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Abstract We give an approximate and often extremely fast method of building a
particular kind of portfolio in finance, here called a portfolio design (PD), with
applications in the credit derivatives market, for example when designing collater-
alised debt obligations squared (CDO2) transactions. A PD generalises a balanced
incomplete block design (BIBD) and is usually harder to build. Worse, typical
financial PDs are an order of magnitude larger than the largest BIBDs built so far
by constraint programs, and in practice an optimisation version of the problem of
building PDs has to be solved. Our method is based on embedding small designs,
whose determination is itself a constraint satisfaction problem, into the original
large design. Together with the detection of when a PD might be a BIBD, sym-
metry breaking, extended reuse of previously built PDs, and admissibility checking
during search, the performance of the method becomes good enough for designing
(near-)optimal CDO2 transactions, with sizes common in the credit derivatives
market, within minutes. For example, we optimally build a typical financial PD, which
has over 10746 symmetries, in just a few minutes. The high quality of our approximate
designs can be assessed by comparison with a lower bound on the optimum. Our
designs sufficiently improve the currently best ones so as often to make the difference
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between having and not having a feasible CDO2 transaction due to investor and
rating-agency constraints.

Keywords Financial mathematics · Credit derivatives ·
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1 Introduction

The structured credit market has seen two important new products over the last
decade: credit derivatives and collateralised debt obligations (CDOs). These new
products have created the ability to leverage and transform credit risk in ways not
possible through the traditional bond and loan markets.

CDOs typically consist of a special-purpose vehicle that has credit exposure to
around one hundred different issuers. Such vehicles purchase bonds and loans and
other financial assets through the issuance of notes or obligations with varying levels
of risk. In a typical structure, credit losses in the underlying pool are allocated to
the most subordinated obligations or notes first. A natural progression of the market
has been to use notes from existing CDOs as assets into a new generation of CDOs,
called CDO Squared (CDO2) or CDO of CDO [12].

The credit derivatives market has allowed a more efficient mechanism for creating
CDO2. The idea is to use tranches of credit default swaps instead of notes. The
tranches are chosen from a collection of credits with the level of liquidity and
risk adequate to the potential investors. These transactions are sometimes labelled
synthetic CDO2.

In the creation of a synthetic CDO2, the natural question arises on how to
maximise the diversification of the tranches given a limited universe of previously
chosen credits. In a typical CDO2, the number of available credits ranges from 250 to
500 and the number of tranches from four to as many as 25. The investment banker
arranging for a CDO2 usually seeks to maximise the return of the subordinated notes
under the constraints imposed by the rating agencies and the investors. This is a
challenge that typically is only partially addressed, in part due to the difficulty of
pricing the underlying assets [6].1

In this paper, we analyse the financially relevant abstracted problem of selecting
the credits comprising each of the tranches with a minimal overlap, or maximum
diversification. The minimisation of the overlap usually results in better ratings for
the notes, typically resulting in more efficient structures. The contributions and
significance of this paper are as follows:

– We introduce a new method of building portfolio designs to the finance world,
with practical applications in the credit derivatives market, such as the design
of CDO2 transactions. The method is fully automated, often extremely fast, and

1There are very few publicly accessible papers we can cite in this introduction, as most are
confidential due to the potential financial value of their results.
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builds designs that are as close to the optimum as one is willing to wait for. It
improves on the usual method of ad hoc manual permutations.

– We introduce portfolio designs (PDs) as a new benchmark problem and a new
successful technology transfer to the constraint programming community.

– We present the new concept of design embeddings by generalising the well-known
notion of design multiples, and successfully apply it to solve large PD instances
(near-)optimally.

– We significantly improve the run-times and quality of our previous results in [11],
where the discussed problem was actually originally introduced, using the new
theoretical and modelling results of [16].

The remainder of this paper is organised as follows. In Section 2, we present PDs first
in their financial domain and then in an abstracted way, while introducing necessary
theoretical background and results. Next, in Section 3, we present a sophisticated
method, implemented as a constraint program, for exactly building a PD by global
search. Since this method does not scale for the solution of typical financial instances
of the optimisation version of the problem of building PDs, we introduce in Section 4
a method of approximately building such larger designs, using a notion of embedding
occurrences of smaller designs in a larger one. The determination of the small designs
is itself a constraint satisfaction problem, and they are built using the method of
Section 3. Finally, in Section 5, we conclude, discuss related work, and outline future
work.

All tests were done using SICStus Prolog 3.12.3 on Debian GNU/Linux running
Linux 2.4.18 on an AMD AthlonXP 2400+ CPU with 256MB RAM.

2 Portfolio Designs

After giving a brief introduction to the financial background of our portfolio designs
(PDs) in Section 2.1, we recall balanced incomplete block designs (BIBDs) in
Section 2.2. BIBDs are a special case of PDs and we will sometimes take advantage
of this when building PDs. We present admissibility conditions for the BIBD
parameters in Section 2.3 and discuss the symmetries of the usual model for BIBDs
in Section 2.4. With this background, we can then introduce PDs in Section 2.5,
present an admissibility condition for their parameters in Section 2.6, and discuss the
symmetries and other difficulties of a straightforward model for PDs in Section 2.7.
Finally, we explain the rest of the journey of this paper in Section 2.8.

2.1 Brief Financial Background

Credit derivatives are used in finance to transfer the risk of a specified financial event
happening to a credit asset without transferring the asset itself. A credit default swap
(CDS) is a type of insurance for the holder of a financial asset against some specified
financial event: the protection buyer does regular payments to the protection seller
in exchange for a payment if that event occurs. Let us illustrate this with an example.

Example 1 Consider a small bank that six months ago issued a 3-year-bond of
$1,000,000 to a new IT business, which pays 10% interest per year. The bank has now
become worried that the IT business may not be able to pay back its debt. Therefore



182 P. Flener, J. Pearson, et al.

the bank decides to buy protection against this in the form of a CDS from a derivative
issuer. The bank pays 8% of $1,000,000, i.e., $80,000, divided into quarterly payments
of $20,000 to the derivative issuer. In exchange for this, the derivative issuer refunds
the small bank for its $1,000,000 should the IT business not be able to redeem the
bond (perhaps because of bankruptcy) and the quarterly payments stop. Otherwise
the bank is redeemed by the IT business as if the CDS had not existed, but the
derivative issuer has also made some money at the expense of the bank.

CDSs are the most common credit derivative and naturally the issuers of CDSs
want to minimise their risk by selling on their CDSs. Just like ordinary stock shares
can be lumped together into mutual funds, CDSs can be lumped together into baskets
consisting of different CDSs (with varying risk).

Collateralised debt obligations (CDOs) are credit derivatives that consist of a large
number of other credit derivatives. There are cashflow CDOs, where the underlying
credit derivatives are bonds or loans, and synthetic CDOs, where the underlying
credit derivatives are CDSs.

A CDO is divided into tranches (baskets), each consisting of a fixed-sized subset of
the underlying credit derivatives. Since different tranches consist of different bonds
and loans or CDSs, they have different risks (and potential returns) associated with
them. There are also CDO-squared (CDO2), where the underlying credit derivatives
are also CDO tranches. They are hard to risk-analyse because the same underlying
credit derivative may be available in many tranches.

An investor can choose to invest in a tranche from a CDO that matches the wanted
risk. But sometimes an investor may want to put a part of his money into a high-risk
tranche and another part into a low- or medium-risk tranche. The issuer of a CDO
still wants the investor to invest as much as possible in the issuer’s CDO instead of
looking for another issuer’s CDO.

To be able to convince the investor of this, no two tranches should overlap more
than absolutely necessary, because the investor wants to spread his risks, otherwise
he could invest in just one tranche instead. Hence the question arises of how a CDO
issuer should design a CDO to minimise the overlap between any two tranches. This
is the problem we address in this paper.

2.2 Balanced Incomplete Block Designs (BIBDs)

Balanced incomplete block designs (BIBDs) [3, 13] are extensively studied in com-
binatorial design theory and are used within statistical-experiment design theory, the
study of finite geometries, as well as the construction of error-correcting codes. We
study BIBDs because a portfolio design is a generalisation of a BIBD.

Definition 1 Let V = {1, . . . , v} be any set of v elements, called varieties. Let B =
{1, . . . , b}. A balanced incomplete block design (BIBD) 〈v, b , r, k, λ〉 consists of b
sets B1, . . . , Bb , called blocks, each being a k-element subset of V, with 2 ≤ k < v,2

such that each pair of distinct varieties occurs together in exactly λ blocks. This is
called the balancing condition and we here call λ the overlap.

2If k = v, then it is a complete block design.
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Fig. 1 Incidence matrix for
the BIBD 〈7, 7, 3, 3, 1〉.
Columns represent blocks,
rows represent co-blocks, grey
cells represent Mij = 1, and
white cells represent Mij = 0

Let Vi be the set of the indices of the blocks in which variety i occurs: Vi = { j ∈
B | i ∈ B j}. The Vi are here called co-blocks and all are r-element subsets of B. The
balancing condition can then be reformulated by requiring that any two co-blocks
with distinct indices share exactly λ elements. Formally:

∀ j ∈ B : B j ⊆ V (1)

∀i ∈ V : Vi ⊆ B (2)

∀ j ∈ B : |B j| = k (3)

∀i ∈ V : |Vi| = r (4)

∀i �= j ∈ V : |Vi ∩ V j| = λ (5)

One way of modelling a BIBD is in terms of its incidence matrix, which is a v × b
matrix M, such that the entry Mij at the intersection of row i and column j is 1 if
i ∈ B j (that is j ∈ Vi) and 0 otherwise. Hence blocks are represented by columns and
co-blocks by rows. The constraints (1) and (2) are then unnecessary to state. The
constraints (3), (4) and (5) are then modelled by requiring, respectively, that there
are exactly k ones (that is a sum of k) for each column, exactly r ones (that is a sum
of r) for each row, and a scalar product of exactly λ for any pair of rows with distinct
indices. Figure 1 shows an incidence matrix for the BIBD 〈7, 7, 3, 3, 1〉.

2.3 Admissibility Conditions for BIBDs

There are some interesting properties of BIBDs that we will find useful later in this
paper. Indeed, not all values of the parameters v, b , r, k, and λ result in BIBDs;
actually very few do. The following three conditions are necessary for the parameters
to be able to represent a BIBD:

λ < r (6)

vr = bk (7)

r(k − 1) = λ(v − 1) (8)

Condition (6) says that none of the co-blocks can be equal, while condition (7) is
an application of double counting: the co-blocks and blocks have together the same
number of elements. Condition (8) is also an application of double counting since
the sum of the cardinalities of the intersections between any co-block Vi and all
other co-blocks can be computed in two ways: either by stating that Vi intersects with
cardinality λ with each of the other v − 1 co-blocks, or by summing the cardinalities
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k of the r blocks that contain elements of Vi but subtracting the r elements of Vi

itself. When the parameters satisfy these conditions, they are said to be admissible.
A consequence of the BIBD conditions and admissibility conditions is that any three
of the five BIBD parameters are independent.

But just because the parameters are admissible does unfortunately not always
result in a BIBD. An example of this is v = 22 = b , r = 7 = k, λ = 2, which are
admissible values, and yet there does not exist a BIBD with these parameters. The
problem is that the two equalities (7) and (8) do not capture the fixed overlap
between any two co-blocks with distinct indices, but only the sum of the overlaps
between a particular co-block and all other co-blocks. The pairwise overlap between
any two co-blocks with distinct indices is captured by the product of the incidence
matrix M and its transpose MT :

MMT =

⎛
⎜⎜⎜⎜⎝

r λ λ · · · λ

λ r λ · · · λ

λ λ r · · · λ

· · · r ·
λ λ λ · · · r

⎞
⎟⎟⎟⎟⎠

From this matrix, Fisher’s inequality for BIBDs can be derived:

Proposition 1 (Fisher [13]) For any BIBD 〈v, b , r, k, λ〉 we must have

b ≥ v (9)

Also, when the incidence matrix M is square, that is when v = b , the determinant
of MMT and Lagrange’s four-squares theorem can be used to prove the following
proposition:

Proposition 2 (Bruck-Ryser-Chowla [13]) For any BIBD 〈v, b , r, k, λ〉 with v = b, we
must have

for v even: ∃x ∈ Z : x2 = k − λ (10)

for v odd: ∃x, y, z ∈ Z : z2 = (k − 1)x2 + (−1)(v−1)/2λy2, with x �= 0 (11)

Using this last proposition, we see that no BIBD 〈22, 22, 7, 7, 2〉 can exist. Still,
all these conditions are only necessary and not sufficient, so we can use them only
to refute parameters that cannot result in a BIBD, but when all these conditions
hold we still do not know if the BIBD exists or not. An example of this is the
BIBD 〈111, 111, 11, 11, 1〉, whose parameters fulfil all of the conditions above, in-
cluding (11) (with x = 1 = y and z = 3), but no BIBD with these parameters exists.

Sufficient conditions for the existence of a BIBD are unfortunately not known. All
information from the matrix MMT needs to be captured in conditions with v, b , r,
k, and λ to get sufficient conditions for the existence of BIBDs, not just projections,
such as the determinant, which is used in the propositions above.

In the remainder of this paper, the three conditions of the previous two proposi-
tions are also referred to as admissibility conditions.
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2.4 Symmetries of BIBDs

Since the varieties and block identifiers are indistinguishable, any two rows or
columns of the incidence matrix can be freely permuted. Breaking all the resulting
v!b ! symmetries can in theory be performed, for instance by posting v!b ! − 1 ordering
constraints [5]. In practice, breaking just some of those symmetries by posting just
some of those ordering constraints works quite fine [9]. By simultaneously perform-
ing symmetry-breaking during search [8], but augmenting it with group-theoretical
insights and some heuristics, improvements of another order of magnitude can
be achieved, but only when computing all the designs [15], whereas we are here
interested only in the first design. The designs built in [15] with 4 ≤ v ≤ 25, which is
the range of interest to us, have values of b up to 50, which is an order of magnitude
below our range of interest.

2.5 Portfolio Designs (PDs)

In financial terms, a portfolio design (PD) is a CDO or CDO2 transaction with v

tranches, each consisting of r credit assets (CDSs or bonds and loans) out of a set of
b credit assets, such that any two tranches with distinct indices share at most λ credit
assets [11]. The choice of symbols comes from the close relationship to BIBDs. There
is a universe of about 250 ≤ b ≤ 500 credit assets. A typical portfolio contains about
4 ≤ v ≤ 25 tranches, each of size r ≈ 100. We now define PDs in abstract terms.

Definition 2 Let V = {1, . . . , v} be any set of v elements, called varieties. Let B =
{1, . . . , b}. A portfolio design (PD) 〈v, b , r, λ〉 consists of v sets V1, . . . , Vv , called co-
blocks, each being an r-element subset of B, such that any two co-blocks with distinct
indices share at most λ elements. This is called the balancing condition and we call λ

the maximum overlap.
Let B j be the set of varieties such that block index j occurs in co-block Vi: B j =

{i ∈ V | j ∈ Vi}. The B j are called blocks and are all arbitrary-sized subsets of B.
Formally:

∀ j ∈ B : B j ⊆ V (12)

∀i ∈ V : Vi ⊆ B (13)

∀ j ∈ B : |B j| ≤ v (14)

∀i ∈ V : |Vi| = r (15)

∀i �= j ∈ V : |Vi ∩ V j| ≤ λ (16)

The differences with a BIBD are that any two co-blocks with distinct indices share
at most, rather than exactly, λ elements, and that the cardinalities of the blocks can be
anything in the range 0, . . . , v, rather than exactly some value k. This means that the
admissibility conditions of BIBDs are in general not applicable to PDs. In particular,
unlike in (6), the co-blocks can be equal, hence λ ≤ r. PDs with λ = r are trivial to
build, as it suffices to make all the co-blocks equal. Being thus a generalisation of
BIBDs, some PDs are actually BIBDs. This occurs when b divides rv and any two
co-blocks with distinct indices share exactly λ elements. We will exploit this very
successfully (in Section 3.3).
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Fig. 2 Two incidence matrices
for the PD 〈10, 8, 3, 2〉.
Columns represent blocks,
rows represent co-blocks, grey
cells represent Mij = 1, and
white cells represent Mij = 0

Finding a PD 〈v, b , r, λ〉 is a constraint satisfaction problem. In practice, only the
parameters v, b , and r are known, and a PD with a minimal value for λ is to be found,
which is a constraint optimisation problem.

Definition 3 Let V = {1, . . . , v} be any set of v elements, called varieties. Let B =
{1, . . . , b}. An optimal portfolio design (OPD) 〈v, b , r, λ〉 consists of v sets V1, . . . , Vv ,
called co-blocks, each being an r-element subset of B, such that any two co-blocks
with distinct indices share at most λ elements, where λ is minimal.

Just like a BIBD, an (O)PD is naturally modelled using its v × b incidence matrix,
which has v!b ! symmetries. The constraints (12), (13) and (14) are then unnecessary
to state. The constraints (15) and (16) are then modelled by requiring, respectively,
that there are exactly r ones (that is a sum of r) for each row, and a scalar product
of at most λ for any pair of rows with distinct indices. Figure 2 shows two incidence
matrices for the PD 〈10, 8, 3, 2〉.

2.6 Admissibility Conditions for PDs

We give a lower bound on λ, the maximum number of shared elements between any
two co-blocks with distinct indices in a PD. This lower bound is also applicable to
BIBDs, where its specialisation when b divides rv can be derived using the BIBD
admissibility conditions (7) and (8).

Theorem 1 Let V1, . . . , Vv be r-element sets and B be their union, with b = |B|. If
|Vi ∩ V j| ≤ λ for all i �= j, then3

λ ≥
⌈ rv

b

⌉2
mod (rv, b) + ⌊ rv

b

⌋2
(b − mod(rv, b)) − rv

v(v − 1)
(17)

The proof is long and beyond the scope of this paper, but can be found in [16].
This lower bound is tighter than the one we used in [11] and is equal to it only when
b divides rv. Furthermore, the expression of this new lower bound is never negative,
unlike the previous one, which is negative when b > rv, that is when more elements
are available than needed. This is what suggested that a tighter lower bound ought
to exist. It is an open question whether there is a tighter lower bound that is easy to
compute.

3The result of mod(a, b) is the integer leftover when doing the integer division a/b .



Design of Financial CDO2 Transactions 187

The tighter lower bound means that we can be sure that no design exists for some
PDs that were an open question previously.

Example 2 Consider the OPD 〈10, 350, 100〉: Theorem 1 gives λ ≥ 21.1̄ (and a design
does exist with λ = 22, see Section 4) whereas the bound of [11] only gives λ ≥
20.63. Hence we can now be sure no design with λ = 21 exists, which is a claim
that required a separate proof previously (I.P. Gent and N. Wilson, October 2004,
personal communications to J. Pearson).

However, even this tighter lower bound is not always exact.

Example 3 Consider the OPD 〈10, 8, 3〉: using the bound of [11] we get λ ≥ 0.916̄
while Theorem 1 gives λ ≥ 0.93̄. Consider also the OPD 〈9, 8, 3〉: using the bound
of [11] we get λ ≥ 0.890625 while Theorem 1 gives λ ≥ 0.916̄. However, it is not
difficult to show (with the method to be presented in Section 3) that there are no
ten or even nine subsets of size 3 in an eight-element set that such that any two of
them share at most λ = 1 element. In fact, these two OPDs are at best built with
λ = 2; some of the co-blocks of such optimal designs share only one element, as can
be seen in Fig. 2. (This example will be continued in Example 4.)

It is tempting to think that bounds can be similarly obtained on the block sizes.
Indeed, a PD 〈v, b , r, λ〉 becomes a BIBD if b divides rv and any two co-blocks
with distinct indices share exactly (rather than at most) λ elements: the integer value
k = rv

b is then obtained via the BIBD admissibility constraint (7). In case b does
not divide vr, no PD constraint forces the credit assets to spread in some manner
over the co-blocks, so that we do not necessarily have, as in the right-hand incidence
matrix of Fig. 2, that  rv

b � ≤ k ≤ � rv
b � for every block size k. Indeed, we have built PDs

where the block sizes are distributed over the entire 1, . . . , v range: see the left-hand
incidence matrix of Fig. 2.

It is also tempting to think that it is sufficient to find co-blocks whose pairwise
overlaps are all exactly λ, rather than at most λ. However, there is no PD 〈10, 8, 3, 2〉
where the pairwise overlaps are all equal to 2, whereas Fig. 2 establishes the existence
of designs where the pairwise overlaps are at most 2.

2.7 Symmetries and Other Difficulties of PDs

The tranches are indistinguishable, and we assume (in a first approximation) that
all the credit assets are indistinguishable. Hence any two rows or columns of the
incidence matrix can be freely permuted, which results in v!b ! symmetries.

PDs do not exhibit optimal sub-structure, in the sense that an optimal design does
not necessarily contain optimal sub-designs, as shown next.

Example 4 (Continuation of Example 3.) Recall the PD 〈10, 8, 3, 2〉 on the left-hand
side in Fig. 2. Note that the block sizes are distributed over the entire 1, . . . , v

range, namely one block each of sizes 1, 5, 6, 10, and four blocks of size 2. Now,
for the PD 〈8, 8, 3, 1〉, it turns out that there are eight subsets of size 3 in an eight-
element set such that the maximum overlap is 1. We can now see why PDs do not
enjoy the optimal sub-structure property: the discussed design 〈10, 8, 3, 2〉 contains
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no eight subsets of size 3 in the eight-element set such that the maximum overlap is 1.
Note that the last four sets each have pairwise overlaps of 1 with four of the first six
sets, while all other pairwise overlaps are 2.

The absence of a constraint on the block sizes—compare the vacuous PD con-
dition (14) with the BIBD condition (3)—makes the PD 〈v, b , r, λ〉 much harder to
build than the BIBD 〈v, b , r, k, λ〉, if such a k exists.

2.8 Roadmap for the Rest of the Paper

The lower bound on λ of Theorem 1 suggests a (naive) method of exactly building
(small) OPDs: set λ to that lower bound and increase it by one each time no
corresponding PD is found (within a reasonable amount of time). However, as
stated above, this method will only work fast enough for OPDs that are one order
of magnitude smaller than typical financial-scale OPDs. In Section 3, we develop
a sophisticated exact method for building (small) PDs, without regard to their
optimality. Using this method, we then devise in Section 4 an approximate method
for building even large PDs that are (near-)optimal, and thereby address the building
of financial-scale OPDs.

3 Exact Building of PDs

We now present a sophisticated method, implemented as a constraint program, for
exactly building a (small) PD by global search, without regard to its optimality. A
first model is introduced in Section 3.1, basically stating the PD constraints (12),
(13), (14), (15), and (16) on the incidence matrix. For a briefer read, proceed directly
to Section 4, skipping the elaborate optimisations described in the remaining sub-
sections. First, static symmetry-breaking constraints and a static variable and value
order are added in Section 3.2 to great effect. Another optimisation concerns BIBDs,
which are a special case of PDs and thus easier to build (though still very hard):
we show how to exploit very successfully this idea in Section 3.3 and refine this in
Section 3.4 by checking against a published list of BIBD-admissible parameters that
are known not to admit BIBDs. A smaller optimisation, discussed in Section 3.5,
fixes the first two rows and the first column of the incidence matrix. Spectacular
improvements are sometimes achieved, as reported in Section 3.6, by checking with
very low overhead whether the incidence sub-matrix that remains to be labelled, as
a PD, satisfies the PD admissibility condition (17). Every PD has a complement PD,
which might be easier to build: we demonstrate the usefulness of this observation in
Section 3.7, but failed to find an automatable heuristic for deciding when to try this.
Finally, in Section 3.8, we show how to exploit the caching of previous results, not
just by exact matches, but also by reusing cached designs for harder instances and by
failing if there is a cached failure for an easier instance.

3.1 Basic Method

As suggested in Sections 2.5 and 2.7, our most basic PD method represents a PD
〈v, b , r, λ〉 by a v × b incidence matrix of zeroes and ones, whose rows are constrained
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Table 1 Performance comparison of limiting the overlaps in different ways

PD Results

v b r λ Backtracks Timeold Timescalar_product Timescalar_product_latest

9 37 12 3 746,750 39.58 24.56 24.42
10 15 6 2 96,822 14.12 4.17 4.33
10 25 8 2 2,492 0.22 0.10 0.09
10 37 14 6 6,932 1.28 0.62 0.63
10 38 10 2 85,238 10.00 5.07 4.95

to have sum r. Three approaches were tried for the constraints that the scalar
products of any two rows with distinct indices be at most λ. The first approach, used
in [11], statically posts reified conjunction constraints between pairs of elements from
the same positions on each row, and constrains the sum of the reified variables to be
at most λ. The second and third approaches dynamically post scalar_product
global constraints [2] during search, either between a newly labelled row and all not
yet labelled rows, or between a row about to be labelled and all previously labelled
rows.

Table 1 shows the performance (in number of backtracks and CPU seconds until
the first design) of the three approaches for a few PDs. Using scalar_product
constraints roughly halves the run-time, probably because this leads to a lot fewer
constraints and hence to less overhead in the finite-domain solver. Delaying con-
straint posting seems to make no difference, probably because propagation for a
constraint is not done until the domain of a variable involved changes.

3.2 Labelling Order and Static Symmetry Breaking

Breaking all the v!b ! symmetries can in theory be performed, for instance by posting
v!b ! − 1 global constraints [2] enforcing the (anti-)lexicographical ordering of vectors
extracted from the incidence matrix ([5, 10]). In practice, as for BIBDs, breaking
just some of those symmetries by just anti-lexicographically ordering the rows (since
PD co-blocks can be repeated in the extreme case where λ = r) as well as anti-
lexicographically ordering the columns (since blocks can be repeated) works quite
fine [9] for values of b up to about 36, especially when labelling in a row-wise fashion
and trying the value 1 before the value 0. However, this is one order of magnitude
below the typical value for b in a financial (O)PD.

In PDs with λ = r the left-most r columns have only ones. They might not seem
very interesting, but they can occur when trying to build OPDs using the method in
Section 4.

3.3 BIBD Detection

As noted in Section 2.5, some PDs are actually BIBDs. This is interesting as BIBDs
are easier to build than PDs because there are constraints on the columns and
because the overlap constraint between co-blocks with distinct indices is an equality
instead of an inequality.
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Table 2 Performance comparison between the BIBD and PD methods for BIBDs

BIBD/PD Building BIBD Building PD

v b r k λ Backtracks Time Backtracks Time

7 7 3 3 1 0 0.00 2 0.00
8 14 7 4 3 57 0.01 209 0.02
9 18 8 4 3 95 0.01 168,384 6.04
9 24 8 3 2 9 0.01 51,487 1.99
10 30 9 3 2 23 0.02 72,795,534 2,984.00

Hence our PD method first tests whether the desired PD could possibly be
a BIBD. If the PD parameters satisfy all the BIBD admissibility conditions of
Section 2.3, then our PD method first tries to build the given PD as a BIBD, and
only if that fails will it try to build it as a PD. If, instead of failing to build a BIBD,
the BIBD method times out, then we assume that the PD method will also time out
when trying to build a PD.

The used BIBD method is the one outlined in Sections 2.2 and 2.4. The BIBD
admissibility checks are more or less free in terms of run-time, but the second part of
Proposition 2, where v is odd, was actually omitted in our implementation. The end
result when the given PD can be a BIBD is a substantial performance increase (in
the number of backtracks and CPU seconds until the first design), as can be seen in
Table 2.

Another option would be to try and change the parameters of a PD 〈v, b , r, λ〉
into parameters for a BIBD 〈v′, b ′, r, k, λ〉 with v′ ≥ v co-blocks, b ′ ≤ b blocks, and
k determined by (7), such that they satisfy the BIBD admissibility conditions. Indeed,
any additional co-blocks of such a BIBD, if it exists, can just be discarded, and any
missing blocks thereof can just be set to the empty sets. For a given PD, we call
such a BIBD an extending BIBD. As can be seen from Table 3, the performance
improvement (in the number of backtracks and CPU seconds the first design) can be
huge, from not being able to build a PD in a CPU hour (hence the question marks
for the numbers of backtracks in the table) to building it in just a few seconds.

3.4 Checking for Known Non-existing BIBDs

As noted in Section 2.3, the BIBD admissibility conditions are necessary but not
sufficient. Therefore, before trying to build a BIBD if the PD parameters satisfy
the BIBD admissibility conditions (as just described in Section 3.3), our PD method
actually checks those parameters against a list of BIBD-admissible parameters that

Table 3 Performance comparison between building the given PD or an extending BIBD

PD Building PD Extending BIBD Building extending-BIBD

v b r λ Backtracks Time v b r k λ Backtracks Time

10 33 15 6 ? >3,600 11 33 15 5 6 29,552 2.79
19 20 9 4 ? >3,600 19 19 9 9 4 11,922 1.29
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are known not to result in BIBDs. We use a sub-list of the parameters published in
([3, 7]), namely those in the ranges we are interested in. If the PD method is given
BIBD-admissible parameters that cannot possibly result in a BIBD, then it directly
tries to build a PD.

In practice, the cases where BIBD-admissible PD parameters are known not to
result in a BIBD are rare. But it is a computationally very cheap check that will
avoid an almost certain time-out, or at least a long computation.

3.5 First-intersection and First-column Optimisations

At least one pair of co-blocks with distinct indices in a PD 〈v, b , r, λ〉 can be made to
share exactly λ elements.

Proposition 3 A PD 〈v, b , r, λ〉 where any two co-blocks with distinct indices actually
share less than λ elements can be turned into a PD 〈v, b , r, λ〉 where at least one pair of
co-blocks with distinct indices shares exactly λ elements.

Proof Consider a PD 〈v, b , r, λ〉 where any two co-blocks with distinct indices
actually overlap over at most λ′ < λ elements. By the full interchangeability of the co-
blocks, we can re-order them to have the observed maximum overlap λ′ between the
co-blocks V1 and V2. By replacing an element of V1, but not of V2, with an element
of V2, the overlap between these two co-blocks is increased by one. Since no other
overlap is increased by more than one when doing this, and since we can repeat this
at worst until λ = r, we have proved the result. ��

To build a PD 〈v, b , r, λ〉, at least one pair of co-blocks with distinct indices can,
by Proposition 3, share exactly λ elements. Because of the full interchangeability of
the co-blocks, we can force them to be the first two co-blocks.

Now consider how our PD method chooses the first two rows initially. For the
first row, it tries with r ones to the left and the remaining elements all zero. For
the second row, it tries with λ ones to the left, resulting in an overlap of λ between
the first two co-blocks, followed by r − λ zeroes, followed by the remaining r − λ

ones, and the remaining elements all zero. See Fig. 3 for an illustration (and ignore
the second sentence of its caption for the time being).

If no design exists with this choice of the first two rows, then the solver backtracks
and chooses another second row. If all choices for the second row fail, then the
solver backtracks and chooses another first row. But any other choice of the first
two co-blocks that has an overlap of λ can always be transformed into the choice
described above by permuting the columns, because of the full interchangeability of
the blocks. Remember that at least one overlap will be λ and that we have this for
the first intersection as described above, so this is no limitation. Hence using another

Fig. 3 The first two rows of a PD 〈v, b , r, λ〉, with v ≥ 2, b = 15, r = 6, and λ = 2. The complement
PD is 〈v, b , b − r, b − 2r + λ〉
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Table 4 Performance comparison between plain building and building with the first intersection and
first column fixed

BIBD Plain building Fix rows 1 and 2 and col. 1

v b r k λ Backtracks Time Backtracks Time

8 14 7 4 3 57 0.01 57 0.00
9 18 8 4 3 96 0.01 95 0.01
9 24 8 3 2 9 0.01 9 0.01
10 30 9 3 2 23 0.01 23 0.02
15 21 7 5 2 111,421 12.63 111,400 12.68
19 19 9 9 4 12,294 1.58 11,922 1.38
25 25 9 9 3 46,105 7.16 46,015 6.98

choice for the elements of the first intersection will only lead to testing rows that are
symmetric to rows that have already been tested unsuccessfully. Thus, the choice of
the first two rows in the incidence matrix need never be reconsidered.

Only when there is no design, or when we enumerate all designs, will this
technique give any performance gain, since only then will the solver backtrack all the
way to the choice of the first and second rows. With this technique, fewer rows need
to be tried before the solver can be sure no design exists. The number of available
symmetries to a fully labelled incidence matrix is decreased from v!b ! to (v − 2)!b !,
that is by a factor of v(v − 1).

This technique applies to both PDs and BIBDs. But for BIBDs we can do even
more. The constant column sum of BIBDs and the anti-lexicographical ordering of
their rows imply that the first column must be k ones at the top and the remaining
elements all zero. If this was not the case, then the anti-lexicographical ordering
would not be satisfied. We cannot fix the second column, though, as there is no
constraint between pairs of columns.

By fixing the first column for BIBDs we get a small performance improvement in
some cases, not only when there is no design or when we enumerate all designs.
Table 4 shows the performance impact (in the number of backtracks and CPU
seconds) for finding the first, if any, BIBD. We see that using this optimisation leads
to some small performance gains. For example, for the BIBD 〈15, 21, 7, 5, 2〉, the
number of backtracks decreases slightly. A decrease was to be expected as it is known
that there exists no BIBD with these parameters even though they satisfy the BIBD
admissibility conditions. Of course, we here switched off the checking for known
non-existing BIBDs that was presented in Section 3.4, in order to allow the search
to exhaust all the possibilities for the BIBD 〈15, 21, 7, 5, 2〉 and see what impact the
optimisation has on the performance.

Fixing the first column and the first row (but not the second row) has been done
in [9], but there it was only evaluated as a technique for breaking symmetry in BIBDs
but was not tested together with other symmetry-breaking techniques.

3.6 Checking Admissibility During Search

The anti-lexicographical ordering constraints on rows and columns are not only an
efficient technique to break relatively much symmetry, but they also allow us to use
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Fig. 4 Incidence matrix
for a partially labelled
PD〈10, 15, 6, 2〉. A grey cell
represents a one, a white cell a
zero, and a crossed-out cell an
element that has not been
labelled yet. The bold
rectangle represents the PD
〈7, 13, 6, 2〉, which does not
satisfy the admissibility
condition of Theorem 1, hence
backtracking will occur

this knowledge about how a design must be formed in order to devise a more efficient
method. The previous Section 3.5 showed one application thereof, and we now look
at another, beginning with an example.

Example 5 Consider the partially labelled matrix for the PD 〈10, 15, 6, 2〉 in Fig. 4.
After labelling the first four rows, the solver has reached a state where the first two
columns can no longer be used, since the rows are ordered anti-lexicographically.
Hence any remaining row must consist of elements only in the singled out lower-
right bold rectangle of the incidence matrix. But this part of the matrix must be a PD
on its own and must therefore satisfy the admissibility condition of Theorem 1, with
the same λ and r, but b and v decreased accordingly, giving the PD 〈7, 13, 6, 2〉. In
this case, that condition is not satisfied as we get λ ≥ � 16

7 � = 3, but we are trying to
build this design with λ = 2.

The technique above works for any PD or BIBD. After labelling a row, the solver
looks in what column it has its first element, as any column to the left thereof is then
unusable. For the resulting sub-design with the newly labelled row as the first row,
and possibly fewer columns, the admissibility condition of Theorem 1 is checked. If is
is not satisfied, then we can infer that this last labelled row will never lead to a design
and force the solver to backtrack.

There are two special cases to consider. First, when the last labelled row has no
first element, that is when it is empty, then we cannot do anything. This can only
happen when r = 0, and hence the entire matrix will be empty. PDs with r = 0 occur
sometimes when using the approximate method for OPDs in Section 4. Second, when

Table 5 Performance comparison between switching off and on the admissibility check during search
for the remaining rows and columns

PD Without check With check during search

v b r λ Backtracks Time Backtracks Time

10 15 6 2 96,822 4.33 138 0.01
11 11 5 2 764 0.05 45 0.01
15 15 4 1 3,167,791 279.97 2,335,130 228.99
16 8 3 1 729 0.08 11 0.00
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there is only one row left, then we need not check anything either, since the concept
of overlap with all the remaining co-blocks becomes meaningless.

Table 5 shows the sometimes substantial performance gains (in number of back-
tracks and CPU seconds until the first design) we can get with this technique. Note
that only PDs have been picked for which the technique is useful; many other PDs are
not constrained enough for the admissibility check during search to fail, and hence
for them this check is only a (small) overhead.

3.7 Using the Complement

When the solver has found an incidence matrix representing a PD or BIBD, then
we have actually found another PD as well, namely the complement PD. To get the
complement to a PD or BIBD represented as an incidence matrix, switch every 1 to
a 0 and vice-versa.

For the complement of a PD 〈v, b , r, λ〉, the dimensions of the v × b incidence
matrix are not changed, and the row sum r is replaced by b − r. In addition, the
column sum k of a BIBD 〈v, b , r, k, λ〉 is replaced by v − k in the complement BIBD.
To realise what the maximum (or exact) overlap λ is in the complement PD (or
complement BIBD), look at Fig. 3 again (and ignore the first sentence of its caption).
The value of λ for the complement is the width of the last rectangle, which contains
only non-filled elements. The width of this last rectangle is the total width b minus
the width of each of the other rectangles, hence it is

b − λ − (r − λ) − (r − λ) = b − 2r + λ

To summarise, a PD 〈v, b , r, λ〉 (or BIBD 〈v, b , r, k, λ〉) also yields the complement
PD 〈v, b , b − r, b − 2r + λ〉 (or the complement BIBD 〈v, b , b − r, v − k, b − 2r +
λ〉).

Table 6 shows that the performance impact can be substantial for some PDs. They
are listed in such a way that the complement has a smaller row sum than the original
PD.

Unfortunately, no heuristic for deciding when to build the complement instead
of the given design has been found. Therefore the complement is not tried by our
method, but it can of course be manually fed to it instead of the given design.

However, in the next section, we show that the complement can be automatically
used to increase the performance in other occasions as well.

Table 6 Performance comparison between building the given PD and its complement

PD Building PD Complement PD Building complement PD

v b r λ Backtracks Time v b r λ Backtracks Time

10 38 28 20 1,360,590 91.24 10 38 10 2 85,238 5.01
10 31 22 15 992,711 52.09 10 31 9 15 4,044,363 152.22
10 15 6 2 3,251 0.16 10 15 9 5 138 0.02
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3.8 Caching Results and Extended Cache Lookup

For each PD, our method will either succeed (find a design), or fail (establish that
there is no design), or time out prior to succeeding or failing. Each of these results
is cached, including the incidence matrix for any design, so that if the same design
resurfaces, the method need not tackle it again, but can just look up the result.

This technique can even be extended to further increase the performance of our
method, namely by looking for harder designs that have already been built with
success and that can be adapted to become the wanted design. We assume that fewer
columns always make a design harder to build, so that if a design is found, then so
will the same design with more columns, but in at most as much time. We also assume
that more rows always make a design harder to build, so that if a design is found, then
so will the same design with fewer rows, but in at most as much time. There are thus
two possibilities.

First, if we are to build the PD 〈v, b , r, λ〉 and it is not in the cache, but 〈v, b ′, r, λ〉
with b ′ < b is there as a successfully built design, then the cached design 〈v, b ′, r, λ〉
provides a design 〈v, b , r, λ〉: take the first b ′ columns from 〈v, b ′, r, λ〉 and set the
remaining b − b ′ columns to all zeroes.

Second, if we are to build the PD 〈v, b , r, λ〉 and it is not in the cache, but
〈v′, b , r, λ〉 with v′ > v is there as a successfully built design, then the cached design
〈v′, b , r, λ〉 provides a design 〈v, b , r, λ〉: take the first v rows from 〈v′, b , r, λ〉 and
ignore the remaining v′ − v rows.

We can also do the converse, namely by looking for easier designs that have
already been tried without success (with failure or time-out). We assume that more
columns always make a design easier to build, so that if a design is not found prior
to time-out, then so will the same design with fewer columns, but in at least as much
time. We also assume that fewer rows always make a design easier to build, so that if
a design is not found prior to time-out, then so will the same design with more rows,
but in at least as much time. There are thus again two possibilities.

First, if we are to build the PD 〈v, b , r, λ〉 and it is not in the cache, but 〈v, b ′, r, λ〉
with b ′ > b is there as a failed or timed-out design, then the solver will fail or time
out on 〈v, b , r, λ〉 as well, under at least the same time-out limit.

Second, if we are to build the PD 〈v, b , r, λ〉 and it is not in the cache, but
〈v′, b , r, λ〉 with v′ < v is there as a failed or timed-out design, then the solver will
fail or time out on 〈v, b , r, λ〉 as well, under at least the same time-out limit.

We call this technique extended cache lookup. When approximately building large
OPDs by embedding small PDs (see Section 4), it is common for the same PDs to
appear several times, and also for PDs of roughly the same size to appear many
times, so this technique will have a large impact on the performance of that method.

This extended cache lookup is implemented separately from the checking for
known non-existing BIBDs described in Section 3.4, even though nothing would
prevent us from merging the two. In our method, the parameters are first checked
against the cache. If they are not found in the cache, then they are checked against
the list of parameters that are known not to result in a BIBD. If they are not there
either, then our method tries to build a PD, which will result in a new entry in the
cache.

Finally, we can make use of the complement concept in Section 3.7 again. If the
extended cache lookup cannot find a design, then an extended cache lookup is done
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for the complement instead, and only if this also fails does the method need to try
and build a PD.

4 Approximate Building of OPDs

The method of Section 3 for exactly building PDs does not scale for the building
of typical financial OPDs. In Section 4.3, we introduce a method of approximately
building such large OPDs, using the exact PD method of Section 3. It rests on two
key insights, explained in Sections 4.1 and 4.2.

4.1 Underconstrainedness

The first insight comes from observing that the typical values of v (the number of
co-blocks) are quite small for the typical values of b (the number of blocks) and r
(the size of the co-blocks), as shown in the following example.

Example 6 The first three columns of Table 7 chart how the lower bound on λ

evolves with v ≥ 2 according to the PD admissibility condition (17) when b = 350
and r = 100. The lower bound on λ initially grows from 0 for v = 2, to between 9
and 26 for the typical values of v (which are between 4 and 25), but does not grow
much after that; in fact, it never exceeds 29, which it reaches for v = 127. This effect
is exacerbated for smaller values of b and r, as shown in the fourth and fifth columns
of Table 7.

While this example illustrates a prediction weakness of the lower bound (17) of
Theorem 1 for large values of v, the main lesson is that there is a range for v in which
the lower bound on λ does not change quickly for fixed values of b and r. For the
ranges of values of v, b , and r that are of interest here, v is within that zone.

The consequence is that the PDs of interest here seem underconstrained in the
sense that one may get (many) more than the intended v co-blocks of the same size
r from the same universe of b credit assets, without seeing the maximum overlap
λ of the co-blocks increase. Dually, one may draw the intended v co-blocks of the
same size r from a (much) smaller universe than the available b credit assets, without
seeing the maximum overlap λ of the co-blocks increase. For instance, Theorem 1
predicts that v = 10 co-blocks of r = 100 credit assets each may be drawn with a
maximum overlap λ = 22 from a universe of 337 ≤ b ≤ 351 credit assets. Again, this
effect is exacerbated for smaller values of b and r. This underconstrainedness may
lead to considerable combinatorial explosion. In fact, we have been unable to build
any PDs of the magnitude considered here with the BIBD-style method outlined in
Section 3, even when setting a quite high value for λ and allocating an entire CPU
week. Labelling just one row of the incidence matrix already tends to take a lot of
time after the first few rows.
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Table 7 Unrounded and rounded lower bounds on the maximum overlap λ for v ≥ 2 co-blocks and
b blocks of size r, as given by the PD admissibility condition (17)

b = 350 and r = 100 b = 35 and r = 10

Unrounded Rounded Unrounded Rounded Time Backtracks
lower bound lower bound lower bound lower bound to first to first

v on λ on λ on λ on λ design design

2 0.000 0 0.0000 0 0.01 0
3 0.000 0 0.0000 0 0.00 0
4 8.333 9 0.8333 1 0.01 1
5 15.000 15 1.5000 2 0.02 184
6 16.667 17 1.6667 2 0.05 658
7 16.667 17 1.6667 2 0.08 921
8 19.643 20 1.9643 2 0.34 8,872
9 20.833 21 2.0833 3 0.04 566
10 21.111 22 2.1111 3 0.07 567
11 21.818 22 2.1818 3 0.08 567
12 22.727 23 2.2727 3 0.09 663
13 23.077 24 2.3077 3 0.14 1,878
14 23.077 24 2.3077 3 0.14 2,038
15 23.810 24 2.3810 3 0.19 2,245
16 24.167 25 2.4167 3 0.45 9,331
17 24.265 25 2.4265 3 0.52 10,221
. . . 25 3
22 25.325 26 2.5325 3 1.26 16,078
. . . 26 3
29 26.108 27 2.6108 3 3.33 35,305
. . . 27 3
46 27.005 28 2.7005 3 ? ?
. . . 28 3
127 28.009 29 2.8009 3 ? ?
. . . 29 3

4.2 Embeddings

The second insight is that building optimal designs is not always practical. As shown
below, we can often very efficiently build real-life financial PDs with values for λ that
are within 5% of, if not identical to, the lower bound given by the PD admissibility
condition (17). So we investigate the approximate building of real-life financial
OPDs. The idea is to embed small PDs within a large one, as illustrated in the
following example.

Example 7 A not necessarily optimal PD for the OPD 〈10, 350, 100〉 can be built
by making ten copies of each column in any possibly optimal PD for the OPD
〈10, 35, 10〉. The fifth column of Table 7 gives λ ≥ 3 for the OPD 〈10, 35, 10〉. Building
the PD 〈10, 35, 10, 3〉 with the BIBD-style method in Section 3 takes about 0.07 CPU
seconds and 567 backtracks to succeed. Since 10 · 3 = 30, this means that we can build
from it a PD 〈10, 350, 100, 30〉. Since the third column of Table 7 gives λ ≥ 22 for the
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OPD 〈10, 350, 100〉, the built PD with λ = 30 is quite far above that lower bound and
may thus be sub-optimal. (This example will be continued in Example 9.)

This kind of embedding is a standard concept for BIBDs [3].

Definition 4 A BIBD 〈v, b , r, k, λ〉 is an m-multiple BIBD if 〈v, b
m , r

m , k, λ
m 〉 parame-

terises a BIBD under the constraints (1), (2), (3), (4), and (5).

In other words, shrinking the number of blocks by a factor m shrinks the sizes of
the co-blocks and their overlaps by the same factor m (provided they all divide m).
The corresponding concept for PDs has a similar definition.

Definition 5 A PD 〈v, b , r, λ〉 is an m-multiple PD if 〈v, b
m , r

m , λ
m 〉 parameterises a PD

under the constraints (12), (13), (14), (15), and (16). We denote this by 〈v, b , r, λ〉 =
m · 〈v, b

m , r
m , λ

m 〉.

For OPDs, we can only compare the predicted lower bounds on their maximum
overlaps, rather than the actual maximum overlaps as for PDs. The following
property establishes that the same ratio holds between those lower bounds.

Observation 1 The PD admissibility condition (17) predicts λ ≥ μ for the OPD
〈v, b , r〉 if and only if it predicts λ ≥ μ

m for the OPD 〈v, b
m , r

m 〉.

Example 8 Table 7 confirms the ratio of 10 between the unrounded lower bounds on
λ for the OPDs 〈v, 350, 100〉 and 〈v, 35, 10〉, with v ≥ 2.

However, a PD is not always an exact multiple of another PD. We advocate
generalising the notion of multiples of a design and here do so for PDs. Let us first
show the intuition on an example.

Example 9 (Continuation of Example 7.) Reconsider the 〈10, 350, 100, λ〉 PDs. They
are not 12-multiples of any PD as 12 does not divide both 350 and 100. Since
350 = 12 · 27 + 26 and 100 = 12 · 8 + 4, a not necessarily optimal PD 〈10, 350, 100, λ〉
can be built by making 12 copies of each column in any possibly optimal PD
〈10, 27, 8, λ1〉 and appending any possibly optimal PD 〈10, 26, 4, λ2〉. The admissi-
bility condition (17) gives λ1 ≥ 2 and λ2 ≥ 1. Building the PDs 〈10, 27, 8, 2〉 and
〈10, 26, 4, 1〉 with the BIBD-style method in Section 3 takes about 0.03 CPU seconds
and 69 backtracks total to succeed. Since 12 · 2 + 1 = 25, this means that we can build
from them a PD 〈10, 350, 100, 25〉. Since the third column of Table 7 gives λ ≥ 22 for
the OPD 〈10, 350, 100〉, the built PD with λ = 25 is still a bit above that lower bound
and may be sub-optimal. (This example will be continued in Example 10.)

Let us now formalise all the intuitions from this example.

Definition 6 A PD 〈v, b , r, λ〉 embeds m occurrences of a PD 〈v, b 1, r1, λ1〉 and
one occurrence of a PD 〈v, b 2, r2, λ2〉, which is denoted by 〈v, b , r, λ〉 = m ·
〈v, b 1, r1, λ1〉 + 〈v, b 2, r2, λ2〉, if it is built from m copies of each column of
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〈v, b 1, r1, λ1〉 and one copy of each column of 〈v, b 2, r2, λ2〉, modulo row and column
swaps.

This definition implies that the following four conditions hold:

0 ≤ ri ≤ bi ≥ 1 for i = 1, 2 (18)

b = mb 1 + b 2 (19)

r = mr1 + r2 (20)

λ ≤ mλ1 + λ2 (21)

The condition (18) ensures that the co-blocks can be subsets of B, for each of
the two embedded PDs. It also eliminates the two cases (bi = 0) where the PD
admissibility condition (17) cannot be evaluated. The conditions (19) and (20) ensure
that the embedding is exact. The reason why there is an inequality in condition (21)
is that λ is the maximum overlap. Consider v = 3 and m = 1: the first embedded
PD may have 1, 1, 2 as overlaps, and the second embedded PD may have 1, 2, 1 as
overlaps, both with a maximum of 2, giving 1 + 1, 1 + 2, 2 + 1 as overlaps for the
embedding PD, with a maximum of 3, which is less than the upper bound 1 · 2 + 2 = 4
given by condition (21). For this reason, the calculated maximum overlap λ = 25 of
the embedding PD in Example 9 is in fact a predicted upper bound, rather than
necessarily the exact value as stated there. Hence it is in general better to use the
actually observed value of λ of the embedding PD than the predicted upper bound
given by condition (21). In that example, observation establishes that λ = 25 indeed.

Note that this embedding by vertical division of the incidence matrix is possible
because of the currently assumed full column symmetry of the latter and because no
PD constraint works against it. However, an embedding by horizontal division of the
incidence matrix will lead to identical rows, that is worst-case designs (λ = r).

4.3 Approximate Building

Given a (financial-scale) OPD 〈v, b , r〉, the issue now becomes how to construct
suitable PD embeddings, so that a PD 〈v, b , r, λ〉 with λ (near-)optimal can be built
efficiently. An additional input is an admissible value � of λ that we are trying to
match or undercut, say because it is one unit lower than the observed value of λ for
the currently best PD, or one unit lower than the predicted upper bound on that
value, as determined by condition (21).

The objective is to find values for m, b 1, r1, b 2, and r2 such that 〈v, b , r, λ〉 =
m · 〈v, b 1, r1, λ1〉 + 〈v, b 2, r2, λ2〉, where λ ≤ � and λi is the rounded lower bound
given for v, bi, ri by the PD admissibility condition (17). Two heuristic constraints in
addition to the four conditions (18) to (21) become necessary in order to make the
method pragmatic.

First, we must restrict the focus to the pairs of embedded PDs that have a chance
of leading to a PD whose maximum overlap does not exceed �:

mλ1 + λ2 ≤ � (22)
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Indeed, the left-hand side is by condition (21) the predicted upper bound on
the maximum overlap of the embedding PD built from the two embedded PDs
〈v, bi, ri, λi〉, if they exist. In practice, it is usually equal to the observed maximum
overlap of such an embedding PD, hence this constraint. Note that this constraint
implies that m ≤ �.

Second, knowing that PDs with values of b up to a threshold T ≈ 36 can often
be built (quite quickly) using the BIBD-style method in Section 3, the objective in
choosing the parameters of the embedding is to have both embedded PDs within that
range for b :

bi ≤ T for i = 1, 2 (23)

where T is the last input to our OPD method. Good values of T are between 20 and
40 when 10 ≤ v ≤ 20.

Note that the determination of candidate embeddings is thus itself a constraint
satisfaction problem.

There is no guarantee that all PDs with b ≤ T can be built sufficiently quickly. For
instance, the sixth and seventh columns of Table 7 chart the CPU times in seconds
and backtracks for 〈v, 35, 10, λ〉 for v ≥ 2 and λ equal to the rounded lower bound in
the fifth column. The experiments were conducted using the BIBD-style method in
Section 3. A question mark means that we stopped the method after one CPU hour.
We observe that for any range of values of v where the rounded lower bound on λ

remains the same, the runtimes increase with v. In other words, they increase when
the rounding distance for the lower bound on λ decreases. This may not always be the
case. The same pattern can be observed for the number of backtracks. The rounding
distance seems to be a good indicator of the constrainedness of a PD. A good
heuristic then seems to be that we should favour embeddings where both embedded
PDs have not too small rounding distances. In our observation, for the typical values
of v, PDs with rounding distances below 0.15 are often problematic. Hence we also
advocate ordering the embedded PD pairs that satisfy the constraints (18), (19), (20),
(21), (22), and (23) by decreasing rounding distance to the next integer for λ1, so
that the apparently easier PD pairs are attempted first. Setting a time limit on each
attempt is another useful refinement. Let us now illustrate this method, summarised
in Algorithm 1, which is non-deterministic.

Algorithm 1 Approximate building of OPDs

Require: v, b , r,�, T, time-out
m, b 1, r1, λ1, b 2, r2, λ2 := solve((18)–(23))
if v, b 1, r1, λ1 := solve((12)–(16)) and v, b 2, r2, λ2 := solve((12)–(16)) then

return m · 〈v, b 1, r1, λ1〉 + 〈v, b 2, r2, λ2〉
end if

Example 10 (Continuation of Example 9.) Let us try and improve on the possibly
sub-optimal PD with λ = 25 = � + 1 previously obtained for the OPD 〈10, 350, 100〉.
The embeddings satisfying the constraints (18), (19), (20), (21), (22), and (23) with
T = 36 are given in Table 8, ordered by decreasing rounding distance to the next
integer for λ1. Setting a time limit of 5 CPU minutes, we now attempt to build the
PDs in the second and fourth columns, proceeding row by row.
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Table 8 Embeddings of 〈10, 350, 100〉 satisfying the constraints (18), (19), (20), (21), (22), and (23)
for � = 24 and T = 36, ordered by decreasing rounding distance to the next integer for λ1

m 〈v, b 1, r1, λ1〉 Unrounded λ1 〈v, b 2, r2, λ2〉 Unrounded λ2 mλ1 + λ2

10 〈10, 32, 09, 2〉 1.867 〈10, 30, 10, 3〉 2.667 23
11 〈10, 31, 09, 2〉 1.933 〈10, 09, 01, 1〉 0.022 23
11 〈10, 30, 09, 2〉 2.000 〈10, 20, 01, 0〉 0.000 22

For the first embedding, it only takes about 0.76 CPU seconds and 13, 152
backtracks total to build its two PDs. Hence we can build a PD 〈10, 350, 100, λ〉 from
ten copies of the PD 〈10, 32, 9, 2〉 and one copy of the PD 〈10, 30, 10, 3〉; it has a
predicted and observed maximum overlap λ = 10 · 2 + 3 = 23, which is better than
the PD in Example 9.

For the second embedding, it takes about 157 CPU seconds and about 4 · 106

backtracks (mostly because of the first embedded PD, as the second one has λ2 = r2

and is thus trivial to build). We get another design of predicted and observed
maximum overlap λ = 11 · 2 + 1 = 23.

The third embedding is very interesting. Building its first embedded PD can be
tried as a BIBD with blocks of fixed size k = 3 = r1v

b and pairwise overlaps of exactly
λ1 elements (rather than at most λ1 elements), as the unrounded λ1 is a natural
number, namely 2, and as b 1 divides r1v. The additional constraint (3) on the block
sizes and the requirement of exact rather than bounded overlaps give very good
propagation. With this detection of potential BIBDs switched on (see Section 2.4),
our PD method builds this PD in about 0.02 CPU seconds and 23 backtracks; with this
detection switched off, it takes about 3, 000 CPU seconds and 73 · 106 backtracks on
the corresponding PD, which does not have that constraint (see Table 2). The second
embedded PD is trivial (in the sense that there are at least as many credit derivatives
as in the union of the requested co-blocks) since r2v ≤ b 2 and is built in about 0.01
CPU seconds and 0 backtracks. Hence we can build a PD 〈10, 350, 100, λ〉, given in
Fig. 5, from 11 copies of the PD 〈10, 30, 9, 2〉 and one copy of the PD 〈10, 20, 1, 0〉; it
has a predicted and observed maximum overlap λ = 11 · 2 + 0 = 22 and is optimal,
as (17) gives λ ≥ 22. Note that the last 10 blocks are empty in this PD.

Some of our experiments are summarised in Table 9, for typical financial OPDs.
We always initially set � to the lower bound given by Theorem 1. For the three
first OPDs we used T = 36, while for the remaining two OPDs we had to use a
higher threshold, for instance T = 72 here, to get any embeddings at all. We used

Fig. 5 Optimal portfolio design 〈10, 350, 100〉, built from 11 · 〈10, 30, 9, 2〉 + 〈10, 20, 1, 0〉, and of
maximum overlap 11 · 2 + 0 = 22
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Table 9 Some attempts at building optimal portfolio designs by embeddings

OPD
〈v, b , r〉

Bound (17) � T m · 〈v, b 1, r1, λ1〉
+ 〈v, b2, r2, λ2〉

Observed
overlap

Run time

〈10, 350, 100〉 22 22 36 11 · 〈10, 30, 09, 2〉
+ 〈10, 20, 01, 0〉

22 0.02

〈09, 300, 100〉 25 25 36 24 · 〈09, 12, 04, 1〉
+ 〈09, 12, 04, 1〉

25 0.00

〈10, 325, 100〉 24 24 36 10 · 〈10, 30, 09, 2〉
+ 〈10, 25, 10, 4〉

24 0.17

〈10, 360, 120〉 32 32 72 12 · 〈10, 25, 08, 2〉
+ 〈10, 60, 24, 8〉

32 68.91

〈15, 350, 100〉 24 24 72 05 · 〈15, 60, 17, 4〉
+ 〈15, 50, 15, 4〉

− > 3, 600.00

24 72 09 · 〈15, 33, 09, 2〉
+ 〈15, 53, 19, 6〉

− > 3, 600.00

25 72 · · · − > 3, 600.00

26 72 06 · 〈15, 50, 15, 4〉
+ 〈15, 50, 10, 2〉

26 864.00

a time-out of one CPU hour and report run times in CPU seconds until the first
built design. As can be seen, an optimal design for the last instance eluded even the
embedding-based approach under these parameters, even though it is known to exist
[1]. Even setting � = 25 did not help under these settings. Fortunately, for � = 26, a
candidate embedding led to success before time-out.

5 Conclusion

Summary We have given an approximate and often extremely fast method, im-
plemented as a constraint program, of building (near-)optimal portfolio designs
(OPDs), with a financial application in designing CDO2 transactions in the credit
derivatives market. Their corresponding satisfaction designs, namely portfolio de-
signs (PDs), generalise balanced incomplete block designs (BIBDs). However, typ-
ical financial PDs are an order of magnitude larger than the largest BIBDs built so
far by constraint programs, and PDs lack a counterpart of a crucial BIBD constraint.
Hence current BIBD-style methods are not suitable for real-life financial OPDs. Our
method is based on embedding (multiple copies of) independent designs into the
original design. Their determination is itself a constraint satisfaction problem. The
high quality of our approximate designs can be assessed by comparison with a lower
bound on the maximum overlap.

Generalisation The generalisation of the main idea is as follows, in the context of
a large instance of a constraint optimisation problem (COP) where a bound on the
cost can be somehow calculated. One can then solve the corresponding constraint
satisfaction problem (CSP) instances for costs satisfying that bound in order at
least to get good feasible solutions to the original COP instance. The idea is to
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embed several independent small CSP instances Pi within a large CSP instance P
corresponding to the given COP instance. This approximation amounts to restricting
the search space to feasible solutions of a given structure. For an OPD 〈v, b , r〉, that
structure is dictated by 〈v, b , r, λ〉 = m · 〈v, b 1, r1, λ1〉 + 〈v, b 2, r2, λ2〉. A solution S to
P can then be built from solutions Si to the Pi. If there is a relationship between the
costs of S and the Si, then this relationship can be used to determine CSP instance
candidates for the Pi, via another CSP, using as cost estimates the calculated bounds
on the costs of the corresponding COP instances. For OPDs, this relationship is given
by λ ≤ mλ1 + λ2.

Related Work The idea of exploiting independent sub-problems also underlies Tree-
based Russian Doll Search [14]. The idea of embedding (multiple copies of) sub-
problem instances into a larger problem instance is related to the concept of abstract
local search [4], where a concrete solution is built from a solution to an abstraction of
the original problem instance and then analysed for flaws so as to infer a new abstract
solution. This works well if the concretisation and analysis steps are tractable and if
the abstraction is optimality preserving, in the sense that optimal concrete solutions
can be built from abstract solutions. Our embedded problem instances can indeed be
jointly seen as an abstraction of the original problem instance. For instance, entire
bundles of credit assets are here abstracted into single super-credit-assets. We have
been unable so far to prove optimality preservation of such portfolio abstractions,
or to find conditions for it. As also observed in [4], this is not problematic for hard
problem instances, such as the typical financial OPDs considered here, where the
utility of abstractions can only be assessed by comparison with other techniques.
In any case, we have seen that our portfolio abstractions lead to solutions that are
extremely close to a lower bound on the maximal overlap.

Also, we have found only one paper taking a constraint programming approach
to portfolio design [17], but the tackled problem there is actually different from ours
and is limited to portfolios consisting of just one tranche.

Future Work The quality of our new, tighter lower bound in Theorem 1 on the
maximal overlap λ of an OPD 〈v, b , r〉 is an open question. For instance, note
that the bottom of Table 7 suggests that an arbitrary error might be achievable for
disproportionately large values of v compared to b and r.

Our notion of embedding can be generalised to any linear combination of several
designs. Indeed, Definition 6 is restricted to embeddings of always two designs,
namely one quotient design and one remainder design, with coefficients m and 1,
respectively. The price to pay for this structural restriction of the search space may
be that a design of optimal maximum overlap eludes us sometimes.

Some additional abstraction may reduce the 0, . . . , v range of observed block
sizes. Indeed, a counterpart of the BIBD constraint (3) might enormously speed
up the building process. The facts that some PDs (such as 〈9, 35, 10, 2〉) take CPU
days to fail while increasing their λ (to obtain 〈9, 35, 10, 3〉 here) then leads to quasi
instantaneous success, and that other PDs (such as 〈10, 30, 9, 2〉) take many CPU
minutes to build while the corresponding BIBDs, if any (〈10, 30, 9, 3, 2〉 here), are
built quasi instantaneously, show that there is still much space for improving our
method. For instance, it would be nice to prove that enforcing  rv

b � ≤ k ≤ � rv
b � for

every block size k does not prevent the existence of PDs. As can be seen in the
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two incidence matrices of Fig. 2, such a constraint leads to a better spread of the
available credit assets over the tranches (which might be desirable from a financial
point of view) and to a better usage of the admissibility check during search proposed
in Section 3.6. This should also help overcome some of the hardness we observed for
OPDs with v ≥ 15 tranches.

Since PDs have overlaps that are at most λ, we can sometimes reorder the rows of
embedded PDs before appending these embedded PDs into the embedding PD, such
that its observed maximum overlap is decreased. Consider again v = 3 and m = 1:
assume both embedded PDs have 1, 1, 2 as overlaps, with a maximum of 2, giving
1 + 1, 1 + 1, 2 + 2 as overlaps for the embedding PD, with a maximum of 4, which is
the upper bound 1 · 2 + 2 = 4 given by condition (21). However, upon reordering the
rows of the second embedded PD such that its overlaps are 1, 2, 1, we get 1 + 1, 1 +
2, 2 + 1 as overlaps for the embedding PD, with a maximum of 3, which is less than
the upper bound 1 · 2 + 2 = 4 given by condition (21).

Our experiments so far with dynamic symmetry-breaking by dominance detection,
using the STAB technique [15], are reported in [16]. The results have been inconclu-
sive, but more work is needed.

Instead of posting for any two co-blocks with distinct indices a constraint on their
intersection size, it would be more efficient to design a global constraint [2] that
maintains the minimum intersection size for a set of co-blocks. A global constraint
would not only reduce the computational overhead, but would possibly be able to do
more propagation.

Finally, it would be interesting to try integer programming (IP) on the (optimal)
portfolio design problem and to test how far it scales, both with and without the
proposed embedding approach. Under standard IP modelling techniques, a total
of bv2 extra variables and 3bv2 channelling constraints have to be introduced to
model in a linear fashion the essentially quadratic logical conjunction inherent in the
co-block intersection constraint. In our preliminary experiments, such an IP model
builds PDs slower (under CPLEX, via OPL 3.7) than our most basic constraint
program (under ILOG Solver, via OPL 3.7) of Section 3.1 with the labelling order in
Section 3.2, but without any of the improvements of Sections 3.2 to 3.8. Improving
that initial IP model is best left to IP experts.

Conclusion and Financial Relevance Our OPD method has eliminated the need
for ad hoc manual permutations when designing CDO2 transactions. On average,
we have found that the maximum overlap in a given financial PD can be decreased
anywhere from 2 to 4% by using the new method. Even though this may not sound
like a dramatic improvement, the ability to reduce the maximum overlap from 25
to 22%, say, may make the difference between having or not having a feasible
transaction due to investor and rating-agency constraints. Issuers of certain types of
financial instruments will benefit directly when their instruments can be made more
attractive.

It should be pointed out that it is easy to reduce the overlap by increasing the
number of available credits. However, such new credits tend to be less known and
thus more difficult to analyse, resulting in less than efficient portfolios.

In practice, the credit assets are not all indistinguishable. A client might have
personal preferences for or against some credit assets, declare some credit assets
as mutually exclusive, and so on. The advantage of our deployment of constraint
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technology is that such specific needs can be neatly handled without having to devise
new (optimal) portfolio design methods from scratch each time. However, such side
constraints may break some of the full column symmetry, so piecewise symmetry
breaking has to be deployed instead. Furthermore, the likely addition of many more
side-constraints will make the problem less and less purely combinatorial, and this is
the typical scenario where constraint programming is expected to be faster or to find
better solutions than rival technologies, such as integer programming.
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