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In constraint-based local search the solutions are described declaratively by a conjunction

of (often high-level) constraints. In this article we show that this opens up new ideas for

constraint-directed search. For a constraint we introduce three neighbourhoods, where

the penalty for that constraint alone is decreasing, increasing, or unchanged. We give

specialised algorithms for common constraints that efficiently implement these neigh-

bourhoods. Further, we give a general algorithm that implements these neighbourhoods

from specifications of constraints in monadic existential second-order logic. Finally, we

show how common constraint-directed local search algorithms are often easier to express

using these neighbourhoods.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Local search (e.g. [1]) starts from a possibly random initial configuration (assignment of values to all the variables) of

a combinatorial problem. Each configuration has a penalty, which is zero if it is a solution to the problem. Local search

iteratively makes small changes to the current configuration in an attempt to reduce its penalty, until either a solution is

foundor allocated computational resourceshavebeenconsumed. The configurations examined for each suchmove constitute

the neighbourhood of the current configuration. Heuristics are used to choose a neighbouring configuration, using only local

information such as the current configuration and its neighbourhood, but occasionally guide the search to a local optimum.

Metaheuristics such as tabu search [2] or simulated annealing [3] are thus needed to escape local optima and guide the

search to a global optimum, using information collected or learned during the execution so far.

Constraint-based local search (CBLS, e.g. [4]) integrates ideas from constraint programming into local search. Of par-

ticular interest to this article is that rich modelling and search languages are offered towards a clean separation of the

model and search components of a local search algorithm, via abstractions that facilitate its design and maintenance. One

such abstraction is the concept of constraint, which captures some common combinatorial substructure. For instance, the

AllDifferent(x1, . . . , xn) constraint requires its arguments to be pairwise different. A constraint can be represented as an object

[5,4], storing attributes, such as its set of variables and its penalty, and providing methods such as the determination of the

penalty change incurred if some of its variables were assigned different values. For efficiency, the attributes and results of

the methods must be maintained incrementally upon each move.

Many neighbourhoods are variable-directed, in the sense that a (small) set of variables is picked before considering the

neighbouring configurations where those variables take different values. One approach is to attach some level of conflict
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to variables and to pick a most conflicting variable. However, the abstraction of constraint objects also offers opportunities

for constraint-directed search (e.g. [6,7,4]), in the sense that a (small) set of constraints is picked before considering the

neighbouring configurations where those constraints have, say, a decreased penalty. Now, we show that the knowledge of

the semantics of a built-in constraint, or even just of a constraint specification, allows the exploration of constraint-directed

neighbourhoods whose moves are known to achieve a penalty decrease (or preservation, or increase), without forcing the iteration

over the other moves. We claim that this simplifies the design and maintenance of local search algorithms.

The remainder of this article is organised as follows. First, we define the basic concepts of local searchmore precisely and

present the problems on which we shall conduct our experiments (Section 2). The contributions and importance of this work

can then be stated as follows:

We abstract some constraint-directed neighbourhoods and show how they can be implemented via new methods

for constraint objects: (i) For a built-in constraint, these methods are created using the knowledge of the semantics

of the constraint. (ii) For a non-built-in constraint specified in monadic existential second-order logic, we propose a

generic algorithm that works compositionally on that specification. Using existing compositional calculi for inferring

the existing constraint attributes and methods from such specifications [8], an upper bound on the performance of a

local search algorithm can thus be obtained for a missing constraint, before deciding whether it is worth building it in

(Section 3).

Then, to show the usefulness of the approach, we present common local search heuristics using constraint-directed neigh-

bourhoods as well as a combination of constraint-directed and variable-directed neighbourhoods. We successfully experi-

ment with one of these heuristics, showing how it simplifies the design of the local search algorithm by not needing a data

structure that is necessarywhenusing just a variable-directedneighbourhood (Section 4). Finallywediscuss implementation

issues (Section 5), conclude, discuss related work, and outline future work (Section 6).

2. Preliminaries

After recalling the concept of constraint satisfaction problems, we precisely define the notions underlying local search.

We also recall monadic existential second-order logic and show its convenience for specifying set constraints that are not

built in. Finally, we give models based on set constraints for two common benchmark problems, on which we will conduct

our experiments.

2.1. Constraint satisfaction problems

We use constraint satisfaction problems to model combinatorial problems formally:

Definition 1 (CSP). A constraint satisfaction problem (CSP) is a three-tuple 〈V, D, C〉where

• V is a finite set of (decision) variables.

• D is a domain containing the possible values for the variables in V.

• C is a set of constraints, each constraint in C being defined on a sequence of decision variables taken fromV and specifying

the allowed combinations of values for that sequence.

Let vars(c) denote the set of decision variables of a constraint c ∈ C.

Without loss of generality, all variables share the same domain: we can always achieve smaller domains for particular

variables by additional membership constraints.

In this article, we focus on set-CSPs, that is CSPs where the domain D is the power-set P(U) of a set U , called the universe.

Even though we only consider set-CSPs, we make no claims about their superiority. However, the principles underlying

the results of this article are not specific to set-CSPs: we just illustrate them on set-CSPs, since this is the main theme of

our research. Whenever a definition applies to any kind of decision variables, we refrain from giving it specifically for set

variables.

2.2. Local search

For each concept of local search, we give both informal (inlined) and formal (numbered) definitions, the latter being

necessary for the inductive definitions and algorithms of the next two sections.

In local search, an initial assignment of values to all the variables is maintained:

Definition 2 (Configuration and Solution). Let P = 〈V, D, C〉 be a CSP:

• A configuration is a function k : V→ D.

• The set of all configurations for P is denoted by KP .
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• A configuration k is a solution to c ∈ C (or k satisfies c, or c is satisfied under k) if and only if 〈x1, . . . , xm〉 is the variable

sequence of c and 〈k(x1), . . . , k(xm)〉 is one of the allowed combinations of values for that sequence, as required by c.

• A configuration k is a solution to P if and only if k is a solution to all the constraints in C.

For simplicity of notation, we often consider the arbitrary CSP P = 〈V, D, C〉 to be implicit in the current context. As a

result, we often write K instead of KP and when we reason about a variable x, a set of variables X , a value v, a constraint c,

or a configuration k, it is always implicit that x ∈ V, X ⊆ V, v ∈ U , c ∈ C, and k ∈ K.

Example 1 (Set-CSP, Configuration, and Solution). Consider the set-CSP P = 〈{S, T},P({a, b, c}), {S ⊂ T}〉. A configuration for P

is k = {S �→ {a, b}, T �→ ∅}. A solution to S ⊂ T is {S �→ {a, b}, T �→ {a, b, c}}, whereas the configuration k is not a solution.

Let ⊕ be the acquisition operator. Given two functions f : A→ B and g : A′ → B such that A′ ⊆ A:

• ∀a ∈ A \ A′ : (f ⊕ g)(a) = f (a)

• ∀a ∈ A′ : (f ⊕ g)(a) = g(a)

For example, if k = {S �→ {a, b}, T �→ {b}} and � = {T �→ {a}} then k⊕ � = {S �→ {a, b}, T �→ {a}}.
Local search iteratively makes a small change to the current configuration, upon examining the merits of many such

moves, until a solution is found or allocated resources have been exhausted. The configurations thus examined constitute

the neighbourhood of the current configuration:

Definition 3 (Move and Neighbourhood). Let 〈V, D, C〉 be a CSP:

• A move function is a functionm : K→ K. We call the configuration m(k) amove from k, or a neighbour of k.

• A neighbourhood function is a function n : K→ P(K). We call the set of configurations n(k) a neighbourhood of k, and each

element thereof a neighbour of k.

Note that the noun ‘move’ here refers to the result (a configuration) of applying a move function to a configuration, rather

than to the act of changing that given configuration.

Example 2 (Moves and Neighbourhoods for Set-CSPs). Given two set variables S, T and a configuration k, we define the

following move functions for set-CSPs and we will use them throughout this article:

• add(S, v) adds v to S:

add(S, v)(k)
def= k⊕ {S �→ k(S) ∪ {v}}

• drop(S,u) drops u from S:

drop(S,u)(k)
def= k⊕ {S �→ k(S) \ {u}}

• flip(S,u, v) replaces u in S by v:

flip(S,u, v)(k)
def= k⊕ {S �→ (k(S) \ {u}) ∪ {v}}

• transfer(S,u, T) transfers u from S to T:

transfer(S,u, T)(k)
def= k⊕ {S �→ k(S) \ {u}, T �→ k(T) ∪ {u}}

• swap(S,u, v, T) swaps u of S with v of T:

swap(S,u, v, T)(k)
def= k⊕

{
S �→ (k(S) \ {u}) ∪ {v},
T �→ (k(T) \ {v}) ∪ {u}

}

Note that themove functions flip(S,u, v), transfer(S,u, T), and swap(S,u, v, T) are just transactions over add and dropmoves. As

wewill see, thesemove functions are necessary nevertheless since these transactionsmust be considered as unit operations

to construct some of our constraint-directed neighbourhoods.

Foreachof thesemove functions, givenasetX of set variablesandaconfigurationk,wedefine the followingneighbourhood

functions for set-CSPs:

• Add(X) returns the set of all add moves with respect to X:

Add(X)(k)
def= {add(S, v)(k)|S ∈ X ∧ v ∈ U \ k(S)}
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• Drop(X) returns the set of all dropmoves with respect to X:

Drop(X)(k)
def= {drop(S,u)(k)|S ∈ X ∧ u ∈ k(S)}

• Flip(X) returns the set of all flip moves with respect to X:

Flip(X)(k)
def= {flip(S,u, v)(k)|S ∈ X ∧ u ∈ k(S) ∧ v ∈ U \ k(S)}

• Transfer(X) returns the set of all transfer moves with respect to X:

Transfer(X)(k)
def=

{
transfer(S,u, T)(k)

∣∣∣∣ S /= T ∈ X ∧
u ∈ k(S) ∧ u ∈ U \ k(T)

}

• Swap(X) returns the set of all swap moves with respect to X:

Swap(X)(k)
def=

{
swap(S,u, v, T)(k)

∣∣∣∣S /= T ∈ X ∧ u ∈ k(S) ∧
v ∈ U \ k(S) ∧ v ∈ k(T) ∧ u ∈ U \ k(T)

}

For instance, consider the set variables S, T and the universe U = {a, b}. Given a configuration k = {S �→ {a}, T �→ ∅}, we have:

Add({S, T})(k) = {add(S, b)(k), add(T , a)(k), add(T , b)(k)}

=
⎧⎨
⎩
{S �→ {a, b}, T �→ ∅},
{S �→ {a}, T �→ {a}},
{S �→ {a}, T �→ {b}}

⎫⎬
⎭

Drop({S, T})(k) = {drop(S, a)(k)}
= {{S �→ ∅, T �→ ∅}}

Flip({S, T})(k) = {flip(S, a, b)(k)}
= {{S �→ {b}, T �→ ∅}}

Transfer({S, T})(k) = {transfer(S, a, T)(k)}
= {{S �→ ∅, T �→ {a}}}

Swap({S, T})(k) = ∅
Let N(X) denote the universal neighbourhood function, resulting from the union of all these functions.

The penalty of a constraint set C is an estimate on howmuch C is violated. The penalty is used to rank the configurations

of a neighbourhood. Furthermore, it is often crucial for efficiency reasons to limit the size of the neighbourhood. One way

of doing this is to focus on conflicting variables. The conflict of a variable is an estimate on how much it contributes to

the penalty. The variable conflict is used to rank the variables and, say, focus on the variable neighbourhood for the most

conflicting variable(s). To be useful these estimates must satisfy (at least) some basic properties:

• A penalty function penalty(C) of C ⊆ C is a function with signature

penalty(C) : K→N

such that penalty(C)(k), called the penalty of C under k, is zero if and only if k is a solution to all constraints in C.

• A variable-conflict function conflict(C) of C ⊆ C is a function with signature

conflict(C) : V ×K→N

such that if conflict(C)(x, k), called the variable conflict of x with respect to C under k, is zero then no configuration in the

neighbourhood of k where only the value of x is changed has a smaller penalty.

The given requirements on penalty and variable-conflict functions are rather weak. The merits of actual such functions

can only be discussed in relationship to the semantics of the given constraint set. Also, by abuse of notation we usually write

penalty(c) to denote the penalty function of a single constraint c ∈ C, instead of the correct penalty({c}). We illustrate all this

in the following example where we present penalty and variable-conflict functions of the AllDisjoint(X) constraint.

Example 3 (Penalty and Variable Conflict of AllDisjoint(X)). The constraint AllDisjoint(X) is satisfied under configuration k if

and only if the intersection between any two distinct set variables in X is empty.

The penalty function

penalty(AllDisjoint(X))(k) =
⎛
⎝∑

S∈X
|k(S)|

⎞
⎠−

∣∣∣∣∣∣
⋃
S∈X

k(S)

∣∣∣∣∣∣ (1)
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Fig. 1. BNF grammar for monadic existential second-order logic (∃MSO).

computes the minimum number of moves needed to nullify the penalty of the constraint, that is to transform the current

configuration k into a solution. For instance, the penalty of AllDisjoint({S, T ,V}) under configuration k = {S �→ {a, b, c}, T �→
{b, c, d},V �→ {d, e}} is 8− 5 = 3, and it suffices to, e.g., drop the three shared elements b, c, and d from, respectively, S, T , and

V to get a solution.

The variable-conflict function

conflict(AllDisjoint(X))(S, k) = |{u ∈ k(S)|∃T ∈ X \ {S}|u ∈ k(T)}|
computes the minimum number of moves on the set variable S that nullify its conflict, under the penalty function (1). For

instance, the conflict of set variable S under configuration k above is 2, and it suffices to drop the two elements b, c it shares

with other sets to get a zero conflict of S (but not a zero penalty) under the resulting configuration.

2.3. Constraint specification in monadic existential second-order logic

When a useful constraint is not built-in to our local search framework, we let the modeller use monadic existential

second-order logic (∃MSO) for specifying that constraint, and we call such a specification an ∃MSO constraint. In the BNF

grammar of that logic in Fig. 1, the non-terminal start symbol 〈∃MSO〉 denotes a second-order formula and the non-terminal

symbol 〈FORMULA〉 denotes a formula with first-order quantifications. Furthermore, the non-terminal symbol 〈S〉 denotes
an identifier for a bound set variable S such that S ⊆ U , where U is the common universe for all the set variables. The

non-terminal symbols 〈x〉 and 〈y〉 denote identifiers for bound first-order variables x and y such that x, y ∈ U . The terminal

symbols have their standard meaning from logic and are underlined. The base cases of the BNF grammar correspond to the

primitive predicates of ∃MSO (of which ∈ and /∈ are primitive constraints of ∃MSO). Note that, at present, the other (built-in)

constraints of our local search framework are not primitive constraints of ∃MSO. At no gain in expressiveness negation and

implication can be added to the first-order fragment of the logic. A formula containing negations can be rewritten with all

negation pushed into the primitive predicates, because the relational symbols are closed under negation, while implications

can be rewritten using disjunction. We use this form of the logic to simplify the extraction of computational information

from formulas.

Byoverloading, letvars(�)denote thesetofdecisionvariablesof an∃MSOformula�, i.e., the setof (existentiallyquantified)

second-order (set) variables of �, but not any (existentially or universally quantified) first-order (scalar) variables thereof.

Example 4 (∃MSO Specification of AllDisjoint({S, T ,V})). The constraint AllDisjoint({S, T ,V})may be specified in ∃MSO by

�
def= ∀x((x /∈ S ∨ (x /∈ T ∧ x /∈ V)) ∧ (x /∈ T ∨ x /∈ V))

Note that� in the example above should be considered a constraint of a given set-CSP and, as such, the decision variables

of � are existentially quantified by the given set-CSP and not by �. So S, T ,V are free variables of � and, hence, the models

of � denote the semantics of the specified AllDisjoint constraint. In the following though, to be able to reason with closed

∃MSO formulas, we will usually add such free variables as existentially quantified second-order variables and will then

rather write ∃S∃T∃V�. Note also that x /∈ vars(∃S∃T∃V�) = {S, T ,V} since x is bound by the first-order universal quantifier in

�. Furthermore, note that we have specified a special case of the AllDisjoint constraint, namely for n = 3 set variables. Finally,

it is also important to note that any ∃MSO specification of AllDisjoint over n set variables has a length (measured in number of

primitive constraints) that is quadratic in n in this encoding. In consequence, there may be a price to pay for the convenience

of using ∃MSO constraints. We will come back to this issue in Sections 4.3 and 5.

We introduced ∃MSO to local search in [9,8] andwill use the inductively defined penalty functionwe proposed there.2 For

example, the penalty of a primitive predicate under a configuration k is 0 if the primitive predicate is satisfied under k, and 1

2 In [10] ∃MSO is used for generating propagators for set constraints.
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otherwise. The penalty of a conjunction (disjunction) is the sum (minimum) of the penalties of its conjuncts (disjuncts). The

penalty of a first-order universal (existential) quantification is the sum (minimum) of the penalties of the quantified formula

where the occurrences of the bound variable are replaced by each value in the universe. We will also use the inductively

defined variable-conflict function for ∃MSO constraints we gave in [11,8]. Since variable conflicts play only a minor role in

this article (namely in Algorithm 3), we need not give the intuition of that inductive definition here.

Example 5 (Penalty and Variable Conflict of an ∃MSO Constraint). Recall the configuration k = {S �→ {a, b, c}, T �→ {b, c, d},V �→
{d, e}} of Example 3 and consider the ∃MSO specification ∃S∃T∃V� of the AllDisjoint({S, T ,V}) constraint in Example 4.

Then penalty(∃S∃T∃V�)(k) = 3 and conflict(∃S∃T∃V�)(S, k) = 2, i.e., the same values as obtained by the handcrafted penalty

(AllDisjoint(X)) and conflict(AllDisjoint(X)) functions of Example 3.

2.4. Sample set-CSPs

To finish these preliminaries, we present set-CSPs for two classical benchmark problems (in local search), on which we

will conduct our experiments.

Example 6 (Progressive Party Problem). The progressive party problem [12] is about timetabling a party at a yacht club, where

the crews of some guest boats party at host boats over a number of periods. The crew of a guest boat must party at some

host boat in each period (c1). The spare capacity of a host boat is never to be exceeded (c2). The crew of a guest boat may

visit a particular host boat at most once (c3). The crews of two distinct guest boats may meet at most once (c4).

Let H and G be the sets of host boats and guest boats, respectively. Let capacity(h) and size(g) denote the spare capacity of

host boat h and the crew size of guest boat g, respectively. Let P be the set of periods. Let Sh,p be a set variable denoting the

set of guest crews that are hosted by host boat h during period p. The following set constraints then model the problem:

(c1) ∀p ∈ P : Partition({Sh,p|h ∈ H},G)
(c2) ∀h ∈ H : ∀p ∈ P : MaxWeightedSum(Sh,p, size, capacity(h))

(c3) ∀h ∈ H : AllDisjoint({Sh,p|p ∈ P})
(c4) MaxIntersect({Sh,p|h ∈ H ∧ p ∈ P}, 1)

The global constraint Partition(X ,Q ) is satisfied under configuration k if and only if the values of the set variables inX partition

the constant set Q , where the value of each S ∈ X may be the empty set. The constraintMaxWeightedSum(S,w,m) is satisfied

under k if and only if theweighted sumof the elements of S under theweight functionw (that is
∑

u∈k(S)w(u)) does not exceed
the constant m. The global constraint MaxIntersect(X ,m) is satisfied under k if and only if the cardinality of the intersection

of any two distinct set variables in X is at most the constant m.

Example 7 (Social Golfer Problem). In the social golfer problem, there is a set of golfers, each of whom plays golf once a week

(c5) and always in ng groups of ns players (c6). The objective is to determine whether there is a schedule of nw weeks of play

for these golfers, such that there is at most one week where any two distinct players are scheduled to play in the same group

(c7).

Let G be the set of ng · ns golfers. Let Sg,w be a set variable denoting the golfers playing in group g in weekw. The following

set constraints then model the problem:

(c5) ∀w ∈ 1 . . .nw : Partition({Sg,w|g ∈ 1 . . .ng},G)
(c6) ∀g ∈ 1 . . .ng : ∀w ∈ 1 . . .nw : Cardinality(Sg,w ,ns)
(c7) MaxIntersect({Sg,w|g ∈ 1 . . .ng ∧w ∈ 1 . . .nw}, 1)

The constraint Cardinality(S,n) is satisfied under configuration k if and only if the cardinality of S under k is the constant n.

3. Constraint-directed neighbourhoods

When constructing a neighbourhood from a variable perspective, we start from a set of variables and change some of

them, while evaluating (incrementally) the effect that the changes have on the penalty. From a constraint perspective, we

start from a set of constraints and obtain the neighbours directly from those constraints. For instance, configurations in such

a neighbourhood may have a different penalty of those constraints. The advantage is that we can exploit combinatorial sub-

structures of the CSP, and focus on constructing neighbourhoods with particular properties. For instance, we can extend the

idea of constraint-directed search [6,7,4] to accommodate moves guaranteed to decrease, preserve, or increase the penalty.
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Definition 4 (Constraint-Directed Neighbourhoods of Constraints). Let c be a constraint, let k be a configuration, and let

penalty(c) be a penalty function of c. The decreasing, preserving, and increasing neighbourhoods of c under k and penalty(c),

respectively, are:

{c}↓
k
= {� ∈ N(vars(c))(k)|penalty(c)(k) > penalty(c)(�)}

{c}=
k
= {� ∈ N(vars(c))(k)|penalty(c)(k) = penalty(c)(�)}

{c}↑
k
= {� ∈ N(vars(c))(k)|penalty(c)(k) < penalty(c)(�)}

This definition gives the properties of moves of decreasing, preserving, and increasing neighbourhoods, respectively.3 Given

this target concept, we may define such neighbourhoods for particular constraints. We now show how to do this, first for

any ∃MSO constraint and then for built-in constraints, just giving the example of the built-in global AllDisjoint(X) constraint.

3.1. Constraint-directed neighbourhoods of ∃MSO constraints

Wefirst define decreasing, preserving, and increasing neighbourhoods for any ∃MSO constraint. To do this, wemust know

the actual impact of a move in terms of the penalty difference.

Definition 5 (Delta). Let c be a constraint and let k be a configuration for the variables of c. A delta for c under k is a pair

(�, δ) such that � is a neighbour of k and δ is the penalty increase when moving from k to �: δ = penalty(c)(�)− penalty(c)(k).

Now, using the set of all deltas for a constraint c under k, it is possible to obtain the decreasing, preserving, and increasing

neighbourhoods of c under k. Towards this we need some notation. Given a configuration � and a delta set D, let D|1 denote

the deltas of D projected onto their first components, that is the set of their configurations. Furthermore, let

� � D def=
{
δ, if (�, δ) ∈ D

0, otherwise

which is to be read ‘� query D’, denote the penalty increase recorded in D for �. Considering, for example, the delta set

D = {(add(S, a)(k), 0), (drop(S, b)(k),−1), (flip(S, b, a)(k),−1)}
we have:

drop(S, b)(k) � D = − 1

drop(T , b)(k) � D = 0

Note that � is a total function since there is at most one delta in D for a given configuration �, and since � � D = 0 when there

is no delta in D for �.

In the inductive definition below we use φ[u/x] to denote the formula φ where all occurrences of variable x are replaced

by the (ground) value u.

Definition 6 (Constraint-Directed Neighbourhoods of ∃MSO Constraints). Let � be an ∃MSO constraint and let k be a configu-

ration for vars(�). Let the set �(�)(k) be defined inductively on the structure of � by:

�(∃S1 · · · ∃Snφ)(k) = �(φ)(k) (a)

�(∀xφ)(k) =

⎧⎪⎨
⎪⎩(�, δ)

∣∣∣∣∣∣∣
� ∈

( ⋃
u∈U

�(φ[u/x])(k)
)
|1
∧

δ = ∑
u∈U

(� ��(φ[u/x])(k))

⎫⎪⎬
⎪⎭ (b)

�(∃xφ)(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(�, δ)

∣∣∣∣∣∣∣∣∣∣

� ∈
( ⋃
u∈U

�(φ[u/x])(k)
)
|1
∧

δ =min
u∈U

(
penalty(φ[u/x])(k) +
(� ��(φ[u/x])(k))

)
− penalty(∃xφ)(k)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(c)

3 Note the difference between our {c}↓
k
decreasing neighbourhood and the

x↓
k

V[c] notation of [13], which gives (in our terminology) the conflict of variable

x with respect to constraint c under configuration k, measured as the maximum penalty decrease obtainable by only changing the value of variable x.
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�(φ ∧ ψ)(k) =
{
(�, δ)

∣∣∣∣� ∈ (�(φ)(k) ∪�(ψ)(k))|1 ∧δ = � ��(φ)(k)+ � ��(ψ)(k)
}

(d)

�(φ ∨ ψ)(k) =

⎧⎪⎪⎨
⎪⎪⎩(�, δ)

∣∣∣∣∣∣∣∣
� ∈ (�(φ)(k) ∪�(ψ)(k))|1 ∧
δ =min

(
penalty(φ)(k)+ (� ��(φ)(k)),
penalty(ψ)(k)+ (� ��(ψ)(k))

)
− penalty(φ ∨ ψ)(k)

⎫⎪⎪⎬
⎪⎪⎭ (e)

�(u ≤ v)(k) = ∅ (∗similarly for <,=, /=,≥,> ∗) (f)

�(u ∈ S)(k) = (∗similarly for /∈ ∗)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(drop(S,u)(k), 1)}
∪{(flip(S,u, v)(k), 1)|v ∈ U \ k(S)}
∪{(transfer(S,u, T)(k), 1)|T ∈ X ∧ u ∈ U \ k(T)}
∪

{
(swap(S,u, v, T)(k), 1)

∣∣∣∣∣v /∈ k(S) ∧ T ∈ X ∧
u /∈ k(T) ∧ v ∈ k(T)

}
, if u ∈ k(S)

{(add(S,u)(k),−1)}
∪{(flip(S, v,u)(k),−1)|v ∈ k(S)}
∪{(transfer(T ,u, S)(k),−1)|T ∈ X ∧ u ∈ k(T)}
∪

{
(swap(S, v,u, T)(k),−1)

∣∣∣∣∣v ∈ k(S) ∧ T ∈ X ∧
u ∈ k(T) ∧ v /∈ k(T)

}
, if u /∈ k(S)

(g)

The decreasing, preserving, increasing, and delta neighbourhoods of � under k and penalty(�) (as defined inductively on the

structure of � in [9,8]) are then, respectively, defined by:4

{�}↓
k
= {�|(�, γ ) ∈ �(�)(k) ∧ γ < 0}

{�}=
k
= {�|(�, γ ) ∈ �(�)(k) ∧ γ = 0}

{�}↑
k
= {�|(�, γ ) ∈ �(�)(k) ∧ γ > 0}

{�}δ
k
= {�|(�, γ ) ∈ �(�)(k) ∧ γ = δ}

Given an ∃MSO constraint � and a configuration k, the calculation of �(�)(k) in the definition above needs some further

explanation. Consider first the result of the base case (g) and assume that u ∈ k(S). Any move that removes u from S will

increase the penalty (of u ∈ S) by one. This includes the move that drops u from S, any move that flips u in S into another

value, any move that transfers u from S to another set variable, as well as any move that swaps u of S with a value of another

set variable. The case when u /∈ k(S) is similar although the considered moves are those that add u to S resulting in a penalty

decrease (of u ∈ S) by one.

The result of the base case (f) is the empty set since there are no (set) decision variables of � in the ground test u ≤ v.

The result of the conjunctive case (d) is the union of the results of the recursive calls on the two conjuncts: the penalty

increase of each delta is the sum of the penalty increases calculated for the two conjuncts. This corresponds to the penalty

of a conjunction being the sum of the penalties of the two conjuncts.

The result of the disjunctive case (e) is the union of the results of the recursive calls on the two disjuncts: the penalty

increase of each delta is the difference between the minimum penalty under the move of the delta with respect to each

disjunct, and the penalty of the disjunction. This corresponds to the penalty of a disjunction being the minimum of the

penalties of the two disjuncts.

The result of the case for first-order universal quantification (b) is a generalisation of case (d). (Recall that φ[u/x] denotes
the formula φ where all occurrences of variable x are replaced by the (ground) value u.) Similarly, the result of the case for

first-order existential quantification (c) is a generalisation of case (e).

The result of the case for second-order existential quantification (a) is just the result of the recursive call on the quantified

formula.

4 Note that we do not discuss delta neighbourhoods any further in this article except in the paragraph on future work in Section 6.
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Example 8 (Constraint-Directed Neighbourhoods of AllDisjoint({S, T ,V})). Recall the ∃MSO specification ∃S∃T∃V� of

AllDisjoint({S, T ,V}) in Example 4, the configuration k = {S �→ {b}, T �→ {b},V �→ ∅}, and the universe U = {a, b}:

�(∃S∃T∃V�)(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(drop(S, b)(k),−1), (drop(T , b)(k),−1),
(add(S, a)(k), 0), (add(T , a)(k), 0),

(add(V , a)(k), 0), (add(V , b)(k), 1),

(flip(S, b, a)(k),−1), (flip(T , b, a)(k),−1),
(transfer(S, b,V)(k), 0), (transfer(T , b,V)(k), 0)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The obtained constraint-directed neighbourhoods are as follows:

{∃S∃T∃V�}↓
k
=

{
drop(S, b)(k), drop(T , b)(k),

flip(S, b, a)(k),flip(T , b, a)(k)

}

{∃S∃T∃V�}=
k
=

{
add(S, a)(k), add(T , a)(k), add(V , a)(k),

transfer(S, b,V)(k), transfer(T , b,V)(k)

}
{∃S∃T∃V�}↑

k
= {add(V , b)(k)}

In Example 9, we will show another definition of these constraint-directed neighbourhoods of the AllDisjoint(X) constraint

(and this for any amount n of set variables, rather than the n = 3 set variables of ∃S∃T∃V�), handcrafted directly from the

semantics of the constraint, rather than from the syntax of an ∃MSO specification thereof.

We now prove that the sets in Definition 6 are equal to the corresponding sets in Definition 4. First, all and only the

possible moves are captured in the inductively computed delta set:

Lemma 1 (Correctness and Completeness of Moves). Let � be an ∃MSO constraint and let k be a configuration for �. Then

�(�)(k)|1 = N(vars(�))(k).

Proof. (⊆) Trivial, asN(vars(�))(k) is the set of all possiblemoves for the set variables of�. (⊇) First note that, for a subformula

φ of a formula � in ∃MSO, we have that � ∈ (�(φ)(k))|1 implies � ∈ (�(�)(k))|1, since the step cases of Definition 6 are the

union of the results of some recursive calls. Assumenow that � ∈ N(vars(�))(k) and that � is of the form add(S, v)(k). According

to the definitions of Add(X) and N(X) in Example 2 it must be the case that add(S, v)(k) ∈ Add(vars(�))(k) ⊆ N(vars(�))(k).

Furthermore, theremustbeasubformulaφ in�of the formv ∈ S orv /∈ S, since theseare theonlykindsofprimitiveconstraints

of ∃MSO on set variables. Since v /∈ k(S) by the definition of Add(vars(�)) in Example 2, we have that add(S, v)(k) ∈ (�(φ)(k))|1
by Definition 6 and hence add(S, v)(k) ∈ (�(�)(k))|1. Similarly for drop, as well as for flip, swap, and transfer, which are just

transactions over add and dropmoves. �

Second, the inductive definition of �(�)(k) in Definition 6 computes a set of deltas, as defined in Definition 5:

Lemma 2 (Correctness of Deltas). Let � be an ∃MSO constraint and let k be a configuration for �. For every � ∈ N(vars(�))(k),

we have that � ��(�)(k) = penalty(�)(�)− penalty(�)(k).

Proof. The proof is by structural induction on �. The lemma holds for the base cases (f) and (g), and follows for case (a) by

induction from the definition. The quantifier cases (b) and (c) are just generalisations of the following two cases:

Case (d): φ ∧ ψ . Consider a configuration � ∈ N(vars(�))(k). We have that:

penalty(φ ∧ ψ)(�)− penalty(φ ∧ ψ)(k)
=penalty(φ)(�)− penalty(φ)(k)+ penalty(ψ)(�)− penalty(ψ)(k),

by the inductive definition of penalty in [9,8]

=� ��(φ)(k)+ � ��(ψ)(k), by induction

=� ��(φ ∧ ψ)(k), by Definition 6.

Case (e): φ ∨ ψ . Consider a configuration � ∈ N(vars(�))(k). We have that:

penalty(φ ∨ ψ)(�)− penalty(φ ∨ ψ)(k)
=min(penalty(φ)(�), penalty(ψ)(�))− penalty(φ ∨ ψ)(k),

by the inductive definition of penalty in [9,8]

=min

(
penalty(φ)(k)+ � ��(φ)(k),
penalty(ψ)(k)+ � ��(ψ)(k)

)
− penalty(φ ∨ ψ)(k), by induction

=� ��(φ ∨ ψ)(k), by Definition 6. �
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In conclusion, Definition 6 correctly captures the considered constraint-directed neighbourhoods according to Defini-

tion 4:

Proposition 1 (Soundness of Definition 6). Let� be an ∃MSO constraint, let k be a configuration for�, and let � ∈ N(vars(�))(k).

We have that:

� ∈ {�}↓
k
⇔ penalty(�)(�) < penalty(�)(k)

� ∈ {�}=
k
⇔ penalty(�)(�) = penalty(�)(k)

� ∈ {�}↑
k
⇔ penalty(�)(�) > penalty(�)(k)

Proof. Directly follows from Lemmas 1 and 2. �

3.2. Constraint-directed neighbourhoods for built-in constraints

We here just give constraint-directed neighbourhoods for one built-in constraint, namely the global AllDisjoint(X) con-

straint on set variables. Neighbourhoods for other built-in constraints are handcrafted similarly.

Example 9 (Constraint-Directed Neighbourhoods of AllDisjoint(X)). We can define the decreasing, preserving, and increasing

neighbourhoods of AllDisjoint(X) under a configuration k and the penalty function (1) of Example 3 as follows:

{AllDisjoint(X)}↓
k
= {drop(S,u)(k) | S ∈ X ∧ u ∈ k(S) ∧ |X|ku > 1}
∪

{
flip(S,u, v)(k)

∣∣∣∣∣ drop(S,u)(k) ∈ {AllDisjoint(X)}
↓
k
∧

add(S, v)(k) ∈ {AllDisjoint(X)}=
k

}

{AllDisjoint(X)}=
k
= {drop(S,u)(k) | S ∈ X ∧ u ∈ k(S) ∧ |X|ku = 1}
∪ {add(S, v)(k) | S ∈ X ∧ |X|kv = 0}

∪

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
flip(S,u, v)(k)

∣∣∣∣∣∣∣∣∣∣∣

drop(S,u)(k) ∈ {AllDisjoint(X)}↓
k
∧

add(S, v)(k) ∈ {AllDisjoint(X)}↑
k∨

drop(S,u)(k) ∈ {AllDisjoint(X)}=
k
∧

add(S, v)(k) ∈ {AllDisjoint(X)}=
k

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∪ {transfer(S,u, T)(k) | S /= T ∈ X ∧ u ∈ k(S) ∧ u /∈ k(T)}
∪

{
swap(S,u, v, T)(k)

∣∣∣∣ S /= T ∈ X ∧ u ∈ k(S) ∧ u /∈ k(T) ∧
v ∈ k(T) ∧ v /∈ k(S)

}
∪ {� ∈ K | S ∈ X ∧ �(S) = k(S)}

{AllDisjoint(X)}↑
k
= {add(S, v)(k) | S ∈ X ∧ v /∈ k(S) ∧ |X|kv > 0}
∪

{
flip(S,u, v)(k)

∣∣∣∣∣ drop(S,u)(k) ∈ {AllDisjoint(X)}
=
k
∧

add(S, v)(k) ∈ {AllDisjoint(X)}↑
k

}

where |X|ku denotes the number of set variables in X that contain element u under configuration k. Note that the preserving

neighbourhood was expanded with all moves on the set variables of the CSP that are not involved in the AllDisjoint(X)

constraint.

Even though these definitions are mutually recursive (for flipmoves), this is just a matter of presentation, as they can be

finitely unfolded (since a flip is just a drop and an add), and has no impact on runtime efficiency in practice.

For instance, as in Example 8, for the configuration k = {S �→ {b}, T �→ {b},V �→ ∅} and the universe U = {a, b}, we get the

following neighbourhoods:

{AllDisjoint({S, T ,V})}↓
k
=

{
drop(S, b)(k), drop(T , b)(k),

flip(S, b, a)(k),flip(T , b, a)(k)

}

{AllDisjoint({S, T ,V})}=
k
=

{
add(S, a)(k), add(T , a)(k), add(V , a)(k),

transfer(S, b,V)(k), transfer(T , b,V)(k)}
}

{AllDisjoint({S, T ,V})}↑
k
= {add(V , b)(k)}

Note that these neighbourhoods are the same as those obtained for the ∃MSO-specified AllDisjoint({S, T ,V}) in Example 8.



448 M. Ågren et al. / Information and Computation 207 (2009) 438–457

Algorithm 1 Simple heuristic using constraint-directed neighbourhoods

1: function Cds(C)

2: k← RandomConfiguration(C)

3: while penalty(C)(k) > 0 do

4: choose c ∈ C such that penalty(c)(k) > 0 for

5: choose � ∈ {c}↓
k
minimising penalty(C)(�) for

6: k← �

7: end choose

8: end choose

9: end while

10: return k

11: end function

4. Using constraint-directed neighbourhoods

We first revisit three common heuristics using our constraint-directed neighbourhoods. All heuristics are greedy and

would be extended with metaheuristics (e.g., tabu search and restarting mechanisms) in real applications. Then we show

that our constraint-directed neighbourhoods even avoid certain (usually necessary) data structures. Finally, we present some

experimental results.

4.1. Constraint-directed heuristics

All heuristics below use a non-deterministic choose operator to pick a member in a set; if that set is empty then the

choose becomes a skip. We start with a simple constraint-directed heuristic and then consider some more sophisticated

ones.

4.1.1. Simple heuristics

The heuristic Cds in Algorithm 1 greedily picks the best neighbour in the set of decreasing neighbours of an unsatisfied

constraint. More precisely, Cds takes a set of constraints C and returns a solution if one is found. It starts by initialising k to a

random configuration for all variables in C (line 2). It then iterates as long as there are any unsatisfied constraints (lines 3–9).

At each iteration, it picks a violated constraint c (line 4), and updates k to any configuration in the decreasing neighbourhood

of c minimising the total penalty of C (lines 5–7). A solution is returned if there are no unsatisfied constraints (line 10).

Cds is a variant of the heuristic constraintDirectedSearch in [4]. Apart from the additional tabumechanism of the latter

(omitted here for readability reasons, as such metaheuristics are orthogonal to heuristics), the only difference is line 5. In

Cds, the decreasing moves are obtained directly from the chosen constraint c, meaning that no other moves are evaluated

if the decreasing neighbourhood of c can be constructed in this way. Note that, for example, the decreasing neighbourhood

of AllDisjoint(X) can be constructed by not evaluating any other moves, which will be seen in Section 5.1 below. However, it

may not be possible to construct the decreasing neighbourhood of an arbitrary constraint by not evaluating any othermoves.

For example, the decreasing neighbourhood of an ∃MSO constraint may need to evaluate other moves, which will be seen

in Section 5.2 below. In contrast, the decreasing moves of constraintDirectedSearch are obtained by always evaluating all

possible moves on the variables of c, i.e., also the moves that turn out to be preserving or increasing.

As it requires that there always exists at least one decreasing neighbour, Cds is easily trapped in local minima. We may

improve it by also allowing preserving and increasing moves, if need be. This can be done by replacing lines 5–7 with the

following, assuming the set union is evaluated in a lazy fashion:

choose � ∈ {c}↓
k
∪ {c}=

k
∪ {c}↑

k
minimising penalty(C)(�) for

k← �

end choose

This is still different from constraintDirectedSearch, as, say, the preserving moves on the variables of c are only evaluated

if there is no decreasing move on the variables of c.

While theseheuristics are simple toexpressalso inavariable-directedapproach (by, e.g., evaluating thepenaltydifferences

with respect to changing a particular set of variables according to some neighbourhood function, focusing on those giving

a decreased, preserved, or increased penalty), the constraint-directed approach allows us to focus directly on the particular

kind of moves that we are interested in.

4.1.2. Multi-phase heuristics

One of the advantages with the considered constraint-directed neighbourhoods is the possibilities that they open up for

the simple design of multi-phase heuristics. This is a well-known method and often crucial to obtain efficient local search

algorithms (see [14,15], for example). In a multi-phase heuristic, a configuration satisfying a subset
 ⊆ C of the constraints

is first obtained. This configuration is then transformed into a solution satisfying all the constraints by only considering the
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Algorithm 2Multi-phase heuristic using constraint-directed neighbourhoods

1: function CdsPreservingFull(
,�)

2: k← Solve(
)

3: while penalty(�)(k) > 0 do

4: choose � ∈ 
=
k
minimising penalty(�)(k) for

5: k← �

6: end choose

7: end while

8: return k

9: end function

Algorithm 3Multi-phase heuristic using constraint-directed neighbourhoods

1: function CdsPreserving(
,�)

2: k← Solve(
)

3: X ← the set of all variables of the constraints in 


4: while penalty(�)(k) > 0 do

5: choose x ∈ X maximising conflict(�)(x, k) for

6: choose � ∈ (
|x)=k minimising penalty(�|x)(k) for
7: k← �

8: end choose

9: end choose

10: end while

11: return k

12: end function

preserving neighbourhoods of the constraints in 
. The difficulty of choosing a good subset 
 varies. In order to guide the

user in this task, a candidate set
 can be automatically identified in MultiTAC [16] style, as we have shown in [17]. Further,

as shown in [15], it is important that the set of move functions be rich enough so that all solutions to C are reachable from

the initial solution to 
.

In Algorithms 2 and 3, we show the two multi-phase heuristics CdsPreservingFull and CdsPreserving. Both take two

sets of constraints
 and�, where
 ∪� = C, and return a solution toC if one is found. InCdsPreservingFull, a configuration

k for all the variables of C, satisfying the constraints in
, is obtained by the call Solve(
) (line 2). The function Solve could

use a heuristic method or some other suitable solutionmethod, possibly without search. We then iterate as long as there are

any unsatisfied constraints in� (lines 3–7). At each iteration, we update k to be any neighbour � that preserves all constraints

in 
 and minimises the total penalty of � (lines 4–6).

A problem with CdsPreservingFull is that if 
 is large or has constraints involving many variables, then the size of the

preserving neighbourhood on line 4 may be too large to obtain an efficient heuristic. We here present one way to overcome

this problem, using variable conflicts. Recall that the conflict of a variable is an estimate on how much it contributes to

the penalty. By focusing on moves involving conflicting variables or perhaps even the most conflicting variables, we may

drastically shrink the size of the neighbourhood, obtaining a more efficient algorithm, while still preserving its robustness.

The heuristic CdsPreserving in Algorithm 3 differs from CdsPreservingFull in the following way: After k is initialised,

X is assigned the set of all variables of the constraints in 
 (line 3). Then, at each iteration, a most conflicting variable x ∈ X

is picked (line 5) before the preserving neighbourhoods of the constraints in 
 are searched. When the best neighbour is

chosen (lines 6–8), the constraints in 
 and � are projected onto those containing x, thereby often drastically reducing the

size of the neighbourhood; we use �|x to denote the constraints in constraint set � containing x.

Note that projecting neighbourhoods onto those containing a particular set of variables, such as conflicting variables, is

a very useful variable-directed approach for speeding up heuristic methods. In this way, CdsPreserving is a fruitful cross-

fertilisation between the variable-directed and constraint-directed approaches for generating neighbourhoods.

4.2. Avoiding data-structures

Another advantage with the considered constraint-directed neighbourhoods is that data structures for generating neigh-

bourhoods that traditionally have to be explicitly created are not needed here. For example, the model of the progressive

party problem of Example 6 is based on set variables Sh,p denoting the set of guest boats whose crews are hosted by the

crew of boat h during period p. Assume now that we want to solve this problem using CdsPreserving where 
 is the set of

Partition constraints. Having obtained a partial solution that satisfies 
 in line 2, the only moves preserving 
 are transfer

moves of a guest boat from a host boat in some period to another host boat in the same period, and swapmoves of two guest
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boats between host boats in the same period.5 To generate these preserving moves from a variable-directed perspective, we

would have to create data structures for obtaining the set of variables in the same period as a given variable chosen in line 5.

By instead viewing this problem from a constraint-directed perspective, we obtain the preserving moves directly from the

constraints in 
 and no additional data structures are needed.

A similar reasoning can be done for the model of the social golfer problem of Example 7, which is based on set variables

Sg,w denoting the set of golfers in group g of week w. Assuming that 
 is the set of Partition and Cardinality constraints, the

only moves preserving 
 are swap moves of two golfers between groups in the same week. Again, by looking at this from

a constraint-directed perspective, the preserving moves are obtained directly from the constraints in 
 and no additional

data structures are needed for accessing the different weeks.

4.3. Experimental results

The first claim of this article is that algorithms exploiting the proposed constraint-directed neighbourhoods are easier to

write (in our local-search framework), because at a higher level of abstraction, and this without having to pay for it by a loss

of runtime efficiency. The second claim is that such a convenience can even be made available, at reasonable loss of runtime

efficiency, when the framework lacks a built-in constraint that would be useful for modelling the problem at hand.

To show this, the purpose of experiments is to compare such algorithms, within a given local search framework, with

algorithms not using such neighbourhoods, for both built-in and ∃MSO constraints. The purpose here need thus not be to

compare algorithms with constraint-directed neighbourhoods in our local search framework with algorithms in other local

search frameworks, whether they have such neighbourhoods or not. Nor is the purpose a comparison of our problemmodels

(under our framework) with other models (under other frameworks), as our objective is not (yet) to beat runtime records

(as that requires a very careful implementation).

We implemented a prototype of the ideas presented in this article for all the constraints used in the given models of the

progressive party and social golfer problems, as well as for any ∃MSO constraint, using the implementation ideas discussed

in Section 5 below. Classical instances for both problems were then run, mimicking the algorithm we used in [18] but using

a variant of CdsPreserving. This meant that the preserved constraint sets 
 were chosen as indicated in the previous sub-

section and that we extended CdsPreserving with the same metaheuristics, maximum number of iterations, and so on, as

in [18]. This also meant that the preserving neighbourhood for the progressive party problem had to be restricted to transfer

moves, because swapmoves were not considered in [18].

We show the experimental comparison with the algorithm of [18] in Tables 1 and 2. Each entry is the mean runtime in

CPU seconds of the successful runs out of 100 for a particular instance, and the numbers in parentheses are the numbers of

unsuccessful runs, if any, for that instance. All experiments were run on an Intel 2.4 GHz Linuxmachinewith 512 MB of RAM.

When using built-in constraints, the runtimes in Tables 1(a) and (b) and 2(a) and (b) are quite similar between the

designed variant of CdsPreserving and the algorithm in [18], hence (considering that this is just a prototype) there seem to

be no runtime overhead problemswith our proposed constraint-directed neighbourhoods. However, the programming time

was much reduced for CdsPreserving, because reasoning at a higher level of abstraction and thus not needing to initialise

and maintain some data structures (as discussed in the previous sub-section). Note that different random seeds were used

in CdsPreserving and the algorithm in [18], which explains the differences in the numbers of unsuccessful runs in the two

tables.

When pretending that Partition is not built in and using an ∃MSO-specified Partition instead, the runtimes in Tables 1(a)

and (c) are (only) three to four times apart for all the instances. This is not a surprise since the chosen ∃MSO specification

of Partition is of quadratic length in its number of set variables, leading to an at worst quadratic slowdown for the ∃MSO-

based computations compared to the built-in Partition. However, on these instances, the slowdown is observed to be linear.

Furthermore, compared to using the built-in Partition, it must be noted that efforts such as designing penalty and variable-

conflict functions with incremental maintenance algorithms, as well as implementingmember and iteratemethods were not

necessary, since all this is obtained automatically given the ∃MSOconstraint, as shown in [9,11,8] and this article, respectively.

In general, testing the chosen combination of heuristics and meta-heuristics using ∃MSO constraints can help to decide if it

is worth producing a faster handcrafted implementation. Again, different random seeds were used, which explains why the

numbers of unsuccessful runs differ.

5. Implementation issues

After discussing implementation issues for built-in constraints, we do the same for ∃MSO constraints. In both cases, we

give the runtime complexity of the proposed algorithms.

5 The reason why flipmoves of a guest boat for a host boat in a period are impossible, even though flipmoves are in the neighbourhood {Partition(X ,Q )}=
k
,

is that Q = G = U here and that k satisfies the considered constraint. Whenever this is the case, there are no flip moves in {Partition(X ,Q )}=
k
because there

are no values outside Q that could be flipped for.
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Table 1 Runtimes in CPU seconds for classical instances [12] of the progressive party problem. Mean runtime of successful runs (out of 100) and number

of unsuccessful runs (if any) in parentheses.

Host boats H Number of periods

6 7 8 9 10

(a) CdsPreserving with built-in Partition(X ,Q )

{1− 12, 16} 0.7 1.8 19.1

{1− 13} 8.8 105.2

{1, 3− 13, 19} 10.2 143.9 (1)

{3− 13, 25, 26} 21.0 220.5 (14)

{1− 11, 19, 21} 11.8 96.0 (1)

{1− 9, 16− 19} 17.7 184.7 (11)

(b) Algorithm of [18] with built-in Partition(X ,Q )

{1− 12, 16} 1.2 2.3 21.0

{1− 13} 7.0 90.5

{1, 3− 13, 19} 7.2 128.4 (4)

{3− 13, 25, 26} 13.9 170.0 (17)

{1− 11, 19, 21} 10.3 83.0 (1)

{1− 9, 16− 19} 18.2 160.6 (22)

(c) CdsPreserving with ∃MSO-specified Partition(X ,Q )

{1− 12, 16} 2.4 6.2 72.6

{1− 13} 31.2 411.8

{1, 3− 13, 19} 37.9 582.4 (3)

{3− 13, 25, 26} 81.0 903.4 (12)

{1− 11, 19, 21} 43.6 367.2

{1− 9, 16− 19} 66.5 750.8 (8)

5.1. Implementation issues for built-in constraints

For built-in constraints, the decreasing, preserving, and increasing neighbourhoodsmay be represented procedurally, with

the support of underlying data structures, by two proposed new methods for constraint objects, called member and iterate.

In Algorithm 4, we only show these methods for {AllDisjoint(X)}↓
k
.

The member({AllDisjoint(X)}↓
k
)(�, k) method takes two configurations � and k and returns true if and only if � ∈

{AllDisjoint(X)}↓
k
. As observable from the definition of {AllDisjoint(X)}↓

k
in Example 9, this is the case onlywhen � is of the form

drop(S,u)(k) and u occurs more than once in X , or flip(S,u, v)(k) and u (respectively, v) occurs more than once (respectively,

not at all) in X (lines 3 and 4). A call member({AllDisjoint(X)}↓
k
)(�, k) can be performed in constant time, assuming that |X|ku

and |X|kv are maintained incrementally.

The iterate({AllDisjoint(X)}↓
k
)(S, k, σ) method takes a set variable S, a configuration k, as well as a function σ and applies

σ to each configuration � ∈ {AllDisjoint(X)}↓
k
involving S. This is the case for each configuration � of the form drop(S,u)(k) or

flip(S,u, v)(k) such thatmember({AllDisjoint(X)}↓
k
)(�, k) holds (lines 10–13).6 The argument function σ must take a configura-

tion and work by side effects. For example, a call σ(�) could evaluate the penalty increase between the current configuration

and �, and update some internal data structure keeping track of the best such move. A call iterate({AllDisjoint(X)}↓
k
)(S, k, σ)

can be performed in O(|{AllDisjoint(X)}↓
k
|) time, assuming that the set comprehensions on lines 9 and 11 are maintained

incrementally, and that a call to σ takes constant time.

The following example shows how to use these methods in practice.

Example 10. Consider again the heuristic CdsPreserving in Algorithm 3 and assume that the set
 of preserved constraints

in that heuristic contains exactly two constraints π1 and π2. Given themember and iteratemethods for those constraints, we

could implement the choose block on lines 6–8 as follows:

�s← [ ]
minPenalty← maxInt

iterate({π1}=k )(x, k,updateBest(k, �s,minPenalty,π2))

k← random element in �s

6 Note that an explicit call tomember is not desirable since this would require iterating over all moves.
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Table2 Runtimes inCPUseconds for classical instancesof the social golferproblem.Mean run timeof successful runs (outof 100) andnumberofunsuccessful

runs (if any) in parentheses.

ng-ns-nw Time (Fails) ng-ns-nw Time (Fails)

(a) CdsPreserving with built-in constraints

6-3-7 0.2 6-3-8 253.4 (79)

7-3-9 127.4 (1) 8-3-10 6.0

9-3-11 1.1 10-3-13 331.4 (3)

6-4-5 0.1 7-4-7 446.4 (57)

8-4-7 0.3 9-4-8 0.5

10-4-9 0.7 7-5-5 0.6

8-5-6 3.8 9-5-6 0.3

10-5-7 0.6 6-6-3 0.1

7-6-4 0.6 8-6-5 9.5

9-6-5 0.4 10-6-6 1.1

7-7-3 0.1 8-7-4 2.7

9-7-4 0.3 10-7-5 1.1

8-8-3 0.2 9-8-3 0.2

10-8-4 0.6 9-9-3 0.3

10-9-3 0.3 10-10-3 0.5

(b) Algorithm of [18] with built-in constraints

6-3-7 0.4 6-3-8 215.0 (76)

7-3-9 138.0 (5) 8-3-10 14.4

9-3-11 3.5 10-3-13 325.0 (35)

6-4-5 0.3 7-4-7 333.0 (76)

8-4-7 0.9 9-4-8 1.7

10-4-9 2.5 7-5-5 1.3

8-5-6 8.6 9-5-6 0.9

10-5-7 1.7 6-6-3 0.2

7-6-4 1.2 8-6-5 18.6

9-6-5 1.0 10-6-6 3.7

7-7-3 0.3 8-7-4 4.9

9-7-4 0.8 10-7-5 3.4

8-8-3 0.5 9-8-3 0.6

10-8-4 1.4 9-9-3 0.7

10-9-3 0.8 10-10-3 1.1

Hence, the preserving neighbourhood of π1 is iterated over, applying updateBest to each move in that neighbourhood. When

this iteration finishes, the buffer �s contains the best moves of the neighbourhood, and k is set to a random element of this

buffer. The procedure updateBest works by side effects as follows:

procedure updateBest(k, �s,minPenalty,π2)(m)

if member({π2}=k )(m, k) then

if penalty(�|x)(m) < minPenalty then

minPenalty← penalty(�|x)(m)
�s← [m]

else if penalty(�|x)(m) = minPenalty then

�s← m :: �s
end if

end if

end procedure

Hence, if the argument move m is also in the preserving neighbourhood of π2, then it may be added to the buffer �s of best

moves. This buffer is reset whenever a better move is found. Note that updateBest is similar to the neighbour abstraction and

neighbour selector constructions of [4, p. 165].

5.2. Implementation issues for ∃MSO constraints

For∃MSOconstraints, thedecreasing, preserving, and increasingneighbourhoodsmaybe representedpartlyextensionally,

namely for the add and drop moves, and partly procedurally, since the flip, transfer, and swap moves can be generated from

the former, and since representing the latter extensionally would be too costly in terms of both space and time.
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Algorithm 4 Themember and iterate methods for AllDisjoint(X)

1: function member({AllDisjoint(X)}↓
k
)(�, k) : boolean

2: case � of

3: drop(S,u)(k) : return |X|ku > 1

4: | flip(S,u, v)(k) : return |X|ku > 1 ∧ |X|kv = 0

5: | any_other : return false

6: end case

7: end function

8: procedure iterate({AllDisjoint(X)}↓
k
)(S, k, σ )

9: for all u ∈ {x ∈ k(S) | |X|kx > 1} do
10: σ(drop(S,u)(k))

11: for all v ∈ {x ∈ U \ k(S) | |X|kx = 0} do
12: σ(flip(S,u, v)(k))

13: end for

14: end for

15: end procedure

Given an ∃MSO constraint� and a configuration k, the subset�|{add,drop}(�)(k) of the delta set�(�)(k)with only elements

of the form (add(S, v)(k), δ) or (drop(S,u)(k), δ)may be represented extensionally at every node in the extended constraint dag

(directed acyclic graph) of �, and updated incrementally between moves, similarly to incrementally updating penalties [8].

A constraint dag has as nodes the quantifications, connectives, and primitive predicates of the ∃MSO constraint, with the

arcs pointing from subformulas to formulas. It originally only contained node annotations about the penalty and variable

conflicts under a configuration [9,11].

Example 11 (Extended constraint dag of ∃S∃T∃V�). Recall the ∃MSO specification ∃S∃T∃V� of AllDisjoint({S, T ,V}), the con-

figuration k = {S �→ {b}, T �→ {b},V �→ ∅}, and the delta set �(∃S∃T∃V�)(k) of Example 8. The extended constraint dag of

∃S∃T∃V� under k, shown in Fig. 2, contains penalty information (shaded sets, and not further explained here: see [9,8]) as

well as the sets �|{add,drop}(φ)(k) ⊆ �(φ)(k), for each subformula φ of ∃S∃T∃V�.

In Algorithm 6, we present (public) genericmember and iteratemethods only for the decreasing neighbourhood of ∃MSO

constraints. Both methods call the private collect(�)method of Algorithm 5, which takes a set variable S, a configuration k,

and a move setM as arguments such that:

• Each move inM affects S.

•M contains only flip, transfer, and swap moves (since add and dropmoves are already extensional in the dag of �).

A call collect(�)(S, k,M) returns the delta set for� under k, where the configuration � of any element (�, δ) of this delta set is

a member ofM. This function is only partly described in Algorithm 5; all other cases follow similarly from Definition 6, and

the sets of flip and swapmoves are computed similarly. For ∃S1 · · · ∃Sn(φ), the function is called recursively for φ (line 3). For

∀x(φ), it is called recursively for φ, and the value of δ, given a transfer move, is obtained from the result of that call (line 5). For

φ ∧ ψ: (i) if S is in both conjuncts, then the value of δ, given a move of the form transfer(S,u, T)(k), is recursively determined

as the sum of transfer(S,u, T)(k) � collect(φ)(S, k,M) and transfer(S,u, T)(k) � collect(ψ)(S, k,M) (line 8); (ii) if S is only in one of

the conjuncts, say φ, then the value of δ, given a move of the form transfer(S,u, T)(k), is recursively determined as the sum of

transfer(S,u, T)(k) � collect(φ)(S, k,M) and add(T ,u)(k) ��|{add,drop}(ψ)(k) (line 10). The benefit of representing�|{add,drop}(�)(k)
extensionally can be seen in case (ii), where a recursive call is needed only for the subformula where S appears. For x ∈ S, given a

transfer(S,u, T)(k)move, the value of δ is 1, since u is removed from S (line 15).

Example 12 (The collect Function). Consider again ∃S∃T∃V� and configuration k = {S �→ {b}, T �→ {b},V �→ ∅} of Example 8.

By stepping through the call collect(∃S∃T∃V�)(V , k, {transfer(S, b,V)(k)})while keeping the dag in Fig. 2 in mind, we see that

collect(∃S∃T∃V�)(V , k, {transfer(S, b,V)(k)}) = {(transfer(S, b,V)(k), 0)}

Hence, similarly to the end of Example 8, we have that transfer(S, b,V)(k) is in the preserving neighbourhood of � under k.

By a similar reasoning as in [8, Section 5.3], we can argue that the time complexity of collect(�) is at worst proportional to

the length of�. The ∃MSO specificationwe have used for AllDisjoint({S, T ,V}) is of a length (measured in number of primitive

constraints) that is quadratic in the number of variables. In general, an ∃MSO specificationmay have some overhead in terms

of the formula length, which is the price to pay for the convenience of using ∃MSO. As seen in Section 4.3, experiments show

that a worst-case quadratic overhead can in practice be linear.
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Fig. 2. Extended constraint dag of ∃S∃T∃V� under the configuration k of Example 8. The dag contains penalty information (shaded sets) as well as delta

sets with add and dropmoves.
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Algorithm 5 Private collect method for ∃MSO constraints

1: function collect(�)(S, k,M) : K×Z
2: case � of

3: ∃S1 · · · ∃Sn(φ) : return collect(φ)(S, k,M)

4: | ∀x(φ) :

5:

return {(flip(S,u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }
∪

{
(transfer(S,u, T)(k), δ) | transfer(S,u, T)(k) ∈ M ∧
δ = transfer(S,u, T)(k) � collect(φ)(S, k,M)

}
∪ {(swap(S,u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }

6: | φ ∧ ψ :

7: if S ∈ vars(φ) ∩ vars(ψ) then

8:

return {(flip(S,u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }

∪
⎧⎨
⎩
(transfer(S,u, T)(k), δ) | transfer(S,u, T)(k) ∈ M ∧
δ = transfer(S,u, T)(k) � collect(φ)(S, k,M) +
transfer(S,u, T)(k) � collect(ψ)(S, k,M)

⎫⎬
⎭

∪ {(swap(S,u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }
9: else if S ∈ vars(φ) then

10:

return {(flip(S,u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }

∪
⎧⎨
⎩
(transfer(S,u, T)(k), δ) | transfer(S,u, T)(k) ∈ M ∧
δ = transfer(S,u, T)(k) � collect(φ)(S, k,M) +
add(T ,u)(k) ��|{add,drop}(ψ)(k)

⎫⎬
⎭

∪ {(swap(S,u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }
11: else (∗ symmetric to the case when S ∈ vars(φ) ∗)
12: end if

13: · · · (∗ omitted cases ∗) · · ·
14: | x ∈ S :

15:

return {(flip(S,u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }
∪ {(transfer(S,u, T)(k), 1) | transfer(S,u, T)(k) ∈ M}
∪ {(swap(S,u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }

16: end case

17: end function

The genericmember({�}↓
k
)(�, k)method takes two configurations � and k and returns true if and only if � ∈ {�}↓

k
. If � is an

add or dropmove, then the result is obtained directly from�|{add,drop}(�)(k) (lines 3 and 4). Otherwise, the result is obtained

from a call collect(�)(S, k, {�}), where S is the variable affected by the move from k to � (lines 5–7). Since �|{add,drop}(φ)(k) is
represented extensionally for each subformula, we access it in constant time.

The generic iterate({�}↓
k
)(S, k, σ) method takes a set variable S, a configuration k, as well as a function σ , and applies σ

to each move in {�}↓
k
involving S. This set is obtained from a union of the extensionally represented �|{add,drop}(�)(k) and

the result of a call collect(�)(S, k,M), where M is the set of all moves involving S. We use M|S to denote the deltas in M

involving S.

Given an ∃MSO constraint �, the time complexities ofmember and iterate are both at worst proportional to the length of

�, since both call collect.

6. Conclusion

In summary, we have first revisited the exploration of constraint-directed neighbourhoods, where a (small) set of con-

straints is pickedbefore considering theneighbouring configurationswhere those constraints have adecreased (or preserved,

or increased) penalty. Given the semantics of a built-in constraint, or just a formal specification of a new constraint, neigh-

bourhoods consisting only of configurations with decreased, preserved, or increased penalty can be represented via new

methods for constraint objects. We have then presented a prototype implementation of the corresponding methods in

our local search framework and, using these new methods, have shown how some local search algorithms are simplified,

compared to using just a variable-directed neighbourhood.

In terms of related work, the constraint objects of [5,4] have the methods getAssignDelta(x, v) and getSwapDelta(x1, x2) in

their interface, returning the penalty increases upon the (scalar) moves x := v and x1 :=: x2, respectively. Although it is pos-

sible to construct decreasing, preserving, increasingneighbourhoodsusing thesemethods, the signs of their penalty increases

are not known in advance. So if one wants to construct, say, a decreasing neighbourhood (as done in the

procedure constraintDirectedSearch in [4, p. 68], for example), then onemay have to iterate overmanymoves that turn out

to benon-decreasing. This contrasts using themethods for representing constraint-directedneighbourhoodsproposed in this

article, where it is known in advance that exploring the decreasing neighbourhood, say, will only yield moves with a lower
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Algorithm 6 Genericmember and iterate methods for ∃MSO constraints

1: function member({�}↓
k
)(�, k) : boolean

2: case � of

3: add(S, v)(k) : return � ��|{add,drop}(�)(k) < 0

4: | drop(S,u)(k) : return � ��|{add,drop}(�)(k) < 0

5: | flip(S,u, v)(k) : return � � collect(�)(S, k, {�}) < 0

6: | transfer(S,u, T)(k) : return � � collect(�)(S, k, {�}) < 0

7: | swap(S,u, v, T)(k) : return � � collect(�)(S, k, {�}) < 0

8: end case

9: end function

10: procedure iterate({�}↓
k
)(S, k, σ )

11: D← �|{add,drop}(�)(k)|S ∪ collect(�)(S, k, {� | � ∈ N(vars(�))(k)|S})
12: for all (�, δ) ∈ D do

13: if δ < 0 then σ(�) end if

14: end for

15: end procedure

penalty. Of course, using the invariants of Comet, it is possible to extend its constraint interfacewithmethods similar to those

proposed in this article, thus achieving similar results in the (scalar) Comet framework. Conducting payoff experiments (like

the ones of Section 4.3)within the Comet framework is considered future work, while comparisons between the frameworks

are beyond the purpose of this article.

In [19], it is shown that the semantics of the constraints can be used to derive suitable neighbourhoods for some models,

but that work is orthogonal to ours, which is concerned with a general framework for the implementation and analysis of

constraint-directed neighbourhoods.

In [20], it is also suggested that global constraints can be used in local search to generate heuristics to guide search;

however, that work differs in that the provided heuristics are defined in an ad-hoc manner for each constraint.

In this article we have started to explore new directions in automatic neighbourhood generation for local search, and

there are still many directions for future work.

First, considering that flip, transfer, and swap moves essentially are transactions over add and drop moves, it should be

possible to assist the designer of a constraint object by inferring the constraint-directed neighbourhoods for the former

compound moves from the latter atomic moves.

Also, in this article, we just precompute the sign of the penalty change for built-in constraints in our constraint-directed

neighbourhoods, but it should be possible to precompute the actual value of that change, as we have already done for the

primitive predicates of ∃MSO in Definition 6. Then, upon adding the built-in constraints as further base cases both to the

BNF grammar of ∃MSO in Fig. 1 and to the inductive definition of �(�)(k) in Definition 6, the step cases of Definition 6

enable the precomputation of the penalty change of an arbitrary ∃MSO formula over constraints. For instance, noting

that Partition(X ,Q )
def= AllDisjoint(X) ∧ Union(X ,Q ), we could then precompute the constraint-directed neighbourhoods of

Partition from those of AllDisjoint (in Example 9) andUnion (not listed here). Also, the preserving neighbourhood
=
k
in line 4

of Algorithm 2 then does not need to be calculated dynamically as
⋂

c∈
{c}=k but could be statically precomputed.

Further, in line 4 of Algorithm 2, instead of choosing a neighbour in the preserving neighbourhood 
=
k

minimising

penalty(�)(k), one might choose a neighbour in 
=
k
∩�↓

k
, by representing the intersection of the moves preserving the

penalty of 
 and the moves decreasing the penalty of �, if that intersection is non-empty, thereby saving at each iteration

the consideration of the non-decreasing moves on �.

Finally, the neighbourhoods of Definition 4 should be parametrised by the neighbourhood function to be used, rather

than hardwiring the universal neighbourhood function N(X), and the programmer should be supported in the choice of this

parameter.
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