchangeable
(set-)CSPs is tractable.

5With apologies to John Steinbeck, author of The Grapes of Wrath, 1939.

Constraints (2009) 14:506–538 535

Proof A wreath variable-interchangeable CSP P = 〈V1 × V2, D, C〉 can be reformu-
lated as the piecewise variable-interchangeable set-CSP

P ′ = 〈
V1, 2D, C′ ∪ {card(i) = card(V2) | i ∈ V1}

〉

whose set variables are all constrained to be |V2|-element sub-multisets of D, and
whose constraints C′ are a reformulation of C for multiset variables. Indeed, the
order of the elements in a (multi)set is irrelevant, and this effectively models the
fact that for a given row index i ∈ V1, the variables (V1 × V2)[i, j] are piecewise
interchangeable for all the column indices j ∈ V2. Since it is already known that all
symmetric subtrees caused by the variable symmetries of a piecewise interchangeable
CSP can be eliminated with a polynomial-time overhead at every node explored
(see Theorem 1), it is also so for piecewise variable-interchangeable set-CSPs, where
the piecewise value interchangeability is dropped (with no negative impact on the
tractability) and where set variables replace the scalar variables. Indeed, a set
variable that takes a subset of a universe U of non-interchangeable values can be
seen as a collection of scalar variables that take (scalar) values from U . (In other
words, set variables only complicate matters when the universe has interchangeable
values.) The stated result thus follows from the reformulation. The argument goes
similarly for wreath variable-interchangeable set-CSPs.
�

Even adding only full value interchangeability, we unfortunately lose the tractabil-
ity, at least for dynamic symmetry-breaking approaches based on dominance
detection. The following is our first intractability result for a class of scalar CSPs.

Theorem 11 The dominance detection problem for fully value-interchangeable and
wreath variable-interchangeable CSPs is NP-hard. Hence the dominance detection
problem is NP-hard also for fully value-interchangeable and wreath variable-
interchangeable set-CSPs, for piecewise value-interchangeable and wreath variable-
interchangeable (set-)CSPs, and for wreath value-interchangeable and wreath
variable-interchangeable (set-)CSPs.

Proof Consider a fully value-interchangeable and wreath variable-interchangeable
CSP. Temporarily dropping the full value interchangeability, we get a wreath
variable-interchangeable CSP, which we can reformulate as a fully variable-
interchangeable set-CSP, like at the beginning of the proof of Theorem 10, with-
out losing the tractability of dominance detection. Bringing back the full value
interchangeability, we get a fully interchangeable set-CSP. Since the dominance
detection problem for fully interchangeable set-CSPs is NP-hard (see Corollary 1),
the stated results for scalar CSPs follow. The stated results on set-CSPs follow from
the intractability on scalar CSPs because scalar variables can replace set variables
that are all constrained to take singleton values.
�

Example 12 The matrix model of Example 11 for Steiner triple systems is a fully
value-interchangeable and wreath variable-interchangeable CSP. Hence the domi-
nance detection problem is NP-hard for this model. Note that there are v(v−1)

6 !3!v
symmetries in it, that is already 1, 410, 877, 440 symmetries for the 7-by-3 variable
matrix for v = 7.

536 Constraints (2009) 14:506–538

Table 1 Tractability of symmetry breaking and dominance detection

Variable interchangeability

None Full Piecewise Wreath

Value interchangeability
None P (Thm 1) P (Thm 1) P (Thm 10) scalar CSP

P (Thm 1) P (Thm 1) P (Thm 10) set-CSP
Full P (Thm 4) P (Thm 1) P (Thm 1) NP (Thm 11) scalar CSP

P (Thm 6) NP (Cor. 1) NP (Cor. 1) NP (Thm 11) set-CSP
Piecewise P (Thm 5) P (Thm 1) P (Thm 1) NP (Thm 11) scalar CSP

P (Thm 9) NP (Cor. 1) NP (Cor. 1) NP (Thm 11) set-CSP
Wreath P (Thm 8) P [13, Thm 4] P [13, Thm 4] NP (Thm 11) scalar CSP

P(Thm 9) NP [13, Cor. 1] NP [13, Cor. 1] NP (Thm 11) set-CSP

8 Conclusion

We have theoretically studied several classes of CSPs for which symmetry breaking
is tractable, in the sense that all symmetric subtrees caused by the symmetries
of CSPs in those classes can be eliminated with a polynomial time overhead at
every node explored. These CSP classes, which encompass many practical problems,
feature various forms of value or variable interchangeability and allow symmetry
breaking to be performed with a polynomial overhead (which is often even a
constant overhead) with respect to both time and space at every node explored,
using dedicated search procedures. Unfortunately, efficient symmetry breaking by
such dominance-detection schemes has its limits, as we have identified some CSP
classes where dominance detection is intractable.

Table 1 summarises our main results, where “P (Thm i)” means that breaking
all the symmetries mentioned in the corresponding row is feasible with a poly-
nomial overhead with respect to both time and space at every node explored for
the corresponding (set-)CSP in the column, as proved in Theorem i or a trivial
consequence thereof. However, no specialised labelling procedures are given for
these particular CSP classes in this paper. The negative tractability results, marked
“NP (Thm/Cor. i)” and referring to Theorem/Corollary i, only concern the NP-
hardness of dominance-detection schemes like SBDD; it remains an open research
issue whether other schemes can break those symmetries in polynomial time.

In [26] it is proved that all value symmetries of a CSP are polynomial-time
tractable; this is proved using group theoretic notions and although the resulting
complexities are the order of a low-degree polynomial they are in general not as
efficient as the specialised algorithms presented in this paper. A key component in
the proofs is the notion of a minimal GE-tree, which is essentially the search tree that
results from a search procedure that eliminates all symmetric subtrees. All the search
procedures in this paper produce GE-trees.

In [12] we have provided a static counterpart of the here considered dynamic
structural symmetry breaking for piecewise interchangeable CSPs, that is we have
exploited the concept of signature to devise a set of symmetry-breaking constraints
that break all the considered symmetries. Other methods for static symmetry break-
ing are discussed in [7, 11, 20, 21, 23, 25, 29], for instance.

Constraints (2009) 14:506–538 537

There are many directions for future research. Of particular interest is the study of
tractable classes of CSPs exhibiting variable symmetries where the variable set has a
more complex structure than the partitions studied in this paper. In particular, when
the variable set is obtained by a Cartesian product over some index sets, we get what
is known as a matrix model. There are many interesting forms of interchangeability
in matrix models, such as the full/piecewise/wreath interchangeability of matrix
slices (rows, columns, . . .) [11]. For many of these forms of variable interchange-
ability, including their compositions with various forms of value interchangeability,
tractability results for symmetry breaking are still missing and finding effective
search procedures is a challenging problem. Also, as Corollary 2 has shown, negative
tractability results call for the identification of special cases where symmetry breaking
is tractable.

Acknowledgements All authors were partly supported by institutional grant IG2001-67 of STINT,
the Swedish Foundation for International Cooperation in Research and Higher Education. The
Sweden-based authors were also supported by grants 221-99-369 and 70644501 of VR, the Swedish
Research Council, during part of this work. Pierre Flener did some of this work while a Visiting
Faculty Member in 2006/07 at Sabancı University in İstanbul, Turkey. Meinolf Sellmann is sup-
ported by the National Science Foundation through the Career: Cornflower Project (NSF award
number 0644113). Pascal Van Hentenryck was partly supported by NSF ITR Award DMI-0121495.
Many thanks to the anonymous reviewers, for their comments on this paper.

References

1. Ahuja, R., Magnati, T., & Orlin, J. (1993). Network flows. Englewood Cliffs: Prentice Hall.
2. Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In J. Jaffar

(Ed.), Proceedings of CP’99, LNCS (Vol. 1713, pp. 73–87). New York: Springer.
3. Barnier, N., & Brisset, P. (2002). Solving the Kirkman’s schoolgirl problem in a few seconds.

In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470. pp. 477–491). New York:
Springer.

4. Cameron, P. (1999). Permutation groups. Number 45 in London Mathematical Society Student
Texts. Cambridge: Cambridge University Press.

5. Cohen, D. A., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2005). Symmetry defi-
nitions for constraint satisfaction problems. In P. van Beek (Ed.) Proceedings of CP’05, LNCS
(Vol. 3709, pp. 17–31). New York: Springer.

6. Colbourn, C. J., & Dinitz, J. H. (Eds.) (1996). The CRC handbook of combinatorial designs. Boca
Raton: CRC.

7. Crawford, J. M., Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates
for search problems. In L. C. Aiello, J. Doyle, & S. C. Shapiro (Eds.), Proceedings of KR’96
(pp. 148–159). San Francisco: Morgan Kaufmann.

8. Er, M. C. (1988). A fast algorithm for generating set partitions. The Computer Journal, 31(3),
283–284.

9. Fahle, T., Schamberger, S., & Sellmann, M. (2001). Symmetry breaking. In T. Walsh (Ed.),
Proceedings of CP’01, LNCS (Vol. 2239, pp. 93–107). New York: Springer.

10. Flener, P., Frisch, A. M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., et al. (2001).
Symmetry in matrix models. In P. Flener & J. Pearson (Eds.), Proceedings of SymCon’01. http://
www.it.uu.se/research/group/astra/SymCon01/.

11. Flener, P., Frisch, A. M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., et al. (2002). Breaking
row and column symmetries in matrix models. In P. Van Hentenryck (Ed.), Proceedings of CP’02,
LNCS (Vol. 2470, pp. 462–476). New York: Springer.

12. Flener, P., Pearson, J., Sellmann, M., & Van Hentenryck, P. (2006). Static and dynamic structural
symmetry breaking. In F. Benhamou (Ed.), Proceedings of CP’06, LNCS (Vol. 4204, pp. 695–
699). New York: Springer.

http://www.it.uu.se/research/group/astra/SymCon01/
http://www.it.uu.se/research/group/astra/SymCon01/

538 Constraints (2009) 14:506–538

13. Flener, P., Pearson, J., & Sellmann, M. (2008). Static and dynamic structural symmetry break-
ing. Technical Report 2008-023, Department of Information Technology, Uppsala University,
Sweden, September. http://www.it.uu.se/research/reports/2008-023/.

14. Flener, P., Pearson, J., Sellmann, M., & Ågren, M. (2007). Structural symmetry breaking for
constraint satisfaction problems. Technical Report 2007-032, Department of Information Tech-
nology, Uppsala University, Sweden, November. http://www.it.uu.se/research/reports/2007-032/.

15. Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In T. Walsh
(Ed.), Proceedings of CP’01, LNCS (Vol. 2239, pp. 77–92). New York: Springer.

16. Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems.
In Proceedings of AAAI’91 (pp. 227–233). Menlo Park: AAAI.

17. Gent, I. P., & Smith, B. M. (2000). Symmetry breaking during search in constraint programming.
In Proceedings of ECAI’00 (pp. 599–603). Amsterdam: IOS.

18. Heller, D. S., & Sellmann, M. (2006). Dynamic symmetry breaking restarted. In F. Benhamou
(Ed.), Proceedings of CP’06, LNCS (Vol. 4204, pp. 721–725). New York: Springer.

19. Kubale, M., & Jackowski, B. (1985). A generalized implicit enumeration algorithm for graph
coloring. CACM, 28(4), 412–418.

20. Law, Y., & Lee, J. (2006). Symmetry breaking constraints for value symmetries in constraint
satisfaction. Constraints, 11(2–3), 221–267.

21. Law, Y., Lee, J., Walsh, T., & Yip, J. (2007). Breaking symmetry of interchangeable variables
and values. In C. Bessière (Ed.), Proceedings of CP’07, LNCS (Vol. 4741, pp. 423–437).
New York: Springer.

22. Meseguer, P., & Torras, C. (2001). Exploiting symmetries within constraint satisfaction search.
Artificial Intelligence, 129(1–2), 133–163.

23. Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems.
In J. Komorowski & Z. Raś (Ed.), Proceedings of ISMIS’93, LNAI (Vol. 689, pp. 350–361).
New York: Springer.

24. Puget, J.-F. (2002). Symmetry breaking revisited. In P. Van Hentenryck (Ed.), Proceedings of
CP’02, LNCS (Vol. 2470, pp. 446–461). New York: Springer.

25. Puget, J.-F. (2006). An efficient way of breaking value symmetries. In Proceedings of AAAI’06.
Menlo Park: AAAI.

26. Roney-Dougal, C. M., Gent, I. P., Kelsey, T., & Linton, S. (2004). Tractable symmetry breaking
using restricted search trees. In R. L. de Mántaras & L. Saitta (Eds.), Proceedings of ECAI’04
(pp. 211–215). Amsterdam: IOS.

27. Sellmann, M., & Van Hentenryck, P. (2005). Structural symmetry breaking. In Proceedings of
IJCAI’05 (pp. 298–303). IJCAI.

28. Sellmann, M., Gellermann, T., & Wright, R. (2007). Cost-based filtering for shorter path con-
straints. Constraints, 12(2), 207–238.

29. Shlyakhter, I. (2001). Generating effective symmetry-breaking predicates for search problems.
Electronic Notes in Discrete Mathematics (Vol. 9). Proceedings of SAT’01.

30. Smith, B. M. (2001). Reducing symmetry in a combinatorial design problem. In C. Gervet &
M. Wallace (Eds.), Proceedings of CP-AI-OR’01.

31. Smith, B. M., Brailsford, S. C., Hubbard, P. M., & Williams, H. P. (1996). The progressive party
problem: Integer linear programming and constraint programming compared. Constraints, 1,
119–138.

32. Van Hentenryck, P. (2002). Constraint and integer programming in OPL. INFORMS Journal on
Computing, 14(4), 345–372.

33. Van Hentenryck, P., Flener, P., Pearson, J., & Ågren, M. (2003). Tractable symmetry breaking
for CSPs with interchangeable values. In Proceedings of IJCAI’03 (pp. 277–282). San Francisco:
Morgan Kaufmann.

34. Van Hentenryck, P., Flener, P., Pearson, J., & Ågren, M. (2005). Compositional derivation
of symmetries for constraint satisfaction. In J.-D. Zucker & L. Saitta (Eds.), Proceedings of
SARA’05, LNAI (Vol. 3607, pp. 234–247). New York: Springer.

35. Walsh, T. (2007). Breaking value symmetry. In C. Bessière (Ed.), Proceedings of CP’07, LNCS
(Vol. 4741, pp. 880–887). New York: Springer.

http://www.it.uu.se/research/reports/2008-023/
http://www.it.uu.se/research/reports/2007-032/

	Dynamic structural symmetry breaking for constraint satisfaction problems
	Abstract
	Introduction
	Preliminaries
	Structural symmetry breaking for variable and value symmetry
	Signatures
	Dominance detection using signatures

	Symmetry-based filtering
	Symmetric-ancestor based filtering
	Symmetric-sibling based filtering

	Fast algorithms to break value symmetry
	Fully value-interchangeable CSPs
	Abstract nogoods
	Maintaining nogoods

	Piecewise value-interchangeable CSPs
	Fully value-interchangeable set-CSPs
	Abstract nogoodsQ1
	Maintaining nogoodsQ1

	Limits of efficient symmetry breaking
	Generalisations: wreath interchangeability
	Wreath value-interchangeable CSPs
	Wreath value-interchangeable set-CSPs
	The grapes of wreath:With apologies to John Steinbeck, author of The Grapes of Wrath, 1939. wreath variable-interchangeable (Set-)CSPs

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

