
Ann Math Artif Intell (2009) 57:37–57
DOI 10.1007/s10472-009-9172-3

Static and dynamic structural symmetry breaking

Pierre Flener · Justin Pearson · Meinolf Sellmann

Published online: 24 December 2009
© Springer Science+Business Media B.V. 2009

Abstract We reconsider the idea of structural symmetry breaking for constraint
satisfaction problems (CSPs). We show that the dynamic dominance checks used in
symmetry breaking by dominance-detection search for CSPs with piecewise variable
and value symmetries have a static counterpart: there exists a set of constraints
that can be posted at the root node and that breaks all the compositions of these
(unconditional) symmetries. The amount of these symmetry-breaking constraints is
linear in the size of the problem, and yet they are able to remove a super-exponential
number of symmetries on both values and variables. Moreover, we compare the
search trees under static and dynamic structural symmetry breaking when using fixed
variable and value orderings. These results are then generalised to wreath-symmetric
CSPs with both variable and value symmetries. We show that there also exists a
polynomial-time dominance-detection algorithm for this class of CSPs, as well as a
linear-sized set of constraints that breaks these symmetries statically.

Most of the work by Pierre Flener was done while on leave of absence in 2006/07 as a
Visiting Faculty Member and Erasmus Exchange Teacher at Sabancı University.

P. Flener
Faculty of Engineering and Natural Sciences, Sabancı University,
Orhanlı, Tuzla, 34956 İstanbul, Turkey

P. Flener (B) · J. Pearson
Department of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden
e-mail: Pierre.Flener@it.uu.se

J. Pearson
e-mail: Justin.Pearson@it.uu.se

M. Sellmann
Department of Computer Science, Brown University, Box 1910, Providence, RI 02912, USA
e-mail: Meinolf_Sellmann@brown.edu

38 P. Flener et al.

Keywords Symmetry · Symmetry breaking · Static, dynamic, and structural
symmetry breaking · Constraint satisfaction problem · Wreath product

Mathematics Subject Classifications (2000) 68T20 · 90C27 · 05A15

1 Introduction

Symmetry breaking for constraint satisfaction problems (CSPs) has been the topic
of intense research in recent years, as symmetries naturally arise in many real-life
applications. Substantial progress was achieved in many directions, often exhibiting
significant speedups, for instance in configuration and network design. It is outside
the scope of this introduction to review the wealth of research in this area. However,
it is important to highlight some recent research avenues to position this paper
properly.

One of the interesting developments has been the design of general symmetry-
breaking schemes such as symmetry breaking by dominance detection (SBDD) and
symmetry breaking during search (SBDS [8]). SBDD [3, 7] is particularly appeal-
ing for our purposes as it combines low memory requirements with a number of
dominance checks linearly proportional to the depth of the search tree. It then
became natural to study which classes of symmetries for CSPs are tractable, i.e.,
admit polynomial-time dominance-detection algorithms. This issue was first studied
in [18], where symmetry breaking for various classes of value symmetries was shown
to take constant time and space. In [16], this result was generalised elegantly to all
value symmetries. We next revisited the issue for CSPs with simultaneous piecewise
variable and value symmetry in [17], where a polynomial-time dominance-detection
algorithm was given and the name ‘structural symmetry breaking’ was coined. The
same paper also presented intractability results for set-CSPs under variable and value
interchangeability, leaving open whether wreath symmetric CSPs (formally defined
later in this paper) with variable and value symmetries were tractable with respect to
symmetries. Moreover, some recent interesting results (see [12, 19]) have indicated
the possibility of automatically detecting certain classes of symmetries. These results
taken together offer an opportunity to address the need for more automation, which
was presented as one of the main challenges faced by constraint programming in
industry [11].

In parallel, researchers have investigated, and this for many years (e.g., [10]) static
symmetry breaking, which consists in the idea of adding constraints to a CSP in
order to remove symmetries. That is, by breaking symmetries statically, we mean
the addition of constraints that leave exactly one representative solution in each
equivalence class of solutions. Lexicographic constraints [2] are one traditional way
of breaking symmetries in this way.

This paper is an extension and revision of our [5]. It addresses two open issues in
structural symmetry breaking. First, it reconsiders CSPs with piecewise interchange-
able variables and values and studies whether the polynomial-time dominance-
detection algorithm of [17] has a static counterpart. In other words, it studies whether
there exists a set of constraints that, when added to the CSP at hand, produces a
symmetry-free search tree. Second, the paper studies wreath symmetric CSPs with

Static and dynamic structural symmetry breaking 39

interchangeable variables and values. Note that throughout this paper we focus on
unconditional (or global) symmetries, that is we do not handle any symmetries that
appear during search. The results of this paper can be summarised as follows:

– We show that the polynomial-time dominance-detection algorithm of [17] has
a static counterpart, namely that there exists a set of constraints for CSPs with
piecewise symmetric variables and values that, when added to the CSP, results in
a symmetry-free search tree.

– We establish a clear link between this static structural symmetry breaking
(SSSB) scheme and the dynamic structural symmetry breaking (DSSB) scheme
of [17] by comparing their search trees under various forms of consistency for
the symmetry-breaking constraints whenever the variable and value orderings
are fixed.

– We show that wreath symmetric CSPs, with piecewise interchangeable vari-
ables and wreath interchangeable values, pose a tractable dominance detection
problem. The dominance check is rather complex, but we also provide a set of
constraints that break all these symmetries.

– To our knowledge, this is the first time that, for some classes of symmetries
for CSPs, static symmetry breaking has been shown capable of breaking all
compositions of variable and value symmetries at the same time, using an amount
of symmetry-breaking constraints that is polynomial in the size of the problem,
and yet removing, in general, a super-exponential number of symmetries on both
values and variables. In fact, the number of constraints is even linear in the size
of the problem.

– With the case of wreath values closed, the only classes of symmetries for which
intractability results have been proven [17] involve variable and value sym-
metries over set CSPs or 0/1 representations of these as matrix models. The
tractability results in this paper thereby also improve our understanding of what
can and what cannot make symmetry breaking hard.

The remainder of the paper is organised as follows. Section 2 reviews the basic con-
cepts. Section 3 presents the symmetry-breaking constraints for CSPs with piecewise
variable and value interchangeability. Section 4 then establishes a link between static
and dynamic symmetry breaking for such piecewise symmetric CSPs. Sections 5, 6,
and 7 present the analogous, generalised concepts and results for wreath symmetric
CSPs. Finally, Section 8 concludes the paper and discusses future research directions.

2 Basic concepts

In this section, we fix some standard notation that we will use throughout the
paper. Particularly, we define what we understand by piecewise variable and value
symmetry, and what in this context we mean by dominance detection.

Definition 1 (CSP, assignment, solution)

– A constraint satisfaction problem (CSP) is a triplet 〈V, D, C〉, where V denotes
the set of variables, D denotes the set of possible values for these variables and
is called their domain, and C : (V → D) → Bool is a constraint that specifies
which assignments of values to the variables are solutions.

40 P. Flener et al.

– An assignment for a CSP P = 〈V, D, C〉 is a function α : V → D.
– A partial assignment for a CSP P = 〈V, D, C〉 is a function α : W → D, where

W ⊆ V. The scope of α, denoted by scope(α), is W.
– A solution to a CSP P = 〈V, D, C〉 is an assignment σ for P such that C(σ) =

true. The set of all solutions to a CSP P is denoted by Sol(P).

We want to reason about a special class of CSPs, namely those where subsets
of variables or values are pairwise interchangeable. For instance, imagine an actor
scheduling problem where days are divided into morning and afternoon sessions;
actors probably have strong preferences (and thus different fees for the morning and
afternoon sessions) but the day of the session may not matter. To provide a formal
definition, we first define:

Definition 2 (Partition) Given a set S and a set of sets P = {P1, . . . , Pn} such that
S = ⋃

i Pi and the Pi are pairwise non-overlapping, we say that P is a partition of S
and that each Pi is a component, and we write S = ∑

i Pi.

Piecewise interchangeability implies that any reshuffling of variables or values
within each component results in the same problem. Consequently, the correspond-
ing permutations cannot mingle elements from different components:

Definition 3 (Piecewise bijection) Let S = ∑
i Pi be a partitioned set. A bijection

b : S → S is a piecewise bijection over
∑

i Pi if and only if {b(e) | e ∈ Pi} = Pi.

Equipped with this notion, we can now define formally:

Definition 4 (Piecewise symmetric CSP) A CSP P = 〈∑k Vk,
∑

� D�, C〉 is a piece-
wise symmetric CSP if and only if, for each solution α ∈ Sol(P), each piecewise
bijection τ over

∑
� D�, and each piecewise bijection σ over

∑
k Vk, we have τ ◦ α ◦

σ ∈ Sol(P).

Piecewise symmetric CSPs were studied in [17], where a polynomial-time algo-
rithm was devised to detect symmetric dominance between two partial assignments:

Definition 5 (Dominance detection) Given two partial assignments α and β for a
piecewise symmetric CSP P = 〈∑k Vk,

∑
� D�, C〉, we say that α dominates β if and

only if there exist piecewise bijections σ over
∑

k Vk and τ over
∑

� D� such that
α(v) = τ ◦ β ◦ σ(v) for all v ∈ scope(α). Then, we call the problem of determining
whether α dominates β the dominance detection problem.

Dominance detection constitutes the core operation of symmetry breaking by
dominance detection (SBDD) [3, 7], and its tractability immediately implies that
we can efficiently limit ourselves to the exploration of symmetry-free search trees
only. For piecewise symmetric CSPs, [17] showed that dominance detection is
tractable. This was accomplished by dynamic structural symmetry breaking (DSSB),
where structural abstractions, so-called value signatures, generalise from an exact

Static and dynamic structural symmetry breaking 41

assignment of values to variables by quantifying how often a given value is assigned
to variables in each component:

Definition 6 (Signature) Given a partial assignment α for a piecewise symmetric
CSP P = 〈∑k Vk,

∑
� D�, C〉, the signature of value d under α is the tuple that counts,

for each variable component Vk, by how many variables in the component the value
is taken in α:

sigα(d) := (|{v ∈ Vk ∩ scope(α) | α(v) = d}|)k

where k indexes the different variable components.

In [17], we showed how this structural abstraction allows us to check dominance
between partial assignments α and β: We set up a bipartite graph where, for each
value d, there is one node on the left and one node on the right. An edge connects
two nodes with associated values d and e from the same value component if and only
if sigα(d) ≤ sigβ(e), where ≤ denotes the point-wise ordering of two sequences (and
not their lexicographic ordering). Then, α dominates β if and only if the bipartite
graph contains a perfect matching.

Example 1 Consider the piecewise symmetric CSP 〈{v1, v2, v3, v4} + {v5, v6}, {1, 2} +
{3, 4}, C〉 and the partial assignments α = {v1
→ 2, v2
→ 2, v3
→ 3, v5
→ 2} and
β = {v1
→ 1, v2
→ 1, v3
→ 1, v4
→ 3, v5
→ 1, v6
→ 4}. The signatures of the values
1, 2, 3, 4 are (0, 0), (2, 1), (1, 0), (0, 0) under α and (3, 1), (0, 0), (1, 0), (0, 1) under β.
See the bipartite graph G of Fig. 5 later in this paper (and ignore its caption). The
rounded boxes indicate the components of the partition of the value set. There is an
edge (d, e) whenever sigα(d) ≤ sigβ(e). As there exists a perfect matching in G, given
by the solid edges, we conclude that α dominates β.

Based on this dominance-detection algorithm, DSSB filters values from domains
if and only if setting the respective variable to some value would lead to a symmetric
choice point. Since symmetry-based filtering anticipates when variable assignments
will result in symmetric configurations, within DSSB we have to distinguish two
different types of filtering: ancestor-based filtering where we compare extensions
to the current partial assignment with previously fully expanded search nodes, and
sibling-based filtering where we compare extensions to the current partial assignment
with other such extensions.

When employing these filtering techniques, DSSB leads to symmetry-free search
trees while causing only polynomial-time overhead. For a more detailed description
of the method and a worst-case asymptotic runtime analysis, we refer the reader
to [17].

3 Static SSB for piecewise symmetric CSPs

We now show how the idea of structural symmetry breaking, i.e., dominance detec-
tion based on signature analysis, can be used to devise a set of symmetry-breaking
constraints for piecewise symmetric CSPs. For the first time, we will show that a
polynomial, and even linear, amount of symmetry-breaking constraints is able to

42 P. Flener et al.

simultaneously break super-exponentially many compositions of variable and value
symmetries efficiently.

3.1 Symmetry-breaking constraints

Consider a piecewise symmetric CSP 〈∑a
k=1 Vk,

∑b
�=1 D�, C〉, with V = {v1, . . . ,

vn} = ∑a
k=1 Vk a set of piecewise interchangeable variables and D = {d1, . . . , dm} =

∑b
�=1 D� a set of piecewise interchangeable values. Assume a total ordering of the

variables V and the values D.
As it is commonly done in the literature, we can break the variable symmetries

within each variable component by requiring that earlier variables take smaller
or equal values. To break the value symmetries, we resort to the same structural
abstractions as DSSB, namely value signatures, which generalise from an exact
assignment of values to variables by quantifying how often a given value is assigned
to variables in each component. Let the frequency

f k
i = |{v ∈ Vk | α(v) = di}|

denote how often each value di is taken under solution α by the variables in each
variable component Vk. For a solution α, we then denote by

sigα(di) := (
f 1
i , . . . , f a

i

)

the signature of di under α. Then, for all consecutive values di, di+1 in the same value
component, we require that their signatures are lexicographically non-increasing,
i.e., sigα(di) ≥lex sigα(di+1). So the problem boils down to computing the signatures
of values efficiently. Fortunately, this is an easy task when using the existing global
cardinality constraint (gcc) [15].

We summarise the resulting structural symmetry-breaking constraints:

– For each variable component Vk = {vp, . . . , vq}, there is a variable ordering
chain:

vp ≤ · · · ≤ vq (1)

hence a total of n − a ordering constraints.
– For each value di and each variable component Vk ={vp, . . . , vq}, the frequencies

f k
i = |{v ∈ Vk | α(v) = di}|

under partial assignment α are calculated by the constraints

gcc
(
vp, . . . , vq, d1, . . . , dm, f k

1 , . . . , f k
m

)
(2)

for each Vk, hence a total of a global cardinality constraints.
– For each value component D� = {dp, . . . , dq}, there is an ordering chain for the

value signatures:
(

f 1
p, . . . , f a

p

)
≥lex · · · ≥lex

(
f 1
q , . . . , f a

q

)
(3)

hence a total of m − b lexicographic ordering constraints.

Static and dynamic structural symmetry breaking 43

Note that the number of constraints added is linear in the size of the problem, unlike
in the more general method in [13], and yet that they are able to break super-
exponentially many compositions of variable and value symmetries.

Although value signatures are here defined in essentially the same way as in
Definition 6 in the framework of dominance detection, for static symmetry breaking
we require them to be lexicographically rather than point-wise ordered. Indeed, in
dynamic dominance detection, we are not interested in constructing the lexicograph-
ically minimal solution of any class of symmetrically equivalent solutions, but just
in detecting specialisation of partial assignments. Also, in static structural symmetry
breaking, we require a total order between value signatures, but the point-wise order
is not total.

3.2 Example

Consider scheduling study groups for two sets of five indistinguishable students each.
There are six identical tables with four seats each. Let {v1, . . . , v5} + {v6, . . . , v10} be
the partitioned set of piecewise interchangeable variables, one for each student. Let
the domain {t1, . . . , t6} denote the set of tables, which are fully interchangeable. The
structural symmetry-breaking constraints are:

v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5

v6 ≤ v7 ≤ v8 ≤ v9 ≤ v10

gcc
(
v1, . . . , v5, t1, . . . , t6, f 1

1 , . . . , f 1
6

)

gcc
(
v6, . . . , v10, t1, . . . , t6, f 2

1 , . . . , f 2
6

)

(
f 1
1 , f 2

1

) ≥lex · · · ≥lex
(

f 1
6 , f 2

6

)

Consider the assignment α = {v1
→ t1, v2
→ t1, v3
→ t2, v4
→ t3, v5
→ t4} ∪ {v6
→
t1, v7
→ t2, v8
→ t2, v9
→ t3, v10
→ t5}. Within each variable component, the ≤ or-
dering constraints are satisfied. Having determined the frequencies using the gcc
constraints, we observe that the ≥lex constraints are satisfied, because

(2, 1) ≥lex (1, 2) ≥lex (1, 1) ≥lex (1, 0) ≥lex (0, 1) ≥lex (0, 0).

If student 10 moves from table 5 to table 6, producing a symmetrically equivalent
assignment because the tables are fully interchangeable, the ≥lex constraints are no
longer satisfied, because

(2, 1) ≥lex (1, 2) ≥lex (1, 1) ≥lex (1, 0) ≥lex (0, 0) ≥lex (0, 1).

If students 9 and 10 swap their assigned tables, producing a symmetrically equivalent
assignment because both students are of the same student component, the signatures
do not change and the ≥lex constraints remain satisfied; however, we then have
v9 ≤ v10.

3.3 Analysis

We now establish the correctness and completeness of the introduced symmetry-
breaking constraints. The key observation that we need to make is captured by the
following lemma:

44 P. Flener et al.

Lemma 1 Given an assignment γ to a piecewise symmetric CSP 〈∑k Vk,
∑

� D�, C〉,
let the associated tuple of signature multisets be TSMγ := ({sigγ (d) | d ∈ D�})�. It holds
that assignments α and β are symmetric if and only if TSMα = TSMβ .

Proof

⇒: Assume there exist piecewise bijections σ over
∑

k Vk and τ over
∑

� D� such
that α = τ ◦ β ◦ σ . Recall that signatures just count how many variables in
each component take a given value. Therefore, the permutation of variables
within a component cannot change the signatures of values. It follows that
TSMα = TSMτ◦β◦σ = TSMτ◦β . But the permutation of values within the same
component D� does not affect the signature multiset {sigβ(d) | d ∈ D�}. Hence
TSMα = TSMτ◦β = TSMβ .

⇐: Now assume that TSMα = TSMβ . By reversing the previous argument, there
exists a piecewise bijection τ over

∑
� D� such that sigα(d) = sigτ◦β(d) for all

d ∈ D. Thus, according to [17], there also exists a piecewise bijection σ over∑
k Vk such that α = τ ◦ β ◦ σ .

Theorem 1 For every solution α to a piecewise symmetric CSP, there exists exactly
one symmetric solution that obeys the structural symmetry-breaking constraints.

Proof At least one: We first show that, for every solution to the original CSP, there
exists at least one symmetric solution that also obeys all the additional symmetry-
breaking constraints. Denote by τα,k the function that ranks the indices of the
values in Dk = {dp, . . . , dq} according to the signatures over some solution α, i.e.,
sigα(dτα,k(p)) ≥lex · · · ≥lex sigα(dτα,k(q)). We obtain a symmetric solution β where we
re-order the values in each Dk according to τα,k. Then, when we denote by σβ,k the
function that ranks the indices of the variables in Vk = {vp, . . . , vq} according to β,
i.e., β(vσβ,k(p)) ≤ · · · ≤ β(vσβ,k(q)), we can re-order the variables in each Vk according
to σβ,k, and we get a new symmetric solution γ . As we already argued in the proof
of Lemma 1, the re-ordering of the variables within each component has no effect
on the signatures of the values, i.e., sigγ (d) = sigβ(d) for all d ∈ D. Thus, γ is also a
solution to the original CSP that also obeys all symmetry-breaking constraints.

At most one: Now assume there are two solutions α and β to the piecewise
symmetric CSP that both obey all the symmetry-breaking constraints, and such
that there exist piecewise variable and value bijections σ and τ such that α =
τ ◦ β ◦ σ . According to Lemma 1, it then holds that TSMα = TSMβ . Because of the
lexicographic ordering constraints (3) on the value signatures, this implies that the
signatures under α and β are identical for all d ∈ D. However, with the signatures
of all the values thus fixed, and with the ordering constraints (1) on the variables,
there exists exactly one assignment that gives these signatures. Hence α and β must
be identical. ��

What we have achieved with Theorem 1 is the ability to break statically all
piecewise variable and value symmetries in a given CSP. It is very important to note
that this theorem is about solutions, rather than about partial assignments, hence the
level of consistency enforced on the symmetry-breaking constraints does not affect
the result.

Static and dynamic structural symmetry breaking 45

4 Static versus dynamic SSB for piecewise symmetric CSPs

The advantage of a static symmetry-breaking method lies mainly in its ease of use
and its moderate costs per search node. Constraint propagation and incrementality
are inherited from the existing ≥lex and gcc constraints. On the other hand, it is
well-known that static symmetry breaking can collide with dynamic variable and
value orderings, whereas dynamic methods such as SBDD do not suffer from this
drawback.

We were interested in studying how dynamic (DSSB) and static structural sym-
metry breaking (SSSB) actually relate to one another. Particularly, we were curious
to know how dynamic structural symmetry breaking (DSSB) and static structural
symmetry breaking (SSSB) relate to one another when variable and value orderings
are fixed. Before stating our main results, let us consider an insightful example. First,
it demonstrates that, when static variable and value orderings are used, DSSB can
discard a partial assignment explored by SSSB when the static symmetry-breaking
constraints are only used to prune the search tree, i.e., when the symmetry-breaking
constraints are only used to detect that a partial assignment already violates one of
the constraints, but not for filtering (in fact, Theorem 3 will show that the DSSB
tree is in general a non-strict subtree of such an SSSB tree). Second, it shows
that SSSB can discard a partial assignment explored by DSSB when hyper-arc
consistency is enforced on the conjunction of the symmetry-breaking constraints (in
fact, Theorem 2 will show that such an SSSB tree is in general a non-strict subtree of
the DSSB tree).

Example 2 For both cases, we use the piecewise symmetric CSP 〈{v1, v2, v3} +
{v4}, {1, 2} + {3, 4}, C〉, where the constraints C are:

– v1, v2, v3 ∈ {1, 2, 3, 4}, v4 ∈ {1, 2}.
– All variables together must take values 1 and 2 at most once.
– All variables together must take values 3 and 4 at most twice.

The problem only has the following three solutions up to symmetry: {v1
→ 1, v2
→
3, v3
→ 3, v4
→ 2}, {v1
→ 1, v2
→ 3, v3
→ 4, v4
→ 2}, and {v1
→ 3, v2
→ 3, v3
→
4, v4
→ 1}.

Consider the SSSB tree when using static symmetry breaking constraints for
pruning only. Clearly, the assignment {v1
→ 2} needs to be checked. However, DSSB
completely discards this assignment as a symmetric sibling of {v1
→ 1}.

Now consider the DSSB tree after exploring all partial assignments up to α =
{v1
→ 3, v2
→ 4}. This node has to be explored by DSSB since neither of the nogoods
{v1
→ 1} and {v1
→ 3, v2
→ 3} dominates it (see Fig. 1).

On the other hand, when using SSSB and enforcing hyper-arc consistency on the
conjunction of the symmetry-breaking constraints at the node {v1
→ 3}, there is no
support for v2
→ 4 and hence the node α = {v1
→ 3, v2
→ 4} is not explored (see
Fig. 2).

In the following first comparison theorem, we claim that SSSB explores a subtree
of the DSSB tree when we enforce hyper-arc consistency on the conjunction of the
symmetry-breaking constraints. By Example 2, we even know that, in that setting,
SSSB sometimes explores a strict subtree of the DSSB tree.

46 P. Flener et al.

Fig. 1 DSSB search tree. The black-box nodes (�) mark the three solutions; all non-depicted
assignments are obtained by propagation

Theorem 2 For piecewise symmetric CSPs, given a fixed variable and value ordering,
and posting the symmetry-breaking constraints accordingly, SSSB explores a subtree
of the tree explored by DSSB when we enforce hyper-arc consistency on the conjunc-
tion of the symmetry-breaking constraints.

Proof To show that a node β in an SSSB tree with hyper-arc consistency on the
conjunction of the symmetry-breaking constraints is also in the DSSB tree, we prove
the contrapositive: that is, β ∈ DSSB implies that β ∈ SSSB.

Assume that some partial assignment β = {v1
→ d1, . . . , vt
→ dt} ∈ DSSB. This
means that there is some partial assignment α, explored before, that dominates β.
We look at the first (in depth-first order) such node α that dominates β.

The fact that α dominates β means that for all v ∈ scope(α) we have that α(v) =
τ ◦ β ◦ σ(v) for some piecewise variable and value bijections σ and τ .

As a reminder, given a conjunction C of constraints, a value d from the domain of
a variable v is not filtered while achieving hyper-arc consistency on C iff there exists
a solution α to C such that α(v) = d and α(w) ∈ dom(w) for all variables w. The
assignment α is often referred to as the support of v
→ d. A hyper-arc consistency
algorithm thus essentially ensures that there exist supporting assignments for all
variables and all values in their domains.

Thus, to prove that β ∈ SSSB, we have to show that vt
→ dt has no support, i.e.,
that no full extension β ′ of β satisfies the symmetry-breaking constraints. We prove
this by contradiction.

Assume such a β ′ exists. Then, applying τ and σ to β ′ yields a second full
assignment:

α′ = τ ◦ β ′ ◦ σ

Fig. 2 SSSB search tree when
hyper-arc consistency is
enforced on the conjunction of
the symmetry-breaking
constraints; note that it is a
subtree of the DSSB tree in
Fig. 1

Static and dynamic structural symmetry breaking 47

that is symmetric to β ′. Moreover, α′ agrees with α for all v ∈ scope(α) and hence is
a child of α. According to Lemma 1, it then holds that TSMα′ = TSMβ ′ .

Now, consider the first variable v ∈ Vk (recall that we assume that variables are
being assigned in order) where α and β disagree, i.e., α′(w) = α(w) = β(w) = β ′(w)

for all w < v and when we set d := α(v) = α′(v) and e := β(v) = β ′(v), we have
that d = e. Since α was explored before β and values are also assigned in order,
we can infer that d < e. However, as TSMα′ = TSMβ ′ and all variables in earlier
variable components have been assigned in accordance between α and β, this implies
that sigα′(f)h = sigβ ′(f)h for all values f and variable components h < k, and also
sigα′(d)k >lex sigβ ′(d)k. As β ′ satisfies constraints (1) and (3), there is no match
for the signature sigα′(d) in the signature multiset {sigβ ′(f) | f ∈ D�} when d ∈ D�.
Therefore, TSMα′ = TSMβ ′ . Contradiction. ��

Note that it has been shown that achieving this level of consistency is NP-hard [20].
On the other hand, it is easy to check if a partial assignment violates any individual
symmetry-breaking constraint. In our following second comparison theorem, we
claim that DSSB explores a subtree of the SSSB tree when we use static symmetry-
breaking constraints for pruning purposes only. Example 2 showed a case where, in
that setting, DSSB explores a strict subtree of the SSSB tree.

Theorem 3 For piecewise symmetric CSPs, given a fixed variable and value ordering,
and posting the symmetry-breaking constraints accordingly, DSSB explores a subtree
of the tree explored by SSSB when symmetry-breaking constraints are only used to
prune the search tree.

Proof Proof by contradiction. Assume there exists a node in the DSSB search tree
that is pruned by SSSB. Without loss of generality, we may consider the first node in
a depth-first search tree where this occurs. We identify this node with the assignment
β := {v1, . . . , vt} → D.

First assume a variable ordering constraint is violated, i.e., β(v j) < β(vi) for some
1 ≤ i < j ≤ t where vi and v j are interchangeable. Consider α : {v1, . . . , vi} → D
such that α(vk) := β(vk) for all 1 ≤ k < i, and α(vi) := β(v j). Then, due to the fixed
variable and value orderings, α is a node that has been fully explored before β, and
α dominates β, which is clear by mapping vi to v j. Thus, β is also pruned by DSSB.

Now assume a lexicographic ordering constraint on the value signatures is vi-
olated. That is, there is some pair of values di and dj, with 1 ≤ i < j such that
sigβ(di) <lex sigβ(dj). This means that there is some variable component Vk such
that f k

i > f k
j . We pick the first such β in the search tree that violates the lexico-

graphic ordering constraint. We now know that sigβ(di)[�] = sigβ(dj)[�] for all � < k
and sigβ(di)[k] + 1 = sigβ(dj)[k] (if sigβ(di)[k] + 1 < sigβ(dj)[k] then there exists an
earlier β in the search tree violating the lexicographic ordering constraint). With
s := max{p | p < t & β(vp) = di}, we set α : {v1, . . . , vs+1} → D with α(vr) := β(vr)

for all r ≤ s and α(vs+1) := di. Again, due to the fixed variable and value orderings,
α is a node that has been fully explored before β, and α dominates β, which is clear
simply by mapping di to dj and permuting variables accordingly. Hence, β is also
pruned by DSSB. ��

48 P. Flener et al.

Note that Theorems 2 and 3 together revise Theorem 2 of our [5], where we
wrongly claimed that the two search trees were always identical when the variable
and value orders are fixed. Indeed, we had overlooked the fact that two different
levels of consistency were assumed in the two proof directions.

In summary, we conclude that dynamic symmetry breaking draws its strength
from its ability to accommodate dynamic variable and value orderings, but causes an
unnecessary overhead when these orderings are fixed. In this case, static symmetry
breaking offers a much more light-weight method for piecewise symmetric CSPs.
This view is also supported by the practical experiments carried out in [9].

5 Wreath symmetry

We now wish to extend our ability to accommodate more complex symmetry classes
than piecewise symmetry only. To this end, we consider a class of CSPs that assign
a pair of values (d1, d2) from a domain D1 × D2 to each variable, where the values
in D1 are piecewise interchangeable and, for a given value in D1, the values in D2

are piecewise interchangeable as well. These problems are here called wreath value-
symmetric CSPs, because the symmetry group corresponds to a wreath product of
groups [1].

Such problems arise naturally in a variety of applications, e.g., in resource allo-
cation and scheduling. Consider, for example, the problem of scheduling a meeting
where different groups must meet some day of the week in some room, subject to
constraints. The days are interchangeable and, on a given day, the rooms are also
interchangeable. Problems like this can be modelled as wreath value-interchangeable
CSPs:

Definition 7 (Wreath bijection) Given two partitions S1 = ∑
p S1

p and S2 = ∑
q S2

q,
let S = S1 × S2 denote their Cartesian product. A bijection τ : S → S is a wreath bi-
jection over S1 × S2 if and only if there exists a piecewise bijection τ1 over

∑
p S1

p and
piecewise bijections τ s

2 over
∑

q S2
q for each s ∈ S1, such that τ(〈s, t〉) = 〈τ1(s), τ s

2(t)〉.

Definition 8 (Wreath value symmetry) Given domain partitions D1 = ∑
p D1

p and
D2 = ∑

q D2
q, a CSP P = 〈V, D1 × D2, C〉 is called wreath value-symmetric CSP if

and only if, for each solution α ∈ Sol(P) and each wreath bijection τ over D1 × D2,
we have τ ◦ α ∈ Sol(P).

Note that the notion of wreath symmetry allows us to tackle much more refined
symmetries than what can be expressed by piecewise symmetries only. In Fig. 3,
we show an example that illustrates the increased expressiveness of wreath value
symmetry.

The reader should not confuse wreath variable symmetry (not discussed in this pa-
per, but in [6]) with piecewise row and column symmetry [4] in a matrix of variables:
under wreath variable symmetry, the rows are piecewise interchangeable (as under
piecewise row symmetry), but the cells of each row are piecewise interchangeable in
independent fashion (contrary to piecewise column symmetry), such as the groups of
each week in the social golfer problem [3].

Static and dynamic structural symmetry breaking 49

Fig. 3 Permutations on the
domain {1, 2} × {1, 2}. With
the help of wreath symmetry,
we can express that the
permutation (a) is a valid
symmetry while (b) is not.
Piecewise symmetry does not
allow us to make that
distinction <2,2>

<1,1>

<1,2>

<2,1>

<1,1>

<1,2>

<2,1>

<2,2>

(a)

<2,2>

<1,1>

<1,2>

<2,1>

<1,1>

<1,2>

<2,1>

<2,2>

(b)

6 Dynamic SSB for wreath symmetric CSPs

In the following, we present, illustrate, and analyse a dominance detection algorithm
for CSPs with piecewise variable symmetry and wreath value symmetry, simply called
wreath symmetric CSPs hereafter.

6.1 The dominance detection algorithm

Consider a wreath symmetric CSP 〈∑a
k=1 Vk, D1 × D2, C〉, with V = {v1, . . . , vn} =∑a

k=1 Vk a set of piecewise interchangeable variables and D1 × D2 a set of wreath
interchangeable values, with D1 = {d1, . . . , dm1} and D2 = {e1, . . . , em2} each having
piecewise interchangeable elements.

Given partial assignments α and β, the dominance detection algorithm attempts
to construct a piecewise bijection σ over

∑a
k=1 Vk and piecewise bijections τ1 and τ e

2
for all e ∈ D1 such that α(v) = τ ◦ β ◦ σ(v) for all v ∈ scope(α), where τ denotes the
wreath bijection based on τ1 and the τ e

2 . By definition, if the algorithm succeeds in
finding such piecewise bijections, then α dominates β. Our algorithm will be based
on the following core observation:

Remark 1 The piecewise bijection τ1 can map τ1(e1) = d1 only if there exists a
piecewise bijection τ

e1
2 such that

sk
β(e1, e2) := |{v ∈ Vk | β(v) = 〈e1, e2〉}|

≥ |{v ∈ Vk | α(v) = 〈d1, τ
e1
2 (e2)〉}| =: sk

α

(
d1, τ

e1
2 (e2)

)

for all k, where sk
γ (a, b) denotes the number of variables in component Vk that partial

assignment γ maps to 〈a, b〉.

Now, for any partial assignment γ and values f1 ∈ D1 and f2 ∈ D2, we define

sigγ (〈 f1, f2〉) := (
s1
γ (f1, f2) , . . . , sa

γ (f1, f2)
)
.

Then, in order to compute the subset of possible mappings that τ1 could make, for
each p and every pair d1, e1 ∈ D1

p, our algorithm sets up the bipartite graph with the

50 P. Flener et al.

node sets N1(d1, e1) := {d | d ∈ D2} = D2 and N2(d1, e1) := {e′ | e ∈ D2} as the set of
primed copies of the values in D2, and with the edge set

A(d1, e1) :=
{(

d2, e′
2

) ∈ N1 (d1, e1) × N2 (d1, e1) |
∃ q : d2, e2 ∈ D2

q & sigα (〈d1, d2〉) ≤ sigβ (〈e1, e2〉)
}

.

With Remark 1, observe that τ1(e1) = d1 is only ever feasible if a perfect matching
in the bipartite graph G(d1, e1) := (N1(d1, e1) + N2(d1, e1), A(d1, e1)) exists. Conse-
quently, to compute τ1, we set up the bipartite graph Ḡ := (N̄1 + N̄2, Ā) with the
node sets N̄1 := {d | d ∈ D1} = D1 and N̄2 := {e′ | e ∈ D1} as the set of primed copies
of the values in D1, and with the edge set

Ā :=
{(

d1, e′
1

) ∈ N̄1 × N̄2 | ∃ p : d1, e1 ∈ D1
p & G(d1, e1) has a perfect matching

}
.

The algorithm decides that α dominates β if and only if Ḡ contains a perfect
matching. The procedure is summarised as Algorithm 1.

Algorithm 1 Dominance detection for wreath symmetric CSPs

Initialise Ḡ as the empty graph
for all value components p do

for all values d, e ∈ Sp do
if G(d, e) contains a perfect matching then

Add (d, e′) to Ḡ
end if

end for
end for
Return true if and only if Ḡ contains a perfect matching

6.2 Example

Assume we are given a wreath symmetric CSP 〈{v1,v2,v3,v4}+{v5,v6}, ({1,2}+{3, 4})×
({1, 2, 3}+{4}), C〉 and partial assignments α={v1
→〈2, 3〉, v2
→〈2, 1〉, v3
→〈3, 1〉,
v5
→ 〈2, 1〉} and β = {v1
→ 〈1, 4〉, v2
→ 〈1, 1〉, v3
→ 〈1, 3〉, v4
→ 〈3, 2〉, v5
→ 〈1, 3〉,
v6
→ 〈4, 4〉}.

Now assume that we consider to have τ1 map the first-component value 1 to
value 2. What are, for instance, the signatures of value 〈2, 3〉 under α and of value
〈1, 3〉 under β? We see that α assigns exactly one variable to 〈2, 3〉, and this variable
is in component {v1, v2, v3, v4}. According to our definition, it therefore holds that
sigα(〈2, 3〉) = (1, 0). On the other hand, β assigns two variables to 〈1, 3〉, one from
{v1, v2, v3, v4} and one from {v5, v6}. Thus, sigβ(〈1, 3〉) = (1, 1).

When setting τ1(1) = 2, all the signatures and the entire graph G(2, 1) are shown
in Fig. 4a, which also depicts a perfect matching in G(2, 1), which means that the
edge (2, 1′) is part of the first-component graph Ḡ, given in Fig. 5. In contrast to this
existing edge, consider setting τ1(4) = 3. The corresponding graph G(3, 4) is shown
in Fig. 4b: since the node 1 corresponding to value 〈3, 1〉 has no adjacent edge at all,
there is no perfect matching in the graph. Indeed, we see that, when setting τ1(4) = 3,
the assignment α(v3) = 〈3, 1〉 finds no v ∈ {v1, v2, v3, v4} and no e ∈ {1, 2, 3} such that

Static and dynamic structural symmetry breaking 51

<1,3’>

<2,2>

>’1,1<>1,2<

<1,2’>

>’4,1<>4,2<

<2,3>

(1,1)

(0,0)

(1,0)

(0,0)

(1,0)

(0,0)

(1,1)

(1,0)

(a)

<4,3’>

<3,2>

>’1,4<>1,3<

<4,2’>

>’4,4<>4,3<

<3,3>

(1,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,1)

(b)

Fig. 4 a The bipartite graph G(2, 1) constructed to assess whether τ1(1) = 2 is feasible. b The
bipartite graph G(3, 4) constructed to assess whether τ1(4) = 3 is feasible. An edge between 〈d1, d2〉
and 〈e1, e′

2〉 indicates that sigα(〈d1, d2〉) ≤ sigβ(〈e1, e2〉). The signatures are given next to the value
pairs. The rounded boxes indicate the components of the partition of D2. Perfect matchings, if any,
are given by the solid edges

β(v) = 〈4, e〉. Consequently, the edge (3, 4′) is not part of Ḡ. However, we see in
Fig. 5 that Ḡ contains the perfect matching M = {(1, 2′), (2, 1′), (3, 3′), (4, 4′)}.

Now, the perfect matching M on Ḡ gives us the bijection τ1 such that τ1(1) = 2
(from the edge (2, 1′)), τ1(2) = 1 (from edge (1, 2′)), τ1(3) = 3, and τ1(4) = 4. Under
this setting, we define τ 1

2 based on the perfect matching in G(2, 1) by τ 1
2 (1) = 3,

τ 1
2 (2) = 2, τ 1

2 (3) = 1, and τ 1
2 (4) = 4 (see Fig. 4). Note that this assignment implicitly

permutes the variables v for which β(v) = 〈1, e〉 for some e ∈ {1, 2, 3, 4} while obeying
the variable components. In our case, we implicitly get the partial variable bijection σ

with σ(v1) = v4, σ(v2) = v1, σ(v3) = v2, and σ(v5) = v5. Note that we never actually
need to compute the variable bijection σ that we get by combining the individual
re-orderings.

6.3 Analysis

With the help of this method for dominance detection via structural symmetry
breaking, we can show:

Theorem 4 The dominance detection problem for CSPs with wreath value symmetry
and piecewise variable symmetry is tractable.

Fig. 5 The first-component
bipartite graph Ḡ, containing
an edge (d, e) for each feasible
mapping τ1(e) = d. The
rounded boxes indicate the
components of the partition of
D1. As there exists a perfect
matching in Ḡ, given by the
non-dotted edges, we conclude
that α dominates β

1

2

4

2’

1’

4’

’33

52 P. Flener et al.

Proof First, let us show that the algorithm above is correct, i.e., that it does not
detect dominance when there is none. Clearly, the perfect matching M in Ḡ gives us a
piecewise bijection τ1 over D1 by setting τ1(e1) := d1 for all (d1, e1) ∈ M. Moreover,
for each edge (d1, e1) in M, the corresponding perfect matching in G(d1, e1) gives
us a piecewise bijection τ

e1
2 over D2 that is consistent with setting τ1(e1) := d1. Note

that τ
e1
2 implicitly assigns one variable from the set {v ∈ Vk | ∃ e2 : β(v) = 〈e1, e2〉}

to each variable in {v ∈ Vk | ∃ d2 : α(v) = 〈d1, d2〉}. This implies that the implicit
variable bijections for all matching edges (d1, e1) in M do not collide as they map
variables from disjoint subsets into disjoint subsets of V. Consequently, we can
construct one global piecewise variable bijection σ and one wreath bijection τ such
that α(v) = τ ◦ β ◦ σ(v) for all v ∈ scope(α).

Now, regarding the completeness of our algorithm, assume that α actually domi-
nates β. Denote the corresponding bijections by σ , τ1, and τ e

2 as before. Under the
piecewise variable bijection σ , we find that, for each τ1(e1) = d1, τ

e1
2 (d2) = e2, and

variable component Vk, there must exist at least as many variables in Vk that α maps
to 〈d1, d2〉 as variables in the same Vk that β maps to 〈e1, e2〉. Consequently, we have
that sigα(d1, d2) ≤ sigβ(e1, e2), which implies that τ

e1
2 defines a perfect matching in

G(d1, e1). Then, for each τ1(e1) = d1, there exists the edge (τ1, d1) in Ḡ, which shows
that Ḡ has a perfect matching. Thus, our algorithm finds that α dominates β.

Finally, we note that at most |D1|2 + 1 matchings need to be solved by the
algorithm. Consequently, it runs in polynomial time. ��

Theorem 4 is theoretically strong in that it subsumes many of previously proven
results regarding the tractability of symmetry breaking. As a matter of fact, all the
tractability results on breaking piecewise value or variable symmetry of CSPs consid-
ered in [6, 17, 18] follow from Theorem 4. However, from a practical perspective, the
algorithm presented is very costly, especially when compared with constant overhead
methods for breaking only value symmetries like the ones presented in [6, 18].
Consequently, while the point here was to show that, with DSSB, it is even possible
to efficiently handle wreath value symmetry and piecewise variable symmetry, in
practice one is of course well advised to choose the dominance-detection algorithm
just so that it can handle the symmetries that need to be broken.

Note that the dominance checker that we outlined in the proof above can be
generalised for wreath tuples with k entries. However, the runtime then turns out
to be exponential in k.

Finally, the following new intractability result for set-CSPs follows from
Corollary 1 of [17] (intractability of dominance detection for piecewise symmetric
set-CSPs), because wreath value interchangeability is piecewise value interchange-
ability when |D2| = 1:

Corollary 1 The dominance detection problem for set-CSPs with wreath value sym-
metry and piecewise variable symmetry is NP-hard.

7 Static SSB for full wreath symmetric CSPs

We now show that structural symmetry breaking can also be used to devise structural
symmetry-breaking constraints for wreath symmetric CSPs. For simplicity, we do so

Static and dynamic structural symmetry breaking 53

only for piecewise variable symmetry and full wreath value symmetry, that is where
Definition 7 is restricted to the case where the underlying piecewise bijections are all
full bijections. We call such CSPs full wreath symmetric CSPs in this paper. It would
be easy to generalise this to piecewise bijections, but we do not do so here to keep
the notation simple.

7.1 Symmetry-breaking constraints

Consider a full wreath symmetric CSP 〈∑a
k=1 Vk, D1 × D2, C〉, with V = {v1, . . . ,

vn} = ∑a
k=1 Vk a set of piecewise interchangeable variables and D1 × D2 a set of

wreath interchangeable values, with D1 = {d1, . . . , dm1} and D2 = {e1, . . . , em2} each
having fully interchangeable elements. Assume a total ordering of the variables V,
the elements D1, and the elements D2. Here are the structural symmetry-breaking
constraints:

– For each variable component Vk = {vp, . . . , vq}, there is a variable ordering
chain:

vp ≤lex · · · ≤lex vq (4)

hence a total of n − a lexicographic ordering constraints.
– For each value (di, e j) and each variable component Vk = {vp, . . . , vq}, the

frequencies

f k
i, j = ∣

∣
{
v ∈ Vk | v ∈ scope(α) & α(v) = (

di, e j
)}∣

∣

under partial assignment α are calculated by the constraints

gcc
(
vp, . . . , vq, (d1, e1) , . . . ,

(
dm1 , em2

)
, f k

1,1, . . . , f k
m1,m2

)
(5)

for each Vk, hence a total of a global cardinality constraints.
– For each element di, there is an ordering chain for what we call the signatures of

the (di, ej) values:
(

f 1
i,1, . . . , f a

i,1

) ≥lex
(

f 1
i,2, . . . , f a

i,2

) ≥lex · · · ≥lex
(

f 1
i,m2

, . . . , f a
i,m2

)
(6)

hence a total of m1 chains of m2 − 1 lexicographic ordering constraints each.
– There is an ordering chain for what we call the compound signatures of the di

elements:
(

f 1
1,1, . . . , f a

1,1, f 1
1,2, . . . , f a

1,2, . . . , f 1
1,m2

, . . . , f a
1,m2

)

≥lex(
f 1
2,1, . . . , f a

2,1, f 1
2,2, . . . , f a

2,2, . . . , f 1
2,m2

, . . . , f a
2,m2

)

≥lex · · · ≥lex(
f 1
m1,1

, . . . , f a
m1,1

, f 1
m1,2

, . . . , f a
m1,2

, . . . , f 1
m1,m2

, . . . , f a
m1,m2

)

(7)

hence one chain of m1 − 1 lexicographic ordering constraints.

Again, we find that the number of constraints added is linear in the size of the
problem (note that m1 · m2 is linear in the input size when the domains are given
explicitly), and yet they are able to break super-exponentially many compositions of
variable and value symmetries as we shall show later in this section.

Note that these constraints specialise into (a specialisation for full value symmetry
of) the symmetry-breaking constraints of Section 3.1 for piecewise symmetric CSPs.

54 P. Flener et al.

Indeed, the compound signature ordering chain (7) is vacuously true when m1 = 1
while the signature ordering chains (6) then amount to the single signature ordering
chain (3). Conversely, the signature ordering chains (6) are vacuously true when
m2 = 1 while the compound signature ordering chain (7) then amounts to the
signature ordering chain (3). In any case, the variable ordering chains (4) trivially
specialise into (1) as we essentially deal with 1-tuples, and the global cardinality
constraints (5) trivially specialise into (2).

Finally, note that the constraints above can be adapted to accommodate piecewise
rather than full wreath value symmetry: The only difference is that the ordering
constraints (6) and (7) on the signatures then do not apply at value partition
boundaries.

7.2 Example

Consider scheduling study groups for ten students divided into two categories of five
indistinguishable students each. There are six tables with four seats each, divided
over two rooms containing three tables each. The rooms are indistinguishable, and,
within each room, all tables are indistinguishable. Let {v1, . . . , v5} + {v6, . . . , v10} be
the set of piecewise interchangeable variables, one for each student. Let the domain
{r1, r2} × {t1, t2, t3} denote the set of tables, which are fully wreath interchangeable.
The structural symmetry-breaking constraints are:

v1 ≤lex · · · ≤lex v5

v6 ≤lex · · · ≤lex v10

gcc
(
v1, . . . , v5, (r1, t1), . . . , (r2, t3), f 1

1,1, . . . , f 1
2,3

)

gcc
(
v6, . . . , v10, (r1, t1), . . . , (r2, t3), f 2

1,1, . . . , f 2
2,3

)

(
f 1
1,1, f 2

1,1

) ≥lex
(

f 1
1,2, f 2

1,2

) ≥lex
(

f 1
1,3, f 2

1,3

)

(
f 1
2,1, f 2

2,1

) ≥lex
(

f 1
2,2, f 2

2,2

) ≥lex
(

f 1
2,3, f 2

2,3

)

(
f 1
1,1, f 2

1,1, f 1
1,2, f 2

1,2, f 1
1,3, f 2

1,3

) ≥lex
(

f 1
2,1, f 2

2,1, f 1
2,2, f 2

2,2, f 1
2,3, f 2

2,3

)

Consider the assignment

α = {v1
→ 〈r1, t1〉, v2
→ 〈r1, t1〉, v3
→ 〈r1, t1〉, v4
→ 〈r1, t2〉, v5
→ 〈r1, t2〉,
v6
→ 〈r2, t1〉, v7
→ 〈r2, t1〉, v8
→ 〈r2, t1〉, v9
→ 〈r2, t2〉, v10
→ 〈r2, t3〉}.

The ≤lex variable ordering constraints are satisfied. Having determined the value
frequencies using the gcc constraints, we observe that the ≥lex (compound) signature
ordering constraints are all satisfied, because

(3, 0) ≥lex (2, 0) ≥lex (0, 0) & (0, 3) ≥lex (0, 1) ≥lex (0, 1) &
(3, 0, 2, 0, 0, 0) ≥lex (0, 3, 0, 1, 0, 1).

If the two student groups swap their table/room assignments, producing a symmetri-
cally equivalent assignment, namely

β = {v1
→ 〈r2, t1〉, v2
→ 〈r2, t1〉, v3
→ 〈r2, t1〉, v4
→ 〈r2, t2〉, v5
→ 〈r2, t3〉,
v6
→ 〈r1, t1〉, v7
→ 〈r1, t1〉, v8
→ 〈r1, t1〉, v9
→ 〈r1, t2〉, v10
→ 〈r1, t2〉},

Static and dynamic structural symmetry breaking 55

the ≤lex variable ordering constraints are still satisfied, but the ≥lex (compound)
signature ordering constraints are now violated, because

(0, 3) ≥lex (0, 1) ≥lex (0, 1) & (3, 0) ≥lex (2, 0) ≥lex (0, 0) &

(0, 3, 0, 1, 0, 1) ≥lex (3, 0, 2, 0, 0, 0).

7.3 Analysis

Analogously to the case of piecewise symmetric CSPs, we find:

Lemma 2 Given a full wreath symmetric CSP 〈∑a
k=1 Vk, D1 × D2, C〉, and an assign-

ment γ , let the associated multiset of signature multisets be MSMγ := {{sigγ (〈d, e〉) |
e ∈ D2} | d ∈ D1}. It holds that two assignments α and β are symmetric if and only if
MSMα = MSMβ .

Proof

⇒: Assume α and β are symmetric. We observe once more that the permutation of
variables within variable components does not affect the signatures of values.
Then, for each d ∈ D1, the permutation of values in D2 only permutes elements
in {sigβ(〈d, e〉) | e ∈ D2}, which leaves the multiset as a whole unchanged. The
same holds for the permutation of values in D1 and MSMβ .

⇐: Now assume that MSMα = MSMβ . By reversing the previous argument, there
exist a permutation τ1 over D1 and for each d ∈ D1 a permutation τ d

2 over
D2 such that sigα(〈d, e〉) = sigβ(〈τ1(d), τ d

2 (e)〉) and such that {sigα(〈d, e〉) | e ∈
D2} = {sigβ(〈τ1(d), τ d

2 (e)〉) | e ∈ D2}. Then it is easy to construct σ and τ such
that α = τ ◦ β ◦ σ .

Equipped with this insight, we can now establish the counterpart of Theorem 1 for
full wreath symmetric CSPs:

Theorem 5 For every solution α to a full wreath symmetric CSP, there exists exactly
one symmetric solution that obeys the structural symmetry-breaking constraints.

Proof At least one: Given a solution α, we show that there exists at least one
symmetrically equivalent solution that also satisfies all the symmetry-breaking con-
straints. First, for each d, determine a full bijection τ d : D2 → D2 such that all the
lexicographic ordering constraints (6) on the signatures are satisfied. This can be seen
as a wreath bijection acting as the identity on the first component. Second, determine
a full wreath bijection τ such that all the lexicographic ordering constraints (7) on the
compound signatures are satisfied, the trick at this stage being to carry over the τ d

bijections obtained in the first stage. Doing this will not violate any of the already
satisfied constraints (6). Finally, we observe that reordering the variables so that
they satisfy all the lexicographic ordering constraints (4) has no effect on any of the
signatures, so there exists a solution α′ that is symmetric to α and that satisfies all the
structural symmetry-breaking constraints.

At most one: Now we prove that any two solutions that satisfy all the structural
symmetry-breaking constraints must be identical. According to Lemma 2, there is
a fixed multiset of signature multisets MSMγ for all solutions that are symmetric

56 P. Flener et al.

to solution γ . However, for all d ∈ D1, the elements in the signature multiset
{sigα(〈d, e〉) | e ∈ D2} are ordered by the lexicographic ordering constraints (6) on
the value signatures. Moreover, the lexicographic ordering constraints (7) on the
compound signatures enforce an ordering of all the elements in MSMγ . In combi-
nation with the variable ordering constraints (4), there is but one assignment that
fulfils all these constraints for each fixed multiset of signature multisets MSMγ . ��

8 Conclusions

We have shown the great power of structural symmetry breaking on complex
cases of simultaneous value and variable interchangeability in CSPs. The results on
dynamic symmetry breaking are theoretically significant in that they subsume many
of previously proven results regarding the tractability of dominance detection. From
a practical perspective, the dynamic algorithms presented are very costly, though,
especially when compared with constant-overhead methods for breaking only value
symmetries like the ones presented in [6, 18]. Consequently, we have exploited the
idea of structural symmetry breaking to devise sets of symmetry-breaking constraints
that simultaneously break all the compositions of piecewise variable and piecewise
or wreath value symmetries. To our knowledge, these are the first identified classes
of symmetries for CSPs where a polynomial, yet even a linear number of static
symmetry breaking constraints suffices to break a super-exponential number of
variable and value symmetries. We have then shown that, in case of static variable
and value orderings, the search tree explored by static structural symmetry breaking
(SSSB) is a subtree of the one explored by dynamic structural symmetry breaking
(DSSB) when we achieve hyper-arc consistency for the conjunction of symmetry
breaking constraints, and that the DSSB search tree is a subtree of the SSSB tree
when we use constraints for pruning purposes only. Note that the first result implies
that SSSB is, in principle, able to guarantee symmetry-free search trees. This is a
clear indication that using SSSB is the way to go whenever fixed variable and value
orderings can be expected to work well.

With respect to future work, the following questions arise. Can we find general
conditions under which a static symmetry-breaking method leads to symmetry-free
search trees? Can static structural symmetry breaking be usefully combined with the
dynamic lexicographic ordering constraints of [14]?

Acknowledgements The authors were partly supported by grant IG2001-67 of STINT, the Swedish
Foundation for International Cooperation in Research and Higher Education. Meinolf Sellmann is
supported by the National Science Foundation through the Career: Cornflower Project (NSF award
number 0644113). Many thanks to Pascal Van Hentenryck, who co-authored a previous version of
this paper [5], for his comments on this version. Finally, we appreciate the constructive feedback by
Barbara Smith, Chris Jefferson, and the anonymous referees, including those of [5].

References

1. Cameron, P.: Permutation Groups. Number 45 in London Mathematical Society Student Texts.
Cambridge University Press, Cambridge (1999)

2. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search prob-
lems. In: Proceedings of KR’96, pp. 148–159. Morgan Kaufmann, San Francisco (1996)

Static and dynamic structural symmetry breaking 57

3. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) Proceedings of
CP’01. LNCS, vol. 2239, pp. 93–107. Springer, New York (2001)

4. Flener, P., Frisch, A.M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row
and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) Proceedings of CP’02.
LNCS, vol. 2470, pp. 462–476. Springer, New York (2002)

5. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and dynamic structural sym-
metry breaking. In: Benhamou, F. (ed.) Proceedings of CP’06. LNCS, vol. 4204, pp. 695–699.
Springer, New York (2006)

6. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P., Ågren, M.: Dynamic structural sym-
metry breaking for constraint satisfaction problems. Constraints 14(4), 506–538 (2009, Union and
extension of [18] and [17])

7. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh, T. (ed.)
Proceedings of CP’01. LNCS, vol. 2239, pp. 77–92. Springer, New York (2001)

8. Gent, I.P., Smith, B.M.: Symmetry breaking during search in constraint programming. In:
Proceedings of ECAI’00, pp. 599–603. IOS, Amsterdam (2000)

9. Heller, D., Panda, A., Sellmann, M., Yip, J.: Model restarts for structural symmetry breaking.
In: Stuckey, P.J. (ed.) Proceedings of CP’08. LNCS, vol. 5202, pp. 539–544. Springer, New York
(2008)

10. Puget, J.-F.: On the satisfiability of symmetrical constrained satisfaction problems. In:
Komorowski, J., Raś, Z. (eds.) Proceedings of ISMIS’93. LNAI, vol. 689, pp. 350–361. Springer,
New York (1993)

11. Puget, J.-F.: Constraint programming next challenge: simplicity of use. In: Wallace, M. (ed.)
Proceedings of CP’04. LNCS, vol. 3258, pp. 5–8. Springer, New York (2004)

12. Puget, J.-F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.)
Proceedings of CP’05. LNCS, vol. 3709, pp. 475–489. Springer, New York (2005)

13. Puget, J.-F.: An efficient way of breaking value symmetries. In: Proceedings of AAAI’06. AAAI,
Menlo Park (2006)

14. Puget, J.-F.: Dynamic lex constraints. In: Benhamou, F. (ed.) Proceedings of CP’06. LNCS,
vol. 4204, pp. 453–467. Springer, New York (2006)

15. Régin, J.-C.: Generalized arc-consistency for global cardinality constraint. In: Proceedings of
AAAI’96, pp. 209–215. AAAI, Menlo Park (1996)

16. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable symmetry breaking using
restricted search trees. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of ECAI’04, pp. 211–
215. IOS, Amsterdam (2004)

17. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proceedings of IJCAI’05
(2005)

18. Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Tractable symmetry breaking for CSPs
with interchangeable values. In: Proceedings of IJCAI’03, pp. 277–282. Morgan Kaufmann, San
Francisco (2003)

19. Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Compositional derivation of symmetries
for constraint satisfaction. In: Zucker, J.-D., Saitta, L. (eds.) Proceedings of SARA’05. LNCS,
vol. 3607, pp. 234–247. Springer, New York (2005)

20. Walsh, T.: Breaking value symmetry. In: Bessière, Ch. (ed.) Proceedings of CP’07. LNCS,
vol. 4741, pp. 880–887. Springer, New York (2007)

	Static and dynamic structural symmetry breaking
	Abstract
	Introduction
	Basic concepts
	Static SSB for piecewise symmetric CSPs
	Symmetry-breaking constraints
	Example
	Analysis

	Static versus dynamic SSB for piecewise symmetric CSPs
	Wreath symmetry
	Dynamic SSB for wreath symmetric CSPs
	The dominance detection algorithm
	Example
	Analysis

	Static SSB for full wreath symmetric CSPs
	Symmetry-breaking constraints
	Example
	Analysis

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

