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Abstract. In this paper, we present Clock Di�erence Diagrams (CDD), a new

BDD-like data-structure for e�ective representation and manipulation of certain

non-convex subsets of the Euclidean space, notably those encountered in veri�cation

of timed automata. It is shown that all set-theoretic operations including inclusion

checking may be carried out e�ciently on Clock Di�erence Diagrams. Other clock

operations needed for fully symbolic analysis of timed automata e.g. future- and

reset-operations, can be obtained based on a tight normalform for CDD. A version of

the real-time veri�cation tool Uppaal using Clock Di�erence Diagrams as the main

data-structure has been implemented. Experimental results demonstrate signi�cant

space-savings: for nine industrial examples the savings are in average 42% with

moderate increase in runtime.

CR Classi�cation: D.2.1, D.2.2, D.2.4, I.2.2, I.6.4, F.3.1.

Key words: automatic veri�cation, real-time systems, timed automata, symbolic

model-checking, clock decision diagrams.

1. Introduction

Model-checking has established itself as a powerful technique for checking

whether a given formally described system satis�es a desired property. For

parallel systems, model-checking su�ers from the inherent problem of state

explosion, i.e. the exponential growth in the size of the global state-space

in the number of component systems. The symbolic approach to model-

checking attempts to conquer this problem by using implicit representations

of sets of states. In particular, in the case of �nite-state systems, Binary

Decision Diagrams [Burch et al. 1990], BDD's, has proven to be an extremely

compact and e�cient data-structure in many practical applications.

In the last few years model-checking techniques and tools have been suc-

cessfully extended to the setting of real-time systems (e.g. [Wang et al.

1994],[Henzinger et al. 1995],[Daws and Yovine 1995],[Bengtsson et al. 1996]).

�
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The veri�cation engines of most tools in this category are based on timed

automata following the pioneering work of [Alur and Dill 1990]. Whereas

the initial decidability results use a symbolic representation in terms of a

partitioning of the in�nite state-space of a timed automaton into �nitely

many equivalence classes (so-called regions), current tools such as Kronos

and Uppaal are based on more e�cient data structures and algorithms for

symbolic representation and manipulation of convex subsets of the Eucle-

dian space using simple constraints, so-called Clock Constraints, over clock

variables.

Clock Constraints only o�er a symbolic representation of the continuous part

of the state-space of timed automata. A fully symbolic representation should

ideally integrate a similar symbolic representation of the discrete part. Un-

fortunately, Clock Constraints are not closed under the union operation

1

,

which has made this a notoriously di�cult task.

In this paper we present Clock Di�erence Diagrams, CDD's, a new BDD-like

data-structure for representing and manipulating certain non-convex subsets

of the Eucledian space. In particular CDD's are a generalization of Clock

Constraints which are closed under arbitrary �nite unions.

In section 2 we give the preliminary de�nitions for timed automata and

Clock Constraints. Section 3 introduces our new data-structure, CDD's,

and sections 4 and 5 show how set-theoretic operations as well as other

operations required for the fully symbolic analysis of timed automata may

be carried out on this representation. Section 6 presents a relative normal

form for CDD's, which is relative to a notion of granularity. Section 7 report

on encouraging experimental results obtained from a version of the real-time

veri�cation tool Uppaal based on CDD's. Section 8 concludes the paper.

Related Work

The work in [Balarin 1996] and [Wong-Toi and Dill 1995] represent early

attempts of applying BDD-technology to the veri�cation of continuous real-

time systems. In [Balarin 1996], Clock Constrains themselves are coded as

BDD's. However, unions of Clock Constraints are avoided and replaced by

convex hulls leading to an approximation algorithm. In [Wong-Toi and Dill

1995], BDD's are applied to a symbolic representation of the discrete control

part, whereas the continuous part is dealt with using Clock Constraints.

The Numerical Decision Diagrams (NDD's) of [Asarain et al. 1997],[Bozga et

al. 1997] o�er a canonical representation of unions of zones, essentially via a

BDD-encoding of the collection of regions covered by the union. The paper

[Campos and Clarke 1995] o�ers a similar BDD-encoding in the simple case

of one-clock automata. In both cases, the encodings are extremely sensitive

1

as the union of two convex sets is not necessarily convex.
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Fig. 1: A Timed Automaton.

to the size of the constants used in clock constraints. As we will indicate,

NDD's may be seen as degenerate CDD's requiring very �ne granularity.

CDD's are in the spirit of Interval Decision Diagrams (IDD's) of [Strehl and

Thiele 1998]. In [Strehl 1998], IDD's are used for analysis in a discrete

setting. Whereas IDD's nodes are associated with independent real-valued

variables the nodes of CDD's are associated with di�erences of clock values,

which makes the nodes highly interdependent (and of course more expres-

sive). Thus, the subset and emptiness checking algorithms for CDD's are

substantially di�erent from IDD's. Also, the canonical form requires addi-

tional attention, as bounds on di�erent arcs along a path may interact.

Another approach in [R.L.Spelberg et al. 1998] applies partitioned re�ne-

ment to obtain an e�cient real-time model-checking algorithm. The CDD-

datastructure was �rst introduced in [Larsen et al. 1998]. A similar datas-

tructure has recently been introduced in [M�ller et al. 1999],[M�ller et al.

1999].

2. Preliminaries

The theory of timed automata was �rst introduced in [Alur and Dill 1990]

to provide a formal model for real{time systems based on �nite-state au-

tomata. In recent years, several veri�cation tools for real{time systems in

the framework of timed automata have been developed. A key to the success

of these tools is the application of the well-known data-structure Di�erence

Bounded Matrices, DBM for representing clock constraints.

2.1 Timed Automata

A timed automaton is a standard �nite-state automaton extended with a

�nte collection of real-valued clocks. In a timed automaton, the nodes

(also known as control nodes) are labelled with an invariant (a condition

on clocks), and transitions are labelled with a guard (a condition on clocks),

a synchronisation action, and a clock reset (a subset of clocks to be reset).

Intuitively, a timed automaton starts execution with all clocks set to zero.

Clocks increase uniformly with time while the automaton is within a node.
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The automaton can only stay within a node while the clocks ful�ll the node's

invariant. A transition can be taken if the clocks ful�ll the guard. By tak-

ing the transition, all clocks in the clock reset will be set to zero, while the

remaining keep their values. Thus transitions occur instantaneously. Se-

mantically, a state of an automaton is a pair of a control node and a clock

valuation, i.e. the current setting of the clocks. Transitions in the semantic

interpretation are either labelled with a synchronisation action (if it is an

instantaneous switch from the current node to another) or a positive real

number i.e. a time delay (if the automaton stays within a node letting time

pass).

Consider the timed automaton of Fig. 1. It has two control nodes l

0

and l

1

and two real{valued clocks X and Y . A state of the automaton is of the

form (l; s; t), where l is a control node, and s and t are non{negative reals

giving the value of the two clocks X and Y . A control node is labelled with a

condition (the invariant) on the clock values that must be satis�ed for states

involving this node. Assuming that the automaton starts to operate in the

state (l

0

; 0; 0), it may stay in node l

0

as long as the invariant X � 4 of l

0

is

satis�ed. During this time the values of the clocks increase synchronously.

Thus from the initial state, all states of the form (l

0

; t; t), where t � 4,

are reachable. The edges of a timed automaton may be decorated with a

condition (guard) on the clock values that must be satis�ed in order to be

enabled. Thus, only at the states (l

0

; t; t), where 1 � t � 4, the edge from l

0

to l

1

is enabled. Additionally, edges may be labelled with synchronization

actions and simple valuations reseting clocks. For instance, when following

the edge from l

0

to l

1

the action a is performed to synchronize with the

environment and the clock Y is reset to 0 leading to states of the form

(l

1

; t; 0), where 1 � t � 4.

For the formal de�nition, we assume a �nite set of actions, A (the alphabet

of the automata) for synchronisation and a �nite set of real-valued variables

C for clocks. We use a; b; : : : to range over A andX

1

;X

2

; : : : to range over C.

We use B(C) ranged over by g and later byD to denote the set of conjunctive

formulas of atomic constraints of the forms X

i

�m or X

i

� X

j

�n, where

X

i

;X

j

2 C are clocks, � 2 f�; <;�; >g, and m;n are integer constants.

The elements of B(C) are called clock constraints.

Definition 1. A timed automaton over actions A and clocks C is a tuple

hN; l

0

; E; Ii where

� N is a �nite set of nodes,

� l

0

2 N is the initial node,

� E � N � B(C)�A� 2

C

�N is the set of edges, and �nally,

� I : N ! B(C) assigns invariants to nodes.

When hl; g; a; r; l

0

i 2 E, we write l

g;a;r

�! l

0

.
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Formally, we represent the values of clocks as functions (called clock valu-

ations) from C to the non{negative reals R

�0

. We denote by V the set of

clock valuations for C. A semantical state of an automaton is now a pair

(l; u), where l is a node of the automaton and u is a clock valuation and

the semantics of the automaton is given by a transition system with the

following two types of transitions (corresponding to delay-transitions and

action-transitions):

� (l; u)

d

�!(l; u+ d) if u 2 I(l) and u+ d 2 I(l)

� (l; u)

a

�!(l

0

; u

0

) if there exist g; r such that l

g;a;r

�! l

0

, u 2 I(l), u 2 g,

u

0

= [r 7! 0]u, and u

0

2 I(l

0

)

where for d 2 R

�0

, u+ d denotes the clock valuation which maps each clock

X in C to the value u(X)+d, and for r � C, [r 7! 0]u denotes the valuation

for C which maps each clock in r to the value 0 and agrees with u over Cnr.

By u 2 g (or u 2 D) we denote that the clock valuation u satis�es all the

simple constraints in g (or D).

2.2 Symbolic Reachability Analysis

In general, the semantics of a timed automaton is an in�nite and uncount-

able transition system, and is thus not an appropriate basis for decision

algorithms. E�cient algorithms may be obtained using a symbolic seman-

tics based on symbolic states of the form (l;D), where D 2 B(C) [Henzinger

et al. 1994],[Wang et al. 1994]. The symbolic counterpart to the standard

semantics is given by the following two types of symbolic transitions:

� (l;D); (l; (D ^ I(l))

"

^ I(l))

� (l;D); (l

0

; r(g ^D ^ I(l)) ^ I(l

0

)) if l

g;a;r

�! l

0

where time progress D

"

= fu + d ju 2 D ^ d 2 R

�0

g and clock reset

r(D) = f[r 7! 0]u ju 2 Dg. It may be shown that the set of clock constraints

B(C) is closed under these two operations ensuring the well-de�nedness of

the semantics [Larsen et al. 1995]. Moreover, the symbolic semantics fully

characterizes the above concrete semantics in the following sense:

� whenever (l

0

; fu

0

g);

�

(l;D) then (l

0

; u

0

) �!

�

(l; u) for all u 2 D

� whenever (l

0

; u

0

) �!

�

(l; u), then (l

0

; fu

0

g);

�

(l;D) for some D with

u 2 D

where u

0

may be any clock valuation, fu

0

g 2 B(C) denotes the clock con-

straint which is satis�ed only by u

0

and �!

�

denotes the transitive closure

of the relation �!.

Based on the symbolic semantics, a number of veri�cation tools have been

developed for real-time systems (e.g. Kronos [Daws and Yovine 1995] and
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Passed:= fg

Wait:= f(l

0

;D

0

)g

repeat

begin

get (l;D) from Wait

if (l;D) j= � then return \YES"

else if D 6� D

0

for all (l;D

0

) 2 Passed then

begin

add (l;D) to Passed (�)

Next:=f(l

s

;D

s

) : (l;D); (l

s

;D

s

) ^D

s

6= ;g

for all (l

s

0

;D

s

0

) in Next do

put (l

s

0

;D

s

0

) to Wait

end

end

until Wait=fg

return \NO"

Fig. 2: An algorithm for symbolic reachability analysis.

Uppaal [Bengtsson et al. 1996]). The abstract reachability algorithm im-

plemented in these tools is shown in Fig. 2. The algorithm checks whether

a timed automaton may reach a state satisfying a given state formula �. It

explores the state space of the automaton in terms of symbolic states of the

form (l;D), where l is a control{node and D is a clock constraint.

2.3 Di�erence Bounded Matrices

In the abstract reachability algorithm, we observe that data structures

for representing clock constraints are crucial for e�cient implementation.

One such well{known data structure is that of di�erence bounded matri-

ces (DBM, see [Bellman 1958] and [D.Dill 1989]), which o�ers a canonical

representation for clock constraints.

To introduce the notion of DBM, we assume that the set of clocks C is

organized as fX

1

: : : X

n

g and further assume an additional zero{clock X

0

which always has the value 0. Now a clock constraint in the form X

i

�m

can be rewritten as X

i

�X

0

�m. In fact, all clock constraints in B(C) may

be transformed to the conjunctions of constraints in the form X

i

�X

j

� m

or X

i

� X

j

< n where m;n are integers. For instance, X

i

� X

j

> 4 is

equivalent to X

j

� X

i

< �4. In the following, we assume that all clock

constraints in B(C) include the implicit constraints on clocks: X

0

�X

i

� 0

and X

i

�X

0

<1.

Now, a clock constraint may be viewed as a set of upper bounds on the

di�erences between pairs of clock variables, which may be represented as a
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matrix. Such a matrix is called a DBM. A DBM representation of a clock

constraint D may be interpreted as a weighted, directed graph, where the

vertices correspond to the clocks of C = fX

0

;X

1

: : : X

n

g. The graph has an

edge from X

i

to X

j

with weight m if X

j

� X

i

� m is a constraint of D.

The case of strict ordering < can be represented with an extra label on the

weight values representing the fact that the di�erence is strict (<).

The advantage with the graph interpretation is that it provides the key to a

canonical representation for clock constraints, which again enables e�cient

algorithms for performing constraint operations and inclusion checking. In

general, the same set of clock valuations may correspond to several clock

constraints and thus graphs. The canonical representation for a clock con-

straint is obtained by simply deriving the shortest{path closure for its graph

and can thus be computed in time O(n

3

), where n is the number of clocks

of D. We call such closures closed constraints. For closed constraints D, the

operations D

"

and r(D) may be performed in time O(n). In addition, if D

is closed, D � D

0

(for any D

0

) if and only if whenever (X

i

�X

j

� m) 2 D

then (X

i

�X

j

� m

0

) 2 D

0

such that m � m

0

, which may be checked in time

O(n

2

).

Finally we notice that the sets of clock valuations described by DBM's are

convex sets (polyhedra in the n-dimensional real space (R

�0

)

n

). Following

the literature, we shall call such convex sets zones.

DBM's obviously consume space of order O(n

2

). Alternatively, one may

represent a clock constraint system by choosing a minimal subset from the

constraints of the DBM in canonical form. This minimal form [Larsen et al.

1997] is preferable when adding a symbolic state to the main global data-

structure Passed as in practice the space-requirement is only linear in the

number of clocks.

2.4 Union of Zones

We know that the set B(C) of clock constraints is closed under conjunction,

but it is not closed under disjunction, as the union of two convex sets is

not necessarily a convex set. This leads to a problem in model checking

algorithms for timed automata: termination of reachability analysis is de-

tected by a testing for inclusion of a newly computed zone in the existing

explored zones, thus making a test of inclusion of a zone in a union of zones

desirable. We shall introduce a new data structure which is able to deal

e�ciently with �nite unions of zones. We call such �nite unions federations.

Ad-hoc approaches to the problem of inclusion in a federation will explode

in the number of zones belonging to the federation. There are some other

approaches which are related to our problem, but will not help in solving

it. In [Rokicki 1993] an O(jV j

4

) algorithm was presented which tested if the

union of two DBM's could be represented by another DBM. This algorithm
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Y

X � Y

[0; 1]

[2; 3]

[�1; 1]

[�1; 1]

X

True

Fig. 3: Example CDD

however cannot be used for the inclusion test in general, as there exists con-

vex sets S

1

; S

2

and S

3

such that S

1

[ S

2

[ S

3

is a convex set, but the union

of no two of the sets is convex. The approach in [Dechter et al. 1991] uses

constraint systems where the individual constraints are of the form

X

i

�X

j

2 I

1

[ I

2

[ � � � I

k

with I

1

; : : : ; I

k

being intervals, thus allowing for disjunction in the individual

constraints. These systems however can not represent all �nite unions of

convex sets. If each constraint has exactly two intervals, then a system

with n constraints represents the union of the 2

n

convex regions obtained

by selecting one interval for each constraint.

The solution in this paper is to represent the constraints as a directed acyclic

graph (DAG), a Clock Di�erence Diagram (CDD). The DAG given in Fig. 3

represents the constraint system

0 � X � 1 ^ �1 � Y � 1 ^

�

(�1 � X � Y 1) _ (2 � X � Y � 3)

�

CDD's are inspired by Binary Decision Diagrams (BDD's, see [Bryant 1986])

and Interval Di�erence Diagrams (IDD's, see [Strehl and Thiele 1998]). A

BDD is an acyclic graph with two terminal nodes True and False, where each

node represents a boolean variable. Inner nodes have two branches, one to

be followed if the variable is true and the other if the variable is false. Given

a speci�ed ordering of the variables and insisting on maximal sharing of

isomorphic subgraphs, each boolean expression has a unique representation.

IDD's extend this idea to independent real valued variables, where the edges

are now labelled with intervals of R instead of true and false. This approach

is however not su�cient for the symbolic model checking of timed automata.

CDD's further extend this idea where the nodes can represent di�erences of
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X

Y

X

Y Y Y

X

Y

X � Y X � Y

Y

1 2 3 4 5 6

X

1

2

3

(b)

(a)

(c)

Y

1 2 3 4 6

X

1

2

3

5

Y

1 2 3 4 5 6

X

1

2

3

[2,3]

[0,0]

[1; 3] [4; 6]

[1; 3]

True

[1; 2] [3; 4]

[1; 3]

[1; 4]

[2; 4]

True

[0; 2]

[0; 1]

[�3; 0]

True

(2; 3)

Fig. 4: Three example CDD's. Intervals not shown lead implicitly to False; e.g. in (a)

there are arcs from the X-node to False for the three intervals ]�1,1[, ]3,4[, and ]6,1[.

variables { hence dependencies between nodes { and it turns out that CDD's

exactly represent unions of DBM's, o�ering an improved data structure for

the symbolic model checking of timed automata.
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3. Clock Di�erence Diagrams

This section de�nes Clock Di�erence Diagram (CDD). A CDD is a directed

acyclic graph with two kinds of nodes: inner nodes and terminal nodes.

Terminal nodes represent the constants true and false, while inner nodes

are associated with a type (i.e. a clock pair) and arcs labeled with intervals

giving bounds on the clock pair's di�erence. Fig. 4 shows examples of CDD's.

A CDD is a compact representation of a decision tree for federations: take

a valuation, and follow the unique path along which the constraints given

by type and interval are ful�lled by the valuation. If this process ends at a

true node, the valuation belongs to the federation represented by this CDD,

otherwise not. A CDD itself is not a tree, but a DAG due to sharing of

isomorphic subtrees.

A type is a pair (i; j) where 1 � 0 < j � n. The set of all types is written T ,

with typical element t. We assume that T is equipped with a linear ordering

v and a special bottom element ? 2 T , in the same way as BDD's assume

a given ordering on the boolean variables. By I we denote the set of all

non-empty, convex, integer-bounded subsets of the real line. Note that the

integer bound may or may not be within the interval, so these are all open,

closed and half-open intervals of the real line, which we will typically write

as (a; b); [a; b]; (a; b] and [a; b). A typical element of I is denoted I. We write

I

;

for the set I [ f;g.

In order to relate intervals and types to constraint, we introduce the follow-

ing notation:

� given a type (i; j) and an interval I of the reals, by I(i; j) we denote the

clock constraint having type (i; j) which restricts the value of X

i

�X

j

to the interval I.

� given a clock constraint D and a valuation v, by D(v) we denote the

application of D to v, i.e. the boolean value derived from replacing the

clocks in D by the values given in v.

Note that typically we will use the notation jointly, i.e. I(i; j)(v) expresses

the fact that v ful�lls the constraint given by the interval I and the type

(i; j).

As an example, if the type is (2; 1) and I = [3; 5), then I(2; 1) would be the

constraint 3 � X

2

�X

1

< 5. For v where v(X

2

) = 9 and v(X

1

) = 5:2 we

would �nd that I(2; 1)(v) is true, while for v

0

with v

0

(X

2

) = 3 and v

0

(X

1

) = 4

we would have I(2; 1)(v

0

) is false.

This allows us to give the de�nition of a CDD:

Definition 2. (Clock Difference Diagram) A Clock Di�erence Dia-

gram (CDD) is a directed acyclic graph consisting of a set of nodes V and

two functions type : V ! T and succ : V ! 2

I�V

such that
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� V has exactly two terminal nodes called True and False, where type(True) =

type(False) = ? and succ(True) = succ(False) = ;.

� all other nodes n 2 V are inner nodes, which have attributed a type

type(n) 2 T and a �nite set of successors succ(n) = f(I

1

; n

1

); : : : ; (I

k

; n

k

)g,

where (I

i

; n

i

) 2 I � V .

We shall write n

I

! m to indicate that (I;m) 2 succ(n). For each inner

node n, the following must hold:

� the successors are disjoint: for (I;m); (I

0

;m

0

) 2 succ(n) either (I;m) =

(I

0

;m

0

) or I \ I

0

= ;,

� the successor set is an R-cover:

S

fI j 9m:n

I

! mg = R,

� the CDD is ordered: for all m, whenever n

I

! m then type(m) v

type(n)

Further, the CDD is assumed to be reduced, i.e.

� it has maximal sharing: for all n;m 2 V , whenever succ(n) = succ(m)

then n = m,

� all intervals are maximal: whenever n

I

1

! m;n

I

2

! m then I

1

= I

2

or

I

1

[ I

2

62 I

Note that we do not require a special root node. Instead each node can be

chosen as the root node, and the sub-DAG underneath this node is inter-

preted as describing a (possibly non-convex) set of clock valuations. This

allows for sharing not only within a representation of one set of valuations,

but between all representations. Fig. 4 gives some examples of CDD's. We

omit all arcs going to False to improve readability

2

. These missing arcs can

easily be deduced from the �gures: assume a node has outgoing arcs labeled

with intervals I

1

; : : : ; I

k

, then let

S

1

:=

[

i2f1;::: ;kg

I

i

; S

2

:= R n S

1

and let J

1

; : : : ; J

`

be intervals of the real line such that they are disjoint,

their union is S

2

and they are maximal, i.e. the union of any pair of them is

not an interval. Then to complete the CDD, arcs labeled by the J

j

all going

to False need to be added.

The following de�nition makes precise how to interpret such a DAG:

Definition 3. Given a CDD (V; type; succ), each node n 2 V is assigned a

semantics [[n]] � V, recursively de�ned by

2

We should point out that all the algorithms in this paper require that all arcs including

those leading to False to be speci�ed.
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X X

Y Y

X � YX � Y

1 2 3 4 5

1

2

3

4

X

Y

[0,0]

[1,4]

[1,3]

[0,0]

[1,3]

[1,3]

TrueTrue

Fig. 5: Two CDD's for the same zone

� for terminal nodes, [[False]] := ; and [[True]] := V

� for inner nodes, [[n]] := fv 2 V j n

I

! m; I(type(n))(v) = true; v 2 [[m]]g

Any path n

0

I

1

! : : :

I

k

! n

k

, with n

k

= True, in a CDD leading from some node

n

0

to the true node can be seen as representing all the valuations which ful�ll

the constraints induced by this path. Thus similar to the previous de�nition

we can assign a semantics to such paths by:

Definition 4. For paths in a CDD leading to true we can de�ne their se-

mantics recursively by:

� [[True]]

P

:= V,

� [[n

0

I

1

! : : :

I

k

! n

k

= True]]

P

:= fv 2 V j I

1

(type(n

0

))(v) = true;

v 2 [[n

1

I

2

! : : :

I

k

! n

k

]]

P

g

Note that each path in the form n

0

I

1

! : : :

I

k

! n

k

represents just the con-

junction of all the constraints v(X

i

) � v(X

j

) 2 I

`

with type(n

`

) = (i; j).

Hence, a DBM can be constructed from the lower and upper bounds in the

constraints, describing the same set of valuations as [[n

0

I

1

! : : :

I

k

! n

k

]]

P

. The

DBM constructed from a path will be called the path's DBM.

For BDD's and IDD's, testing for equality can be achieved easily due to their

canonicity: the test is reduced to a pure syntactical comparison. However,

in the case of CDD's canonicity is not achieved in the same straightforward

manner.

To see this, we give an example of two CDD's in Fig. 5 describing the same

set. The two CDD's are however not isomorphic. The problem with CDD's

{ in contrast to IDD's { is that the di�erent types of constraints in the
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Algorithm 1 op (n

1

; n

2

; baseOp )- Applies the operation baseOp to the

CDD's n

1

and n

2

if n

1

and n

2

are terminal nodes then

return node equal to n

1

baseOpn

2

.

end if

if type(n

1

) v type(n

2

) ^ type(n

1

) 6= type(n

2

) then

return the node (type(n

1

); f(I

1

; op (n

0

1

; n

2

; baseOp )) j n

1

I

1

! n

0

1

g

end if

if type(n

1

) v type(n

2

) ^ type(n

1

) 6= type(n

2

) then

return the node (type(n

2

); f(I

2

; op (n

1

; n

0

2

; baseOp )) j n

2

I

2

! n

0

2

g

end if

if type(n

1

) = type(n

2

) then

return the node

(type(n

1

); f(I

1

\ I

2

; op (n

0

1

; n

0

2

; baseOp )) j n

1

I

1

! n

0

1

; n

2

I

2

! n

0

2

; I

1

\

I

2

6= ;g

end if

nodes are not independent, but inuence each other. In the above example

obviously 1 � X � 3 and X = Y already imply 1 � Y � 3. The constraint

on Y in the CDD on the right hand side is simply too loose. Therefore a

step towards an improved normal form is to require that on all paths, the

constraints should be the tightest possible. We turn back to this issue in a

later section.

As a set of valuations can be seen as a subset in R

n

(where n is the number

of clocks), an important and natural question is: What subsets of R

n

can be

represented by a CDD? Informally a valuation is satis�ed by a CDD if there

exists a path from the root to True. In fact it is easy to show the following:

Proposition 1. Given a CDD T and a node n then

[[n]] =

[

f[[n = n

0

I

! � � �

I

k

! n

k

= True]]

P

j n

0

I

! � � �

I

k

! n

k

is a path in Tg

CDD's exactly represent �nite unions of zones. The above proposition shows

that any CDD can be seen as the union of a �nite number of zones. Further

down we will show that CDD's are closed under (�nitary) union, thus any

�nite union of zones can be represented as a CDD.

4. Set-Theoretic Operations

The set of valuations that satisfy a CDD can be seen as a subset in R

n

(where n is the number of clocks). All the standard set-theoretic operations

like union, intersection and complement can be performed on CDD's. As

an example the set-theoretic complement of a CDD is achieved by simply
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swapping the True and False nodes. Note that no such simple algorithm

exists for DBM's which are not closed under complement.
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Y Y Y

X

7

[0,0]

[0,1] [2,3]

[-3,0]

True

X � Y X � Y
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3

Y

6

Y

4

Y

7

X � Y

8

X � Y

X

Y

2,6

1,5

[0; 1)

[1; 2]

(2; 3)

[3; 4]

[0; 1]

[2; 3]

True

[0; 0]

[�3; 0]

[0; 1]

[2; 3]

(1; 2)

[1; 4]

[2; 4]

Fig. 6: Two CDD's and their union. Each node is given the same number in the original

CDD's and their union.The label 1,5 is the union of node 1 and 5 likewise the label 2,6 is

the union of node 2 and 6.

Binary set-theoretic operations can easily be de�ned recursively by �rst

de�ning the base case for the terminal nodes suitably. Alg. 1 assumes the

base cases { i.e. both nodes are either True or False { given by an opera-

tion baseOp . Remember for this base case operation, that the node True

corresponds to the full set of valuations, while the node False represents the

empty set. Under this assumption, the given algorithm de�nes the operation

op for arbitrary nodes of the CDD. Fig. 6 show an example of the union

operation applied to two nodes of the CDD.
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Algorithm 2 Test for emptiness of [[n]]

let P be the set of paths starting in n leading to True

while P 6= ; do

extract and remove a path p from P

test p for satis�ability

if there is a valuation that satis�es p then

return false

end if

end while

return true

The same principle as for the binary case can be applied to any n-ary

set-theoretic function. Note that our algorithm do not care about keep-

ing reducedness. However, this can easily be achieved using standard BDD

techniques like hashing on each node n and an operation-cache for memo-

rizing the result of operations already performed on the same arguments.

Extending the algorithm with these techniques leads to very e�cient imple-

mentations

3

.

Test for inclusion of one CDD in another can be realized by exploiting the

well known set-theoretic equivalence

A � B () A \ :B = ;

As we do not yet have a normal or canonical form for CDD's, there is no

straightforward syntactic way to test for emptiness of a CDD. However, a

rather simple procedure follows immediately from Prop. 1: all that needs to

be done is to test satis�ability of all paths leading to True. Satis�ability of

a single path may itself be decided straightforwardly using the existing pro-

cedure for DBM's. Alg. 2 o�ers the details of this approach to set-inclusion.

Alg. 2 may be specialised when testing if a zone Z de�ned by a DBM is

included in a CDD. This specialized version for set{inclusion has proved

particular usefull in obtaining an e�cient CDD-based version of Uppaal's

reachability algorithm. We report on this in a later section and refer for

more information to [Behrmann et al. 1999].

Note that when testing for emptiness of a DBM as required in the �rst

if-statement of Alg. 3, we need to compute its canonical form. Once this

canonical form of D has been obtained, we may improve the e�ciency of

algorithm by passing D ^ I(type(n))

4

also in canonical form. As the con-

junction of I(type(n)) adds no more than two constraints to that of D,

computation of the canonical form for D ^ I(type(n)) can be done faster

than in the general case (in time O(n

2

) rather than O(n

3

)). We illustrate

3

More precisly, the operations become linear in the product of the sizes of the argument

CDD's.

4

^ refers to the operation of taking the DBM for D and conjoin the constraints of

I(type(n)).
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Algorithm 3 Deciding set inclusion for a zone and a CDD

subset(D;n)

if D = False or n = True then

return True

else if n = False then

return False

else

return

V

n

I

!m

subset(D ^ I(type(n));m)

end if

Y Y Y

n

x y z

[1; 2]

[1; 3]

[1; 4]

[2; 4]

True

True

[2; 3]

[1; 3]

Y
�

(3; 4]

(2; 3]

X

X

Fig. 7: Example zone for inclusion

the action of Alg. 3 on the example Fig. 7, where the nodes are named n; x; y

and z for reference. First we call subset(X 2 [1; 3] ^ Y 2 [2; 3],n) which is

expanded as follows (we have added the implicit branches to the False node

not shown in the picture):

subset(X 2 [1; 3] ^ Y 2 [2; 3]; n) =

subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (�1; 1);False) ^

subset (X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 [1; 2]; x) ^

subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (2; 3]; y) ^

subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (3; 4]; z) ^

subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (4;1);False)

= (simpli�cation of �rst arguments)

subset(False;False) ^

subset (X 2 [1; 2] ^ Y 2 [2; 3]; x) ^

subset(X 2 (2; ; 3] ^ Y 2 [2; 3]; y) ^

subset(False; z) ^

subset(False;False)
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Thus we only need to pursue the calculation of two conjuncts, as the oth-

ers are readily satis�ed. In both cases one additional expansion of subset

followed by constraint simpli�cation yields the �nal result 'true'. In this

particular application, the algorithm never reaches a stage, where a call of

the form subset(D;False) is made with D a non-empty zone.

The application also demonstrates another important point: when using

either Alg. 2 combined with an intersection and complement operation or

Alg. 3, several inclusion checks may be terminated early without having to

go through the whole CDD. For example, if instead in the above example

the zone D was given by the clock constraint X 2 [6; 7] ^ Y 2 [1; 3], the

algorithm would terminate at the very �rst step as there would be a call

subset(D;False), where D is a non-empty constraint system.

5. Clock Operations for Fully Symbolic Analysis

Two operations play an important role in the analysis of timed automata:

future (letting time progress) and reset (set a clock to an integer value).

The two operations can easily be de�ned semantically on sets of valuations.

Given a valuation v, a clock X and a positive real d, let v+d be the valuation

where each clock is increased by d. Further [X 7! 0]v denotes the valuation

where clock X has values 0, while all other clocks retain their value from v.

Now applying pointwise extension we obtain the following future and reset

operations on sets of valuations:

future(S) := fv + d j v 2 S; d 2 R

�0

g

[X 7! 0]S := f[X 7! 0]v j v 2 Sg

These operations can be carried out for zones using DBM's which are in

canonical form. For a canonical DBM D = fd

ij

g, the future is computed by

� removing the upper bound on all individual clocks, i.e. set d

i0

to +1

for all i

Assuming that j is the index of clock X, the reset of D is computed by

� setting clock X to 0, i.e. d

j0

= d

0j

= 0, and

� remove all upper bounds on the di�erences between X and other clocks

In order to extend these operations to CDD's, we need to bring a CDD in

a suitable canonical form. The basic idea is to generate an equivalent CDD

where all paths to True are tightened, i.e. the corresponding DBM's are in

canonical form:

Definition 5. A CDD is called tightened i� for all paths leading to True,

the path's DBM is in canonical form.
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Algorithm 4 Turn a CDD starting at n into a tightened CDD

new := n

repeat

old := new

let new := False

for all paths P leading from old to True do

compute P 's DBM and it's canonical DBM D

if D does not represent the empty set then

let d be the node corresponding to D

let new := new union d

end if

end for

until old = new

return new

Alg 4 shows a way to bring any CDD into such a form. Observe that in

the tightening and unioning step, intervals from nodes can only become

smaller. As there are smallest intervals { i.e. they cannot be further divided

by the algorithm { namely those of the form [c; c] and (c; c + 1) (where c is

an integer), termination of the algorithm is guaranteed. The fact that all

paths in the resulting CDD are DBM's in canonical form follows from the

construction: only in this case can the result be stable.
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Y �XY �XY �X
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1 2 3 4 5 6
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2

3

[3,4]

(2,3)

[1,2]

[1,3] [1,4] [2,4]

[-2,1]

(-2,2)

[-1,2]

True

Fig. 8: A tightened CDD

Note that in a tightened CDD, a path leading to True cannot have contradict-

ing constraints, i.e. it cannot represent the empty set. This is because the

path's DBM would have a negative entry along, while this is ruled out by the

de�nition of the path's DBM. Fig. 8 shows the tightened CDD-representation

for Example (b) from Fig. 4.

Starting from a tightened CDD, future and reset can now be de�ned by

extending the de�nition of the operations on DBM's. For a given interval
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I 6= ;, let I

1

be this interval with its upper bound being extended to +1,

i.e. I

1

:= fx 2 R j 9x

0

2 I:x

0

� xg. Then to compute the future of a

tightened CDD, it is su�cient to

� replace each interval I on an edge leaving a node of type (i; 0) by I

1

.

This is clearly the analogue of removing the upper bound on all constraints

on the individual clocks in a DBM. The only problem is that the result is not

a CDD in the sense of Def. 2, as the intervals within a node are not disjoint

any more. Further down we explain how to deal with this situation.

To compute the reset of X

j

to 0, assuming again a tightened CDD, we need

to

� replace each interval I on an edge leaving a node of type (j; 0) by [0; 0],

and

� replace each interval I on an edge leaving a node of type (j; i) respec-

tively (j; i) where i > 0 by (�1;+1).

This is again the extension of the reset operation to canonical DBM's. Note

that the correctness of both operations therefore follows from the canonicity

of the CDD, the correctness of the operations on DBM's, and the fact that

both operations distribute over union of DBM's together with Prop. 1.

The reset as the future operation leave us however with DBM's violating the

disjointness condition. As the semantics of DBM's is de�ned as in Def. 3,

this is in principle not a problem: a valuation belongs to the set represented

by a CDD if there is some path representing it. The fact that there might

be several paths including it yields no problem. It should however be noted

that all our algorithms require disjoint intervals out of nodes to be correct.

Luckily it is rather easy to obtain an equivalent CDD with the disjointness

property. Alg. 5 shows how to do this for one node, and must thus be

applied to all nodes of the CDD from bottom to top. Note that the direction

is important, as the algorithm uses the union operation which is only well-

de�ned on nodes with disjoint intervals.

Fig. 9 shows how to compute the future of example (b) from Fig. 4, leaving

us with a CDD violating disjointness. Fig. 10 then shows the CDD after

making the �rst node disjoint again.

The existence of all the operations ensures that it is possible to do a fully

symbolic model checking of timed automata by treating the discrete part

(locations) by conventional (multi-terminal) BDD's and the continuous part

(clocks) by CDD's.

6. A Relative Normal Form

A normal form o�ers the advantage of reducing the test for semantic equality

to a syntactic test, if the normal form is unique. In the case of BDD's and
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Algorithm 5 Forcing a node n to contain disjoint intervals only

let new := n

while there are overlapping intervals in new do

old := new

let (I

1

; n

1

); (I

2

; n

2

) 2 succ(old) such that I

1

\ I

2

6= ;

M := f(I; n

0

) j (I; n

0

) 2 succ(old); I 6= I

1

; I 6= I

2

g

M :=M [ f(I

1

\ I

2

; n

1

union n

2

)g

if I

1

n I

2

6= ; then

M :=M [ f(I

1

n I

2

; n

1

)g

end if

if I

2

n I

1

6= ; then

M :=M [ f(I

2

n I

1

; n

2

)g

end if

new := (type(old);M)

end while

return new
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(2,1)
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[1,1) [1,1) [2,1)

[-2,1]

(-2,2)

[-1,2]

True

Fig. 9: First step in computing the future of example Fig. 4 (b)

IDD's, normal forms come along with reducedness of the data structure. For

DBM's, the canonical form is a normal form. Already in Sec. 3 we have seen

that reduced CDD's are not unique. But even a tightened CDD as de�ned

in the previous section is not unique: Fig. 11 gives two CDD's which are

tightened and semantically equivalent, but not graph-isomorphic.

The main problem here is granularity { the left hand CDD chooses a di�erent

granularity for X than the right hand CDD. Note that by requiring that all

intervals are as small as possible { i.e. either of the form [c; c] or (c; c+1) for

an integer c { together with reducedness and canonicity one would arrive at

a unique normal form. In fact under this assumption CDD's are equivalent



CLOCK DIFFERENCE DIAGRAMS 21

X

Y Y Y

Y �XY �XY �X

[3,1)

(2,3)

[1,2]

[1,1) [2,1)

[-2,2]

(-2,2)

[-1,2]

True

[1,1)

Fig. 10: The obtained CDD in computing the future of example Fig. 4 (b)
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[�1; 2]

[1; 2]

Fig. 11: Two equivalent tightened CDD's

to NDD's ([Asarain et al. 1997]), which has a unique normal form. However

for reasons of time- and space-e�ciency, the granularity of a CDD should

be as coarse as possible. Of special interest are data structures which are

invariant to rescaling of the timed automata (see e.g. [Weise and Lenzkes

1997]).

In the rest of this section we will present a relative normal form. Given two

CDD's, the relative normal form gives us a coarse representation for both of

them. Their relative normal forms will be isomorphic if the original CDD's

are equivalent. The basic idea is to de�ne the granularity of each of them

in the term's of the other CDD's granularity. In order to formalize this, we

de�ne the notion of one CDD being �ner than another:
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Algorithm 6 n

1

re�nedBy n

2

: Making a node n

1

�ner than n

2

let new := n

1

if n

2

= True or n

2

= False or n

1

= False then

return new

end if

if type(n

1

) = type(n

2

) then

new := (type(n

1

); f(I

1

\ I

2

; n

0

1

re�nedBy n

0

2

) j (I

1

; n

0

1

) 2

succ(n

1

); (I

2

; n

0

2

) 2 succ(n

2

); I

1

\ I

2

6= ;g

else if type(n

1

) v type(n

2

) then

new := (type(n

2

); f(I; n

1

re�nedBy n

0

2

) j (I; n

0

2

) 2 succ(n

2

)g)

else if type(n

2

) v type(n

1

) then

new := (type(n

1

); f(I; n

0

1

re�nedBy n

2

) j (I; n

0

1

) 2 succ(n

1

)g

end if

return new

Definition 6. Given two CDD's starting at nodes n

1

and n

2

resp., we say

that n

1

is �ner than n

2

i�

� n

1

= False, or

� n

2

= True, or n

2

= False, or

� both are inner nodes with type(n

1

) = type(n

2

), and for each (I; n

0

1

) 2

succ(n

1

) there is (J; n

0

2

) 2 succ(n

2

) such that I � J and n

0

1

is �ner

than n

0

2

.

We say that n

1

and n

2

have the same granularity i� n

1

is �ner than n

2

and

vice versa.

Given n

1

and n

2

, there is an algorithm to �nd a CDD n which is equivalent to

n

1

and �ner than n

2

, see Alg. 6. Thus for two given CDD's, it is easy to �nd

equivalent CDD's which are of same granularity by applying Alg. 6 to them

in both ways. For these CDD's, equality can be decided pure syntactically:

Theorem 1. Let n

1

and n

2

be two CDD's which are tightened and of same

granularity. Then [[n

1

]] = [[n

2

]] i� n

1

and n

2

are graph-isomorphic.

Proof. The if-part follows immediately from the de�nition of [[:]]. So

assume two tightened CDD's of same granularity which describe the same

federation. Let v be some valuation of the federation. Then there is a

unique path in n

1

which satis�es this valuation, due to disjointness. This

path must lead to True. As n

1

is �ner than n

2

, we can construct a similar

path in n

2

, which has the same number of nodes, but the intervals might

be larger than those along the path in n

1

. By symmetry, this holds in the

opposite direction, and thus the two paths are the same in both graphs. As

the CDD's are tightened, paths to True cannot represent the empty set, so
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therefore all paths to True are the same in both graphs. The rest of the

graph must be the same, as it can be completed from the True-paths the

same way as we mentioned for our drawings in Sect. 3. Thus the two CDD's

are graph-isomorphic.

2

Note that an implicit result of the above theorem is that there exists a

unique normal form for CDD's with the minimal granularity. It would be

more interesting to �nd the unique normal form with maximal granularity,

which gives the coarsest representation of CDD's. We conjecture that such a

normal form exists; unfortunately we are not able to prove this conjecture.

7. Implementation and Experimental Results

We have implemented a CDD-package and used it to obtain a modi�ed,

CDD-based reachability algorithm for Uppaal. The full details of this im-

plementation may be found in [Behrmann et al. 1999].

In this section we present the results obtained from the experiment, which

applied both the current version of Uppaal

5

and the CDD-based version

of Uppaal to the veri�cation of nine industrial examples (mostly) found

in the literature. The examples include a gearbox controller [Lindahl et

al. 1998], various communication protocols used in Philips audio equipment

[Bosscher et al. 1994], [D'Arginio et al. 1997],[Bengtsson et al. 1996], and in

B&O audio/video equipment [Havelund et al. 1997],[Havelund et al. 1998],

the start-up algorithm of the DACAPO protocol [L�onn et al. 1997], and

an Advanced Field Bus Protocol (AF100). In addition the comparison of

performance was made on Fischer's Protocol for mutual exclusion.

In Table I we present the space requirements and runtime of the examples on

a Sun UltraSPARC 2 equipped with 512 MB of primary memory and two

170 MHz processors. Each example was veri�ed using the current purely

DBM-based algorithm of Uppaal (Current), and two di�erent CDD-based

algorithms. The �rst (CDD) uses CDD's to represent the continuous part of

the Passed-list, and the second (Reduced) is identical to CDD except that

all inconsistent paths are removed from the CDD's. As can be seen, our

CDD-based modi�cation of Uppaal leads to truly signi�cant space-savings

(in average 42%) with only moderate increase in run-time (in average 6%).

When inconsistent paths are eliminated the average space-saving increases

to 55% at the cost of an average increase in run-time of 35%. If we only

consider the industrial examples the average space-savings of CDD are 49%

while the average increase in run-time is below 0.5%.

5

More precisely Uppaal version 2.19.2, which is the most recent version of Uppaal

currently used in-house.
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Table I: Performance statistics for a number of systems. P is the number of processes,

V the number of discrete variables, and C the number of clocks in the system. All times

are in seconds and space usage in kilobytes. Space usage only includes memory required

to store the Passed-list.

Current CDD Reduced

System P V C Time Space Time Space Time Space

Philips 4 4 2 0.2 25 0.2 23 0.2 23

Philips Col 7 13 3 21.8 2,889 23.0 1,506 28.8 1,318

B&O 9 22 3 56.0 5,793 55.9 2,248 63.4 2,240

BRP 6 7 4 22.1 3,509 21.3 465 46.5 448

PowerDown1 10 20 2 81.3 4,129 79.2 1,539 82.6 1,467

PowerDown2 8 20 1 19.3 4,420 19.8 4,207 19.7 4,207

Dacapo 6 12 5 55.1 4,474 57.1 2,950 64.5 2,053

Gearbox 5 4 5 10.5 1,849 11.2 888 12.4 862

AF100 16 32 4 283.7 23,063 269.2 8,993 289.7 8,993

Fischer4 4 1 4 1.1 129 1.4 96 2.5 48

Fischer5 5 1 5 40.6 1,976 61.5 3,095 154.4 396

8. Conclusion

In this paper Clock Di�erence Di�erence Diagrams (CDD's) have been pre-

sented. It has been shown that CDD's are able to represent �nite unions of

zones (that is regions representable by DBM's), and that all set-theoretic

operations and additionally all operations necessary for timed reachability

analysis of timed automata can be de�ned and computed on CDD's. These

operations do not need a normal form, in contrast to DBM's and IDD's. In

particular an algorithm is presented which decides CDD inclusion without

converting any intermediate results to a unique normal form. In conclusion,

CDD's can be used for fully symbolic model checking of timed systems. An

implementation of a CDD-package for the real-time veri�cation tool Up-

paal has shown that CDD's are useful in practice, leading to considerable

space-savings.

We have given a relative normal form for CDD's, which is relative to a notion

of granularity. An implication of this result is that there exists a unique

normal form for CDD's, which allows for semantic equality to be reduced

to a test for syntactic identity. In fact, the unique normal form of a CDD

is its equivalent CDD with �nest granularity, which is an NDD or BDD-like

encoding of the region graphs induced by the original CDD. It would be more

interesting to �nd the unique normal form with maximal granularity, which

gives the coarsest representation of CDD's if such a normal form exists.

However it is obviously too costly to compute such a normal form. We

should emphasize that such a normal form with maximal granularity is not

necessary for application of CDD's to timed model-checking because all the

necessary operations can be carried out without a normal form.
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For future work, we want to investigate more e�cient implementation of

the CDD-operations aiming at a fully symbolic model-checker for timed au-

tomata combining BDD and CDD.
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