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Abstract. We identify an important class of symmetries in constraint
programming, arising from matrices of decision variables where rows
and columns can be swapped. Whilst lexicographically ordering the rows
(columns) breaks all the row (column) symmetries, lexicographically or-
dering both the rows and the columns fails to break all the compositions
of the row and column symmetries. Nevertheless, our experimental re-
sults show that this is effective at dealing with these compositions of
symmetries. We extend these results to cope with symmetries in any
number of dimensions, with partial symmetries, and with symmetric
values. Finally, we identify special cases where all compositions of the
row and column symmetries can be eliminated by the addition of only a
linear number of symmetry-breaking constraints.

1 Introduction

Modelling is one of the most difficult parts of constraint programming. Freuder
has identified it as the “last frontier” [9]. One source of difficulty is dealing
with symmetry efficiently and effectively. Symmetry occurs in many assignment,
scheduling, configuration, and design problems. Identical machines in a factory,
repeat orders, equivalent time periods and equally skilled workers are just a few
of the items likely to introduce symmetry into a constraint satisfaction problem
(CSP). If we ignore symmetry, a constraint solver will waste time considering
symmetric but essentially equivalent assignments. As there are often a (super)
exponential number of symmetric solutions, this can be very costly. To help
tackle this problem, we identify an important class of symmetries that occur
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frequently in CSPs. These symmetries occur when we have a matrix of decision
variables in which rows and/or columns can be swapped. We show how simple
lexicographical ordering constraints can be added to such models to break these
symmetries. Whilst such ordering constraints break all the row (or column)
symmetry when the matrix is symmetric in one dimension, they do not break all
row and column symmetry when the matrix is symmetric in both dimensions.
Nevertheless, our experimental results show that they are effective at eliminating
much of the symmetry. We extend these results to deal with matrices with more
than two dimensions, with partial symmetries and with symmetric values. We
also discuss how to eliminate all symmetry in some special cases.

2 Matrix Models and Symmetry

A matrix model is a constraint program that contains one or more matrices of
decision variables. For example, a natural model of the round robin tournament
scheduling problem (prob026 in CSPlib, at www.csplib.org) has a 2-dimensional
(2-d) matrix of variables, each of which is assigned a value corresponding to the
match played in a given week and period [21]. In this case, the matrix is obvious
in the modelling of the problem: we need a table of fixtures. However, many
other problems that are less obviously defined in terms of matrices of variables
can be effectively represented and efficiently solved using matrix models [6]. For
example, the rack configuration problem (prob031) can be modelled with a 2-d
0/1 matrix representing which cards go into which racks (a model with a 3-d
matrix is given in [13]).

Symmetry is an important aspect of matrix models. Symmetry often occurs
because groups of objects within a matrix are indistinguishable. For example,
in the round robin tournament scheduling problem, weeks and periods are in-
distinguishable. We can therefore permute any two weeks or any two periods in
the schedule. That is, we can permute any two rows or any two columns of the
associated matrix, whose index sets are the weeks and periods. A symmetry is a
bijection on decision variables that preserves solutions and non-solutions. Two
variables are indistinguishable if some symmetry interchanges their rôles in all
solutions and non-solutions.

Two common types of symmetry in matrices are row symmetries and col-
umn symmetries. The two examples above have row and column symmetries.
A row (column) symmetry of a 2-d matrix is a bijection between the variables of
two of its rows (columns) that preserves solutions and non-solutions. Two rows
(columns) are indistinguishable if their variables are pairwise indistinguishable
due to a row (column) symmetry. Note that the rotational symmetries of a ma-
trix are neither row nor column symmetries. A matrix model has row (column)
symmetry iff all the rows (columns) of one of its matrices are indistinguishable. A
matrix model has partial row (column) symmetry iff strict subset(s) of the rows
(columns) of one of its matrices are indistinguishable. All these definitions can
be extended to matrices with any number of dimensions. A symmetry class is an
equivalence class of assignments, where two assignments are equivalent if there is
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some symmetry mapping one assignment into the other. (In group theory, such
equivalence classes are referred to as orbits.)

Many row and column symmetries have been observed [6], such as in matrix
models for the balanced incomplete block design problem (prob028 in CSPlib),
the steel mill slab design problem [6], the social golfers problem (prob010), the
template design problem (prob002), the progressive party problem (prob013),
and (as argued above) the rack configuration problem (prob031) as well as the
round robin tournament scheduling problem (prob026). One counter-example
is the warehouse location problem [22] because of the unique set of costs of
supplying each store from each of the possible warehouses.

3 Breaking Symmetry

There are a number of ways of dealing with symmetry in constraint programming
(see Section 7 for a longer discussion). A popular approach is to add constraints
that break some of the symmetries [16, 3].

One common method to break symmetry is to impose a constraint that orders
the symmetric objects. To break all row (column) symmetries, we can treat each
row (column) as a vector and order these vectors lexicographically. The rows
(columns) in a 2-d matrix are lexicographically ordered if each row (column)
is lexicographically smaller (denoted ≤lex) than the next (if any), and anti-
lexicographically ordered if each row (column) is lexicographically larger than
the next (if any). As a lexicographic ordering is total, adding lexicographic (or
anti-lexicographic) ordering constraints on the rows (columns) breaks all row
(column) symmetries.

Whilst breaking all the row symmetries or all the column symmetries in a
matrix is possible with lexicographic ordering constraints, breaking both the row
and the column symmetries seems difficult since the rows and columns intersect.
Lexicographically ordering the rows will tend to put the columns into lexico-
graphic order. However, it does not always order the columns lexicographically,
and lexicographically ordering the columns can then disrupt the lexicographic
ordering on the rows.

Example 1. Consider a 3 × 4 matrix of 0/1 variables, xij , with the constraints
that

∑
ij xij = 7 and

∑
i xij · xik ≤ 1 for j �= k (i.e., the dot product of any two

rows is 1 or less). This model has both row and column symmetry. A solution
with lexicographically ordered rows is:

0
B@

0 1 0
0 1 1
1 0 1
1 1 0

1
CA

Lexicographically ordering the columns now gives the solution:
0
B@

0 0 1
0 1 1
1 1 0
1 0 1

1
CA
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However, this destroys the lexicographic ordering on the rows. Reordering the
last two rows gives a solution that is lexicographically ordered along both the
rows and the columns: 0

B@
0 0 1
0 1 1
1 0 1
1 1 0

1
CA

One can even construct examples that need several sequential rounds of or-
dering the rows and then the columns, although the following theorem shows
that this process always terminates. During search, both the row and column
lexicographic ordering constraints actually work in parallel. The following theo-
rem shows that, whether this ordering is done sequentially or in parallel, there
always is a solution with the rows and columns both in lexicographic order.

Theorem 1. For a matrix model with row and column symmetry in some 2-d
matrix, each symmetry class of assignments has an element where both the rows
and the columns of that matrix are lexicographically ordered.

Proof: We order 2-d matrices by lexicographically ordering the sequences
formed by appending their rows together in top-down order. Lexicographically
ordering two rows replaces a larger row at the front of this sequence by a smaller
row from further behind. Hence, ordering two rows moves us down the matrix
ordering. Lexicographically ordering two columns also moves us down this ma-
trix ordering. Indeed, the two columns have some values (if any) in common at
the top and swapping the columns thus does not affect the matrix ordering when
just considering the corresponding top rows; also, in the top-most row (if any)
where the two columns differ, the value in the left column is then replaced by a
smaller value from the right column, as the latter was lexicographically smaller
than the left column, making that row lexicographically smaller. This moves us
down the matrix ordering, as the first changed row (if any) is replaced in the
sequence by a smaller one. Furthermore, the matrix ordering is finite, as there
are only a finite number of permutations of the values in a matrix, and bounded
below, namely by a matrix whose rows and columns are lexicographically or-
dered. So we cannot move down the matrix ordering indefinitely, and will find a
matrix in which all the rows and columns are lexicographically ordered. ✷

This result shows that we can always lexicographically order both the rows
and the columns. Dually, we can always anti-lexicographically order both the
rows and the columns. However, we cannot always lexicographically order the
rows and anti-lexicographically order the columns. Lexicographically ordering
the rows will tend to push the largest values to the bottom-left of the matrix.
Anti-lexicographically ordering the columns will tend to push the larger values
to the top-right. For this reason, the two orders can conflict.

Example 2. Consider a 2 × 2 matrix of 0/1 variables, xij , with the constraints
that

∑
i xij = 1 and

∑
j xij = 1 (i.e., every row and column has a single 1). This

model has both row and column symmetry, and has two symmetric solutions:
�

0 1
1 0

�
,

�
1 0
0 1

�
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The first solution has rows and columns that are lexicographically ordered, whilst
the second has rows and columns that are anti-lexicographically ordered. There is
thus no solution in which the rows are lexicographically ordered and the columns
are anti-lexicographically ordered.

Lexicographically ordering the rows (columns) breaks all the row (column)
symmetries. However, lexicographically ordering both the rows and the columns
does not break all the compositions of the row and column symmetries.

Example 3. Consider a 3× 3 matrix of 0/1 variables, xij , with
∑

j xij ≥ 1 and∑
ij xij = 4. This model has both row and column symmetry. The following two

symmetric solutions have lexicographically ordered rows and columns:
0
@ 0 0 1

0 1 0
1 0 1

1
A,

0
@ 0 0 1

0 1 0
1 1 0

1
A

These solutions are symmetric, as one can move from one to the other by swap-
ping the first two rows and the last two columns. Swapping any rows or columns
individually breaks the lexicographic ordering. Thus, lexicographically ordering
both the rows and the columns does not break all the compositions of the row and
column symmetries. However, our experimental results (see Section 6) suggest
that lexicographically ordering both the rows and the columns breaks enough
symmetries to be useful practically.

4 Extensions

We consider a number of extensions that extend the utility of our results con-
siderably.

4.1 Higher Dimensions

Many problems can be effectively modelled and efficiently solved using matrix
models with a matrix of more than two dimensions. For example, the social
golfers problem can be modelled with a 3-d 0/1 matrix whose dimensions cor-
respond to weeks, groups, and players [17]. A variable xijk in this matrix is 1
iff in week i player j plays in group k. This matrix model has symmetries along
each of the three dimensions: the weeks are indistinguishable, and so are the
groups and players. We now generalise the lexicographic ordering constraint to
any number of dimensions to break some of these symmetries.

Consider a 2-d matrix. If we look along a particular dimension, we see 1-
d vectors at right angles to this axis. To break the symmetries, we order these
vectors lexicographically. Now consider a 3-d matrix. If we look along a particular
dimension, we see 2-d slices of the matrix that are orthogonal to this axis. To
break the symmetries, we need to order these slices. One way is to flatten the
slices onto vectors and lexicographically order these. In n dimensions, we see
slices that are n−1 dimensional hypercubes, which can be compared by flattening
onto vectors and lexicographically ordering these.



Breaking Row and Column Symmetries in Matrix Models 467

Definition 1. An n-dimensional matrix X, with n ≥ 1, is multi-dimensionally
lexicographically ordered iff the following conditions hold:

∀i flatten(X [i][ ] . . . [ ]) ≤lex flatten(X [i+ 1][ ] . . . [ ])
∀j flatten(X [ ][j] . . . [ ]) ≤lex flatten(X [ ][j + 1] . . . [ ])

· · ·
∀k flatten(X [ ][ ] . . . [k]) ≤lex flatten(X [ ][ ] . . . [k + 1])

where X [ ] . . . [ ][i][ ] . . . [ ] denotes the n − 1 dimensional hypercube obtained
by taking the slice of X at position i in the dimension where [i] appears in
[ ] . . . [ ][i][ ] . . . [ ], and where flatten is used to flatten a slice of a matrix into
a 1-d vector and is defined by:

flatten(X [1..m]) = X [1..m]
flatten(X [1..m][ ] . . . [ ]) = append( flatten(X [1][ ] . . . [ ]),

. . . ,
flatten(X [m][ ] . . . [ ]))

with append(V1, . . . , Vn) denoting the left-to-right concatenation of the 1-d vec-
tors V1, . . . , Vn.

As in the 2-d case, we can show that this multi-dimensional lexicographic
ordering breaks some of the symmetries. Unfortunately, it does not break all the
symmetries as the 2-d counter-examples generalise to other numbers of dimen-
sions.

Theorem 2. For a matrix model with symmetry along each dimension in
some n-dimensional matrix, where n ≥ 1, each symmetry class of assignments
has an element where that matrix is multi-dimensionally lexicographically or-
dered.

Proof: A proof for the 3-d case is in [5]; it generalises to any number of
dimensions. ✷

4.2 Partial Symmetry

We may only have partial row or column symmetry in a matrix model, namely
when only strict subset(s) of the rows or columns of one of its matrices are
indistinguishable. We here show through an example how to address this.

Example 4. In a 2-d 0/1 matrix model of the rack configuration problem, only
the columns that correspond to racks of the same type are indistinguishable.
Suppose there are 10 racks, where the first 4 racks are of a first type, the next 3
racks are of another type, and the last 3 racks are of a third type. Then the
following candidate solutions:
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−→ racks −→
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0

↓ 0 1 0 0 0 0 0 0 0 0
cards 1 0 0 0 0 0 0 0 0 0

↓ 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0

−→ racks −→
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0

↓ 0 1 0 0 0 0 0 0 0 0
cards 0 0 0 0 1 0 0 0 0 0

↓ 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0

are not symmetric, because the first and fifth columns have been swapped al-
though they do not pertain to the same rack type. We cannot lexicographically
order all the columns in such a situation, as that would here amount to requiring
that all the racks are of the same type. However, we can use fewer lexicographic
ordering constraints to break some of the underlying symmetries: for each subset
of rows (columns) that are indistinguishable, we only state lexicographic ordering
constraints between these rows (columns).

We can also extend the 0/1 domain of the decision variables in the matrix,
and add a first row for a dummy card that is constrained as follows, say:

−→ racks −→
2 2 2 2 3 3 3 4 4 4
. . . . . . . . . .
. . . . . . . . . .

↓ . . . . . . . . . .
cards . . . . . . . . . .

↓ . . . . . . . . . .
. . . . . . . . . .

Lexicographically ordering all the columns will now keep the columns pertaining
to racks of the same type together and thus only break all the symmetries arising
from indistinguishable rack types.

4.3 Value Symmetry

We can deal with symmetric values using the techniques we have developed
above for dealing with symmetric variables. A variable x of an n dimensional
matrix that takes a value from a domain of indistinguishable values v1, . . . , vm

can be replaced by a vector [x1, . . . , xm] of 0/1 variables, with the seman-
tics xi = 1 ↔ vi = x. A set variable x taking a set of values from a similar domain
of indistinguishable values can also be replaced by a vector of 0/1 variables with
the semantics (xi = 1 ↔ vi ∈ x). Hence, we have introduced n×m 0/1 variables
and constraints. In other words, the (set) variable is replaced by a characteristic
function, whose variables take values that are not indistinguishable. This con-
verts indistinguishable values into indistinguishable variables, which become a
new dimension in the now n+ 1 dimensional matrix.

Example 5. Consider a 2-d matrix model of the progressive party problem [19].
A variable xij in its matrix takes as value the host boat visited by guest i in
period j. Now, host boats of the same capacity are indistinguishable. We can
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turn this partial value symmetry into a partial variable symmetry by channelling
into a new 3-d 0/1 matrix that has no value symmetry. A variable yijk in this
new matrix is 1 iff the host boat k is visited by guest i in period j. Channelling
constraints of the form yijk = 1 ↔ k = xij can thus link the two matrices. The
new matrix model has partial symmetry along the third dimension of its 3-d
matrix. We can therefore use lexicographic ordering constraints to break these
symmetries. Note that we do not always need to channel between the two ma-
trices and could thus replace the old matrix by the new one. However, it is quite
often the case that some constraints are more easily expressed on the original
matrix, and this is the case here.

The advantage of this approach is that we can use the multi-dimensional lex-
icographic ordering to deal simultaneously with symmetric variables and sym-
metric values. An alternative approach to breaking value symmetry is described
in [11], but this method currently assumes that all values in a domain are sym-
metrical. We can also use the techniques outlined in the previous sub-section to
deal with values that are only partially symmetric. Freuder addresses the case
of interchangeable values [8], but with respect to individual variables as opposed
to symmetries that hold globally between values. Again, we can support this
situation by ordering sub-rows or sub-columns.

5 Breaking all the Symmetries

It is always possible to break all the symmetries. In [3], a method is presented for
adding a lexicographic ordering constraint for each symmetry of the problem.

Example 6. The set of all compositions of the row and column symmetries of a
3× 2 matrix �

x1 x2 x3
x4 x5 x6

�

can be broken by the following 11 constraints:

[x1, x2, x3, x4, x5, x6] ≤lex [x2, x1, x3, x5, x4, x6], that is [x1, x4] ≤lex [x2, x5]

[x1, x2, x3, x4, x5, x6] ≤lex [x1, x3, x2, x4, x6, x5], that is [x2, x5] ≤lex [x3, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x4, x5, x6, x1, x2, x3], that is [x1, x2, x3] ≤lex [x4, x5, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x6, x4, x5, x3, x1, x2], that is [x1, x2, x3] ≤lex [x6, x4, x5]

[x1, x2, x3, x4, x5, x6] ≤lex [x5, x6, x4, x2, x3, x1], that is [x1, x2, x3, x4] ≤lex [x5, x6, x4, x2]

[x1, x2, x3, x4, x5, x6] ≤lex [x4, x6, x5, x1, x3, x2], that is [x1, x2, x3] ≤lex [x4, x6, x5]

[x1, x2, x3, x4, x5, x6] ≤lex [x5, x4, x6, x2, x1, x3], that is [x1, x2, x3] ≤lex [x5, x4, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x6, x5, x4, x3, x2, x1], that is [x1, x2, x3] ≤lex [x6, x5, x4]

[x1, x2, x3, x4, x5, x6] ≤lex [x3, x2, x1, x6, x5, x4], that is [x1, x4] ≤lex [x3, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x2, x3, x1, x5, x6, x4], that is [x1, x2, x4, x5] ≤lex [x2, x3, x5, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x3, x1, x2, x6, x4, x5], that is [x1, x2, x4, x5] ≤lex [x3, x1, x6, x4]

The first two constraints arise from the indistinguishability of the first two columns and the last two
columns, respectively, whereas the third constraint arises from the indistinguishability of the two
rows. The remaining constraints arise from the compositions of these row and column symmetries.
These constraints were obtained by first determining the 3! · 2! = 12 permutations of the vector
[x1, x2, x3, x4, x5, x6] obtained by building the 2! concatenations of the row vectors for each of the
3! permutations inside the rows. We then constrained an arbitrary one of these 12 permutations,
namely [x1, x2, x3, x4, x5, x6], to be the lexicographically smallest one.
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In general, an m× n matrix has m! · n!− 1 symmetries except identity, gen-
erating thus a super-exponential number of lexicographic ordering constraints.
Hence this approach is not always practical, so we now identify three special
cases where all compositions of the row and column symmetries can be broken
by a polynomial (and even linear) number of constraints.

First consider the case where all the values in the matrix are distinct. Such
matrix models are common. For example, this happens in the single-round tour-
nament scheduling problem, when the matrix entries are ordered pairs of teams.

Theorem 3. If a matrix model with row and column symmetry in some 2-d
matrix, as well as with a constraint requiring all the values in that matrix to
be distinct, has a solution, then each symmetry class of solutions has a unique
member with the largest value placed in the bottom-right corner as well as the
last row and the last column ordered.

Proof: Given a solution, the row occupied by the largest value contains distinct
values that can be permuted by ordering the columns. By ordering this row,
we break all possible column symmetries and fix the sequence of the columns.
Similarly, the column occupied by the largest value contains distinct values that
can be permuted by ordering the rows. By now ordering this column, we break
all possible row symmetries, and fix the sequence of the rows, while placing the
largest value in the bottom-right corner of the matrix. All the compositions of
the row and column symmetries are thus broken, because we have constructed
a unique symmetric solution. ✷

It is therefore the symmetries between identical values that make it difficult
to break all the compositions of the row and column symmetries.

In fact, our proof shows that we break all the symmetries even if the other
rows and columns contain repeated values. Ordering the row and column with
the largest value will fix all the other values in the matrix in a unique way. So we
do not need every value in the matrix to be distinct (although this is sufficient
to make the row and column with the largest value contain no repeated values).

Next, even when matrices have repeated values, it is still possible in cer-
tain situations to break all symmetries by means of a polynomial number of
symmetry-breaking constraints. In particular, this is the case for 2-d 0/1 ma-
trices with a single 1 in each row. Such matrix models are quite common. For
example, the 2-d matrix we used in the rack configuration problem has this form.

Theorem 4. If a matrix model with row and column symmetry in some 2-d
0/1 matrix, as well as with a constraint requiring a single 1 in each row of
that matrix, has a solution, then each symmetry class of solutions has a unique
solution with the rows ordered lexicographically as well as the columns ordered
lexicographically and by their sums.

Proof: Given a solution, by Theorem 1, there is a symmetric solution with
the rows and columns lexicographically ordered. In that solution, the top-right
corner must contain a 1. Suppose that in the next row down, the 1 occurs to
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the right of where it does in this row. Then the next row is not lexicographically
larger. Suppose that it occurs more than one column across to the left. Then
the columns in between are not lexicographically larger. Hence, the 1 in the
next row down must occur either directly below or one column to the left. The
only freedom is in how many consecutive rows have 1s in the same column. This
symmetry is broken by ordering the sums of the columns. All the compositions
of the row and column symmetries are broken, because we have constructed a
unique symmetric solution. ✷

Note that we can have the column sums in increasing or decreasing order,
depending on which is preferable.

Finally, all the symmetries can be broken with a linear number of con-
straints when all the rows, seen as multisets, are distinct. We say that a vec-
tor v1 is multiset-lexicographically smaller than another vector v2 if sort(v1) ≤lex

sort(v2), where sort(v) denotes the ordered permutation of vector v. For in-
stance, the vector [0, 1, 2, 1, 1] is multiset-lexicographically smaller than the vec-
tor [0, 3, 1, 1, 1] because [0, 1, 1, 1, 2] ≤lex [0, 1, 1, 1, 3].

Theorem 5. If a matrix model with row and column symmetry in some 2-d
matrix, as well as with a constraint requiring all the rows of that matrix to be
distinct as multisets, has a solution, then each symmetry class of solutions has a
unique solution with the rows multiset-lexicographically ordered and the columns
lexicographically ordered.

Proof: Given a solution, we can first multiset-lexicographically order the rows.
Because the rows are distinct as multisets, this fixes the order of the rows. We
can now order the columns lexicographically without changing the multiset of
any row. All the compositions of the row and column symmetries are broken,
because we have constructed a unique symmetric solution. ✷

6 Experimental Results

To test the ability of lexicographic ordering constraints to break the compositions
of row and column symmetries, we ran some experiments on balanced incomplete
block design (BIBD) generation. This is a standard combinatorial problem from
design theory. It has applications in experimental design and cryptography (see
prob028 at www.csplib.org for more details).

A BIBD is an arrangement of v distinct objects into b blocks, such that
each block contains exactly k distinct objects, each object occurs in exactly r
different blocks, and every two distinct objects occur together in exactly λ blocks.
A BIBD instance is thus determined by its parameters 〈v, b, r, k, λ〉. One way of
modelling a BIBD is in terms of its incidence matrix, which is a b×v 0/1 matrix
with exactly r ones per row, k ones per column, and with a scalar product of
λ between any pair of distinct rows [6]. This matrix model has row and column
symmetry since we can permute any rows or columns freely without affecting any
of the constraints. This kind of symmetry is often partially broken by setting the
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Table 1. Experimental results on BIBD instances

distinct row & col lex set 1st row & col row lex col lex
Instance #sol #sol time #sol time #sol time #sol time

〈7, 7, 3, 3, 1〉 1 1 1.05 216 8 30 3 30 4
〈6, 10, 5, 3, 2〉 1 1 0.95 17, 280 332 60, 480 3, 243 12 2
〈7, 14, 6, 3, 2〉 4 24 10.63 ≥ 90, 448 − ≥ 68, 040 − 465 55
〈9, 12, 4, 3, 1〉 1 8 28.14 ≥ 5, 340 − ≥ 342 − 840 1, 356
〈8, 14, 7, 4, 3〉 4 92 171.00 ≥ 5, 648 − ≥ 2, 588 − ≥ 5, 496 −
〈6, 20, 10, 3, 4〉 unknown 21 10.30 ≥ 538, 272 − ≥ 429, 657 − 73 20

first row and the first column, as this is a cheap but effective method. However,
this breaks less symmetry than lexicographically ordering both the rows and the
columns, as shown next.

Table 1 shows our experimental results on some BIBD instances. We used
the ECLIPSE toolkit as it has a lexicographic ordering constraint. The instances
in this table are also used in [14, 15]. We only present a representative sample
of our experiments. We enforced a lexicographic ordering between neighbouring
pairs of rows and columns (row & col lex). We also include the results when
we set the first row and the first column (set 1st row & col), as well as when
we impose lexicographic ordering constraints only on the rows (row lex) or only
on the columns (col lex). For each instance, we show the number of distinct
solutions (distinct #sol), the number of symmetric solutions being always in
excess of 2.5 million, as well as the total number of solutions found (#sol) and
the run-times (time, in seconds, or a “−” whenever 1 clock hour was exceeded,
in which case we report the number of solutions found at that moment) for each
of the four symmetry-breaking techniques listed above.

With the row and column lexicographic ordering constraints, we labelled
along one row and then down one column, and so on, as this is more efficient
than labelling just along the rows or just down the columns, on these instances.
However, there are some instances (not shown in the table) where labelling along
the rows is much more efficient than labelling along the rows and columns. With
the first row and column set, the best labelling strategy varies from instance
to instance; we report the best results achieved among the three strategies.
Indeed, the objective was to get, within reasonable amounts of time, numbers
of solutions that can be compared, rather than to compare the times needed
to do so. The times are only indicated to reveal that our symmetry-breaking
techniques are cost-effective compared to an existing one. With row lexicographic
ordering constraints, the best strategy is to label the columns, and with column
lexicographic ordering constraints, the best strategy is to label the rows.

The table reveals that the column lexicographic ordering constraints are much
more efficient than the row ones. This is true for many other instances (that are
not shown in the table). We conjecture that the scalar product constraint so
tightly constrains the rows that little work is left to be done by the row lexico-
graphic ordering constraints. The column lexicographic ordering constraints act
orthogonally and so are more constraining. The results also confirm that lexico-
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graphically ordering the rows and columns can break most of the compositions
of the row and column symmetries.

In [15], a binary CSP model encoded in SAT that breaks symmetries in a
different way was proposed to solve several BIBD instances using SATZ, WSAT,
and CLS. All its instances could be solved fast enough with our 2-d 0/1 matrix
model using row and column lexicographic ordering constraints. For example,
our model solves the instance 〈8, 14, 7, 4, 3〉 in 171 seconds, while this instance
was not solved in several hours with any algorithm or encoding in [15].

To test the efficacy of channelling to a 0/1 matrix in order to break value
symmetry with lexicographic ordering constraints, we experimented with Schur’s
Lemma (prob 015 in CSPlib). The problem is to put n balls, labelled {1,..., n},
into 3 boxes so that for any triple of balls (x, y, z) with x+ y = z, not all are in
the same box. A natural model consists of a one-dimensional matrix of variables
with domain size 3, each element of which corresponds to a particular box. The
boxes, and therefore the values, are symmetrical. We tested this model with no
symmetry breaking and with Gent’s method [11]. A second model channels to a
0/1 matrix of balls × boxes. In this model, a row corresponds to the contents of
a box. Hence, we can use lexicographic row ordering to break the symmetry.

Table 2. Experimental results on Schur’s Lemma

n No Symmetry Breaking Gent’s Method Lexicographic

Fails Choices Time Solns Fails Choices Time Solns Fails Choices Time Solns

15 7878 25451 0.6s 17574 1313 4241 0.6s 2929 1317 4245 0.2s 2929
16 10356 25067 0.6s 14712 1726 4177 0.6s 2452 1730 4181 0.2s 2452
17 11970 24029 0.6s 12060 1995 4004 0.7s 2010 1999 4008 0.2s 2010
18 11970 19025 0.6s 7056 1995 3170 0.7s 1176 1999 3174 0.2s 1176
19 12132 16391 0.6s 4260 2022 2731 0.7s 710 2026 2735 0.2s 710
20 11976 14117 0.5s 2142 1996 2352 0.8s 357 2000 2356 0.2s 357
21 10878 11783 0.5s 906 1813 1963 0.7s 151 1817 1967 0.2s 151
22 10206 10397 0.5s 192 1701 1732 0.8s 32 1705 1736 0.2s 32
23 9738 9755 0.5s 18 1623 1625 0.8 3 1627 1629 0.2s 3
24 9072 9071 0.5s 0 1512 1511 0.8 0 1516 1515 0.2s 0

Table 2 summarises the results. Both symmetry breaking methods result in
a dramatic reduction in the number of solutions discovered and search tree size.
Gent’s method appears to propagate slightly before the lexicographic approach,
hence the (negligible) difference in terms of fails and choices. Given three boxes,
we require just two lexicographic ordering constraints between adjacent rows of
the 0/1 matrix. Although Gent’s method requires fewer extra variables than the
lexicographic approach, each has a relatively large domain. This coupled with
O(n) extra constraints results in the gap in overall performance.
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7 Related Work

There is currently much interest in symmetry in constraint satisfaction problems.
The existing approaches can be broadly categorised into five types.

The first approach, deployed here, adds symmetry-breaking constraints to
the model in an attempt to remove some symmetries before search starts [16, 3].

A second method breaks adds symmetry-breaking constraints during search
to prune symmetric branches (e.g., [1], the global cut framework (GCF) [7], and
symmetry-breaking during search (SBDS) [12]). A disadvantage of methods like
SBDS is that, at each node in the search tree, a constraint for each symmetry
is added, but that, for matrix models, there is a super-exponential number of
symmetries that have to be treated. Recently, promising results on combining
the dynamic SBDS with our static pre-search approach [5] have been reported
for matrix models [20], especially for combined methods that break some of the
symmetries using row sum ordering and column lexicographic ordering.

Third, in symmetry-breaking via dominance detection (SBDD) [4], the search
procedure is modified by adding a dominance check that checks if the current
assignment is symmetric to a previously encountered assignment. Such a domi-
nance check is problem-specific.

A fourth approach is to break symmetry by means of a heuristic variable-
ordering that directs the search towards subspaces with a high density of non-
symmetric solutions (e.g., [14]).

Lastly, it is sometimes possible to remodel a problem to remove some sym-
metries, for example via the use of set variables. However, this can produce a
more complex model [18].

All of these approaches would benefit from an efficient means of automatic
symmetry detection. However, symmetry detection has been shown to be graph-
isomorphism complete in the general case [2]. Therefore, it is often assumed that
the symmetries are known by the user. Since matrices of decision variables are
common in constraint programs [6], and since rows and columns in such matrices
are often indistinguishable, making matrices first-class objects in the modelling
language would give a heuristic symmetry-detection technique obvious clues as
to where to look.

8 Conclusions

We have identified an important class of symmetries in constraint models: row
and column symmetries. We have shown that we can lexicographically order
both the rows and the columns to break some of these symmetries. Whilst lexi-
cographically ordering the rows breaks all the row symmetries and lexicograph-
ically ordering the columns breaks all the column symmetries, lexicographically
ordering both the rows and the columns fails to break all the compositions of
these symmetries. Nevertheless, our experimental results show that this can be
effective at dealing with these compositions of the row and column symmetries.
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We have extended these results to cope with symmetries in any number of di-
mensions, with partial symmetries, and with symmetric values. Finally, we have
identified a number of special cases where all compositions of the row and col-
umn symmetries can be broken by means of adding only a linear number of
constraints.

Having established the utility of lexicographic ordering, there is a clear need
for efficient methods for establishing generalised arc consistency on constraints
that impose this ordering. A first step is to consider lexicographic ordering be-
tween a pair of vectors, which is our current focus [10]. We can then consider
enforcing generalised arc consistency on sets of such constraints. Furthermore, in
Example 6 the choice of which permutation is to be the lexicographically small-
est is arbitrary, but the performance of the variable-and-value-ordering depends
on this choice. Work on this topic is in progress.

In other future work, we intend to find ways of detecting the row and col-
umn symmetries automatically. Also, given several matrices with symmetry and
with channelling constraints in-between them, it is not clear how lexicographic
orderings on the matrices interact. Finally, we will investigate ways of detect-
ing redundancies among the super-exponential number of lexicographic ordering
constraints that are necessary for breaking all the symmetries. For instance, in
Example 6, the last three constraints are logically redundant.
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