
Financial Portfolio Optimisation

Pierre Flener1, Justin Pearson1, and Luis G. Reyna2

1 Department of Information Technology, Uppsala University
Box 337, 751 05 Uppsala, Sweden

{Pierre.Flener,Justin.Pearson}@it.uu.se
2 Global Private Investment Advisory Group, Merrill Lynch

New York, NY 10281-1307, USA
Luis Reyna@ml.com

Abstract. We give an approximate and often extremely fast method of
solving a portfolio optimisation (PO) problem in financial mathematics,
which has applications in the credit derivatives market. Its correspond-
ing satisfaction problem is closely related to the balanced incomplete
block design (BIBD) problem. However, typical PO instances are an or-
der of magnitude larger than the largest BIBDs solved so far by global
search. Our method is based on embedding sub-instances into the origi-
nal instance. Their determination is itself a CSP. This allows us to solve a
typical PO instance, with over 10746 symmetries. The high quality of our
approximate solutions can be assessed by comparison with a tight lower
bound on the cost. Also, our solutions sufficiently improve the currently
best ones so as to often make the difference between having or not having
a feasible transaction due to investor and rating-agency constraints.

1 Introduction

The structured credit market has seen two new products over the last decade:
credit derivatives and credit default obligations (CDOs). These new products
have created the ability to leverage and transform credit risk in ways not possible
through the traditional bond and loan markets.

CDOs typically consist of a special purpose vehicle that has credit exposure
to around one hundred different issuers. Such vehicles purchase bonds and loans
and other financial assets through the issuance of notes or obligations with vary-
ing levels of risk. In a typical structure, credit losses in the underlying pool are
allocated to the most subordinated obligations or notes first. A natural progres-
sion of the market has been to use notes from existing CDOs as assets into a
new generation of CDOs, called CDO Squared or CDO of CDO [9].

The credit derivatives market has allowed a more efficient mechanism for
creating CDO Squared. The idea is to use sub-pools of credit default swaps
instead of notes. The sub-pools are chosen from a collection of credits with the
level of liquidity and risk adequate to the potential investors. These transactions
are sometimes labelled synthetic CDO Squared.

In the creation of a synthetic CDO, the natural question arises on how to
maximise the diversification of the sub-pools given a limited universe of previ-
ously chosen credits. In a typical CDO Squared, the number of available credits

M. Wallace (Ed.): CP 2004, LNCS 3258, pp. 227–241, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

228 Pierre Flener, Justin Pearson, and Luis G. Reyna

ranges from 250 to 500 and the number of sub-pools from 4 to as many as 25.
The investment banker arranging for a CDO Squared usually seeks to maximise
the return of the subordinated notes under the constraints imposed by the rat-
ing agencies and the investors. This is a challenge that typically is only partially
addressed, in part due to the difficulty of pricing the underlying assets [5]1.

In this paper, we analyse the already financially relevant abstracted problem
of selecting the credits comprising each of the sub-pools with a minimal overlap,
or maximum diversification. The minimisation of the overlap usually results in
better ratings for the notes, typically resulting in more efficient structures.

The remainder of this paper is organised as follows. In Section 2, we discuss
the well-known problem of balanced incomplete block design (BIBD), which
is related to portfolio optimisation. In Section 3, we formulate the portfolio
optimisation (PO) problem, which is an optimisation problem, and show its
relationship to the BIBD problem, which is a satisfaction problem. Since the
known methods of solving BIBD instances by global search do not scale for the
solution of typical instances of the satisfaction version of the PO problem, we
introduce in Section 4 a method of approximately solving the PO problem, using
a notion of embedding small occurrences of an instance in a larger one. Finally,
in Section 5, we conclude, discuss related work, and outline future work.

2 Balanced Incomplete Block Designs

Let V be any set of v elements, called varieties. Let B = {1, . . . , b}. A balanced
incomplete block design (BIBD) is a bag of b subsets Bj ⊆ V , called blocks, each
of size k:

∀j ∈ B : |Bj | = k (1)

with 2 ≤ k < v,2 such that each pair of distinct varieties occurs together in
exactly λ blocks. Let Vi be the set of the identifiers of the blocks in which
variety i occurs: Vi = {j ∈ B | i ∈ Bj}. The Vi are here called co-blocks. The
previous balancing condition can now be formulated by requiring that any two
distinct co-blocks intersect over exactly λ elements:

∀ i1 �= i2 ∈ V : |Vi1 ∩ Vi2 | = λ (2)

An implied constraint is that each co-block has the same number r of elements,
whose value can be determined:

∀i ∈ V : |Vi| = r =
λ · (v − 1)

k − 1
(3)

This constraint and the already mentioned 2 ≤ k < v imply that none of the
co-blocks can be equal:

λ < r (4)
1 There are very few publicly accessible papers we can cite in this introduction, as

most are confidential due to the potential financial value of their results.
2 If k = v, then it is a complete block design.

Financial Portfolio Optimisation 229

A further implied constraint is that the co-blocks and blocks have together the
same number of elements:

v · r = b · k (5)

These implied constraints are insufficient existence conditions for a BIBD.
A BIBD is thus parameterised by a 5-tuple 〈v, b, r, k, λ〉 of parameters, any

three of which are independent. Originally intended for the design of statistical
experiments, BIBDs also have applications in cryptography and other domains.
See [1], or http://mathworld.wolfram.com/BlockDesign.html, or Problem 28
at http://www.csplib.org/ for more information.

Blocks and co-blocks are dual: an alternative formulation is that a BIBD is
a set of v subsets Vi ⊆ B, each of size r, such that the preceding constraints (1)
to (5) hold, where block Bj is then the set of varieties comprising it, that is
Bj = {i ∈ V | j ∈ Vi}.

One way of modelling a BIBD is in terms of its incidence matrix, which is a
v × b matrix, such that the entry at the intersection of row i and column j is 1
if i ∈ Bj (that is j ∈ Vi) and 0 otherwise. The first three constraints are then
modelled by requiring, respectively, that there are exactly k ones (that is a sum
of k) for each column, a scalar product of exactly λ for any pair of distinct rows,
and exactly r ones (that is a sum of r) for each row.

Since the varieties and blocks are indistinguishable, any two rows or columns
of the incidence matrix can be freely permuted. Breaking all the resulting v! · b!
symmetries can in theory be performed, for instance by v! · b!− 1 (anti-) lexico-
graphical ordering constraints between vectors extracted from the incidence ma-
trix [4, 8]. In practice, strictly anti-lexicographically ordering (denoted by >lex)
the rows (since co-blocks cannot be repeated) as well as anti-lexicographically
ordering (denoted by ≥lex) the columns (since blocks can be repeated) works
quite fine, due to the balancing constraint (2) [7], especially when labelling in a
row-wise fashion and trying the value 1 before the value 0. This much improves
the best previously reported results under global search and allows the solution of
previously unsolved instances. By simultaneously performing symmetry-breaking
during search in the SBDD style [6], but augmenting it with group-theoretical
insights and some heuristics, improvements of another order of magnitude can be
achieved, but only when computing all the solutions [12]. The instances solved
in [12] with 4 ≤ v ≤ 25, which is the range of interest to us, have values of b up
to 50, which is an order of magnitude below our range of interest.

3 Portfolio Optimisation

After precisely formulating the portfolio optimisation (PO) problem of the in-
troduction and exhibiting its relationship to the BIBD problem, we derive an
important implied constraint for the PO problem, before showing how to model
it and how to exactly solve sub-real-life-scale instances thereof.

230 Pierre Flener, Justin Pearson, and Luis G. Reyna

3.1 Formulation

The portfolio optimisation (PO) problem is formulated as follows. Let V =
{1, . . . , v} and let B = {1, . . . , b} be a set of credits. A portfolio is a set of v
subsets Vi ⊆ B, called sub-pools, each of size r:

∀i ∈ V : |Vi| = r (6)

such that the maximum intersection size of any two distinct sub-pools is min-
imised. A portfolio is thus parameterised by a 3-tuple 〈v, b, r〉 of independent
parameters. By abuse of language, 〈v, b, r〉 denotes even sub-optimal solutions.

There is a universe of about 250 ≤ b ≤ 500 credits. A typical portfolio
contains about 4 ≤ v ≤ 25 sub-pools, each of size r ≈ 100.

Note that we have formulated the PO problem using the same notation as for
the BIBD problem. The relationship with the (co-block formulation of the) BIBD
problem is indeed striking, with credits taking the role of the block identifiers,
sub-pools taking the role of the co-blocks, and the co-block size being fixed, as
per the related constraints (3) and (6). But the similarity ends there, as the BIBD
balancing condition (2) refers to a constant λ as the co-block intersection size,
while the maximum co-block intersection size is to be minimised in a portfolio.
In other words, the BIBD problem is a constraint satisfaction problem (CSP),
while the PO problem is a constraint optimisation problem (COP). Also, the
typical value of b for a portfolio is an order of magnitude larger than what has
been tried so far with global search for BIBDs [12].

For syntactic continuity, let us call λ the maximum of the intersection sizes
in a portfolio. This gives us the following PO constraint, related to the BIBD
constraint (2):

∀ i1 �= i2 ∈ V : |Vi1 ∩ Vi2 | ≤ λ (7)

where λ is then the cost expression that is to be minimised:

minimise λ (8)

with λ ≤ r (note the difference with the BIBD implied constraint (4)).
We parameterise a PO CSP by a 4-tuple 〈v, b, r, λ〉 of independent parame-

ters, where λ need not be the minimal value. Note that PO CSPs with λ = r
are trivial to construct, as it suffices to make all co-blocks equal.

3.2 An Implied Constraint

We now show how to derive a tight lower bound on λ for the PO problem,
and argue why the PO problem does not (seem to) have a counterpart of the
BIBD constraint (1) on the block sizes, and hence not a counterpart of the BIBD
implied constraint (5). The following theorem exactly fits the requirements of
the PO problem, provided all the credits are used in the portfolio, which is often
a realistic assumption:

Financial Portfolio Optimisation 231

Theorem 1 (Corrádi [2, 10]). Let V1, . . . , Vv be r-element sets and B be their
union. If |Vi1 ∩ Vi2 | ≤ λ for all i1 �= i2, then

|B| ≥ r2 · v
r + (v − 1) · λ

Since |B| = b here, we get as a PO implied constraint a tight lower bound on
λ by rearranging the previous formula and rounding up so that λ is a natural
number3:

λ ≥
⌈

r · (r · v − b)
b · (v − 1)

⌉
∧ λ ≥ 0 (9)

The lower bound predicted by this constraint is not always exact, as shown in
the following example.

Example 1. For 〈10, 8, 3〉, we obtain λ ≥ � 11
12, hence λ ≥ 1. For 〈9, 8, 3〉, we

obtain λ ≥ � 57
64, hence λ ≥ 1. However, it is not difficult to show (with the

method to be shown in Section 3.3) that there are no 10 or even 9 subsets of
size 3 in an 8-element set such that they intersect pairwisely over at most λ = 1
element. In fact, these two instances are at best solved with λ = 2; some of
the sets of such optimal solutions pairwisely intersect over only 1 element. (This
example will be continued in Example 2.)

It is tempting to think that tight bounds can be similarly obtained on the
block sizes. Indeed, a portfolio 〈v, b, r〉 becomes a BIBD if b divides v ·r and if all
the sub-pools must have pairwise intersections of exactly (rather than at most)
λ elements: the integer value k = v·r

b is then obtained via the BIBD implied
constraint (5). In case b does not divide v · r, one may be tempted to adjust the
portfolio parameters first. However, BIBDs of the size considered here, namely
for 250 ≤ b ≤ 500 blocks, are about one order of magnitude larger than what
has been tried so far in global search, and our experiments suggest that those
methods do not scale to BIBDs of that size, especially that the BIBD existence
conditions are very weak. Also, no PO constraint forces the credits to spread in
some manner over the sub-pools, so that neither � v·r

b is an upper bound on k,
nor � v·r

b � is a lower bound on k. Indeed, we have designed portfolios where the
block sizes are distributed over the entire 1, . . . , v range (see Example 2).

It is also tempting to think that it is sufficient (and easier) to find sub-pools
whose pairwise intersections are of size exactly λ, rather than upper bounded
by λ. However, there is no solution to 〈10, 8, 3〉 where the pairwise intersection
sizes are all equal to λ = 2, whereas Example 1 establishes the existence of a
solution where the pairwise intersection sizes are upper bounded by λ = 2.

3.3 Modelling and Exact Solution

One way of modelling a portfolio is in terms of its incidence matrix, which is a
v × b matrix, such that the entry at the intersection of row i and column j is
3 The same bound can be obtained by injecting the resolution of the BIBD implied

constraint (5) for k into the BIBD implied constraint (3) and then resolving for λ.

232 Pierre Flener, Justin Pearson, and Luis G. Reyna

Table 1. An optimal solution to 〈10, 8, 3〉, with cost λ = 2. The rows correspond to
the co-blocks (sub-pools).

blocks/credits

1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 0 0
3 1 1 0 0 1 0 0 0
4 1 1 0 0 0 1 0 0
5 1 1 0 0 0 0 1 0
6 1 1 0 0 0 0 0 1
7 1 0 1 1 0 0 0 0
8 1 0 1 0 1 0 0 0
9 1 0 1 0 0 1 0 0

10 1 0 1 0 0 0 1 0

1 if j ∈ Vi and 0 otherwise. The PO constraints (6) and (7) are then modelled
by requiring, respectively, that there are exactly r ones (that is a sum of r) for
each row and a scalar product of at most λ for any pair of distinct rows.

The following example gives an optimal portfolio under this model, and uses it
to show that the PO problem does not enjoy the optimal sub-structure property.

Example 2. (Continuation of Example 1.) An optimal solution to 〈10, 8, 3〉, with
cost λ = 2, is given in Table 1.

Note that the block sizes are distributed over the entire 1, . . . , v range, namely
one block each of sizes 1, 5, 6, 10, and four blocks of size 2. Now, for 〈8, 8, 3〉,
we obtain λ ≥ � 6

7, hence λ ≥ 1, and it turns out that there are 8 subsets
of size 3 in an 8-element set such that they intersect pairwisely over at most
1 element. We can now see why the PO problem does not enjoy the optimal
sub-structure property, namely that an optimal solution to an instance does
not necessarily contain optimal solutions to sub-instances. Indeed, the optimal
solution to 〈10, 8, 3〉 in Table 1, with cost 2, contains no 8 subsets of size 3 in the
8-element set such that they intersect pairwisely over at most 1 element. Note
that the last 4 sets each have pairwise intersections of size 1 with 4 of the first
6 sets, while all other pairwise intersections are of size 2.

The tight lower bound on the cost expression λ suggests a (naive) method of
exactly solving (small instances of) the PO COP as a sequence of PO CSPs: set
λ to some value “comfortably” above that tight lower bound, and lower it by 1
each time that CSP has a solution.

The sub-pools are indistinguishable, and we assume (in a first approximation)
that all the credits are indistinguishable. Hence any two rows or columns of
the incidence matrix can be freely permuted. Breaking all the resulting v! ·
b! symmetries can in theory be performed, for instance by v! · b! − 1 (anti-)
lexicographical ordering constraints [4]. In practice, in the CSP version of the
PO problem (where a value for λ is given), strictly anti-lexicographically ordering
the rows (since sub-pools cannot be repeated in portfolios with λ < r) as well
as anti-lexicographically ordering the columns (since credits can appear in the

Financial Portfolio Optimisation 233

same sub-pools) works quite fine for values of b up to about 36, due to the
constraint (7), especially when labelling in a row-wise fashion and trying the
value 1 before the value 0. However, this is one order of magnitude below the
typical value for b in a portfolio. Also, the absence of a constraint on the block
sizes makes 〈v, b, r, λ〉 much harder to solve than 〈v, b, r, k, λ〉, if such a k exists.
Hence another method than this BIBD-style approach is necessary, or we need
to design approximately optimal portfolios, as discussed next.

4 Approximate Solution to Portfolio Optimisation

Our method of efficiently finding possibly approximate solutions to the portfolio
optimisation (PO) problem rests on two key insights, explained first.

4.1 Underconstrainedness

The first insight comes from observing that the typical values of v (the number
of sub-pools) are quite small for the typical values of b (the number of credits)
and r (the size of the sub-pools), as shown in the following example.

Example 3. The first three columns of Table 2 chart how the lower bound on λ
evolves with v ≥ 2 according to the PO implied constraint (9) when b = 350 and
r = 100.

The lower bound on λ initially grows from 0 for v = 2, to between 5 and
26 for the typical values of v (which are between 4 and 25), but does not grow
much after that; in fact, it never exceeds 29, which it reaches for v = 127. This
effect is exacerbated for smaller values of b and r, as shown in the fourth and
fifth columns of Table 2.

While this example illustrates a prediction weakness of Theorem 1 for large
values of v, the main lesson is that there is a range for v in which the lower
bound on λ does not change quickly for fixed values of b and r. For the ranges
of values of v, b, and r that are of interest here, v is within that zone.

The consequence is that the PO problem instances of interest here seem
underconstrained in the sense that one may get (many) more than the intended
v sub-pools of the same size r from the same universe of b credits, without seeing
the maximum intersection size of the sub-pools increase. Dually, one may draw
the intended v sub-pools of the same size r from a (much) smaller universe
than the available b credits, without seeing the maximum intersection size of
the sub-pools increase. For instance, Theorem 1 predicts that v = 10 sub-pools
of r = 100 credits each may be drawn with a maximum intersection size of 21
from a universe of 347 ≤ b ≤ 357 credits. Again, this effect is exacerbated for
smaller values of b and r. This underconstrainedness may lead to considerable
combinatorial explosion. In fact, we have been unable to solve any PO CSP
instances of the magnitude considered here with the BIBD-style method outlined
in Section 3.3, even when setting a quite high value for λ and allocating an entire
CPU week. Labelling just one row of the incidence matrix already tends to take
a lot of time after the first few rows.

234 Pierre Flener, Justin Pearson, and Luis G. Reyna

Table 2. Unrounded and rounded lower bounds on the maximum intersection size λ
for v ≥ 2 co-blocks and b blocks of size r, as given by the PO implied constraint (9).

b = 350 and r = 100 b = 35 and r = 10

unrounded rounded unrounded rounded time backtracks
lower bound lower bound lower bound lower bound to first to first

v on λ on λ on λ on λ solution solution

2 -42.86 0 -4.286 0 0.01 0
3 -7.14 0 -0.714 0 0.04 0
4 4.76 5 0.476 1 0.09 1
5 10.71 11 1.071 2 0.26 184
6 14.28 15 1.428 2 0.74 658
7 16.67 17 1.667 2 1.23 921
8 18.37 19 1.837 2 4.89 8872
9 19.64 20 1.964 2 ? + 0.85 ? + 566

10 20.63 21 2.063 3 1.40 567
11 21.43 22 2.143 3 1.62 567
12 22.08 23 2.208 3 2.07 663
13 22.62 23 2.262 3 3.01 1878
14 23.08 24 2.308 3 3.80 2038
15 23.47 24 2.347 3 4.82 2245
16 23.81 24 2.381 3 9.94 9331
17 24.11 25 2.411 3 12.97 10221

. . . 25 3
22 25.17 26 2.517 3 39.59 16078

. . . 26 3
29 26.02 27 2.602 3 117.72 35305

. . . 27 3
47 27.02 28 2.702 3 ? ?

. . . 28 3
127 28.01 29 2.801 3 ? ?
. . . 29 3

4.2 Embeddings

The second insight is that computing optimal solutions is not always practical.
As shown below, we can often very efficiently solve real-life PO problem instances
with values for λ that are within 5% of, if not identical to, the lower bound given
by the PO implied constraint (9). Since that lower bound is not always exact, and
since there is currently no better or faster way of solving real-life PO problem
instances, our results are sufficient. Some may even turn out to be optimal. So
we investigate the approximate solution of real-life PO problem instances. The
idea is to embed small PO problem instances within a large, real-life one, as
illustrated in the following example.

Example 4. We can embed 10 occurrences of 〈10, 35, 10〉 within 〈10, 350, 100〉.
A not necessarily optimal solution to the PO COP 〈10, 350, 100〉 can be built
by making 10 copies of each column in any possibly optimal solution to the PO

Financial Portfolio Optimisation 235

COP 〈10, 35, 10〉. The fifth column of Table 2 gives λ ≥ 3 for the PO COP
〈10, 35, 10〉. Solving the PO CSP 〈10, 35, 10, 3〉 with the BIBD-style method out-
lined in Section 3.3 is a matter of about one CPU second and 567 backtracks,
and such a portfolio does exist. Since 10 · 3 = 30, this means that we can build
from it a solution to the PO CSP 〈10, 350, 100, 30〉. Since the third column of
Table 2 gives λ ≥ 21 for the PO COP 〈10, 350, 100〉, the built solution with cost
λ = 30 is quite far above that lower bound and may thus be sub-optimal. (This
example will be continued in Example 6.)

This kind of embedding is a standard concept for BIBDs. Indeed, a BIBD
〈v, b, r, k, λ〉 is said to be an m-multiple BIBD if 〈v, b

m , r
m , k, λ

m 〉 parameterises a
BIBD under the constraints (1) to (5) [1]. In other words, shrinking the number
of blocks by a factor m shrinks the sizes of the co-blocks and their intersections
by the same factor m (provided they all divide m). Since there are no exis-
tence conditions for portfolios, whose design is a COP rather than a CSP, the
corresponding concept for portfolios has an easier definition, given next.

Definition 1. A portfolio 〈v, b, r〉 is an m-multiple portfolio if m divides both
b and r. We denote this by 〈v, b, r〉 = m · 〈v, b

m , r
m 〉.

For the same reason, we can only compare the predicted lower bounds on the
maximum sub-pool intersection sizes, rather than the actual intersection sizes as
for BIBDs. The following property establishes that the same ratio holds between
those lower bounds for portfolios and their multiples.

Property 1. The PO implied constraint (9) predicts λ ≥ �µ for 〈v, b, r〉 if and
only if it predicts λ ≥ � µ

m for 〈v, b
m , r

m 〉.
Example 5. We have 〈10, 350, 100〉 = 10 · 〈10, 35, 10〉. Table 2 confirms the ratio
of 10 between the unrounded lower bounds on λ for the two involved instances.

However, a portfolio is not always an exact multiple of another portfolio.
Rather than adjusting the size of a desired portfolio so that it becomes a multiple
of another portfolio, we advocate generalising the notion of multiples of a design
and here do so for portfolios. Let us first show the intuition on an example.

Example 6. (Continuation of Example 4.) Reconsider the 〈10, 350, 100〉 portfolio.
It is not a 12-multiple of any portfolio as 12 does not divide both 350 and
100. Since 350 = 12 · 27 + 26 and 100 = 12 · 8 + 4, a not necessarily optimal
solution to the PO COP 〈10, 350, 100〉 can be built by making 12 copies of
each column in any possibly optimal solution to the PO COP 〈10, 27, 8〉 and
appending any possibly optimal solution to the PO COP 〈10, 26, 4〉. The PO
implied constraint (9) gives λ ≥ 2 for the PO COP 〈10, 27, 8〉 and λ ≥ 1 for the
PO COP 〈10, 26, 4〉. Solving the PO CSPs 〈10, 27, 8, 2〉 and 〈10, 26, 4, 1〉 with the
BIBD-style method outlined in Section 3.3 is a matter of about 1 CPU second
and 69 backtracks total, and such portfolios do exist. Since 12 · 2 + 1 = 25, this
means that we can build from them a solution to the PO CSP 〈10, 350, 100, 25〉.
Since the third column of Table 2 gives λ ≥ 21 for the PO COP 〈10, 350, 100〉,
the built solution with cost λ = 25 is still a bit above that lower bound and may
thus be sub-optimal. (This example will be continued in Example 7.)

236 Pierre Flener, Justin Pearson, and Luis G. Reyna

Let us now formalise all the intuitions from this example.

Definition 2. A portfolio 〈v, b, r〉 embeds m occurrences of a portfolio 〈v, b1, r1〉
and 1 occurrence of a portfolio 〈v, b2, r2〉, which is denoted by 〈v, b, r〉 = m ·
〈v, b1, r1〉 + 〈v, b2, r2〉, if the following three constraints hold:

b = m · b1 + b2 (10)
r = m · r1 + r2 (11)

0 ≤ ri ≤ bi ≥ 1 for i = 1, 2 (12)

The constraints (10) and (11) ensure that the embedding is exact. The con-
straint (12) ensures that the sub-pools can be subsets of the set of credits, for
each of the two embedded portfolios. It also eliminates the two cases (bi = 0)
where the PO implied constraint (9) cannot be evaluated.

Note that this embedding by vertical division of the incidence matrix is pos-
sible because of the full column symmetry of the latter and because no PO con-
straint works against it. However, an embedding by horizontal division of the
incidence matrix will lead to identical rows, that is worst-case solutions (λ = r).

An upper bound on the cost of an embedding portfolio can be computed
from the costs of its embedded portfolios, as shown next.

Property 2. The cost λ of a portfolio embedding m occurrences of a portfolio
〈v, b1, r1〉 of cost λ1 and one occurrence of a portfolio 〈v, b2, r2〉 of cost λ2 satisfies
the inequality λ ≤ m · λ1 + λ2.

The reason why there may be a strict inequality is that the cost of a portfolio
is the maximum of its sub-pool intersection sizes. Consider v = 3 and m = 1:
the first embedded portfolio may have 1, 1, 2 as intersection sizes, and the second
embedded portfolio may have 1, 2, 1 as intersection sizes, both with a maximum
of 2, giving 1 + 1, 1 + 2, 2 + 1 as intersection sizes for the embedding portfolio,
with a maximum of 3 < 1 · 2 + 2 = 4. For this reason, the calculated cost 25 of
the embedding portfolio in Example 6 is in fact an upper bound, rather than the
exact cost as stated there. Hence it is in general better to observe the actual cost
of the embedding portfolio than to use the upper bound given by Property 2. In
this case, observation establishes that the cost is 25.

4.3 Approximate Solution

The issue now becomes how to construct suitable portfolio embeddings, so that
near-optimal, if not optimal, real-life-scale portfolios can be designed. We advo-
cate solving the CSP versions of the two embedded instances, setting as λ the
rounded lower bound given by the PO implied constraint (9).

Our method takes as additional input a cost Λ that we are trying to undercut,
say because it is the cost of the currently best portfolio (or the upper bound on
that cost, as determined by Property 2).

Two heuristic constraints on m, v, b, r, b1, r1, b2, r2 in addition to the three
constraints of Definition 2 become necessary in order to make the method prag-
matic. Let λi be the rounded lower bounds given for the two embedded portfolios

Financial Portfolio Optimisation 237

〈v, bi, ri〉 by the PO implied constraint (9). The additional constraints are justi-
fied and given in the following.

First, we must restrict the focus to the pairs of embedded portfolios that
have a chance of leading to a portfolio whose combined cost is lower than Λ:

m · λ1 + λ2 < Λ (13)

Indeed, the left-hand side is by Property 2 the upper bound on the cost of the
embedding portfolio built from solutions, if they exist, to the two 〈v, bi, ri, λi〉 PO
CSPs. In practice, it is usually equal to the cost of such an embedding portfolio,
hence this constraint. Note that this constraint implies that m < Λ.

Second, knowing that PO CSPs with values of b up to about 36 can often be
solved (quite quickly) using the BIBD-style method outlined in Section 3.3, the
objective in choosing the parameters of the embedding is to have both embedded
instances within that range for b:

bi ≤ 36 for i = 1, 2 (14)

Note that the determination of candidate embeddings, which are pairs of
CSPs, is thus itself a CSP.

There is no guarantee that all PO CSPs with b ≤ 36 can be solved sufficiently
quickly. For instance, the sixth and seventh columns of Table 2 chart the CPU
times in seconds and backtracks for 〈v, 35, 10, λ〉 for v ≥ 2 and λ equal to the
rounded lower bound in the fifth column. The experiments were conducted on
a Sun SPARC Ultra Station 10 in our SICStus Prolog 3.10.1 implementation
of the BIBD-style method outlined in Section 3.3. A question mark means that
we stopped the solution process after a CPU hour. The entry in the row v = 9
means that 〈9, 35, 10, 2〉 timed out (in fact, it takes about 25 CPU hours and
about 537 · 106 backtracks to fail4), while 〈9, 35, 10, 3〉 takes only 0.85 CPU sec-
onds and 566 backtracks to succeed. We observe that for the range of values of
v where the rounded lower bound on λ remains the same, the runtimes increase
with v. In other words, they increase when the rounding distance for the lower
bound on λ decreases. This may not always be the case. The same pattern can
be observed for the number of backtracks. The rounding distance seems to be
a good indicator of the constrainedness of a PO CSP. A good heuristic then
seems to be that we should favour embeddings where both embedded instances
have not too small rounding distances. In our observation, for the typical val-
ues of v, instances with rounding distances below 0.15 are often problematic.
Hence we also advocate ordering the embedded instance pairs that satisfy the
constraints (10) to (14) by decreasing rounding distance for λ1, so that the ap-
parently easier pairs are attempted first. Setting a time-limit on each attempt is
another useful refinement.

Let us now illustrate this method.
4 Amazingly, these figures were obtained on the same hardware in our OPL imple-

mentation under OPL Studio 3.0.2, which performs no symmetry breaking for lack
of a lexicographical ordering constraint! We aborted our SICStus Prolog 3.10.1 im-
plementation after several CPU days, both with and without symmetry breaking.

238 Pierre Flener, Justin Pearson, and Luis G. Reyna

Table 3. Embeddings of 〈10, 350, 100〉 satisfying the constraints (10) to (14) for Λ = 25,
ordered by decreasing rounding distance for λ1.

m 〈v, b1, r1, λ1〉 unrounded λ1 〈v, b2, r2, λ2〉 unrounded λ2 m · λ1 + λ2

10 〈10, 32, 09, 2〉 1.812 〈10, 30, 10, 3〉 2.592 23
11 〈10, 31, 09, 2〉 1.903 〈10, 09, 01, 1〉 0.012 23
9 〈10, 36, 10, 2〉 1.975 〈10, 26, 10, 4〉 3.162 22

18 〈10, 18, 05, 1〉 0.988 〈10, 26, 10, 4〉 3.162 22
19 〈10, 18, 05, 1〉 0.988 〈10, 08, 05, 3〉 2.917 22
11 〈10, 30, 09, 2〉 2.000 〈10, 20, 01, 0〉 -0.056 22

Example 7. (Continuation of Example 6.) Let us try and improve the portfo-
lio with cost Λ = 25 previously obtained for 〈10, 350, 100〉 = 12 · 〈10, 27, 8〉 +
〈10, 26, 4〉. The embeddings satisfying the constraints (10) to (14) are given in
Table 3, ordered by decreasing rounding distance for λ1.

Note that none of these embeddings has a combined cost of λ = 21, which is
the lower bound given by the PO implied constraint (9) for 〈10, 350, 100〉. This
may be an artifact of the way we define embeddings or of the way we heuristically
constrain the embeddings. Setting a time limit of one CPU hour, we attempt to
solve the PO CSPs in the second and fourth columns, proceeding row by row.

The first embedding only takes about 13 CPU seconds and 13, 152 backtracks
total to solve its two PO CSPs. Hence we can build a solution to 〈10, 350, 100〉
from 10 copies of the optimal solution (with λ = 2) to 〈10, 32, 9〉 and one copy
of the optimal solution (with λ = 3) to 〈10, 30, 10〉; it has an observed cost of
exactly λ = 10 · 2 + 3 = 23 > 21.

The second embedding takes about 47 CPU minutes and about 4 · 106 back-
tracks (mostly because of the first embedded instance, as the second one has
λ2 = r2 and is thus trivial to solve). We get another solution of (predicted and
observed) cost 23 = 11 · 2 + 1.

The third embedding has a first embedded PO CSP that times out, hence
we ignore it and move on.

The fourth and fifth embeddings both contain 〈10, 18, 5, 1〉, which fails in
about 6 CPU minutes and 345, 595 backtracks. Hence λ1 ≥ 2, and m · λ1 + λ2

is at least 40 for the fourth embedding and at least 41 for the fifth embedding,
which are both much worse costs than in the currently best solution.

The sixth embedding is very interesting. Its first embedded PO CSP can
be solved as a BIBD with blocks of fixed size k = 3, as the unrounded λ1 is
a natural number and as b1 divides v · r1. This additional constraint (1) on
the block sizes gives very good propagation, and the BIBD method outlined at
the end of Section 2 can solve this instance in about 0.39 CPU seconds and 23
backtracks, whereas the BIBD-style method outlined in Section 3.3 timed out
on the corresponding PO CSP, which does not have that constraint. The second
embedded PO CSP is trivial (in the sense that there at least as many credits as
in the union of the requested sub-pools) since v · r2 ≤ b2 and is solved in about
0.21 CPU seconds and 0 backtracks.

Hence we can build a solution, given in Table 4, to 〈10, 350, 100〉 from 11
copies of the optimal solution (with λ = 2) to 〈10, 30, 9〉 and one copy of the

Financial Portfolio Optimisation 239

Table 4. Our currently best solution to 〈10, 350, 100〉, built from 11 · 〈10, 30, 9〉 +
〈10, 20, 1〉, and of cost 11 · 2 + 0 = 22 > 21.

11 copies of each column of 1 copy of each column of

111111111000000000000000000000 10000000000000000000

110000000111111100000000000000 01000000000000000000

110000000000000011111110000000 00100000000000000000

001100000110000011000001110000 00010000000000000000

001100000001100000110000001110 00001000000000000000

000011000110000000001100001101 00000100000000000000

000011000000011000100011100010 00000010000000000000

000000110001100000001011010001 00000001000000000000

000000101000010111000000001011 00000000100000000000

000000011000001100010100110100 00000000010000000000

optimal solution (with λ = 0) to 〈10, 20, 1〉; it has an observed cost of exactly
λ = 11·2+0 = 22 > 21. Note that the last 10 credits are not used in this solution.
This solution may actually turn out to be optimal, considering the prediction
weakness of Theorem 1.

5 Conclusions

Summary. We have given an approximate and often extremely fast method of
solving a new portfolio optimisation (PO) problem in financial mathematics. Its
corresponding satisfaction problem is closely related to the balanced incomplete
block design (BIBD) problem. However, typical PO instances are an order of
magnitude larger than the largest BIBDs solved so far by global search, and
the PO problem lacks a counterpart of a crucial BIBD constraint. Hence cur-
rent BIBD-style solving methods are not suitable for real-life PO instances. Our
method is based on embedding (multiple copies of) independent sub-instances
into the original instance. Their determination is itself a constraint satisfaction
problem. The high quality of our approximate solutions can be assessed by com-
parison with a tight lower bound on the cost.

Generalisation. The generalisation of the main idea is as follows, in the con-
text of a large constraint optimisation problem where a (tight) lower bound on
its cost can be somehow calculated. The idea is to embed several independent
small problem instances Pi within the given large problem instance P . A feasible
solution S to P can then be built from possibly optimal feasible solutions Si to
the Pi. The quality of S can be assessed against the lower bound on the cost of
the optimal solution to P . If there is a relationship between the costs of S and
the Si, then this relationship can be used to determine the Pi via a CSP, using
the lower bounds on their costs. For PO, this relationship is given by Property 2.

Related Work. The idea of exploiting independent sub-problems also underlies
Tree-Based Russian Doll Search [11]. The idea of embedding (multiple copies of)

240 Pierre Flener, Justin Pearson, and Luis G. Reyna

sub-problem instances into a larger problem instance is related to the concept
of abstract local search [3], where a concrete solution is built from a solution
to an abstraction of the original problem instance and then analysed for flaws
so as to infer a new abstract solution. This works well if the concretisation and
analysis steps are tractable and if the abstraction is optimality preserving, in
the sense that optimal concrete solutions can be built from abstract solutions.
Our embedded problem instances can indeed be jointly seen as an abstraction of
the original problem instance. For instance, entire bundles of credits are here ab-
stracted into single super-credits. We have been unable so far to prove optimality
preservation of such portfolio abstractions, or to find conditions for it. As also
observed in [3], this is not problematic for hard problem instances, such as the
typical PO problem instances considered here, where the utility of abstractions
can only be assessed by comparison with other techniques. In any case, we have
seen that our portfolio abstractions lead to solutions that are extremely close to
a tight lower bound on the cost.

Also, we have found only one paper taking a constraint programming ap-
proach to portfolio selection [13], but the tackled problem there is actually dif-
ferent from ours and is limited to portfolios consisting of just one sub-pool.

Future Work. Our notion of embeddings can be generalised to any linear com-
bination of several sub-instances. Indeed, Definition 2 is restricted to embeddings
of always two sub-instances, with coefficients m and 1, respectively. The price
to pay for this restriction may have been that a solution of cost 21 eluded us
in Example 7, though it may also be that no such solution exists and that our
solution of cost 22 is in fact optimal.

Some additional abstraction may reduce the 1, . . . , v range of observed block
sizes. Indeed, a counterpart of the BIBD constraint (1) might enormously speed
up the solution process. The facts that some PO instances (such as 〈9, 35, 10, 2〉)
take CPU days to fail while increasing their λ (to obtain 〈9, 35, 10, 3〉 here)
then leads to quasi instantaneous success, and that other PO instances (such
as 〈10, 30, 9, 2〉) take CPU hours to succeed while the corresponding BIBD in-
stances, if any (〈10, 30, 9, 3, 2〉 here), quasi instantaneously succeed, show that
there is still much space for improving our method. Such an additional abstrac-
tion might only come at the price of losing optimal solutions, though.

The run-times and backtrack counts of our implementation of the BIBD-style
method outlined in Section 4 can be improved with the additional symmetry-
breaking techniques of STAB [12].

Finally, it would be interesting to compare our results with those obtained
by other complete-search techniques as well as by local-search techniques.

Conclusion and Financial Relevance. Our optimisation has eliminated the
need for ad hoc manual permutations. On average, we have found that the over-
lap in a given portfolio can be decreased anywhere from 2% to 4% by using the
current formulation. Even though this may not sound like a dramatic improve-
ment, the ability to reduce the maximum overlap from 25% to 22%, say, may

Financial Portfolio Optimisation 241

make the difference between having or not having a feasible transaction due to
investor and rating-agency constraints.

It should be pointed out that it is easy to reduce the overlap by increasing
the number of available credits. However, such new credits tend to be less known
and thus more difficult to analyse, resulting in less than efficient portfolios.

In practice, the credits are not all indistinguishable. A client might have
personal preferences for or against some credits, declare some credits as mutually
exclusive, and so on. The advantage of our deployment of constraint technology
is that such specific needs can be neatly added without having to devise new
portfolio optimisation algorithms from scratch each time. However, such side
constraints may break some of the full column symmetry, so partial symmetry
breaking has to be deployed instead. Work in this direction has begun.

Challenge. We challenge the reader to answer the open question whether a
〈10, 350, 100〉 portfolio with optimal cost 21 exists or not.

Acknowledgements

We thank the referees for their useful comments.

References

1. C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial
Designs. CRC Press, 1996.

2. K. Corrádi. Problem at Schweitzer competition. Mat. Lapok, 20:159–162, 1969.
3. J. M. Crawford, M. Dalal, and J. P. Walser. Abstract local search. In Proceedings

of the AIPS’98 Workshop on Planning as Combinatorial Search, 1998.
4. J. M. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates

for search problems. In Proceedings of KR’96, pages 148–159, 1996.
5. S. Das and G. Geng. Correlated default processes: A criterion-based copula ap-

proach. Journal of Investment Management, forthcoming.
6. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh,

editor, Proc. of CP’01, volume 2293 of LNCS, pages 93–107. Springer-Verlag, 2001.
7. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh.

Breaking row and column symmetries in matrix models. In P. Van Hentenryck,
editor, Proc. of CP’02, vol. 2470 of LNCS, pages 462–476. Springer-Verlag, 2002.

8. P. Flener and J. Pearson. Breaking all the symmetries in matrix models: Results,
conjectures, and directions. In Proceedings of SymCon’02, 2002. Available at
http://www.it.uu.se/research/group/astra/SymCon02/.

9. K. Gilkes and M. Drexler. Drill-down approach for synthetic CDO Squared trans-
actions. Standard and Poor’s Publication, December 2003.

10. S. Jukna. Extremal Combinatorics. Springer-Verlag, 2001.
11. P. Meseguer and M. Sànchez. Tree-based Russian Doll Search: Preliminary results.

In F. Rossi, editor, Proceedings of the CP’00 Workshop on Soft Constraints, 2000.
12. J.-F. Puget. Symmetry breaking using stabilizers. In F. Rossi, editor, Proceedings

of CP’03, volume 2833 of LNCS, pages 585–599. Springer-Verlag, 2003.
13. G. Wetzel and F. Zabatta. A constraint programming approach to portfolio selec-

tion. In Proceedings of ECAI’98, pages 263–264, 1998.

	1 Introduction
	2 Balanced Incomplete Block Designs
	3 Portfolio Optimisation
	3.1 Formulation
	3.2 An Implied Constraint
	3.3 Modelling and Exact Solution

	4 Approximate Solution to Portfolio Optimisation
	4.1 Underconstrainedness
	4.2 Embeddings
	4.3 Approximate Solution

	5 Conclusions
	Acknowledgements
	References

