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Abstract. Local Consistency has proven to be an important notion in
the study of constraint satisfaction problems. We give an algebraic con-
dition that characterizes all the constraint types for which generalized
arc-consistency is sufficient to ensure the existence of a solution. We give
some examples to illustrate the application of this result.

1 Introduction

The constraint satisfaction problem provides a framework in which it is possible
to express, in a natural way, many combinatorial problems encountered in artifi-
cial intelligence and elsewhere. A constraint satisfaction problem is represented
by a set of variables, a domain of values for each variable, and a set of constraints
between variables. Generally, a constraint C is represented by two components:
a scope S that expresses the set of variables constrained and a relation R which
expresses the combination of values allowed for those variables. The aim of a
constraint satisfaction problem is then to find an assignment of values to the
variables that satisfies the constraints.

Since solving a general constraint satisfaction problem is known to be NP-
complete [1,20], a natural and important question is: what restrictions to the
general problem are sufficient to ensure tractability. Such restrictions may either
involve the scope in the constraints, i.e., which variables may be constrained with
other variables [6,11,12,21,22], or they may involve the relation in the constraints,
in other words, which combinations of values are allowed for values which are
mutually constrained [3,15,18,19,21,27,28].

In this paper, we focus in the second approach. More precisely we are inter-
ested in characterizing the complexity of solving constraint satisfaction problems
in which every constraint belongs to a fixed set called basis. Jeavons, Cohen and
Gyssens in [15,16] introduced a novel framework for studying this class of con-
straint satisfaction problems. The approach started in [15,16] relies on the fact
that the tractability of constraint satisfaction problems using certain relations
depends on some algebraic condition (that of closure) of the set of relations used
to build the problem. This approach has lead to the identification of several
tractable classes [15,16,17,18,14].
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Local consistency methods [20,9,10,14,7,2] have been intensively studied as
a fundamental tool for solving constraint problems. Briefly, the underlying idea
in local consistency methods is the following: when a constraint network is in-
consistent, this is probably due to the existence of an inconsistent subnetwork
of reduced size. It is sometimes possible to decide the existence of a solution of
a constraint satisfaction problem by checking the consistency of all the subprob-
lems up to a certain size. Since there exists problems which can not be solved
by local consistency methods, there is a large body of work [11,5,?,14] which de-
rives conditions that guarantee that a problem can be solved by a certain local
consistency method.

In this paper we consider a family of local consistency methods called (j, k)-
consistency, derived from the concept of bounded width Datalog programs [8].
This notion of consistency is related to the notion of consistency defined in [11].
We refer to the class of problems solvable by enforcing (j, k)-consistency as width
(j, k) problems. It is not know, in general, whether a constraint satisfaction
problem has width (j, k).

In particular, we will be interested in (1, k)-consistency, which can be re-
garded as the natural generalization of arc-consistency [20] to non-binary prob-
lems. The class of problems that can be solved by enforcing (1, k)-consistency
for some fixed k is called width 1. This class contains some previously known
tractable families of problems including Horn, constant and ACI
Problems [25,17]. The main result of this paper is a characterization of width 1
problems in terms of closure functions. That is, we present an algebraic condition
(in the sense of [17]) on the relations used to build constraint problems which
ensure that any problem built using these relations can be solved in polynomial
time by enforcing (1, k)-consistency for some k. Furthermore, we show that this
condition is also necessary.

With this new characterization we revisit some already known tractable fami-
lies, as constant and ACI problems [17], and we see that they fit into this common
scheme, in other words, we prove that they are particular case of width 1 prob-
lems. Furthermore, we derive a new tractable class called CSCI (from Constant
Semiprojection Commutative Idempotent) using purely algebraic arguments.

The motivation of these results is an alternative characterization of width 1
problems due to Feder and Vardi [8]. In [8] three main families of tractable
problems, referred to as subgroup, bounded strict width and width 1 problems are
identified using concepts from Database theory (Datalog programs) and group
theory. These three classes include all previously known tractable problems.
In [14], the family of strict width problems was characterized in terms of closure
functions. An important subclass of subgroup problems called affine problems
was introduced in [17] and was generalized to the whole class of subgroup prob-
lems in [4] studying the learnability of quantified formulas. The results in this
paper characterize the remaining class, completing the research work started
in [14].
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2 Preliminaries and Definitions

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem is a natural way to express simultaneous re-
quirements for values of variables. More precisely,

Definition 1. An instance of a constraint satisfaction problem consists of:

– a finite set of variables, V . For simplicity we assume V = {x1, x2, . . . xn};
– a finite domain of values, D;
– a finite set of constraints {C1, . . . , Cq}; each constraint Ci (1 ≤ i ≤ q) is a

pair (si, Ri) where:
• si is a tuple of variables of length ki, called the constraint scope; and
• Ri is an ki-ary relation over D, called the constraint relation.

For each constraint (si, Ri), the tuples in Ri indicate the allowed combina-
tions of simultaneous values for the variables in si. The length of si, and of the
tuples in Ri, is called the arity of the constraint.

A solution to a constraint satisfaction problem instance is a function from
the variables to the domain such that the image of each constraint scope is an el-
ement of the corresponding constraint relation. Deciding whether or not a given
problem instance has a solution is NP-complete in general, even when the con-
straints are restricted to binary constraints [20] or the domain of the problem has
size 2 [1]. However, by imposing restrictions on the constraint interconnections
(see [6,11,12,21,22]), or the form of the constraints (see [3,15,18,19,21,27,28]), it
is possible to obtain restricted versions of the problem that are tractable. As
we have said, the aim underlying this research is to determine all the possible
restrictions on the form of the constraints that ensure tractability. The central
object of study is the set of problems defined from some fixed set (or basis), and
the associated complexity of the constraint problems in that set.

Definition 2. For any set of relations Γ , CΓ is defined to be the class of decision
problems with:

– Instance: A constraint satisfaction problem instance P , in which all con-
straint relations are elements of Γ .

– Question: Does P have a solution?

2.2 Closure Functions

To our knowledge even though there exists a large collection of individual results
about the complexity of CΓ , there has only been two attempts to study the
complexity of CΓ in a uniform way. The first attempt, due to Feder and Vardi [8],
uses an approach based in Datalog Programs and Group Theory and produced,
among other important results, a classification of the known tractable classes
in three families of basis, called width 1, bounded strict width, and subgroup
problems. The second attempt was originally defined by Jeavons et al. [15,16]
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and focuses on the algebraic properties of constraints. We follow the second
approach in this paper. In the rest of this section we will introduce the basic
concepts of this approach (see [15,16,17,14] for more information).

Any operation on the elements of a set D can be extended to an operation
on tuples over D by applying the operation to the values in each coordinate
position separately.

Definition 3. Let f : Dk → D be a k-ary operation on D. For any collection
of n-ary tuples t1, t2, . . . , tk ∈ Dn, (not necessarily all distinct) define the tuple
f(t1, t2, . . . , tk) as follows:

f(t1, . . . , tk) = f(t1[1], . . . , tk[1]), f(t1[2], . . . , tk[2]), . . . , f(t1[n], . . . , tk[n])〉.
Using this definition, we now define the following closure property of rela-

tions.

Definition 4. Let R be a relation over a domain D, and let f : Dk → D be
a k-ary operation on D. R is said to be closed under f (f preserves R, or f is a
polymorphism of R) if, for all t1, t2, . . . , tk ∈ R (not necessarily all distinct),

f(t1, t2, . . . , tk) ∈ R.

We say that an operation f preserves a basis Γ if f preserves every relation
in Γ . The next lemma indicates that the property of being closed under some
operation is preserved by some operations on relations.

Lemma 1. Let R1 be an n-ary relation over a domain D and let R2 be a m-ary
relation over a domain D. Both R1 and R2 are closed under some operation f .
The following relations are also closed under f .

– The Cartesian Product, R1 ×R2 defined to be the (n+m)-ary relation

R1 ×R2 = {〈t[1], t[2], . . . , t[n+m]〉 | 〈t[1], t[2], . . . , t[n]〉 ∈ R1 ∧
〈t[n+ 1], t[n+ 2], . . . , t[n+m]〉 ∈ R2}

– The equality selection σi=j(R) (1 ≤ i, j ≤ n) defined to be the n-ary relation

σi=j(R) = {t ∈ R|t[i] = t[j]}
– The projection πi1,...,ik

(R) where (i1, . . . , ik) is a list of indices chosen from
{1, 2, . . . , n}, defined to be the k-ary relation

πi1,...,ik
(R) = {〈t[i1], . . . , t[ik]〉|t ∈ R}

Proof. Follows directly from the definitions.
The set of all relations that which can be obtained from a given set of re-

lations Γ , using some sequence of Cartesian product, equality selection, and
projection operations will be denoted Γ+. Consequently every operation pre-
serving Γ , preserves Γ+ as well.

On the other hand, the property of being closed under some operation is
preserved by some operations on functions.
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Lemma 2. Let g : Dm → D be a m-ary function and let f1, f2, . . . , fm :
Dn → D be n-ary functions. If g, f1, f2, . . . , fm preserve R, for some relation R,
then the following functions preserve also R:

– The composition g(f1, f2, . . . , fm) defined to be the n-ary operation

g(f1, f2, . . . , fm)(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

– For every j ≤ k, the projection proj
,j,k defined to be the k-ary operation

projj,k(x1, x2, . . . , xk) = xj

Proof. Follows from the definitions.
Any set of operations closed under composition and containing all the projec-

tion operations is called Clone (See [26] for example). In [13], it was established
that the complexity of CΓ is determined by the set of closure functions of Γ .
We say that a closure function guarantees tractability if for every basis Γ closed
under f , class CΓ is tractable. Following this approach, some functions that guar-
antee tractability have been identified. Up to the present moment four families
of tractable functions are know. They correspond to the near-unanimity oper-
ations [14], coset-generating operations [4], ACI operations [17], and constant
operations [17].

2.3 Local Consistency

Local consistency methods are refutation methods, similar in aim to the reso-
lution method for propositional formulas in conjunctive normal form. Different
notions of local consistency have been defined [20,9,10,14,7] but all of them fit
into this common scheme: A Local consistency method takes an instance P and
adds all the constraints that appear implicitly in P (and therefore, eliminating no
solution) up to a certain level. A constraint 〈s, ∅〉 with empty constraint relation
is called empty constraint. If during the process of enforcing consistency, some
empty constraint is added, then instance P has obviously no solution. Unfortu-
nately, the reciprocal is not always true, i.e., the absence of the empty constraint
does not imply in general the existence of a solution. So, it is an interesting topic
of research to establish under which conditions over the set of constraint rela-
tions Γ , establishing a certain level of local consistency guarantees the existence
of a solution.

Definition 5. Let P be a constraint satisfaction instance with set of variables V ,
domain D, and constraint set C. For any subset W of V the restriction of P
toW , denoted P∗

W is the problem instance with set of variablesW and domainD,
where the constraints are obtained from the constraints of P eliminating all the
constraints with constraint scope not completely contained in W . That is, the
constraint (s,R) is in P∗

W if and only if (s,R) is in P and every element of the
tuple s is in W .

We now define the notion of consistency used in this paper.
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Definition 6. A constraint satisfaction problem instance P with set of vari-
ables V is said to be (j, k)-consistent (0 ≤ j ≤ k) if for any sets of vari-
ables W,W ′, such that W ⊆ W ′ ⊆ V , containing at most j and k variables
respectively, any solution to P∗

W can be extended to a solution to P∗
W∪W ′ .

Informally, a problem is (j, k)-consistent if every partial solution on any set
of at most j variables can be extended to a partial solution on any superset
containing at most k variables. This notion of consistency generalizes the notion
of (i, j)-consistency in [11] to constraint problems with non-binary constraints.

Since the constraint literature contains few similar notions of consistency
we believe that it is appropriate to enclose here a brief discussion of the more
popular notions of consistency. Informally we can say that the different notions
of consistency are characterized by the way in which they define a subproblem.
Roughly, consistency notions can be divided in two main types: (1) variable-based
consistency and (2) relation-based consistency.

In variable-based consistency a subproblem is specified as the subproblem
containing all the restrictions “concerning” a set of variables. Variable-based con-
sistency has received more attention (see [20,9,10] for example) than its relational
counterpart. We have different consistency notions depending on how “concern-
ing” is formalized. Very often, the subproblem “concerning” a set of variables W
is defined as the subproblem containing all the constraints with scope strictly
contained in W , as in the definitions in this paper. This approach is due to [20]
and was generalized to sets of variables with arbitrary size in [9]. This notion
of consistency in closely related to the notion defined here. More precisely, k-
consistency in the sense of [9] coincides exactly with (k − 1, k)-consistency, as
defined in this paper. In some other cases, the problem “concerning” a set of
variables W has been defined as the problem containing the projection of all the
constraints overW (see [14], for example). In fact, both definitions are equivalent
for the purposes of this paper (this will be shown in the forthcoming full version
of this paper) We choosed this particular notion of consistency to simplify the
proofs. Finally, in relation-based consistency (see [7] for example), a subproblem
is specified by a set of restrictions rather than variables. It is important to note
that for constraint satisfaction problems with only binary constraints many of
the different possible notions of consistency coincide.

Given a CSP instance P , there exists some instance P ′ such that (1) Every
constraint in P is in P ′, (2) P ′ is (j, k)-consistent, and (3) instances P and P ′

have the same set of solutions. Instance P ′ is referred to as a (j, k)-consistent
instance associated to P . We say that P ′ is obtained from P by enforcing (j, k)-
consistency. The CSP literature [21,20,9,2] contains some efficient methods to
enforce certain level of consistency. Here we present simple brute-force algorithm,
called Cons(j,k) (j, k fixed), that enforces (j, k)-consistency.
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Procedure Cons(j,k)
Input: P
P ′ = P
repeat

for every subset W with |W | ≤ j
for every superset W ′ of W with |W ′| ≤ k

for every tuple s = 〈x1, . . . , xi〉 with variables in W
let R be the projection of P ′∗

W ′ over s, i.e.,
R = {〈µ(x1), . . . , µ(xi)〉 : µ solution of P ′∗

W ′}
(R contains all the assignment over s that can be extended to
a solution of P ′∗

W ′ )
if 〈s,R〉 not in P ′ then add 〈s,R〉 to P ′.

until no constraint has been added.
return P ′.

Basically, the algorithm looks for subsets W ⊆W ′ of variables falsifying the
(j, k)-consistency condition (Definition 6) and adds the correspondent constraint
until the instance P ′ satisfies the (j, k)-consistency condition and no constraint
has to be added. For fixed values of j, k, procedure Cons(j,k) runs in time poly-
nomial to the size of the input instance P .

Notice that the constraints added by algorithm Cons(j,k) are minimal in the
sense that for every (j, k)-consistent instance P ′ associated to P and every vari-
able xi (1 ≤ i ≤ n), every solution of P ′∗

{xi} is a solution of (Cons(j,k)(P))∗{xi}.
Furthermore, for every constraint 〈s,R〉 added by the algorithm, its associ-

ated relation R is the projection of subproblem P ′∗
W ′ over s. Since every relation

associated to a problem (or equivalently subproblem) with constraint relations
in Γ can be obtained by a sequence of of cartesian products and equality selec-
tions using relations in Γ . We have that if P ∈ CΓ , then P ′ ∈ CΓ+ .

Definition 7. A CSP instance P is said to have width (j, k) if P has a solution
if and only if every (j, k)-consistent instance associated to P does not contain the
empty constraint relation 〈s, ∅〉. Similarly, a set of relations Γ over D is said to
have width (j, k) if every CSP instance P in CΓ has width (j, k). Furthermore Γ
is said to have width j if it has width (j, k) for some fixed k.

Hence, a set of relations Γ has width (j, k) if and only if every problem in CΓ

is solvable by enforcing (j, k)-consistency (using the previous algorithm for ex-
ample). In consequence, any constraint instance in CΓ is solvable in polynomial-
time, since for fixed values j and k, it is possible to enforce (j, k)-consistency in
time polynomial in the size of the problem.

Feder and Vardi [8] gave an alternative characterization of these concepts in
terms of Datalog Programs. Datalog Programs are far beyond the scope of this
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paper. Nevertheless, we will only note here, that the notion of width defined
above is exactly equivalent to the notion of width, as defined in [8].

3 Width 1 Problems

We are interested in the class of problems that can be solved by enforcing (1, k)-
consistency for some fixed k, also called width 1 problems. The notion of (1, k)
consistency is the natural generalization of arc-consistency to non-binary prob-
lems.

In this section we prove that the family of basis of width 1 is absolutely
characterized in terms of closure functions. In other words, we will see that for
every basis Γ , CΓ is solvable by enforcing (1, k)-consistency for some k ≥ 1 if
and only if some condition over the set of closure functions is satisfied. First we
introduce the concept of set function.

A set function is any function f : P(D)/∅ −→ D where D is some set and
P(D) is the set of subsets of D.

Associated to every set function f we have a family of functions associated
to f {fi : i = 1, . . . , n}, where for every i, fi : Di −→ D is given by

fi(x1, . . . , xi) = f({x1, . . . , xi}),
Let f be a set function over D and let R be any relation over D, we say

that f preserves R, (or R is closed under f) if the family of functions associated
to f preserves R (Definition 4).

Theorem 1. Let Γ be a finite set of relations over D. Then the following con-
ditions are equivalent:

a.- The set Γ is width 1.
b.- Γ is closed under some set function.

The proof of the theorem uses the following result. Given any set of rela-
tions Γ , consider the constraint satisfaction problem C(Γ ) defined as follows:

The variables of C(Γ ) are the nonempty subsets A of D. For a relation R
of arity k, impose R(A1, A2 . . . , Ak), the Ai not necessarily distinct, if for every
1 ≤ i ≤ k and every ai in Ai there exist elements aj in the remaining Aj such
that (a1, a2, . . . , ak) ∈ R.

There is an alternative characterization of the constraints in C(Γ ): It is easy
to verify that a constraint R(A1, . . . , Ak) is in C(Γ ) iff there exists some assign-
ments t1, . . . , tm in R such that {t1[l], t2[l], . . . , tm[l]} = Al for all 1 ≤ l ≤ k.

Theorem 2. [8] A set of relations Γ is width 1 then C(Γ ) has a solution.

Proof of Theorem 1
[(a) → (b)]. Let h be any solution of C(Γ ) (the existence of such solution is
guaranteed by Theorem 2) and let fh be the set function defined as:

fh(Ai) = h(Ai).
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We will prove that fh preserves Γ : Let m be any integer m > 1, let R be
any k-ary relation in Γ , and let t1, t2, . . . , tm (not necessarily different) tuples
in R. Let Ai (1 ≤ i ≤ k) be subsets of D given by:

Ai = {tl[i] : 1 ≤ l ≤ m}, 1 ≤ i ≤ k

By, construction, R(A1, A2, . . . , Ak) appears in C(Γ ) and therefore h satisfies
it. Then we have

〈h(A1), h(A2), . . . , h(Ak)〉=〈fh(A1), fh(A2),. . ., fh(Ak)〉=fh
m(t1, . . . , tm)∈R.

[(b) → (a)]. Let Γ be a set of relations over D closed under a set function f .
Let k be the maximum arity of the relations in Γ . We will prove that enforcing
(1, k)-consistency is enough to decide satisfiability. Let P be any problem in CΓ

and let P ′ be a problem obtained by enforcing (1, k)-consistency to P . For every
variable x, let Dx be the set of values that can be assigned to the variable x,
i.e., the set of solutions of the problem P ′ restricted to x: Dx = P∗

{x}.
Consider the vector t, assigning to every variable x the value of the set

function over Dx, that is,
t(x) = f(Dx)

We will see that t is a solution. Let 〈(x1, x2 . . . , xm), R〉 be any constraint
in P . Clearly, Dxi ⊆ πiR (1 ≤ i ≤ m). Consider now, the subset R′ of R,
obtained enforcing for every variable x appearing in the scope of the constraint
to have a value in Dx. More formally,

R′ = R ∩ (Dx1 × · · · ×Dxm).

Since, Dxi (1 ≤ i ≤ m) is obtained by enforcing (1, k)-consistency, we
have Dxi = πiR

′ (1 ≤ i ≤ m). Let t1, t2, . . . , tl be the tuples in R′. Since R is
closed under fl, we have:

fl(t1, t2, . . . , tl) = 〈f(Dx1), f(Dx2), . . . , f(Dxm)〉 ∈ R.

So t satisfies R.
The characterization of width 1 problems in terms of closure functions is

interesting theoretically but it is not absolutely satisfactory. First, if we want to
use this characterization to check whether a given basis Γ is width 1 then we
have to test the closure condition for an infinite family of operations.

Actually it is possible, for a given Γ , fix a bound in the arity of the operations
that we have to consider.

Theorem 3. Let Γ be a finite set of relations over D, let m be the maximum
number of tuples of any relation in Γ , and let f be a set function over D. If fm

preserves Γ then f preserves Γ .

Proof.
Most of the next proofs have a similar structure. We will be interested in

proving that if some function h1 (or set of functions) preserves a relation R then
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another function h2 preserves also R. We will prove that by showing that func-
tion h2 can be obtained by a sequence of compositions using h1 and projection
operations only. Then, since the set of closure functions of a relation contains
projection operations and is closed under composition (Lemma 2), operation h2
preserves any relation preserved by h1. We will say that h2 is contained in any
clone containing h1.

In the present proof, we will see that every clone containing fm, contains fk

(k > 0), or in other words, fk can be obtained by a composition using fm and
projections.

It is immediate to prove that, in general, for every set function f and every
k > 0, fk belongs to any clone containing fk+1. Just consider the identity.

fk(x1, x2, . . . , xk) = fk+1(x1, x2, . . . , xk, xk)

For the proof in the opposite direction, let R be any relation in Γ , let k be any
integer greater thanm, and let t1, t2, . . . , tk tuples in R. Since k > m, some tuples
are repeated. Consider a sublist with m tuples ti1 , ti2 , . . . , tim in which we have
deleted only repeated tuples, i.e., such that {tj : 1 ≤ j ≤ k} = {tij : 1 ≤ j ≤ m}.
By the structure of the set functions we have:

fk(t1, t2, . . . , tk) = fm(ti1 , ti2 , . . . , tim) ∈ R

It would be interesting to get rid of this dependence on the number of tuples,
that is, to prove that it is possible to verify whether or not a basis is closed
under a set function by checking only the closure property up to a fixed point.
The previous assertion is true for the boolean case, since it is known that every
clone in the boolean domain is finitely generated [24,23] but it is false for higher
domains. We present a counterexample.

Example 1. Let D = {0, 1, 2, . . . , d} be a domain with size |D| > 2. Consider the
set function f : P(D)/∅ −→ D defined by:

f(S) =
{

0 if S = {0, 1}
2 otherwise

For every m, consider the m-ary relation Rm containing all the tuples such
that either (1) exactly one of its components is 1 and the remaining m−1 are 0,
or (2) at least one of its components is 2. Clearly, fk preserves Rm if and only
if k < m. As a consequence, for any value of k there exists some basis given by
Γk = {Rk+1} such that fk preserves Γk but f does not.

4 Applications of the Closure Conditions

Using the characterization of width 1 problems established in Theorem 1 it
is possible reformulate some already known tractable classes and derive new
ones. From now on, we will say that a function (or set of functions) guarantees
tractability if for every basis Γ closed under it, CΓ is tractable.
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4.1 Constant Operations

An unary function f1 mapping every element to a fixed element d ∈ D is called
constant function. Every relation closed under f1 contains the tuple 〈d, d, . . . , d〉
and therefore operation f1 guarantees tractability, i.e., for every Γ closed un-
der f1, CΓ is tractable. Constant operations correspond for example with the
families of 0-valid and 1-valid basis in Schaefer’s dichotomy [25].

Constant operations are a particular case of width 1 problems. Since clones
are closed under addition of inessential variables, for all i > 0, function fi :
Di −→ D given by fi(x1, . . . , xi) = f1(x1) = d belongs to any clone contain-
ing f1. In consequence, any set of relations Γ closed under f1 is closed under the
set function f : P(D)/∅ −→ D given by f(S) = d.

4.2 ACI Operations

A binary operation f is called ACI if it is associative, commutative and idempo-
tent. The class of ACI operations was identified in [17]. Some known tractable
families of problems containing for example horn basis [25] or the constraints
allowed in the constraint language CHIP [28] can be explained in terms of ACI
functions.

Let f be an ACI operation. It is not difficult to see that, as a consequence of
the properties of ACI functions, the set function g, given by

g({x1, x2, . . . , xi}) = f(x1, f(x2, . . . f(xi−1, xi) . . . ))

is well defined. For every i, gi can be built by a sequence of compositions using f .
Thus, any basis closed under f is also closed under g.

4.3 Class CSCI (Constant Semiprojection and Commutative
Idempotent)

In this section, we identify a new tractable family of set functions. This new
class is obtained from the class ACI replacing the associativity condition by the
closure under a particular kind of semiprojection. First we need the following
definition:

Let D be a finite set. A semiprojection f is a function of rank k ≥ 3 such that
for some index 1 ≤ i ≤ k, f(x1, . . . , xk) = xi whenever |{x1, . . . , xk}| < k. Fur-
thermore, f is called constant semiprojection if f(x1, . . . , xk) = d for some fixed
d ∈ D when the semiprojection condition is not satisfied, i.e., |{x1, . . . , xk}| = k.

Theorem 4. Let Γ be a finite set of relations closed under some CI operation f
and under some constant semiprojection g of arity 3. Then CΓ is tractable.

Proof. The proof has to main parts. First, we see that semiprojections can be
extended to any arbitrary arity. Let gk be a constant semiprojection of arity k
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where the variable projected is the first one and the constant is d. Then, for
every j > k, the j-ary function gj given by:

gj(x1, . . . , xj) =
{
x1 if |{x1, . . . , xj}| < k
d otherwise

belongs to any clone containing gk. That is, we will see that for every j > k, gj

can be obtained as a sequence of compositions using only gk and projections.
We proceed by induction. Assume that gj with j ≥ k belongs to the clone.

Operation gj+1 can be constructed from gj in the following way:

gj+1(x1, . . . , xj+1) = gj(gj(. . . gj(gj(x1, x2, . . . , xj), x2, . . .
. . . , xj−1, xj+1), . . . ), x3, . . . , xj+1)

Now consider the set function h given by:

h(S) =
{
f(S) if |S| ≤ 2
d otherwise

For every k > 3, function hk can be constructed by a sequence of compositions
using f and gk in the following way.

hk(t1, t2 . . . , tk) = f(. . . f(f(gk(t1, t2, . . . , tk), gk(t2, t3, . . . , t1)), . . . ,
. . . , gk(t3, t4, . . . , t2)), . . . , gk(tk, t1, . . . , tk−1))

In consequence, every clone containing f and g contains hk for all k ≥ 3.
For k ≤ 2 we have the easy equivalences: h2(x1, x2) = f(x1, x2) and h1(x1) =
f(x1, x1). Then set function h preserves any relations closed under f and g.

The class of constant operations and ACI operations have been previously
shown to be tractable by other means. The class CSCI has not been previously
identified. It is important to know if the tractability of the class CSCI is simply
a consequence of a previously known class of tractable relations, or if a new
class of tractable problems has been found. We show that the class CSCI does
include problems which can not be accounted for in the framework of closure
functions as in [17] by producing a relation which gives rise to tractable constraint
problems but does not belong to any of the previously identified classes. At
present, tractable classes of constraint problems can be classified in for main
families: (1) coset generating functions, (2) near-unanimity operations, and some
set functions (as introduced in these pages). More precisely, the set functions
already known are (3) constant operations and (4) ACI operations.

Thus, it is necessary to prove that there exists some CI function ϕ and some
constant semiprojection φ of arity 3 and some relation R, all of them over the
same domain D, such that ϕ and φ preserve R, but none of the other known
tractable classes preserves R.

Let D = {0, 1, 2} be the domain. Let ϕ : D2 → D the CI operation with the
Cayley table
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0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

Operation ϕ is a tournament; it is known as the scissors-paper-stone algebra.
Let R be the 3-ary relation with tuples

{ 〈0, 0, 1〉
〈0, 2, 1〉
〈0, 2, 2〉
〈1, 0, 2〉 }

It is immediate to verify that R is preserved by ϕ. Furthermore, since every
column contains only two different values, R is preserved by all the semiprojec-
tions (and, in particular, R is preserved by all the constant semiprojections of
arity 3).

The hard work is to prove that relation R is not closed under any other
known tractable operation. We do a case analysis.

Coset Generating Operations Coset generating operations [4] are a direct
generalization of affine functions [17] to non-abelian groups. For every coset
generating operations f : D3 → D there exists some group (D; ·,−1 ) such that
f(x, y, z) = x · y−1 · z. In consequence [4], every n-ary relation R closed under f
is a right coset of a subgroup of the group (D; ·,−1 )n. Thus, R is not closed
under any coset generating operation because, in finite groups, the cardinality
of every coset should divide the cardinality of the group.

Near-Unanimity Operations An operation f : Dk → D (k ≥ 3), is called a
‘near-unanimity (NU) operation’ if for all x, y ∈ D,

f(x, y, y, . . . , y) = ϕ(y, x, y, . . . , y) = · · · = ϕ(y, y, . . . , y, x) = y.

In [14], it is proved that closure under a near-unanimity operation is condi-
tion sufficient to guarantee the tractability of a constraint satisfaction problem.
To prove that none of the near-unanimity functions preserves R requires some
detailed study. We study every arity k separately.

For k = 3 the analysis is simple. For every 3-ary near-unanimity operation m
(also called majority operation) we have

m(〈0, 0, 1〉, 〈0, 2, 2〉, 〈1, 0, 2〉) = 〈0, 0, 2〉 �∈ R.
Thus, operation m does not preserve R.
Now, assume k ≥ 4. Let m be an k-ary near-unanimity operation over the

domain D preserving R. Since m(0, 2, . . . , 2) = 2 and m(0, 0, . . . , 0, 2) = 0 there
exists some integer 1 ≤ n ≤ k − 2 such that one of the following conditions is
satisfied:
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– m(

n︷ ︸︸ ︷
0, . . . , 0, 2 . . . , 2) = 1, or

– m(

n︷ ︸︸ ︷
0, . . . , 0, 2, . . . , 2) = 2 and m(

n+1︷ ︸︸ ︷
0, . . . , 0, 2, . . . , 2) = 0

In the first case, we get a contradiction with

m(

n︷ ︸︸ ︷
〈1, 0, 2〉, . . . , 〈1, 0, 2〉, 〈0, 2, 2〉, . . . , 〈0, 2, 2〉) = 〈x, 1, 2〉 ∈ R

(Impossible for any value for x).
In the second case we have,

m(

n︷ ︸︸ ︷
〈1, 0, 2〉, . . . , 〈1, 0, 2〉, 〈0, 0, 1〉, 〈0, 2, 2〉, . . . , 〈0, 2, 2〉) = 〈x, 0, 2〉 ∈ R

m(

n︷ ︸︸ ︷
〈1, 0, 2〉, . . . , 〈1, 0, 2〉, 〈0, 2, 2〉, 〈0, 2, 2〉, . . . , 〈0, 2, 2〉) = 〈x, 2, 2〉 ∈ R

Then, we get a contradiction since any value for x can satisfy both conditions.

Constant Functions Immediate from the fact that R does not contain any
tuple of the form (d, d, d).

ACI Functions Let f be an affine function preserving R. Since f is associative
and commutative we have

f(〈0, 2, 1〉, 〈1, 0, 2〉) = 〈0, 0, 1〉 or 〈0, 2, 2〉.
In the first case we get a contradiction considering f(〈0, 2, 2〉, 〈1, 0, 2〉) =

〈0, 0, 2〉 �∈ R. For the second case, take f(〈0, 0, 1〉, 〈1, 0, 2〉) = 〈0, 0, 2〉 �∈ R
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