
Inferring Variable Conflicts for Local Search

from High-Level Models

Magnus Ågren, Pierre Flener, and Justin Pearson
Department of Information Technology, Uppsala University

Box 337, SE – 751 05 Uppsala, Sweden
{agren,pierref,justin}@it.uu.se

February 24, 2006

Abstract

For efficiency reasons, neighbourhoods in local search algorithms are often shrunk by
only considering moves modifying variables that actually contribute to the overall penalty.
These are known as conflicting variables. This is a well-known technique for speeding up
search. State-of-the-art solutions to, e.g., the progressive party problem exploit this with
great success. We propose a way of automatically and incrementally measuring the conflict
of a variable in a local search model and apply this to the set variables of models expressed in
existential second-order logic extended with counting (∃SOL+). Furthermore, we show that
this measure is lower-bounded by an intuitive conflict measure, and upper-bounded by the
penalty of the model. We also demonstrate the usefulness of the approach by replacing a built-
in global constraint by a modelled ∃SOL+ version thereof, while still obtaining competitive
results. This is especially attractive when a particular (global) constraint is not built in.

1 Introduction

In local search, it is often important to limit the size of the neighbourhood by only considering
moves modifying conflicting variables, i.e., variables that actually contribute to the overall penalty.
This concentrates the search to moves that may actually decrease this overall penalty. See, e.g., [3]
(where the terminology critical variables is used) or [5].

In local search, it may happen that a suitable (possibly combinatorial, a.k.a. global) constraint
for formulating the problem at hand is not available in the modelling language.

We aim at making modelling languages extensible, so as to overcome such a situation. The user
should not have to design a suitable constraint, including incremental algorithms for calculating
and maintaining its constraint penalties and variable conflicts, nor incur too much performance
loss with respect to (with respect to) such a handcrafted constraint.

In this paper, we address the inference of variable conflicts from a high-level formulation of a
non built-in constraint. Our key contributions are as follows:

• We propose a new way of automatically and incrementally measuring the conflict of a vari-
able in a constraint model. We here apply the proposed definition to the set variables of
constraint models expressed in a very expressive language, namely existential second-order
logic extended with counting (∃SOL+). Our definition extends and differs significantly from
the one for scalar variables in [7], but its principle can also be applied to scalar variables.

• We show that the proposed definition of the conflict of a variable x is lower-bounded by
the intuitive target value, namely the maximum penalty decrease of the model that may be
achieved by changing the value of x.

1

• We demonstrate the efficiency and usefulness of the approach by replacing a built-in global
constraint of our local-search framework by a modelled ∃SOL+ version thereof, while still
obtaining competitive results in terms of run-time and quality of the solutions.

In the next section, we provide necessary background information about local search and ∃SOL+.
Then we present our definition of the conflict of a variable with respect to a constraint in ∃SOL+

and prove that this value is lower-bounded by an intuitive value. After that, we demonstrate the
usefulness of our approach by applying it to a real-life problem. Finally, we summarise our results
and discuss related work.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple 〈X ,D, C〉, where X is a finite set of
variables, D is a finite set of domains, each Dx ∈ D containing the set of possible values for x ∈ X ,
and C is a finite set of constraints, each c ∈ C being defined on a subset of X and specifying their
valid combinations of values.

2.1 Set Variables and Local Search

We illustrate our results for CSPs where all variables are set variables [2]:

Definition 1 (Set Variable and its Universe) Let P = 〈X ,D, C〉 be a CSP. A variable S ∈ X
is a set variable if its corresponding domain DS is 2US , where US is a finite set of values of some
type, called the universe of S.

In the context of this paper and without loss of generality, the set variables of a CSP all share
a common universe U .

In local search, an initial, possibly arbitrary, assignment of values to all the variables is main-
tained:

Definition 2 (Configuration) Let P = 〈X ,D, C〉 be a CSP. A configuration for P (or X) is a
total function k : X → ⋃

x∈X Dx.

We will use K to denote the set of all configurations for a given CSP or set of variables,
depending on the context.

Example 1 Consider a CSP P = 〈{S, T}, {DS , DT }, {S ⊂ T}〉 where DS = DT = 2U and
U = {a, b, c}. A configuration for P is given by k(S) = {a, b} and k(T) = ∅, or equivalently by
k = {S 7→ {a, b}, T 7→ ∅}.

Local search iteratively makes a small change to the current configuration, upon examining the
merits of many such changes until a solution is found or allocated resources have been exhausted.
The configurations thus examined constitute the neighbourhood of the current configuration:

Definition 3 (Neighbourhood) Let P = 〈X ,D, C〉 be a CSP and let k ∈ K. A neighbourhood
function for P is a function n : K → 2K. The neighbourhood of P with respect to k and n is the
set n(k).

The variable neighbourhood for x ∈ X with respect to k is the subset of K reachable from k by
only changing k(x):

nx(k) = {` ∈ K | ∀y ∈ X : y 6= x→ k(y) = `(y)}

Note that the size of nx(k) is equal to the size of the domain of x. If x is a set variable, this is
exponential in the size of Ux. However, we use variable neighbourhoods to define concepts only,
and do not enumerate in practice.

2

Example 2 Consider P and k of Example 1 except that U = {a, b}. The neighbourhood of P with
respect to k and the neighbourhood function for P that moves an element from S to T is the set
{ka = {S 7→ {b}, T 7→ {a}}, kb = {S 7→ {a}, T 7→ {b}}. The variable neighbourhood for S with
respect to k is the set nS(k) = {k, k1 = {S 7→ ∅, T 7→ ∅}, k2 = {S 7→ {a}, T 7→ ∅}, k3 = {S 7→
{b}, T 7→ ∅}}.

Intuitively, the penalty of a constraint c is an estimate on how much it is violated with respect
to the current configuration. Similarly, we say that a variable x is conflicting with respect to c
and the current configuration if we may decrease the penalty of c by only changing the value of x.

Definition 4 (Penalty and Conflict) Let P = 〈X ,D, C〉 be a CSP and let c ∈ C. A penalty
function of c is a function penalty(c) : K → N such that (such that) penalty(c)(k) = 0 if and only
if c is satisfied with respect to k. The penalty of c with respect to k is penalty(c)(k). The penalty
of P with respect to k is the sum

∑
c∈C penalty(c)(k).

A conflict function of c is a function conflict(c) : X ×K → N such that if conflict(c)(x, k) = 0
then ∀` ∈ nx(k) : penalty(c)(k) ≤ penalty(c)(`). The conflict of x with respect to c and k is
conflict(c)(x, k). The conflict of x with respect to P and k is the sum

∑
c∈C conflict(c)(x, k).

Example 3 Consider once again P from Example 1 and let the penalty and conflict functions of
S ⊂ T be defined by:

penalty(S ⊂ T)(k) = |k(S) \ k(T)|+
{

1, if k(T) ⊆ k(S)
0, otherwise

and

conflict(S ⊂ T)(x, k) = |k(S) \ k(T)|+
{

1, if x = T and k(T) ⊆ k(S)
0, otherwise

respectively. Now, the penalties of P with respect to k of Example 1 and ka of Example 2 are
respectively penalty(S ⊂ T)(k) = 3 and penalty(S ⊂ T)(ka) = 1. Indeed, we may satisfy P with
respect to k by, e.g., adding the three values a, b, and c to T and with respect to ka by, e.g.,
removing the single value b from S.

The conflicts of S and T with respect to P and k are conflict(S ⊂ T)(S, k) = 2 and conflict(S ⊂
T)(T, k) = 3, respectively. Indeed, by changing the value of S, we may decrease the penalty of P
by two (by removing the values a and b). Similarly, by changing the value of T , we may decrease
the penalty of P by three (by adding the values a, b, and c).

We are usually interested in the maximum amount of penalty decrease possible to be able
to rank different variables based on their conflict. This is naturally expressed by the notion of
abstract conflict, defined as follows.

Definition 5 (Abstract Conflict) Let c be a constraint defined on the variables X . The ab-
stract conflict function of c is a function abstractConflict(c) : X ×K → N such that:

abstractConflict(c)(x, k) = max{penalty(c)(k)− penalty(c)(`) | ` ∈ nx(k)}
The abstract conflict of x ∈ X with respect to c and a configuration k ∈ K is abstractConflict(c)(x, k).

Note that the abstract conflict of a variable is never negative.

Example 4 The conflict function of S ⊂ T defined in Example 3 gives the abstract conflicts of
variables.

We now prove that the abstract conflict function is correct with respect to Definition 4.

Proposition 1 Let c be a constraint. Then abstractConflict(c) is a conflict function.

Proof. Let c be a constraint defined on the set of variables X , let k be a configuration for X , and let
x ∈ X . Assume that abstractConflict(c)(x, k) = 0. Then max{penalty(c)(k) − penalty(c)(`) | ` ∈
nx(k)} = 0 and hence ∀` ∈ nx(k) : penalty(c)(k) ≤ penalty(c)(`). ¤

3

〈Constraint〉 ::= (∃ 〈S 〉)+ 〈Formula〉

〈Formula〉 ::= (〈Formula〉)
| (∀ | ∃)〈x〉 〈Formula〉
| 〈Formula〉 (∧ | ∨) 〈Formula〉
| 〈Literal〉

〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉
| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉
| |〈S〉| (< | ≤ | = | 6= | ≥ | >) 〈a〉

Figure 1: The BNF grammar for ∃SOL+ where terminal symbols are underlined. The non-
terminal symbol 〈S〉 denotes an identifier for a bound set variable S such that S ⊆ U , where U is
the common universe, while 〈x〉 and 〈y〉 denote identifiers for bound variables x and y such that
x, y ∈ U , and 〈a〉 denotes a natural number constant a.

2.2 Existential Second-Order Logic

We use existential second-order logic extended with counting for modelling set constraints [1].
This language (referred to by ∃SOL+ and shown in BNF in Figure 1) is very expressive as it
captures at least the complexity class NP [4]. A constraint in ∃SOL+ is of the form ∃S1 · · · ∃Snφ,
i.e., a sequence of existentially quantified set variables, ranging over the power set of an implicit
common universe U , and constrained by a logical formula φ.

As a running example, consider the constraint S ⊂ T of Example 1. This may be expressed
by the ∃SOL+ formula:

∃S∃T ((∀x(x /∈ S ∨ x ∈ T)) ∧ (∃x(x ∈ T ∧ x /∈ S))) (1)

Note that some of the usual connectives (such as ¬, →, and ↔) are not part of the language.
This is only due to the way we define the penalty and conflict functions for ∃SOL+ below and
does not pose any limitations on the expressiveness of the language: Any formula including those
connectives may be normalised into a formula without them by standard transformations. In fact,
a user would probably express the sub-formula x /∈ S ∨ x ∈ T of (1) by x ∈ S → x ∈ T , which
would then (internally) be transformed.

Given F ∈ ∃SOL+, we use vars(F) to denote the set variables in F . For example, if F is (1)
above, then vars(F) = {S, T}.

In order to use ∃SOL+ constraints with local search, a penalty function must be defined. This
was done in [1], as repeated below.

Definition 6 (Penalty of a Formula) Let F ∈ ∃SOL+ and let k be a configuration for vars(F).
The penalty of F with respect to k is defined by:

(a) penalty(∃S1 · · · ∃Snφ)(k) = penalty(φ)(k)
(b) penalty(∀xφ)(k) =

∑
u∈U

penalty(φ)(k ∪ {x 7→ u})
(c) penalty(∃xφ)(k) = min{penalty(φ)(k ∪ {x 7→ u} | u ∈ U})
(d) penalty(φ ∧ ψ)(k) = penalty(φ)(k) + penalty(ψ)(k)
(e) penalty(φ ∨ ψ)(k) = min{penalty(φ)(k), penalty(ψ)(k)}
(f) penalty(|S| ≤ c)(k) =

{
0, if |k(S)| ≤ c

|k(S)| − c, otherwise

(g) penalty(x ∈ S)(k) =

{
0, if k(x) ∈ k(S)
1, otherwise

(h) penalty(x ≤ y)(k) =

{
0, if k(x) ≤ k(y)
1, otherwise

4

S : {() 7→ 0}
T : {() 7→ 1}

S : {() 7→ 2}
T : {() 7→ 2}

S : {() 7→ 2}
T : {() 7→ 3}

∧
{() 7→ 3}

∃x
{() 7→ 1}

∀x
{() 7→ 2}

∧
{a 7→ 2, b 7→ 2, c 7→ 1}

∨
{a 7→ 1, b 7→ 1, c 7→ 0}

x /∈ S
{a 7→ 1, b 7→ 1, c 7→ 0}

x ∈ T
{a 7→ 1, b 7→ 1, c 7→ 1}

T : {a 7→ 1,
b 7→ 1,
c 7→ 1}

T : {a 7→ 1,
b 7→ 1,
c 7→ 0}

S : {a 7→ 1,
b 7→ 1,
c 7→ 0}

S : {a 7→ 1,
b 7→ 1,
c 7→ 0}

Figure 2: Penalty and conflict tree of (1).

In the definition above, for subformulas of the form x ♦ y, |S| ♦ c, and x 4 S, only the cases
where ♦ ∈ {≤} and 4 ∈ {∈} are shown. The other cases are defined similarly. Note that the
penalty of a formula is never negative.

Example 5 Recall k = {S 7→ {a, b}, T 7→ ∅} of Example 1 and let F be (1). According to
Definition 6, penalty(F)(k) = 3, which is meaningful since we may satisfy F by, e.g., adding the
three values a, b, and c to k(T).

Figure 2 shows the penalty tree of (1) with respect to k of Example 5. Each node in the tree is
associated with the penalty of the corresponding sub-formula in (1) with respect to k (shown below
the nodes in the tree; the reader should ignore the annotations beside the nodes until the next
section). Hence, the root node is associated with the penalty of (1) with respect to k. Note that,
for sub-formulas containing bound first-order variables, the corresponding nodes are associated
with a penalty with respect to each possible combination of values for those variables. Figure 2
also shows an important concept in our implementation of the ∃SOL+ framework. In the penalty
tree of a formula, each node is represented at most once. For example, if two sub-formulas φ and
ψ of F both contain a sub-formula γ, then there will be only one occurrence of the penalty tree
of γ in the penalty tree of F . This is illustrated in Figure 2 by, e.g., the sub-formula x /∈ S only
occurring once.

3 Variable Conflicts of an ∃SOL+ Formula

We now define the conflict function of ∃SOL+ formulas. Similarly to the penalty function of
Definition 6, it is important to stress that this calculation is totally generic and automatable, as it
is based only on the syntax of the formula and the semantics of the quantifiers, connectives, and
relational operators of ∃SOL+, but not on the intended semantics of the formula.

Defining the conflict of a variable with respect to an ∃SOL+ constraint c and a configuration
k is not a trivial exercise that reduces to applying exactly the same rules as for the penalty of c
with respect to k. Matters are complicated by the fact that not every variable occurs in every
sub-formula of c. The following example illustrates some of these pitfalls on scalar variables; they
generalise to set variables by replacing its z = a constraints by |S| = a constraints.

Example 6 Assume that the penalty of a numeric constraint z = a with respect to a configuration
k is the under/overflow of a compared to k(z), that is penalty(z = a)(k) = |k(z)−a|. Assume that
conflict(z = a)(z, k) = penalty(z = a)(k). Consider the disjunctive constraint c = (x = 4∨ y = 3).

First take the configuration k1 = {x 7→ 3, y 7→ 3}. The second disjunct is satisfied and
penalty(c)(k1) = 0 indeed, so the conflicts of both x and y with respect to c and k1 should be

5

0 as well. This suggests that the conflict of x with respect to c and k1 cannot be obtained by
applying the min operator to the variable conflicts of x with respect to the disjuncts of c (where x
occurs).

Now take the configuration k2 = {x 7→ 2, y 7→ 6}. None of the disjuncts is satisfied and
penalty(c)(k2) = 2 (the minimum of the under/overflows of 2 and 3 in the two disjuncts), which
is not 0 indeed, so the conflicts of x and y with respect to c and k2 should both not be 0 but
upper-bounded by 2. This suggests that the conflict of y with respect to c and k2 cannot be obtained
by applying the min operator to the variable conflicts of y with respect to the disjuncts of c (where
y occurs).

However, matters are even more complicated than that. The following example argues that,
even in the absence of the problem above with non-occurring variables, there is another problem
with using the min operator to combine the variable conflicts with respect to the disjuncts to get
the corresponding variable conflicts with respect to the disjunction, as for penalties.

Example 7 Assume the same penalty and conflict functions of an equality constraint as in Ex-
ample 6 and consider the constraint c = (x = 5 ∨ (y = 3 ∧ x = 4)).

Let k = {x 7→ 4, y 7→ 4}. Then penalty(c)(k) = 1 and, assuming that conflict(` ∧ r)(x, k) =∑{conflict(d)(x, k) | d ∈ {`, r} and x occurs in d}, we have conflict(y = 3 ∧ x = 4)(x, k) = 0.
Observe now that x occurs in both of the disjuncts of c. Hence, if we obtain the conflict of
x with respect to c and k by applying the min operator to the variable conflicts of x with re-
spect to the disjuncts of c (where x occurs), we have that conflict(c)(x, k) = min{conflict(x =
5)(x, k), conflict(y = 3 ∧ x = 4)(x, k)} = min{1, 0} = 0. This has the meaning that it is recom-
mended to try and satisfy c by not changing x with respect to k. However, we may satisfy c by
changing k(x) to 5.

We thus propose the following novel definition of the conflict of a variable with respect to a
constraint and a configuration.

Definition 7 (Conflict of a Formula) Let F ∈ ∃SOL+, let S ∈ vars(F), and let k be a con-
figuration for vars(F). The conflict of S with respect to F and k is defined by:

(a) conflict(∃S1 · · · ∃Snφ)(S, k) = conflict(φ)(S, k)
(b) conflict(∀xφ)(S, k) =

∑
u∈U

conflict(φ)(S, k ∪ {x 7→ u})
(c) conflict(∃xφ)(S, k) = max{0} ∪ {penalty(∃xφ)(k)−

(penalty(φ)(k ∪ {x 7→ u})− conflict(φ)(S, k ∪ {x 7→ u})) |
u ∈ U}

(d) conflict(φ ∧ ψ)(S, k) =
∑{conflict(γ)(S, k) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(e) conflict(φ ∨ ψ)(S, k) = max{0} ∪ {penalty(φ ∨ ψ)(k)− (penalty(γ)(k)− conflict(γ)(S, k)) |
γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(f) conflict(|S| ≤ c)(S, k) = penalty(|S| ≤ c)(k)
(g) conflict(x ∈ S)(S, k) = penalty(x ∈ S)(k)

As in Definition 6, we only show cases for subformulas of the form |S| ♦ c and x 4 S where
♦ ∈ {≤} and 4 ∈ {∈}.

Note that the conflict of a set variable S with respect to a formula F and a configuration k
is undefined whenever S /∈ vars(F) and non-negative otherwise. This definition is specific to set
variables and set constraints (modelled in ∃SOL+), but its principle also applies to scalar variables
and constraints. It correctly (with respect to our stated intuition) handles all the tricky cases in
Examples 6 and 7.

Example 8 Recall once again k = {S 7→ {a, b}, T 7→ ∅} of Example 1 and let F be (1). According
to Definition 7, conflict(F)(S, k) = 2 and conflict(F)(T, k) = 3, which is meaningful since we may
satisfy F by, e.g., adding the three values a, b, and c to k(T), or by removing the two values a
and b from k(S) and adding any value to k(T).

6

In the conflict tree of Figure 2, each node representing a sub-formula φ in (1) is associated
with the conflicts of the set variables in vars(φ) with respect to φ and k (shown to the left/right of
the nodes in the tree). Hence, the root node is associated with the conflicts of the variables of (1)
with respect to k. Similarly to penalties, for sub-formulas containing bound first-order variables,
the corresponding nodes are associated with a conflict for their set variables with respect to each
possible combination of values for those first-order variables.

Let us now prove that any ∃SOL+ conflict is lower-bounded by the abstract conflict and upper-
bounded by the penalty. In order to simplify the proofs, we assume that a formula of the form ∀xφ
is replaced by the equivalent formula (φ1∧(φ2∧· · ·∧(φn−1∧φn) · · ·)), where φi denotes the formula
φ in which any occurrence of x is replaced by ui and where U = {u1, . . . , un} with n ≥ 2. Similarly,
a formula of the form ∃xφ is replaced by the equivalent formula (φ1 ∨ (φ2 ∨ · · · ∨ (φn−1 ∨φn) · · ·)).

First of all, we need to prove the following lemma.

Lemma 1 Let F ∈ ∃SOL+ be of the form φ ∇ ψ, where ∇ ∈ {∧,∨}, let k be a configura-
tion for vars(F), and let S ∈ vars(F). If S /∈ vars(φ) then abstractConflict(φ ∇ ψ)(S, k) ≤
abstractConflict(ψ)(S, k).

Proof. Assume that ∇ = ∧. Then abstractConflict(φ ∧ ψ)(S, k) = max{penalty(φ ∧ ψ)(k) −
penalty(φ∧ψ)(`) | ` ∈ nS(k)} = max{penalty(φ)(k)−penalty(φ)(`)+penalty(ψ)(k)−penalty(ψ)(`) | ` ∈
nS(k)} = e. Since for each T 6= S it holds that ∀` ∈ nS(k) : `(T) = k(T), and since S /∈ vars(φ), we
have that ∀` ∈ nS(k) : penalty(φ)(k) = penalty(φ)(`). Then the term penalty(φ)(k)−penalty(φ)(`)
of the expression e above is equal to 0 for any ` ∈ nS(k). Hence, e = max{penalty(ψ)(k) −
penalty(ψ)(`) | ` ∈ nS(k)} = abstractConflict(ψ)(S, k) and hence e ≤ abstractConflict(ψ)(S, k).

Assume now that ∇ = ∨. Then

abstractConflict(φ ∨ ψ)(S, k) =
max{penalty(φ ∨ ψ)(k)− penalty(φ ∨ ψ)(`) | ` ∈ nS(k)} =

max{min{
α︷ ︸︸ ︷

penalty(φ)(k),

β︷ ︸︸ ︷
penalty(ψ)(k)}︸ ︷︷ ︸

A

−

min{
γ︷ ︸︸ ︷

penalty(φ)(`),

δ︷ ︸︸ ︷
penalty(ψ)(`)}︸ ︷︷ ︸

B

| ` ∈ nS(k)} = e.

Consider now the case where A = α and B = γ above for an ` ∈ nS(k) that maximises A−B.
Then e = max{penalty(φ)(k)− penalty(φ)(`) | ` ∈ nS(k)} = 0 since ∀` ∈ nS(k) : penalty(φ)(k) =
penalty(φ)(`), as argued above, and hence e ≤ abstractConflict(ψ)(S, k).

Consider now the case where A = β and B = δ above for an ` ∈ nS(k) that maximises A−B.
Then e = max{penalty(ψ)(k)− penalty(ψ)(`) | ` ∈ nS(k)} = abstractConflict(ψ)(S, k) and hence
e ≤ abstractConflict(ψ)(S, k).

Consider now the case where A = α (i.e., penalty(φ)(k) ≤ penalty(ψ)(k)) and B = δ above for
an ` ∈ nS(k) that maximises A − B. Then e = max{penalty(φ)(k) − penalty(ψ)(`) | ` ∈ nS(k)}.
Since penalty(φ)(k) ≤ penalty(ψ)(k) we have that e ≤ max{penalty(ψ)(k) − penalty(ψ)(`) | ` ∈
nS(k)} = abstractConflict(ψ)(S, k).

Consider now the case where A = β (i.e., penalty(φ)(k) ≥ penalty(ψ)(k)) and B = γ above
for an ` ∈ nS(k) that maximises A − B. Then e = max{penalty(ψ)(k) − penalty(φ)(`) | ` ∈
nS(k)}. Since ∀` ∈ nS(k) : penalty(φ)(k) = penalty(φ)(`), as argued above, we have that e =
penalty(ψ)(k) − penalty(φ)(k). Now since penalty(φ)(k) ≥ penalty(ψ)(k) we have that e ≤ 0 ≤
abstractConflict(ψ)(S, k). ¤

Proposition 2 Let F ∈ ∃SOL+, let k be a configuration for vars(F), and let S ∈ vars(F). Then
conflict(F)(S, k) ≥ abstractConflict(F)(S, k).

Proof. The proof is by structural induction on F . The result holds for the base cases (f) and (g).
For case (a), the result follows directly by induction from the definition.

7

Case F = φ ∧ ψ. Assume that S ∈ vars(φ) ∩ vars(ψ). We have that abstractConflict(φ ∧
ψ)(S, k) = max{(penalty(φ)(k) + penalty(ψ)(k))− (penalty(φ)(`) + penalty(ψ)(`)) | ` ∈ nS(k)} =
max{penalty(φ)(k)− penalty(φ)(`) + penalty(ψ)(k)− penalty(ψ)(`) | ` ∈ nS(k)} = e. Now, to see
that e ≤ max{penalty(φ)(k)−penalty(φ)(`′) | `′ ∈ nS(k)}+max{penalty(ψ)(k)− penalty(ψ)(`′′) |
`′′ ∈ nS(k)} = f we pick the ` ∈ nS(k) that maximises

penalty(φ)(k)− penalty(φ)(`) + penalty(ψ)(k)− penalty(ψ)(`).

For that ` we have that either it maximises both penalty(φ)(k)−penalty(φ)(`) and penalty(ψ)(k)−
penalty(ψ)(`), or there exist `′, `′′ ∈ nS(k) that make the sum of those expressions larger than e.
Now f = abstractConflict(φ)(S, k) + abstractConflict(ψ)(S, k). By induction it then follows that
f ≤ conflict(φ)(S, k) + conflict(ψ)(S, k) = conflict(φ ∧ ψ)(S, k).

Assume now that S /∈ vars(φ). Then abstractConflict(φ∧ψ)(S, k) = abstractConflict(ψ)(S, k),
by Lemma 1, and conflict(φ ∧ ψ)(S, k) = conflict(ψ)(S, k), by definition. Hence, the proposition
follows by induction.

Case F = φ ∨ ψ. Assume that S ∈ vars(φ) ∩ vars(ψ). We have that

abstractConflict(φ ∨ ψ)(S, k) =

max{min{
α︷ ︸︸ ︷

penalty(φ)(k),

β︷ ︸︸ ︷
penalty(ψ)(k)}︸ ︷︷ ︸

A

−min{
γ︷ ︸︸ ︷

penalty(φ)(`),

δ︷ ︸︸ ︷
penalty(ψ)(`)︸ ︷︷ ︸

B

} |

` ∈ nS(k)} = e.

Consider now the case where A = α (i.e., penalty(φ)(k) ≤ penalty(ψ)(k)) and B = γ above for
an ` ∈ nS(k) that maximises A−B. Then we have that e = max{penalty(φ)(k)−penalty(φ)(`) | ` ∈
nS(k)} = abstractConflict(φ)(S, k). Now conflict(φ ∨ ψ)(S, k) = max{0, penalty(φ ∨ ψ)(k) −
penalty(φ)(k)+conflict(φ)(S, k), penalty(φ∨ψ)(k)−penalty(ψ)(k)+conflict(ψ)(S, k)} which sim-
plifies into max{0, conflict(φ)(S, k), penalty(φ)(k)−penalty(ψ)(k)+conflict(ψ)(S, k)} = f . Assume
now that f = conflict(φ)(S, k), then we have that conflict(φ)(S, k) ≥ abstractConflict(φ)(S, k) =
e by induction and we are done. Assume instead that f = penalty(φ)(k) − penalty(ψ)(k) +
conflict(ψ)(S, k) or f = 0. Then f ≥ conflict(φ)(S, k) and since

conflict(φ)(S, k) ≥ abstractConflict(φ)(S, k) = e

by induction, we are done.
Consider now the case where A = β and B = δ above for an ` ∈ nS(k) that maximises A−B.

This case holds by being symmetric to the previous one.
Consider now the case where A = α (i.e., penalty(φ)(k) ≤ penalty(ψ)(k)) and B = δ above for

an ` ∈ nS(k) that maximises A−B. Then we have that e = max{penalty(φ)(k)−penalty(ψ)(`) | ` ∈
nS(k)}. Now conflict(φ∨ψ)(S, k) = max{0, penalty(φ∨ψ)(k)−penalty(φ)(k)+conflict(φ)(k), penalty(φ∨
ψ)(k)−penalty(ψ)(k)+conflict(ψ)(k)}, which simplifies into max{0, conflict(φ)(S, k), penalty(φ)(k)−
penalty(ψ)(k) + conflict(ψ)(S, k)} = f . By induction max{penalty(ψ)(k) − penalty(ψ)(`) | ` ∈
nS(k)} ≤ conflict(ψ)(S, k), which means that for all ` ∈ nS(k) we have that penalty(ψ)(k) −
penalty(ψ)(`) ≤ conflict(ψ)(S, k). There are three possible values for f : penalty(φ)(k)−penalty(ψ)(k)+
conflict(ψ)(S, k), conflict(φ)(S, k), and 0, but since conflict(φ)(S, k) is non-negative we can ignore
the f = 0 case. In the first case we take the induction hypothesis ∀` ∈ nS(k)(penalty(ψ)(k) −
penalty(ψ)(`) ≤ conflict(ψ)(S, k)) and add to both sides of the inequality the term penalty(φ)(k)−
penalty(ψ)(k), which gives ∀` ∈ nS(k)(penalty(ψ)(k)−penalty(ψ)(`)+penalty(φ)(k)−penalty(ψ)(k) ≤
penalty(φ)(k)−penalty(ψ)(k)+conflict(ψ)(S, k)). Cancelling terms gives ∀` ∈ nS(k)(penalty(φ)(k)−
penalty(ψ)(`) ≤ penalty(φ)(k) − penalty(ψ)(k) + conflict(ψ)(S, k) = f), which implies (by the
current assumptions) that abstractConflict(φ ∨ ψ)(S, k) ≤ conflict(φ ∨ ψ)(S, k). Last, suppose
that f = conflict(φ)(S, k). Then, since f is the maximum, we have that conflict(φ)(S, k) ≥
penalty(φ)(k)−penalty(ψ)(k)+conflict(ψ)(S, k), but we have already shown that penalty(φ)(k)−
penalty(ψ)(k) + conflict(ψ)(S, k) ≥ abstractConflict(φ ∨ ψ)(S, k).

Consider now the case where A = β and B = γ above for an ` ∈ nS(k) that maximises A−B.
This case holds by being symmetric to the previous one.

8

Finally, as with the ∧ case, Lemma 1 can be applied to consider the case where S /∈ vars(ψ).
¤

Proposition 3 Let F ∈ ∃SOL+, let k be a configuration for vars(F), and let S ∈ vars(F). Then
conflict(F)(S, k) ≤ penalty(F)(k).

Proof. The proof is by structural induction on F . The result holds for the base cases (f) and (g).
For case (a), the result follows directly by induction from the definition.

Case F = φ ∧ ψ. Assume that S ∈ vars(φ) ∩ vars(ψ). We have that conflict(φ ∧ ψ)(S, k) =
conflict(φ)(S, k) + conflict(ψ)(S, k) and that penalty(φ ∧ ψ)(k) = penalty(φ)(k) + penalty(ψ)(k)
by definition. Since conflict(φ)(S, k) ≤ penalty(φ)(k) and conflict(ψ)(S, k) ≤ penalty(ψ)(k) by
induction, we must have that conflict(φ)(S, k)+ conflict(ψ)(S, k) ≤ penalty(φ)(k)+ penalty(ψ)(k)
and hence conflict(φ ∧ ψ)(k) ≤ penalty(φ ∧ ψ)(k).

Assume now that S /∈ vars(φ). We then have that conflict(φ∧ψ)(S, k) = conflict(ψ)(S, k) and
that penalty(φ ∧ ψ)(k) = penalty(φ)(k) + penalty(ψ)(k) by definition. Since conflict(ψ)(S, k) ≤
penalty(ψ)(S, k) by induction and since penalty(φ)(k) ≥ 0, we have that conflict(ψ)(S, k) ≤
penalty(φ)(k) + penalty(ψ)(k) and hence conflict(φ ∧ ψ)(k) ≤ penalty(φ ∧ ψ)(k).

Case F = φ ∨ ψ. Assume that S ∈ vars(φ) ∩ vars(ψ). By definition, we have that

conflict(φ ∨ ψ)(S, k) = max{0, penalty(φ ∨ ψ)(k)− (penalty(φ)(k)− conflict(φ)(S, k)),
penalty(φ ∨ ψ)(k)− (penalty(ψ)(k)− conflict(ψ)(S, k))}.

The result follows directly when conflict(φ∨ψ)(S, k) = 0 since penalty(φ∨ψ)(k) ≥ 0. Consider the
case when conflict(φ∨ψ)(S, k) = penalty(φ∨ψ)(k)−(penalty(φ)(k)−conflict(φ)(S, k)). It is enough
to show that penalty(φ)(k)− conflict(φ)(S, k) ≥ 0. Since conflict(φ)(S, k) ≤ penalty(φ)(k) by in-
duction, this must hold. The case when conflict(φ∨ψ)(S, k) = penalty(φ∨ψ)(k)−(penalty(ψ)(k)−
conflict(ψ)(S, k)) follows by similar reasoning.

Assume now that S /∈ vars(φ). Then we have that conflict(φ ∨ ψ)(S, k) = max{0, penalty(φ ∨
ψ)(k) − (penalty(ψ)(S, k) − conflict(ψ)(S, k))} by definition. The result follows directly when
conflict(φ ∨ ψ)(S, k) = 0 since penalty(φ ∨ ψ)(k) ≥ 0. Consider the case when conflict(φ ∨
ψ)(S, k) = penalty(φ ∨ ψ)(k) − (penalty(ψ)(k) − conflict(ψ)(S, k)). It is enough to show that
penalty(ψ)(k) − conflict(ψ)(S, k) ≥ 0. Since conflict(ψ)(S, k) ≤ penalty(ψ)(k) by induction, this
must hold. ¤

Our final result follows from Propositions 1 and 2.

Corollary 1 The conflict function of Definition 7 is a conflict function according to Definition 4.

Proof. Assume that conflict(F)(S, k) = 0. Then abstractConflict(F)(S, k) = 0 by Proposition 2
and hence ∀` ∈ nS(k) : penalty(F)(k) ≤ penalty(F)(`) by Proposition 1. ¤

4 Application: The Progressive Party Problem

The progressive party problem [6] is about timetabling a party at a yacht club, where the crews
of certain boats (the guest boats) party at other boats (the host boats) over a number of periods.
The crew of a guest boat must party at some host boat in each period. The spare capacity of a
host boat is never to be exceeded. The crew of a guest boat may visit a particular host boat at
most once. The crews of two distinct guest boats may meet at most once.

4.1 A Set-Based Model

Let H and G be the sets of host boats and guest boats, respectively. Let c(h) and s(g) denote
the spare capacity of host boat h and the crew size of guest boat g, respectively. Let P be the set
of periods. Let S(h,p) be a set variable denoting the set of guest boats whose crews boat h hosts
during period p. The following constraints then model the problem [2]:

9

∀p ∈ P (Partition({S(h,p) | h ∈ H}, G))
∀h ∈ H (∀p ∈ P (MaxWeightedSum(S(h,p), s, c(h))))
∀h ∈ H (AllDisjoint({S(h,p) | p ∈ P}))
MaxIntersect({S(h,p) | h ∈ H ∧ p ∈ P}, 1)

The constraint Partition(X , Q)(k) holds if and only if the values with respect to k of the set vari-
ables in X partition the set Q and where the value of a set variable in X may be the empty set.
The constraint MaxWeightedSum(S,w ,m)(k) holds if and only if

∑
u∈k(S) w(u) ≤ m. The con-

straint MaxIntersect(X ,m)(k) holds if and only if the cardinality of the intersection with respect
to k between any two distinct set variables in X is at most m. The constraint AllDisjoint(X)(k)
holds if and only if the intersection with respect to k between any two distinct set variables in X
is empty.

4.2 Modelling the AllDisjoint Constraint

Assume now that the AllDisjoint constraint is not available in our local search system. We may
then express the constraint in ∃SOL+ and use that version in the model of the progressive party
problem above. Hence, we may experiment with that model without having to come up with and
implement a new built-in global constraint. We use the following ∃SOL+ formula for modelling
the AllDisjoint({S1, . . . , Sn}) constraint:

∃S1 · · · ∃Sn∀x((x /∈ S1 ∨ (x /∈ S2 ∧ · · · ∧ x /∈ Sn)) ∧
(x /∈ S2 ∨ (x /∈ S3 ∧ · · · ∧ x /∈ Sn)) ∧ · · · ∧
(x /∈ Sn−1 ∨ x /∈ Sn))

For every value u in the universe we state that: if u is in a set Si, then u cannot be in any set Sj

where j > i.

4.3 Performance

We have run the same instances as in [2] on an Intel 2.4 GHz Linux machine with 512 MB mem-
ory. Everything in the local search algorithm is the same except for the AllDisjoint constraints,
which are replaced by suitable instances of the modelled ∃SOL+ version above. Table 1 shows
the results for the modelled and built-in versions of the AllDisjoint constraint. The run times
for the ∃SOL+ version are roughly doubled for all the instances, though it must be noted that
issues such as designing penalty and conflict functions as well as incremental penalty and conflict
maintenance algorithms for the AllDisjoint constraint were not necessary. The built-in version
may take advantage of global properties of the constraint which, of course, makes it possible to
define a faster incremental algorithm.

5 Conclusion

Towards making modelling languages for local search extensible, we have proposed a new way of
inferring the conflict of a variable in a constraint from just the syntax of a high-level formulation
of that constraint, in a language richer than considered before. We have proven that any inferred
variable conflict enjoys the desirable property of being lower-bounded by the actually targeted
value, which can usually only be matched by knowing the semantics of the constraint. We have
also shown that any inferred variable conflict is upper-bounded by the inferred penalty. In practice,
we use a definition of the variable conflicts for n-ary versions of the normally binary connectives
∧ and ∨, and we perform an incremental maintenance of the variable conflicts, using the ideas
of the algorithm for constraint penalties in [2]. We have shown that the search is then indeed
directed towards interesting neighbourhoods, as a (presumed) missing built-in constraint can be
replaced this way without having to design it from scratch, including incremental algorithms for

10

Table 1: Run times in seconds for the progressive party problem. Mean run time of successful
runs (out of 100) and number of unsuccessful runs (if any) in parentheses.

Results with modelled AllDisjoint constraint.

H/periods (fails) 6 7 8 9 10

1-12,16 1.3 3.5 42.0
1-13 16.5 239.3
1,3-13,19 18.9 273.2 (3)
3-13,25,26 36.5 405.5 (16)
1-11,19,21 19.8 186.7
1-9,16-19 32.2 320.0 (12)

Results with built-in AllDisjoint constraint.

H/periods (fails) 6 7 8 9 10

1-12,16 1.2 2.3 21.0
1-13 7.0 90.5
1,3-13,19 7.2 128.4 (4)
3-13,25,26 13.9 170.0 (17)
1-11,19,21 10.3 83.0 (1)
1-9,16-19 18.2 160.6 (22)

maintaining its constraint penalties and variable conflicts, nor incurring too high losses in run-time
or quality of the solutions.

The adaptation of the traditional combinators of constraint programming for local search was
pioneered for the Comet system [8, 7]. The combinators there include logical connectives (such
as ∧ and ∨), cardinality operators (such as exactly and atmost), reification, and expressions over
variables. We have extended these ideas here to the logical quantifiers, namely ∀ and ∃. This is not
just a matter of simply generalising the arities and the existing definitions [8, 7] of the penalties
and conflicts for the ∧ and ∨ connectives, respectively, but was made necessary by our handling
of set variables over which one would like to iterate, unlike the scalar variables of Comet.

Our definition of the conflict of a variable with respect to a disjunctive constraint significantly
differs from theirs, as we approximate the maximum penalty decrease possible in any of the
disjuncts (rules (c) and (e) of Definition 7), whereas they approximate the minimum distance for
that variable from a value where one of the disjuncts can be satisfied. They thus bias the search
towards the disjunct that seems easier to satisfy and define variable conflicts independently of
penalties.

References

[1] M. Ågren, P. Flener, and J. Pearson. Incremental algorithms for local search from existential
second-order logic. In P. van Beek, editor, Proceedings of CP’05, volume 3709 of LNCS, pages
47–61. Springer-Verlag, 2005.

[2] M. Ågren, P. Flener, and J. Pearson. Set variables and local search. In R. Barták and
M. Milano, editors, Proceedings of CP-AI-OR’05, volume 3524 of LNCS, pages 19–33. Springer-
Verlag, 2005.

[3] P. Galinier and J.-K. Hao. A general approach for constraint solving by local search. In
Proceedings of CP-AI-OR’00, 2000.

[4] N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.

11

[5] L. Michel and P. Van Hentenryck. A constraint-based architecture for local search. ACM
SIGPLAN Notices, 37(11):101–110, 2002. Proceedings of OOPSLA’02.

[6] B. M. Smith, S. C. Brailsford, P. M. Hubbard, and H. P. Williams. The progressive party
problem: Integer linear programming and constraint programming compared. Constraints,
1:119–138, 1996.

[7] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press, 2005.

[8] P. Van Hentenryck, L. Michel, and L. Liu. Constraint-based combinators for local search. In
M. Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages 47–61. Springer-Verlag,
2004.

12

