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In this paper we explore the links between constraint satisfaction problems and universal
algebra. We show that a constraint satisfaction problem instance can be viewed as a pair
of relational structures, and the solutions to the problem are then the structure preserving
mappings between these two relational structures. We give a number of examples to illustrate
how this framework can be used to express a wide variety of combinatorial problems, many
of which are not generally considered as constraint satisfaction problems. We also show that
certain key aspects of the mathematical structure of constraint satisfaction problems can be
precisely described in terms of the notion of a Galois connection, which is a standard notion
of universal algebra. Using this result, we obtain an algebraic characterisation of the property
of minimality in a constraint satisfaction problem. We also obtain a similar algebraic criterion
for determining whether or not a given set of solutions can be expressed by a constraint
satisfaction problem with a given structure, or a given set of allowed constraint types.

1. Introduction

The constraint satisfaction problem provides a framework in which it is possible
to express, in a natural way, many combinatorial problems encountered in artificial
intelligence and elsewhere. The aim in a constraint satisfaction problem is to find an
assignment of values to a given set of variables subject to constraints on the values
which can be assigned simultaneously to certain specified subsets of variables.

The mathematical framework used to describe constraint satisfaction problems
has strong links with several other areas of computer science and mathematics.

In a previous paper [5] we explored one example of this by describing and us-
ing the close links between constraint satisfaction problems and relational databases.
Relational database theory provides a very powerful and convenient terminology for
describing operations on relations, and certain aspects of their structure, and this ter-
minology is very useful in the description and study of constraint satisfaction prob-
lems. Furthermore, many of the computational tasks undertaken in the processing
and solution of constraint satisfaction problems also arise in the context of database
management. We believe that a greater interchange of ideas between these two fields
could be of considerable benefit to both [2,5], and therefore these links should receive
more attention than they currently do.
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In the present paper we explore a different set of links, which we believe will
prove to be equally important, the links between constraint satisfaction problems and
universal algebra. This branch of mathematics is concerned with the study of the struc-
ture of general mathematical objects such as abstract algebras, lattices, and relational
structures, and with the operations that can be defined on such objects.

We shall show that a constraint satisfaction problem instance can be viewed as
a pair of relational structures, and the solutions to the problem are then the structure
preserving mappings between these two relational structures.

One advantage of viewing constraint satisfaction problems in this way is that
it suggests a number of algebraic techniques for analysing the properties of a given
problem class. For example, the nature of the constraints which occur in a problem
class can be described by specifying the algebraic operations under which they are
invariant. This has led to a novel approach to the study of tractability in constraint
satisfaction problems which focuses on algebraic properties of constraints [9–11]. This
approach has led to a number of new insights into the nature of tractable constraint
types. In particular, we have established that any collection of tractable constraints
over a finite domain, must all be invariant under a pointwise operation [10,11]. This
result has transformed the search for new tractable constraint types into a search for
possible algebraic invariance properties.

Another advantage of an algebraic viewpoint is that it allows the powerful struc-
tural results obtained in the field of universal algebra to be applied to the analysis of
constraint satisfaction problems. For example, a theorem about algebras obtained by
Baker and Pixley in 1975 [1] provides a precise algebraic characterisation of the con-
straint types for which local consistency is sufficient to ensure global consistency [8].

As another example, we shall show below that certain key aspects of the mathe-
matical structure of constraint satisfaction problems can be precisely described in terms
of the notion of a Galois connection, which is a standard notion of universal algebra.
In particular, we show that it is possible using this algebraic framework to give a pre-
cise description of the notion of “expressive power” for constraints. This includes the
expressive power of a fixed constraint structure (section 3) and the expressive power
of a fixed collection of constraint types (section 4). In both cases we show that the
results can be used to determine whether or not a particular relation can be expressed
in a given framework. The question of determining whether a given relation can be ex-
pressed using a fixed collection of constraint types is a significant theoretical question
which is related to the design of constraint programming languages, and the answer
we provide here uses some very general results from universal algebra to provide a
surprisingly simple approach (theorem 4.6).

The paper is organised as follows. In section 2 we give the basic definitions, and
establish the fundamental connection between constraint satisfaction problems and rela-
tional structures. In section 3 we consider the class of constraint satisfaction problems
with a given constraint structure, that is, a fixed constraint hypergraph. We investigate
the relationship between problem instances and sets of solutions, and show that this
relationship can be viewed as a Galois connection. Hence we obtain an algebraic char-
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acterisation of the property of minimality, and an algebraic criterion for determining
whether or not a given set of solutions can be expressed by a constraint problem of a
certain arity. In section 4 we consider the class of constraint satisfaction problems with
arbitrary constraint hypergraphs, but with a given collection of constraint types. We
show how algebraic properties known as polymorphisms can be used to classify dif-
ferent constraint types, and we indicate how the relationship between constraint types
and polymorphisms can also be viewed as an example of a Galois connection. Finally,
we show that the “expressive power” of a set of constraint types, and the complexity
of the corresponding class of problems, can be determined from the mappings in this
Galois connection.

2. Definitions

2.1. The constraint satisfaction problem

The fundamental mathematical structure required to describe constraints, and
constraint satisfaction problems, is the relation, which is defined as follows.

Definition 2.1. For any set D, and any natural number n, we denote the set of all
n-tuples of elements of D by Dn. A subset of Dn is called an ‘n-ary relation’ over D.

For any tuple t ∈ Dn, and any i in the range 1 to n, we denote the value
in the ith coordinate position of t by t[i]. The tuple t will be written in the form
〈t[1], t[2], . . . , t[n]〉.

The following relations will be of special interest in this paper:

Definition 2.2. For any set D we define the following binary relations over D:

• equality: 2D = {〈d, d′〉 ∈ D2 | d = d′},

• disequality: 6=D = {〈d, d′〉 ∈ D2 | d 6= d′}.

The definition of a ‘constraint satisfaction problem’ varies slightly between authors [11,
13,14,16], but the following is a fairly standard version of the definition.

Definition 2.3. An instance of a constraint satisfaction problem is a triple 〈V ,D, C〉,
where:

• V is a set of variables,

• D is a domain of values,

• C is a set of constraints, {C1,C2, . . . ,Cq}.
Each constraint Ci ∈ C is a pair 〈si,Ri〉, where:

– si is a tuple of variables of length mi, called the ‘constraint scope’, and

– Ri is an mi-ary relation over D, called the ‘constraint relation’.
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For each constraint, 〈si,Ri〉, the tuples of Ri indicate the allowed combinations of
simultaneous values for the variables in si. The length of the tuples in Ri is called the
‘arity’ of the constraint. In particular, unary constraints specify the allowed values for
a single variable, and binary constraints specify the allowed combinations of values
for a pair of variables.

A solution to a constraint satisfaction problem instance is a function1, f , from the
set of variables, V , to the domain of values, D, such that for each constraint 〈si,Ri〉,
with si = 〈vi1 , vi2 , . . . , vim〉, the tuple 〈f (vi1), f (vi2), . . . , f (vim)〉 is a member of Ri.
Each instance of a constraint satisfaction problem is associated with a set of solutions,
and can be said to ‘represent’ or ‘express’ this set of solutions.

Example 2.4. An instance of the standard propositional SATISFIABILITY problem [4,17]
is specified by giving a formula in propositional logic, and asking whether there are
values for the variables which make the formula true.

For example, consider the formula

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x1) ∧ (x3 ∨ x2 ∨ x4) ∧ (x1 ∨ x3).

The problem of finding a satisfying truth assignment for this formula can be formulated
as an instance of the constraint satisfaction problem in a number of ways. Perhaps the
most straightforward is to construct the instance P with

• set of variables V = {x1,x2,x3,x4},

• set of values D = {0, 1}, corresponding to True and False,

• set of constraints {C1,C2,C3,C4,C5}, where:

– C1 = 〈〈x1,x2,x3,x4〉,D4 \ 〈0, 0, 0, 0〉〉,
– C2 = 〈〈x1,x2,x3〉,D3 \ 〈1, 1, 0〉〉,
– C3 = 〈〈x3,x4,x1〉,D3 \ 〈1, 1, 0〉〉,
– C4 = 〈〈x3,x2,x4〉,D3 \ 〈1, 1, 0〉〉,
– C5 = 〈〈x1,x3〉,D2 \ 〈1, 1〉〉.

A simple calculation reveals that there are 6 solutions to this problem instance, which
can be tabulated as follows:

x1 x2 x3 x4

0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 0 1

1 Some authors use the term solution to refer to the image of such a function on some fixed ordering of
the variables, rather than the function itself [13]. These two notions are clearly very closely related, but
for our purposes it is more convenient to regard the function itself as the solution (see proposition 2.9).



P. Jeavons et al. / Constraints and universal algebra 55

2.2. Relational structures and homomorphisms

In order to describe constraint satisfaction problems in algebraic terms, we will
make extensive use of the standard algebraic notion of a ‘relational structure’ [3,15].

Definition 2.5. A ‘relational structure’ is a tuple 〈V ,E1,E2, . . . ,Ek〉 consisting of
a non-empty set, V , called the ‘universe’ of the relational structure, and a list,
E1,E2, . . . ,Ek, of relations over V .

Example 2.6. A (directed) graph is a relational structure in which the universe is a
set, V , of vertices, and there is a single binary relation, E, specifying which vertices
are adjacent.

A complete graph on n vertices, denoted Kn, corresponds to a relational structure
〈V , 6=V 〉, where V is a set of cardinality n, and 6=V is the disequality relation over V
defined in example 2.2.

Definition 2.7. The ‘rank function’ of a relational structure 〈V ,E1,E2, . . . ,Ek〉, is
a function ρ from {1, 2, . . . , k} to the set of non-negative integers, such that for all
i ∈ {1, 2, . . . , k}, ρ(i) is the arity of Ei.

A relational structure Σ is ‘similar’ to a relational structure Σ′ if they have iden-
tical rank functions.

Definition 2.8. Let Σ = 〈V ,E1,E2, . . . ,Ek〉 and Σ′ = 〈V ′,E′1,E′2, . . . ,E′k〉 be two
similar relational structures, and let ρ be their common rank function.

A ‘homomorphism’ from Σ to Σ′ is a function h :V → V ′ such that, for all
i ∈ {1, 2, . . . , k},

〈v1, v2, . . . , vρ(i)〉 ∈ Ei =⇒
〈
h(v1),h(v2), . . . ,h(vρ(i))

〉
∈ E′i.

The set of all homomorphisms from Σ to Σ′ is denoted Hom(Σ, Σ′).

The fundamental connection we wish to explore in this paper is that the solutions
to any constraint satisfaction problem instance can be viewed as homomorphisms
between a fixed pair of relational structures, as the next result indicates.

Proposition 2.9. For any constraint satisfaction problem instance P = 〈V ,D, C〉, with
C = {〈s1,R1〉, 〈s2,R2〉, . . . , 〈sq,Rq〉}, the set of solutions to P equals Hom(Σ, Σ′),
where Σ = 〈V , {s1}, {s2}, . . . , {sq}〉 and Σ′ = 〈D,R1,R2, . . . ,Rq〉.

Example 2.10. Reconsider the constraint satisfaction problem instance P, with set of
variables V = {x1,x2,x3,x4} and set of values D = {0, 1}, defined in example 2.4.
It follows from proposition 2.9 that the six solutions to P, listed in example 2.4 are
precisely the homomorphisms from Σ to Σ′, where:

• Σ = 〈V , {〈x1,x2,x3,x4〉}, {〈x1,x2,x3〉}, {〈x3,x4,x1〉}, {〈x3,x2,x4〉}, {〈x1,x3〉}〉,
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• Σ′ = 〈D,R1,R2,R2,R2,R3〉, where:

– R1 = {0, 1}4 \ 〈0, 0, 0, 0〉,
– R2 = {0, 1}3 \ 〈1, 1, 0〉,
– R3 = {0, 1}2 \ 〈1, 1〉.

Conversely, given any pair of similar relational structures, there is a corresponding
constraint satisfaction problem instance whose solutions are precisely the homomor-
phisms between the two structures, as the next result indicates.

Proposition 2.11. For any pair of similar relational structures, Σ and Σ′, with Σ =
〈V ,E1,E2, . . . ,Ek〉 and Σ′ = 〈D,R1,R2, . . . ,Rk〉, the set Hom(Σ, Σ′) is equal to
the set of solutions to the constraint satisfaction problem instance 〈V ,D, C〉 where
C =

⋃k
i=1{〈s,Ri〉 | s ∈ Ei}.

Example 2.12. Consider the relational structures Σ and Σ′, where:

• Σ = 〈V , {〈x1,x2,x3,x4〉}, {〈x1,x2,x3〉, 〈x3,x4,x1〉, 〈x3,x2,x4〉}, {〈x1,x3〉}〉,
where:

– V = {x1,x2,x3,x4},

• Σ′ = 〈{0, 1},R1,R2,R3〉, where:

– R1 = {0, 1}4 \ 〈0, 0, 0, 0〉,
– R2 = {0, 1}3 \ 〈1, 1, 0〉,
– R3 = {0, 1}2 \ 〈1, 1〉.

Note that these relational structures are not equal to the relational structures defined
in example 2.10 (for example, they each contain 3 relations rather than 5). However,
it follows from proposition 2.11 that the set Hom(Σ, Σ′) is again equal to the set of
solutions to the constraint satisfaction problem instance P, defined in example 2.4.

In view of these results, we shall refer to any pair of similar relational structures,
〈Σ, Σ′〉, as an instance of the ‘generalised constraint satisfaction problem’ (GCP), and
we shall regard the set of homomorphisms Hom(Σ, Σ′) as the set of solutions to this
problem instance.

Definition 2.13. An instance of a generalised constraint satisfaction problem is a pair
〈Σ, Σ′〉, where Σ and Σ′ are similar relational structures.

A solution to 〈Σ, Σ′〉 is a homomorphism from Σ to Σ′.

Comparing definition 2.13 with the more usual definition 2.3 indicates how the
use of standard algebraic terminology streamlines the definition.

Notice that in any problem instance 〈Σ, Σ′〉, the first component, Σ, specifies the
structure of the constraints (which variables constrain which others), sometimes called
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Figure 1. A solution to a GRAPH COLORABILITY problem instance.

the ‘constraint (hyper)graph’, whilst the second component, Σ′, specifies the constraint
relations.

The general constraint satisfaction framework described in definition 2.13 allows
many standard combinatorial problems to be expressed very simply as instances of
GCP, as the following examples indicate. Note that many of these examples concern
problems which are not usually viewed as constraint satisfaction problems.

Example 2.14 (GRAPH COLORABILITY). An instance of the GRAPH COLORABILITY

problem [4,17] consists of a graph G and an integer q. The question is whether the
vertices of G can be labelled with q colours in such a way that adjacent vertices are
labelled with different colours.

This can be expressed as the GCP instance 〈G,Kq〉, where Kq is a complete
graph on q vertices, as defined in example 2.6.

For example, figure 1 indicates a homomorphism from a graph G to the complete
graph K3, which corresponds to a 3-colouring of G.

Example 2.15 (CLIQUE). An instance of the CLIQUE problem [4,17] consists of a
graph G and an integer q. The question is whether G contains a subgraph of q vertices
which is a clique (that is, isomorphic to a complete graph Kq).

Assuming that G contains no ‘loops’ (in other words, no vertex is adjacent to
itself), this can be expressed as the GCP instance 〈Kq ,G〉.

For example, figure 2 indicates a homomorphism from the complete graph K3 to
a graph G, which corresponds to finding a 3-clique in G.

Example 2.16 (HAMILTONIAN CIRCUIT). An instance of the HAMILTONIAN CIRCUIT

problem [4,17] consists of a graph G = 〈V ,E〉. The question is whether there is a
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Figure 2. A solution to a CLIQUE problem instance.

cyclic ordering of V such that every pair of successive nodes in the ordering is adjacent
in G.

This can be expressed as the GCP instance 〈〈V ,CV , 6=V 〉, 〈V ,E, 6=V 〉〉, where
CV is an arbitrary cyclic permutation on V and 6=V is the disequality relation over V
defined above. (The presence of the relation 6=V in both relational structures simply
ensures that any solution must be injective.)

Example 2.17 (BANDWIDTH). An instance of the BANDWIDTH problem [4] consists
of a graph G = 〈V ,E〉 where V = {v1, v2, . . . , vn}, and a positive integer k. The
question is whether there is a linear ordering of V such that adjacent nodes in the
graph are at most k positions apart in the ordering.

This can be expressed as the GCP instance 〈〈V ,E, 6=V 〉, 〈V ,Bk, 6=V 〉〉, where
Bk = {〈vi, vj〉 ∈ V 2 | |i− j| 6 k} and 6=V is the disequality relation over V defined
above.

Example 2.18 (k-DIMENSIONAL MATCHING). An instance of the k-DIMENSIONAL

MATCHING problem [4] consists of a relation M of arity k over a set V . The question
is whether there is a subset M ′ ⊆M such that |M ′| = |V | and no two elements of M ′

agree in any coordinate position.
This can be expressed as the GCP instance 〈〈V , 6=V 〉, 〈M , ˜6=M 〉〉, where

˜6=M =
{〈
〈v1, v2, . . . , vk〉,

〈
v′1, v′2, . . . , v′k

〉〉
∈M2 | vi 6= v′i, i = 1, 2, . . . , k

}
.

All of the above problems are known to be NP-complete [4,17], but the next two
examples show that it is not just NP-complete problems which can be expressed in
this framework.

Example 2.19 (GRAPH ISOMORPHISM). An instance of the GRAPH ISOMORPHISM prob-
lem [4,17] consists of two graphs G = 〈V ,E〉 and G′ = 〈V ′,E′〉 with |V | = |V ′|.
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The question is whether there is a bijection between the vertices such that adjacent
vertices in G are mapped to adjacent vertices in G′, and non-adjacent vertices in G
are mapped to non-adjacent vertices in G′.

This can be expressed as the GCP instance 〈〈V ,E, Ē〉, 〈V ′,E′, Ē′〉〉, where
Ē = 6=V \E and Ē′ = 6=V ′ \E′.

Example 2.20 (GRAPH UNREACHABILITY). An instance of the GRAPH UNREACHABIL-
ITY problem [17] consists of a graph G = 〈V ,E〉 and a pair of vertices, v,w ∈ V .
The question is whether there is no path in G connecting v to w.

This can be expressed as the GCP instance〈〈
V ,E,

{
〈v〉
}

,
{
〈w〉
}〉

,
〈
{0, 1},2{0,1},

{
〈0〉
}

,
{
〈1〉
}〉〉

.

3. Fixed constraint hypergraph

In this section, we shall consider the collection of all instances of the generalised
constraint satisfaction problem with a fixed constraint hypergraph, and a fixed domain
of values, but with differing constraint relations.

To do this, we choose a fixed relational structure, Σ0, with universe V and rank
function ρ, and a fixed set D. We then consider all GCP instances 〈Σ0, Σ〉, where Σ
varies over all relational structures with universe D and rank function ρ.

To obtain a partial ordering on this set of problem instances we note that similar
relational structures with the same universe can be partially ordered by inclusion on
the corresponding relations, as follows.

Definition 3.1. If Σ = 〈D,E1,E2, . . . ,Ek〉 and Σ′ = 〈D,E′1,E′2, . . . ,E′k〉 are similar
relational structures, with Ei ⊇ E′i for all i ∈ {1, 2, . . . , k}, then we shall say2 that
Σ 6 Σ′.

Using this partial order, the set of all relational structures with universe D and
rank function ρ forms a lattice [3,15], which we shall call ∆D,ρ.

Now, each problem instance 〈Σ0, Σ〉 has an associated set of solutions, which is
a set of mappings from V to D. Furthermore, the set of all sets of mappings from V
to D, denoted ℘(DV ), can be partially ordered by inclusion, in the standard way, and
also forms a lattice.

Given any fixed relational structure, Σ0, with universe V and rank function ρ we
can define a pair of mappings between ∆D,ρ and ℘(DV ), as follows.

Definition 3.2. Let Σ0 = 〈V ,E1,E2, . . . ,Ek〉 be a relational structure, with universe V
and rank function ρ.

We define two mappings, SolΣ0(−) and ProΣ0(−) as follows:

2 Note that the ordering defined here is reversed from the standard inclusion ordering, for convenience
later.
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Figure 3. The Galois connection between ∆D,ρ and ℘(DV ).

• For any relational structure Σ with rank function ρ, define SolΣ0(Σ) as follows:

SolΣ0(Σ) = Hom(Σ0, Σ).

• For any set of mappings, M , from V to some set D, define ProΣ0 (M ) as follows:

ProΣ0 (M ) = 〈D,R1,R2, . . . ,Rk〉,

where, for i = 1, 2, . . . , k,

Ri =
⋃

〈v1,v2,...,vρ(i)〉∈Ei

{〈
m(v1),m(v2), . . . ,m(vρ(i))

〉
| m ∈M

}
.

This pair of mappings is illustrated in figure 3. The mapping SolΣ0 (−) takes
each relational structure Σ to the set of solutions to 〈Σ0, Σ〉. Conversely, the mapping
ProΣ0(−) takes each set of mappings to a relational structure Σ such that the problem
instance 〈Σ0, Σ〉 ‘expresses’ this set of mappings as closely as possible, given the fixed
choice of constraint hypergraph.

From an algebraic point of view, the significant fact about this pair of mappings
is that they are order-reversing, as shown in the next result.

Proposition 3.3. For any relational structure Σ0 = 〈V ,E1,E2, . . . ,Eq〉 with rank func-
tion ρ, the mappings SolΣ0 (−) and ProΣ0(−) have the following properties:

• For any two relational structures Σ1 and Σ2, that have a common universe, and rank
function ρ, if Σ1 6 Σ2, then SolΣ0 (Σ1) > SolΣ0 (Σ2).

• For any two sets of mappings, M1 and M2, in ℘(DV ), if M1 6 M2, then
ProΣ0(M1) > ProΣ0(M2).

• For any Σ with rank function ρ, ProΣ0 (SolΣ0 (Σ)) > Σ.

• For any M in ℘(DV ), SolΣ0(ProΣ0(M )) >M .
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This result states that the mappings SolΣ0 (−) and ProΣ0 (−) constitute a Galois
connection [3,15] between ∆D,ρ and ℘(DV ), for any set D.

As with any Galois connection [3,15], this implies that the composite operation
ProΣ0(SolΣ0(−)) is a closure operation on ∆D,ρ, and the elements which are fixed by
this operation form a lattice.

For certain choices of Σ0 these elements are of particular interest. For example,
in Montanari’s original 1974 paper on constraints [16], he defines the notion of a
‘minimal constraint network’. This is a binary constraint satisfaction problem in which
the constraint between every pair of variables is as tight as possible. In other words,
every pair of values allowed by every constraint can be extended to a complete solution.
Montanari calls the problem of deriving the (unique) minimal constraint network with
the same solutions as a given problem instance the “central problem” in many practical
applications [16].

Proposition 3.4. Let Kn = 〈V , {e1, e2, . . .}〉 be a complete graph with n vertices, and
set ΣKn = 〈V , {e1}, {e2}, . . .〉.

For any GCP instance P = 〈ΣKn, Σ′〉, the unique minimal binary constraint
satisfaction problem (as defined in [16]) with the same solutions as P is given by〈

ΣKn, ProΣKn
(
SolΣKn(Σ)

)〉
.

Hence P is a minimal binary constraint satisfaction problem if and only if
ProΣKn(SolΣKn(Σ)) = Σ.

Similarly, the composite operation SolΣ0(ProΣ0(−)) is a closure operation on
℘(DV ), and the elements which are fixed by this operation also form a lattice.

Proposition 3.5. A set of mappings M in ℘(DV ) is the set of solutions to some
constraint satisfaction problem instance with constraint hypergraph Σ0 if and only if

SolΣ0

(
ProΣ0(M )

)
= M.

For some choices of Σ0 this result is of particular interest.

Corollary 3.6. Let Kn = 〈V , {e1, e2, . . .}〉 be a complete graph with n vertices, and
set ΣKn = 〈V , {e1}, {e2}, . . .〉.

A set of mappings M in ℘(DV ) is the set of solutions to some binary constraint
satisfaction problem instance if and only if SolΣKn(ProΣKn(M )) = M .

Similar results for other problem arities can be obtained by choosing a Σ0 which
corresponds to a complete hypergraph of the appropriate degree.

Example 3.7. Let S be the set of solutions to the GCP instance 〈Σ, Σ′〉 defined in
example 2.10. The set S contains 6 mappings from V = {x1,x2,x3,x4} to D = {0, 1},
as indicated in example 2.4.
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In this instance we have

ΣKn =
〈
V ,
{
〈x1,x2〉

}
,
{
〈x1,x3〉

}
,
{
〈x1,x4〉

}
,
{
〈x2,x3〉

}
,
{
〈x2,x4〉

}
,
{
〈x3,x4〉

}〉
,

giving

ProΣKn (S) =
〈
V ,
{
〈0, 0〉, 〈0, 1〉, 〈1, 0〉

}
,
{
〈0, 0〉, 〈0, 1〉, 〈1, 0〉

}
,{

〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉
}

,
{
〈0, 0〉, 〈0, 1〉, 〈1, 0〉

}
,{

〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉
}

,
{
〈0, 0〉, 〈0, 1〉, 〈1, 0〉

}〉
,

which then gives

SolΣKn
(
ProΣKn (S)

)
= S ∪

{
〈0, 0, 0, 0〉

}
6= S.

Hence, by corollary 3.6, S cannot be expressed as the set of solutions to any binary
constraint satisfaction problem instance.

A similar calculation shows that S cannot be expressed as the set of solutions to
any ternary constraint satisfaction problem instance (but see example 4.8).

4. Fixed constraint relations

In this section, we shall consider the collection of all instances of the generalised
constraint satisfaction problem with a fixed domain of values, and a fixed set of possible
constraint relations, but with differing constraint hypergraphs.

Throughout this section, we shall assume that the domain of values for all the
problems we consider is some fixed set D. For any set, Γ, of relations over D, the
collection of all instances, 〈Σ, Σ′〉, of the generalised constraint satisfaction problem
where the relations of Σ′ are all elements of Γ, will be denoted GCP(Γ).

Once again, the notion of a Galois Connection turns out to be of fundamental
importance for studying the class of problems GCP(Γ). In this case we shall construct
a mapping from each set of relations Γ to an associated set of operations on D, which
are called the polymorphisms3 of Γ, as described below. We also construct a second
mapping from sets of operations to sets of relations, and show that these two mappings
form a Galois connection.

First note that the set of all possible sets of relations over D is partially ordered
by inclusion in the standard way, and forms an infinite lattice, which we shall call ΛD.

An operation on a set D is a function from Dm to D, for some positive integer m,
which is called the arity of the operation. The set of all sets of operations on D is
again partially ordered by inclusion in the standard way, and forms an infinite lattice,
which we shall call ΩD.

3 In previous papers [9–11] we have used the term ‘closure operation’ instead of ‘polymorphism’, but
we introduce the term polymorphism here for consistency with the literature of universal algebra, and
to avoid confusion with the notion of closure arising from the Galois connection.
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Figure 4. The Galois connection between ΛD and ΩD .

Definition 4.1. Let R be a relation over D. An operation f of arity n on D is a
polymorphism of R if

∀t1, t2, . . . , tn ∈ R f (t1, t2, . . . , tn) ∈ R,

where the operation f is applied componentwise.
If f is a polymorphism of R, then R is said to be invariant for f .

We now define a pair of order-preserving mappings between ΛD and ΩD, as
follows.

Definition 4.2. We define two mappings, Pol(−) and Inv(−) as follows:

• For any set of relations Γ over D, define Pol(Γ) as follows:

Pol(Γ) =
{
f | ∀R ∈ Γ, f is a polymorphism of R

}
.

• For any set of operations, O, on D, define Inv(O) as follows:

Inv(O) =
{
R | ∀f ∈ O, R is invariant for f

}
.

These mappings are illustrated in figure 4. From an algebraic point of view, the
significant fact about this pair of mappings is that they are order-reversing, as shown
in the next result.

Proposition 4.3. The mappings Pol(−) and Inv(−) have the following properties:

• For any two sets of relations Γ1 and Γ2, over D, if Γ1 ⊆ Γ2, then Pol(Γ1) ⊇ Pol(Γ2).

• For any two sets of operations, O1 and O2, on D, if O1 ⊆ O2, then Inv(O1) ⊇
Inv(O2).

• For any set of relations, Γ over D, Inv(Pol(Γ)) ⊇ Γ.

• For any set of operations O on D, Pol(Inv(O)) ⊇ O.
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This result states that the mappings Pol(−) and Inv(−) constitute a Galois con-
nection between ΛD and ΩD. This particular Galois connection is well-known in
universal algebra, and has been extensively studied [6,15,19].

As with any Galois connection, the composite operation Pol(Inv(−)) is a closure
operation on ΩD, and the elements which are fixed by this operation form a lattice.
These fixed elements are sets of operations with particular algebraic properties, which
have been investigated in universal algebra under the name of ‘clones’.

Definition 4.4 [19]. A set of operations O on a set D is called a clone if

• every projection operation on D is an element of O, and

• the composition of any elements in O is an element of O.

Proposition 4.5. A set of operations O on D is a clone if and only if Pol(Inv(O)) = O.

Similarly, the composite operation Inv(Pol(−)) is a closure operation on ΛD, and
the elements which are fixed by this operation also form a lattice. These fixed elements
are in one-to-one correspondence with the clones described above.

The significance of the operation Inv(Pol(−)), from the point of view of the gen-
eral constraint satisfaction problem, is shown by the next result. This result states, in
effect, that a relation belongs to Inv(Pol(Γ)) if and only if it is equal to a projection
of the set of solutions to some problem in GCP(Γ). In other words, the set of rela-
tions Inv(Pol(Γ)) contains precisely the relations that can be ‘expressed’ by problem
instances in GCP(Γ).

Theorem 4.6. Let V = {v1, v2, . . . , vn} be a set of variables and let M be a set of
mappings from V to a finite set D.

For any fixed set of relations Γ over D, there exists some constraint satisfaction
problem instance in GCP(Γ∪2D) with solution set S such that S|V = M if and only
if {〈

f (v1), f (v2), . . . , f (vn)
〉
| f ∈M

}
∈ Inv

(
Pol(Γ)

)
.

Proof. It is noted in [6] that a relation R belongs to Inv(Pol(Γ)) if and only if there
exists a formula φ(x1,x2, . . . ,xn) with free variables x1,x2, . . . ,xn, in a fragment of
first order logic containing only binary equality, conjunction, and existential quantifi-
cation, together with an m-ary predicate symbol for each m-ary relation in Γ, such
that

R =
{
〈d1, d2, . . . , dn〉 ∈ Dn | Γ |= φ(d1, d2, . . . , dn)

}
.

Furthermore, each such formula corresponds to a constraint satisfaction problem in-
stance in GCP(Γ∪2D) [14]. (Variables in the formula which are existentially quanti-
fied give rise to variables in the corresponding constraint satisfaction problem instance
which are “hidden”, that is, whose values are ignored.) �
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This is a very powerful result, which can be viewed in the following way: if
we think of Γ as a ‘language’ of possible constraint relations which can be imposed
explicitly on collections of variables, then Inv(Pol(Γ)) is precisely the set of relations
which can be imposed either explicitly or implicitly on some subset of variables using
this language [12].

For some choices of Γ this result is of particular interest.

Corollary 4.7. Let Γ(r) be the set of all relations over D of arity r.
For any set of mappings M ⊆ DV , there exists some constraint satisfaction

problem instance where the constraints have arity r with solution set S such that
S|V = M if and only if{〈

f (v1), f (v2), . . . , f (vn)
〉
| f ∈M

}
∈ Inv

(
Pol
(
Γ(r))).

Example 4.8. Let S be the set of solutions to the GCP instance 〈Σ, Σ′〉 defined in
example 2.10. The set S contains 6 mappings from V = {x1,x2,x3,x4} to D = {0, 1},
as indicated in example 2.4.

In this instance we have:

Γ(2) = ℘
({
〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉

})
.

It is easily verified that every element of Γ(2) is invariant for the ternary operation µ
on D which is defined as follows:

µ(x, y, z) =
{
y if y = z,
x otherwise.

Hence µ ∈ Pol(Γ(2)). But this means that S /∈ Inv(Pol(Γ(2))), because, for example,

µ
(
〈0, 0, 0, 1〉, 〈0, 0, 1, 0〉, 〈0, 1, 0, 0〉

)
= 〈0, 0, 0, 0〉 /∈ S.

Hence, by corollary 4.7, there is no binary constraint satisfaction problem instance
whose solution set (restricted to V ) equals S.

This means that, over this domain, there are some relations that cannot be ex-
pressed using only binary constraints, even if we allow the use of arbitrary numbers
of hidden variables.

On the other hand, it can be shown [18,19] that Pol(Γ(3)) contains only projection
operations, hence Inv(Pol(Γ(3))) contains all relations over D, so by corollary 4.7, there
does exist at least one ternary constraint satisfaction problem instance whose solution
set (restricted to V) equals S.

Finally, it was shown in [7] that Pol(Γ) also provides information about the
computational complexity of deciding whether or not any instance of GCP(Γ) has a
solution, as the next results indicate.

Theorem 4.9 [7]. Let Γ1 and Γ2 be finite sets of relations over D.
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If Γ1 ⊆ Inv(Pol(Γ2)), then GCP(Γ1) can be reduced in polynomial time to
GCP(Γ2).

Corollary 4.10. For any finite set of relations, Γ, the complexity of GCP(Γ) is deter-
mined, up to polynomial-time reductions, by Pol(Γ).

5. Conclusion

In this paper we have described how a constraint satisfaction problem can be
viewed as the problem of finding a homomorphism between relational structures.

We have shown that this algebraic framework is sufficiently general to allow
a wide variety of combinatorial problems to be expressed very simply as constraint
satisfaction problems.

We believe that this algebraic framework provides valuable new insights into the
constraint satisfaction problem because it encourages the use of algebraic techniques
and tools to analyse the structure of constraint satisfaction problems, and we have
given a number of examples to illustrate this process.
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