
A Survey of

Tractable

Constraint Satisfaction Problems

Justin Pearson & Peter Jeavons

July 14, 1997

Abstract

In this report we discuss constraint satisfaction problems. These

are problems in which values must be assigned to a collection of vari-

ables, subject to speci�ed constraints. We focus speci�cally on prob-

lems in which the domain of possible values for each variable is �nite.

The report surveys the various conditions that have been shown

to be su�cient to ensure tractability in these problems. These are

broken down into three categories:

� Conditions on the overall structure;

� Conditions on the nature of the constraints;

� Conditions on bounded pieces of the problem.

1 Introduction

A constraint satisfaction problem is a way of expressing simultaneous re-

quirements for values of variables.

The study of constraint satisfaction problems was initiated by Montanari

in 1974 [34], when he used them as a way of describing certain combinatorial

problems arising in image-processing. It was quickly realised that the same

general framework was applicable to a much wider class of problems, and the

general problem has since been intensively studied, both theoretically and

experimentally (for a general introduction see [32]).

The following examples indicate the wide variety of problems which can

be viewed as constraint satisfaction problems:

1

� A classic example of a problem which is often formulated as a constraint

satisfaction problem is the problem of placing eight queens on a chess

board so that no queen can capture any other queen [40].

� A more practical example is the problem of scheduling a collection of

tasks or activities. In this problem a list of tasks is given, together

with speci�ed constraints on which tasks can be carried out at the

same time, which tasks must precede which others, and so on. To

solve the problem, it is required to �nd an assignment of times to each

task which satis�es all of these constraints simultaneously. (A good

introduction to scheduling as a constraint satisfaction problem can be

found in [43].)

� Another example of considerable current interest is the frequency as-

signment problem. In this problem an arrangement of radio trans-

mitters and receivers is given, together with a description of how the

signals from each transmitter propagate to each receiver. To solve the

problem, it is required to �nd an assignment of one (or more) available

frequencies to each of the transmitters such that, when each transmitter

broadcasts at its assigned frequency, the desired signals can be received

at each receiver without excessive interference from other, unwanted,

signals. Typically, this means that transmitters which are geograph-

ically close must be assigned frequencies which are widely separated.

The frequency assignment problem can be modelled as a constraint

satisfaction problem in a number of di�erent ways, see [14].

� Many classic combinatorial problems, such as the Satisfiability prob-

lem from propositional logic [36], the Colorability problem and the

Graph Isomorphism problem from graph theory, and the Band-

width problem from operational research, can be formulated very nat-

urally as constraint satisfaction problems. For a unifying approach to

problems of this type, within the framework of constraint satisfaction,

see [25].

� The �nal example we mention is the solution of crossword puzzles.

This simple application will be used to illustrate the basic framework

and terminology de�ned in the next section, so we now introduce a

particular crossword puzzle that will be used as a running example:

Example 1.1 A typical crossword puzzle is speci�ed by two things: a

grid, as shown in Figure 1, and a set of clues.

2

 12

 1

 2

 3

 4

 5 6 7

 8

 9 10 11

Figure 1: A crossword grid

For our purposes, we shall think of each clue as a constraint, which

speci�es the allowed words for a particular set of empty spaces in the

grid. (To make the description of the constraints easier we have num-

bered each empty square in the grid.) For example, the clue for `1

Down' might allow as possible words \ELIA", \PAUL", and \SAFE",

while the clue for `2 Across' might allow as possible words \APES" and

\FAIR". 2

A solution to a constraint satisfaction problem is an assignment of values

to all of the variables in the problem which does not violate any of the

constraints.

Finding a solution to a constraint satisfaction problem by a simple-minded

search, which goes through all possible assignments and checks each one to

see if it satis�es the constraints, is generally impractical. The maximum

time taken to complete this procedure grows exponentially with the number

of variables.

In this report we shall describe a number of special cases where it can be

shown that there is a much more e�cient algorithm for �nding a solution.

The structure of the report is as follows.

� In Section 2, we give a formal de�nition of a constraint satisfaction

problem, illustrate this de�nition with a number of examples, and de-

scribe the close connections between constraint satisfaction problems

and relational databases.

� In Section 3. we show how certain restrictions on the overall structure of

a problem can be used to obtain e�cient solution algorithms of various

kinds.

� In Section 4. we show how certain restrictions on the form of con-

straints used in a problem can also be used to obtain e�cient solution

3

algorithms of various kinds.

� In Section 5. we show how certain restrictions on bounded sub-parts

of a problem can ensure that the complete problem is easy to solve.

� Finally, in Section 6. we summarise the results presented and identify

some directions for future research.

4

2 Constraint Satisfaction Problems

2.1 Basic de�nitions

This section de�nes the framework we shall use for expressing constraint

satisfaction problems. A formal framework is necessary in order to allow a

precise analysis of the e�ciency of algorithms for �nding solutions, which is

the main purpose of this report.

We shall only consider constraint satisfaction problems in which there are

a �nite number of variables, and each variable has a �nite number of possible

values. These are de�ned as follows.

De�nition 2.1 A constraint satisfaction problem, P, is speci�ed by a tuple,

P = (V;D;R

1

(S

1

); : : : ; R

n

(S

n

))

where

� V is a �nite set of variables;

� D is a �nite set of values (this set is called the domain of P);

� Each pair R

i

(S

i

) is a constraint.

In each constraint, R

i

(S

i

),

{ S

i

is an ordered list of k

i

variables, called the constraint scope;

{ R

i

is a relation

1

over D of arity k

i

, called the constraint relation.

De�nition 2.2 A solution to P = (V;D;R

1

(S

1

); : : : ; R

n

(S

n

)) is an assign-

ment of values from D to each of the variables in V , which satis�es all of the

constraints simultaneously.

Formally, a solution is a map h : V ! D such that h(S

i

) 2 R

i

, for all

i, where the expression h(S

i

) denotes the result of applying h to the tuple

S

i

, coordinate-wise (in other words, if S

i

= hv

1

; v

2

; : : : ; v

k

i, then h(S

i

) =

hh(v

1

); h(v

2

); : : : h(v

k

)i).

The set of all solutions to a problem P will be denoted Sol(P). Two problems

with the same set of solutions will be said to be equivalent.

1

A relation is simply a set of tuples of some �xed length. The length of the tuples is

called the arity of the relation.

5

Example 2.3 We will now construct a simple constraint satisfaction prob-

lem with variables V = fx; y; zg and domain D = f1; 2; : : : ; 6g (i.e., the

natural numbers from 1 to 6).

Suppose we want to express the requirements that the sum of x and y

must be 6, and that the product of y and z must be at least 20. This can be

done with the constraints R

1

(hx; yi) and R

2

(hy; zi) where:

� R

1

= fh1; 5i; h2; 4i; h3; 3i; h4; 2i; h5; 1ig

� R

2

= fh4; 5i; h4; 6i; h5; 4i; h5; 5i; h5; 6i; h6; 4i; h6; 5i; h6; 6ig

The solutions to this problem can be calculated by hand. For example, the

map

f(x) = 1

f(y) = 5

f(z) = 4

is a solution, because f(hx; yi) = h1; 5i, which is in R

1

, and f(hy; zi) = h5; 4i,

which is in R

2

.

The complete set of solutions is

fh1; 5; 4i; h1; 5; 5i; h1; 5; 6i; h2; 4; 5i; h2; 4; 6ig;

where a triple in the solution de�nes the values assigned to x; y and z, re-

spectively. 2

Example 2.4 One way to formalise crossword puzzles is to de�ne a variable

for each empty square in the grid, and set the domain D to be the set of all

alphabetic letters. We can then associate with each clue in the crossword a

constraint, giving allowed words for the corresponding squares.

The crossword puzzle described in Example 1.1 has 12 empty squares, so it

would be represented by a constraint satisfaction problem with 12 variables.

It contains 4 words, and hence has 4 clues, so we would de�ne 4 constraints

R

1

(S

1

); : : : ; R

4

(S

4

) where, for example, we might have:

� S

1

= h1; 2; 3; 4i,

� S

2

= h2; 5; 6; 7i,

� S

3

= h7; 8; 11i,

� S

4

= h4; 9; 10; 11; 12i,

6

with

� R

1

= fhE,L,I,Ai; hP,A,U,Li; hS,A,F,Eig ,

� R

2

= fhA,P,E,Si; hF,A,I,Rig, and so on.

Note, it is perfectly possible to represent the same constraint with a di�erent

ordering of the variables. For example, the constraint R

2

(S

2

) de�ned above

could be represented as the constraint R

0

2

(S

0

2

) where:

� S

0

2

= h5; 6; 2; 7i

� R

0

2

= fhP,E,A,Si; hA,I,F,Rig

without changing the solutions to the constraint, or to the overall problem.

2

We will occasionally make use of the notion of a partial solution. This may

be de�ned in a number of di�erent ways, depending on the stringency of the

requirements which we wish to impose. For consistency with the majority of

the literature, we shall use the following de�nition.

De�nition 2.5 A partial solution to a constraint satisfaction problem P =

(V;D;R

1

(S

1

); : : : ; R

n

(S

n

)) is a mapping h from some subset, say W , of V to

D, such that for each S

i

contained in W , h(S

i

) 2 R

i

.

Example 2.6 A partial solution to the crossword puzzle described in Exam-

ple 1.1 is shown in Figure 2. This partial solution satis�es all the constraints

on complete words where all letters have been assigned. Notice, however,

that it is unlikely to be extendible to a complete solution because of the

letters assigned to squares 8 and 12. 2

 1

 2

 3

Q 4

 5 6 7

 8

 9 10 11 12E
F
A
S

EP S

X

Figure 2: A partial solution to the crossword in Example 1.1

7

2.2 Links with Relational Database theory

To further illustrate the de�nitions we have given, we now say a little about

the close connections between constraint satisfaction problems and relational

databases.

It is very valuable to be aware of these links, because relational database

theory provides a rich body of concepts and techniques which can be applied

to constraint satisfaction problems. In particular, the use of relational al-

gebra [7], which is a well-established tool in database theory, allows many

properties and algorithms used in the study of constraint satisfaction to be

expressed in a concise and elegant way.

De�nition 2.7 ([7]) A relational database is a �nite collection of tables

2

.

A table consists of a scheme and an instance:

� A scheme is a �nite set of attributes, where each attribute has an as-

sociated set of possible values, referred to as a domain.

� An instance is a �nite set of rows, where each row is a mapping that

associates with each attribute of the scheme a value in its domain.

Relational database theory [41] has at least two central concerns: the e�cient

storage of tables, and the expressibility and e�ciency of queries. A query is

a request for information from some collection of tables. For example, if

one table stores names and addresses, and another table stores names and

salaries, then a query might ask for the salaries of people who live in a certain

area.

Various standard operations have been de�ned on tables, which allow

many queries to be expressed, and these operations are collectively known as

the relational algebra [7]. We will only make use of two of these operations:

projection and join, which are de�ned as follows.

De�nition 2.8 Given a table T with set of attributes I, and a subset J of I,

the projection of T onto J , denoted �

J

T , is the table with set of attributes

J and the following set of rows:

ff

jJ

j f 2 Tg

where f

jJ

denotes the function f restricted to the arguments in J . That is,

each row of �

J

T is a restriction of some row in T , containing values for

attributes in J only.

2

Tables are often referred to as relations. We will call them tables to avoid clashing

with the set-theoretic de�nition of a relation used above.

8

De�nition 2.9 Given a table T with set of attributes I, and a table S with

set of attributes J , the join of T and S, denoted T ./ S, is de�ned to be the

table with set of attributes I [J and the following set of rows:

ff j f

jI

2 T and f

jJ

2 Sg

Example 2.10 Here is an example of a table, which we shall call PayRoll:

Name Salary Age

Fred 30,000 32

Susan 35,000 37

Jim 25,000 27

Sheila 35,000 37

The scheme of this table has three attributes, Name, Age and Salary, (each

with an appropriate domain of possible values), and the instance has four

rows.

The query �

Age,Salary

PayRoll gives the table:

Age Salary

32 30,000

37 35,000

27 25,000

(Note that a table is a set, which means that it cannot have duplicate rows,

so any duplicates rows arising from the projection are eliminated.)

Now assume that our database also contains a second table, which we

shall call Addresses:

Name Address

Dylan Cwmdonkin Drive

Jim Eton Terrace

Sheila Seaview Gardens

The query which asks for the join of these two tables, written as

PayRoll ./ Addresses;

gives the following table:

Name Age Salary Address

Jim 27 25,000 Eton Terrace

Sheila 37 35,000 Seaview Gardens

2

9

The very close connection between constraint satisfaction problems and databases

is indicated in the following table:

Constraint Terminology Database Terminology

constraint satisfaction problem � database

variable � attribute

domain � union of all attribute domains

constraint � table

constraint scope � scheme

constraint relation � instance

set of solutions � join of all tables

In summary, a constraint satisfaction problem P = (V;D;R

1

(S

1

); : : : ; R

n

; (S

n

))

can be seen as a relational database with n tables, having schemes S

1

; : : : ; S

n

and instances R

1

; : : : ; R

n

. The set Sol(P) is equal to the table

R

1

./ R

2

./ � � � ./ R

n

:

For further discussion of the important and fruitful connection between these

two �elds, see [23].

2.3 The complexity of �nding solutions

Many techniques have been developed over the past 20 years to �nd solutions

to constraint satisfaction problems (for a general introduction to solution

methods for constraint satisfaction problems, see [40, 32]).

One obvious approach is to employ some form of backtrack search algo-

rithm. This simple form of search algorithm may be speci�ed as follows:

Algorithm 2.11

1. Pick some ordering of the variables, say, v

1

; v

2

; : : : ; v

jV j

;

2. Pick some ordering of the domain, say d

1

; : : : ; d

jDj

;

3. Call Backtrack(1).

Backtrack(i)

If i > jV j, then output the current assignment;

else for j = 1; 2; : : : ; jDj

Assign the value d

j

to variable v

i

.

If the current assignment of v

1

; v

2

; : : : ; v

i

is a partial solution,

then call Backtrack(i+ 1);

10

Many improvements to the standard backtrack search have been described

in the literature (for a recent survey, see [31]). These all attempt to speed up

the basic algorithm by using extra information about the problem to guide

the search more e�ectively, hence making fewer unnecessary assignments,

and backtracking less often.

The maximum time taken to �nd a solution by any form of backtrack

search (or to establish that no solution exists) grows exponentially with the

number of variables, in general. However, for any particular problem instance

the time required to �nd a single solution depends on

� the details of the given problem;

� the chosen variable ordering;

� the chosen domain ordering.

In some cases, a search procedure can �nd a solution without backtracking at

all, and hence the time taken is only proportional to the number of variables.

In order to analyse more precisely the computational di�culty of �nding

solutions to constraint satisfaction problems, we shall make use of some of

the techniques and terminology of computational complexity theory.

In particular, we shall attempt to determine the time complexity

3

of var-

ious restricted classes of constraint satisfaction problems. (For a general

introduction to complexity theory, see [22] or [36].)

The main results we shall describe show that, for certain special types of

problems, it is possible to design algorithms which will always �nd a solution

e�ciently (or discover that there are no solutions). A class of problems

will be called tractable if there is an algorithm which �nds a solution to all

problems in that class, or reports that there are no solutions, and whose time

complexity is polynomial in the size of the problem to be solved. The rest

of this report lists a wide variety of conditions which are su�cient to ensure

tractability, in this sense.

On the other side of the coin, it is sometimes possible to show that a

class of problems is very unlikely to be tractable. In several cases, we shall

establish that a particular class of constraint satisfaction problems is NP-

complete [22]. To do this we show that any algorithm which could solve all

the problems in this class in polynomial time would also allow us to solve some

well-established di�cult problems, such as Graph Colorability [36], in

polynomial-time. If a class of problems is NP-complete, then this provides

3

The time complexity of any collection of problem instances is a function which gives

the maximum time taken by some �xed algorithm that solves any member of that class,

for each possible instance size.

11

very good evidence that any algorithm for solving such a class is likely to

require exponential time to complete (for at least some cases). We are there-

fore unlikely to be able to solve all large instances of problems in that class

within a reasonable length of time.

3 Tractability due to restricted structure

3.1 De�ning problem structure

In the following subsections we shall review some results concerning the

tractability of problems with restricted structure.

First, we need to de�ne some terminology for describing the structure of

a constraint satisfaction problem. With any constraint satisfaction problem

P, we will associate a mathematical structure, known as a hypergraph, which

captures how the variables of the problem are related. (A hypergraph is a

generalisation of the more familiar concept of a graph, as described below.).

De�nition 3.1 ([5]) A hypergraph is a pair (V;E), where V is a set of

vertices, and E is a set of edges. Each edge is a (non-empty) subset of V .

In the special case where each edge contains exactly two vertices, we normally

refer to the hypergraph as a graph. A constraint satisfaction problem where

all the constraints are binary can be naturally associated with a graph, where

the vertices of the graph are the variables of the problem, and there is an

edge in the graph linking vertices v

1

and v

2

exactly when there is some

constraint R

i

(S

i

) with scope S

i

= hv

1

; v

2

i. This graph is often referred to as

the constraint graph of the problem [13].

More generally, an arbitrary constraint satisfaction problem, with con-

straints of any arity, can be associated with a hypergraph, where the vertices

of the hypergraph are the variables of the problem, and there is an edge con-

taining v

1

; v

2

; : : : ; v

k

exactly when there is some constraint R

i

(S

i

) with scope

S

i

= hv

1

; v

2

; : : : ; v

k

i.

Example 3.2 The hypergraph associated with the constraint satisfaction

problem described in Example 2.3 is

(fx; y; zg; ffx; yg; fy; zg);

which may be represented pictorially as in Figure 3. 2

Example 3.3 The hypergraph associated with the constraint satisfaction

problem described in Example 2.4 is

(f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g; ff1; 2; 3; 4g; f4; 9; 10; 11; 12g; f2; 5; 6; 7g; f7; 8; 11gg);

12

zx y

Figure 3: The hypergraph associated with Example 2.3

8

1

2

3

4

5 6 7

9 10 11 12

Figure 4: The hypergraph associated with Example 2.4

13

which may be represented pictorially as in Figure 4 2

It is important to remember that the existence of an edge in an associated

graph or hypergraph only records the fact that the values assigned to certain

variables are required to be related by some constraint relation. The hyper-

graph gives no information about which particular relation must be satis�ed

by the values assigned to those variables.

However, we shall now show that, if the associated graph or hypergraph

is restricted in certain ways, then the corresponding problems are tractable,

whatever constraint relations may be speci�ed.

3.2 Trees

The �rst restricted class of hypergraphs that we shall consider is the class of

(generalised) trees.

We give a de�nition of trees which can be applied to arbitrary hypergraphs

as well as to graphs. This de�nition makes use of the the notion of a chain [5],

which is simply a list of distinct vertices with connecting edges.

De�nition 3.4 ([5]) A chain of length q in a hypergraph (V;E) is de�ned

to be a sequence (x

1

; E

1

; x

2

; E

2

; : : : ; E

q

; x

q+1

) such that:

� x

1

; x

2

; : : : ; x

q

are all distinct vertices from V ;

� E

1

; : : : ; E

q

are distinct edges from E;

� x

k

; x

k+1

2 E

k

for k = 1; 2; : : : ; q.

A chain of length greater than 1 is said to be cyclic if x

1

= x

q+1

.

A hypergraph is said to be a tree if it contains no cyclic chains.

The following result was established by Montanari, in the very �rst paper

to deal explicitly with constraint satisfaction problems [34]. It was later

obtained by Freuder [19], as a special case of a much more general result, to

be discussed below (Section 3.4).

Theorem 3.5 ([34, 19]) Let C

tree

be the class of all binary constraint sat-

isfaction problems for which the associated constraint graph is a tree.

C

tree

is tractable.

In other words, there is a polynomial-time algorithm which solves any binary

constraint problem for which the associated graph is a tree, regardless of the

constraint relations.

14

To prove Theorem 3.5 we need to establish that there is an e�cient algo-

rithm which can solve any tree-structured problem.

The algorithm we shall describe deals with both binary and non-binary

problems. It has three stages. In the �rst stage it chooses a particular

ordering of the edges, in the second stage it tightens the constraints, and

in the third stage it constructs an assignment, by assigning values to the

variables of each edge in turn.

Algorithm 3.6

Input: A constraint satisfaction problem P whose associated hypergraph G

is a tree;

Output: A solution to P (or a signal that there are no solutions).

Stage 1: While G contains any edges, do the following:

1. Remove all vertices in G which belong to only one edge (such a

vertex exists because all chains in G must terminate, since G is a

tree).

2. Remove all edges which are now empty, or completely contained in

another edge, and add these edges to the ordering (in any order).

Stage 2: Assume that the list of edges in the chosen edge ordering is e

1

; : : : ; e

n

,

and let R

1

(S

1

); R

2

(S

2

); : : : ; R

n

(S

n

) be the corresponding constraints of

P.

For each i in the range 1; 2; : : : ; n, and each j > i, replace the constraint

R

j

(S

j

) with the constraint R

0

j

(S

j

), where

R

0

j

= �

S

j

(R

i

./ R

j

)

If any of the resulting constraints are empty, then terminate and signal

that P has no solutions;

Stage 3: For i = n; n�1; : : : ; 1, assign values to the variables whose associ-

ated vertices lie in e

n

; e

n�1

; : : : ; e

i

, such that the assignment obtained at

each step extends the assignment at the previous step, and is a partial

solution.

At no point in Stage 3 does the algorithm need to backtrack and undo any

previous assignment. This is because, at each step in the assignment of values

to the variables, all the possible choices of assignment extend to some possible

15

choice of values for the variables introduced at the next step, otherwise that

choice of values would be removed in Stage 2.

In fact, it is easy to see that Algorithm 3.6 works for a wider class of

hypergraphs than trees. Any hypergraph where the set of edges can be totally

ordered, by Stage 1 of Algorithm 3.6, will be solved correctly by the rest of

the Algorithm, without backtracking. Any hypergraph for which Stage 1 of

Algorithm 3.6 can successfully order the complete set of edges is referred to

as acyclic [16]. We can therefore generalise Theorem 3.5, as follows.

Theorem 3.7 Let C

acyclic

be the class of all constraint satisfaction prob-

lems for which the associated hypergraph is acyclic.

C

acyclic

is tractable.

(This generalisation was pointed out in [13].)

The technique of successively removing edges in the way we have de-

scribed, in order to determine whether or not a hypergraph is acyclic, is

referred to as GYO reduction [41]. Many other characterisations of acyclic

hypergraphs have been identi�ed [16], and we shall give another useful char-

acterisation in the next section. The desirable properties of such hypergraphs

are well-known in relational database theory [4].

Acyclic hypergraphs include the class of generalised trees de�ned above,

but for non-binary hypergraphs they represent a signi�cant generalisation of

this class, as the next example illustrates.

Example 3.8 The hypergraph illustrated in Figure 5 is acyclic, but it is

not a tree (removing the edge represented by the heavy line leaves a cyclic

chain). 2

In order to obtain even larger tractable classes we need to further generalise

the ideas described in this section. This has been done in two essentially

di�erent ways, which will be described in the next two sections.

3.3 Decomposing problems

If we have a constraint satisfaction problem with an associated hypergraph

that breaks up into two separate disconnected components, as illustrated

in Figure 6, then it is clear that each of these components can be solved

independently. In fact, even if the two parts of the problem share an edge in

common, as shown in Figure 7, then after solving one part, information can

be carried forth into the second part which can be used to solve that part of

the problem in a compatible way.

16

Figure 5: An acyclic hypergraph

Figure 6: A disconnected hypergraph

Figure 7: A hypergraph with limited connectivity

17

The idea of decomposing a problem into smaller pieces with limited in-

terconnections, which can be solved separately, was �rst explored by Freuder

in [20]. Freuder showed that binary constraint satisfaction problems can be

decomposed into smaller problems corresponding to the biconnected compo-

nents [5] of the associated graph.

The idea was extended, and generalised to hypergraphs, by Gyssens et

al. [23], who introduced the notion of hinges as the fundamental building

blocks of any graph or hypergraph. Using this idea allows us to identify

a much wider class of tractable hypergraphs than the acyclic hypergraphs

discussed in Section 3.2.

To describe these ideas, we �rst de�ne precisely what it means for a set

of edges in a hypergraph to be connected.

De�nition 3.9 For any hypergraph (V;E), and any subset of edges F � E,

we say that F is connected if for any two edges, e; f 2 F , there exists a

sequence of edges e

1

; : : : ; e

n

, with

� e

1

= e;

� e

n

= f ;

� for i = 1; 2; : : : ; n, e

i

\ e

i+1

6= ;.

We refer to a subset F � E as a maximal connected component if it is

a connected subset, and there is no larger connected subset containing it.

The hypergraph shown in Figure 6 has two maximal connected components,

and the hypergraph shown in Figure 7 has only one maximal connected

component.

We now re�ne the notion of connectedness, to allow us to identify collec-

tions of edges which separate others.

De�nition 3.10 For any hypergraph (V;E), any subset of edges H � E,

and any subset of edges F � E, we say that F is connected with respect to

H if for any two edges, e; f 2 F , there exists a sequence of edges e

1

; : : : ; e

n

,

with

� e

1

= e;

� e

n

= f ;

� for i = 1; 2; : : : ; n, e

I

\ e

i+1

6�

S

H.

(Note that

S

H is the set of all vertices which occur within the edges in the

set H.)

18

Now we are in a position to de�ne a hinge of a hypergraph. Informally, a

hinge is a set of at least two edges which cuts the hypergraph into separate

connected components such that each connected component intersects with

the hinge within only one edge. The precise de�nition is as follows.

De�nition 3.11 ([24, 23]) Let (V;E) be a hypergraph, H � E be a set of

at least two edges, and H

1

; : : : ;H

n

be the connected components of (V;E)

with respect to H. We shall say that H is a hinge if, for i = 1; : : : ; n, there

exists an edge h

i

2 H such that:

(

[

H

i

) \ (

[

H) � h

i

Example 3.12

�

�

�

�

'

&

�

� �

	

�

	

�

�

�

�

�

�

�

�

�

u

u u

u

u

u u

u

u

u

'

&

$

%

'

&

$

%

�

�

�

�

Figure 8: A hypergraph

Consider the hypergraph illustrated in Figure 8. Figures 9 and 10 show two

of the hinges contained in this hypergraph. 2

u

u u

u

u

u

�

�

�

�

'

&

$

%

'

&

$

%

�

�

�

�

Figure 9: A hinge of Figure 8

19

'

&

�

� �

	

�

	

u

u u

u

u

u

�

�

�

�

'

&

$

%

�

�

�

�

Figure 10: Another hinge of Figure 8

A minimal hinge is a hinge that does not contain any other hinges. It is

shown in [23] that that the minimal hinges of a hypergraph are fundamental

structural components. In particular, any hypergraph can be decomposed

into a collection of minimal hinges, which overlap each other in a tree struc-

ture. This structure is referred to as a hinge-tree, and is de�ned as follows.

De�nition 3.13 ([23]) A hinge-tree of a hypergraph (V;E) is a tree (N;A)

with the following properties:

� each tree node, n 2 N , is a minimal hinge of (V;E);

� each edge of the hypergraph is contained in at least one tree node

(i.e.

S

N = E);

� adjacent tree nodes share exactly one edge of the hypergraph;

� the vertices shared by any two tree nodes are entirely contained within

each tree node on their connecting path in the tree.

Example 3.14 Figure 11 shows one possible hinge-tree for the hypergraph

described in Example 3.12, and illustrated in Figure 8. 2

It is possible to calculate a hinge-tree for any given hypergraph in a time

which is polynomial in the size of that hypergraph [23].

For any given hypergraph there may be more than one hinge-tree, and

they may contain di�erent minimal hinges, but it is shown in [23, 26] that

they all have an important feature in common.

Theorem 3.15 ([23, 26]) For any hypergraph (V;E), there is a number,

�, called the degree of cyclicity, such that, in all hinge-trees of (V;E), the

largest node has exactly � edges.

20

#

"

�

 �

�

�

�

'

&

$

%

s

s

s s

'

&

$

%

s

s s

s

s

s

�

�

�

#

"

!

�

�

�

s

s

s

#

"

!

�

�

�

�

s

s

s

s

#

"

!

�

�

�

�

s

s

s

s

#

"

!

�

�

�

�

s

Figure 11: A possible hinge tree of Figure 8

If the degree of cyclicity of a hypergraph is 2, then the hypergraph is acyclic [26]

4

.

For any constraint satisfaction problem, any corresponding hinge-tree

can be used to obtain a new constraint satisfaction problem, which has the

same solutions as the original problem, but whose associated hypergraph is

acyclic [23]. To construct this equivalent problem one simply solves each

of the constraint satisfaction problems associated with each of the hinges in

the hinge-tree, and replaces that hinge with a single constraint relation, con-

sisting of the set of solutions

5

. The resulting acyclic constraint satisfaction

problem can then be solved in polynomial time, as described in Section 3.2.

If the degree of cyclicity is small, then each minimal hinge in the hinge-

tree will be small (i.e., will contain a small number of edges), so each of the

corresponding constraint satisfaction problems will be small, and hence the

cost of solving each of them separately and constructing the equivalent tree-

structured constraint satisfaction problem will be small. In general, the time

complexity of constructing a hinge-tree, then constructing the corresponding

tree-structured problem, and then solving that, is:

O(jV jn

2

) + O(nl

�

�logl)

4

This de�nition of acyclic hypergraphs has been shown to be equivalent [24] to the

more standard de�nitions, given in, for example, [4, 16]

5

This procedure is equivalent to the `perfect relaxation' strategy described in [35]

21

where V is the set of variables of the problem,n is the number of constraints,

l is the size of the largest constraint (number of tuples), and � is the degree

of cyclicity [23].

It follows from this that, if the degree of cyclicity is �xed, then we have

a polynomial-time algorithm for the corresponding constraint satisfaction

problems.

Theorem 3.16 ([23]) For any �xed value of �, the class of constraint sat-

isfaction problems whose associated hypergraphs have degree of cyclicity at

most � is tractable.

The class of hypergraphs with degree of cyclicity at most �, for some �xed �,

is much larger than the class of acyclic hypergraphs, but problems associated

with these hypergraphs still remain tractable. Therefore the class of tractable

constraint satisfaction problems is much larger than would be expected from

the results in Section 3.2.

Unfortunately, for many hypergraphs (for example, Figure 4) the degree

of cyclicity is the same as (or close to) the number of edges in the hypergraph.

When this is the case it can be shown that the hypergraph cannot, in general,

be decomposed into smaller units which can be solved separately, regardless

of the constraint relations [23].

However, as we remarked earlier, the degree of cyclicity of a hypergraph

can be determined in polynomial time [23], so the hinge-tree decomposition

technique can always be used as a �rst step on a given problem without

sacri�cing e�ciency

6

.

Another approach to decomposing constraint satisfaction problems is de-

scribed in [13]. This approach involves forming subproblems from clusters of

variables and then solving these subproblems separately. For many problems

this clustering approach results in a �ner decomposition than the hinge-tree

method described here, and hence this approach can be very useful in prac-

tice. On the other hand, it is not clear how to obtain a tight bound on the

size of the clusters which are formed in this technique. Hence this cluster-

ing approach does not lead to the speci�cation of tractable problem classes

whose members can be e�ciently identi�ed. (For a comparison between the

two approaches, and suggestions on how to combine them, see [23].)

6

A direct comparison between the notion of degree of cyclicity and the notion of width

(described in Section 3.4) is problematic, because the �rst is de�ned in terms of the

number of edges and the second is de�ned in terms of the number of vertices. For arbitrary

hypergraphs there may be arbitrary numbers of vertices in an edge. We therefore claim

that both measures may be useful in di�erent contexts

22

3.4 Consistency and backtrack-free search

One of the key concepts which has been applied to the study of constraint

satisfaction problems is the concept of consistency. In this section, we shall

de�ne this concept, and then examine how it may be used to identify tractable

problem classes.

The basic insight behind the notion of consistency is that much of the

information in a constraint satisfaction problem is present only implicitly.

This information may be discovered during the course of a search, for exam-

ple, when certain combinations of values are found to be disallowed by some

collection of constraints, and the search is forced to backtrack. It may be

possible to guide a search procedure more e�ectively, and hence �nd a solu-

tion more quickly, if this implicit information is made explicit. This can be

done by adding additional constraints to the problem, as described below

7

.

We now de�ne various forms of consistency which have been widely-used

in the literature.

De�nition 3.17 ([18]) A problem is said to be k-consistent if every partial

solution on any set of k�1 variables can be extended to a partial solution on

any superset containing k variables.

A problem is said to be strong k-consistent if it is i-consistent for i =

1 : : : k.

A problem is said to be globally consistent if any partial solution can be

extended to a full solution.

The maximal value of k for which k-consistency holds is referred to as the

level of consistency present in a problem.

Any constraint satisfaction problem can be made k-consistent for any

�xed k in polynomial time, by the addition of extra constraints. For each

variable v, simply add new constraints on each subset of k � 1 variables to

ensure that all of the allowed combinations of values for these variables are

consistent with some assignment of v. The required constraint relations can

be constructed from the constraint relations in the original problem using a

combination of join and projection operators. (For a more detailed analysis

of e�cient algorithms which can modify a problem to ensure k-consistency

see [10, 11].)

The earliest results concerning consistency and tractability were obtained

by Freuder [19]. These results give conditions on a constraint graph that

7

There is a useful analogy between the process of adding or modifying constraints

based on implicit information and the presolve process used in most commercial linear

programming systems to pre-process the problem formulation [6]

23

guarantee e�cient backtrack search when the problem has a certain level of

strong consistency.

Freuder's central result relies on the notion of width, which is well-established

in graph theory (although less commonly applied to hypergraphs). Intu-

itively, in any hypergraph where the vertices are arranged in some order, the

width of a vertex is the number of earlier vertices to which it is connected.

De�nition 3.18 Given a hypergraph (V;E), and an ordering v on V , the

width of a vertex v is the size of the set:

fw j w v v and 9e 2 E; fv;wg � eg

The width of the ordering is the maximum width over all the vertices.

The width of the hypergraph (V;E) is the minimum width over all possible

orderings of V .

Example 3.19 Consider the hypergraph illustrated in Figure 4, with the

vertex ordering

1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12:

A straightforward check shows that:

� the width of vertex 11 is 5;

� there is no other vertex which has width greater than 5 in this ordering,

so the width of this ordering is 5.

Now consider the same hypergraph, with the vertex ordering

2 v 7 v 4 v 11 v 1 v 3 v 5 v 6 v 8 v 9 v 10 v 12:

A straightforward check shows that:

� the width of vertex 12 is 4;

� there is no other vertex which has width greater than 4 in this ordering,

so the width of this ordering is 4.

� there is no other ordering which has width less than 4, so the width of

this hypergraph is 4.

2

24

Theorem 3.20 ([19]) Let P be a constraint satisfaction problem, let (V;E)

be its associated hypergraph, and let v be an ordering of V with width w.

If P is strong (w+1)-consistent, then a solution to P can be obtained by

performing a backtrack-free search using this variable ordering.

A proof of this theorem, for the special case of binary constraint satisfaction

problems, is given in [19]. The generalisation to problems of arbitrary arity

is straightforward. Intuitively, the result is obtained because at each step

which assigns a value to a variable the number of previously assigned values

which need to be taken into account is at most the width of the ordering.

Hence, if the level of consistency is greater than the width of the ordering,

then the partial assignments can be extended at each step, and the search

will proceed without backtracking.

Theorem 3.20 can be generalised to allow a weaker form of consistency,

known as directional consistency [12]. In fact, many of the results concerning

consistency which appear in the literature can be generalised in this way, but

this idea will not be explored further in this report.

One di�culty with applying Theorem 3.20, is that, in general, �nding a

minimal width ordering of a graph or hypergraph is an NP-complete prob-

lem [2, 22]. However, there are heuristic approaches which obtain an order-

ing whose width is a good approximation to the hypergraph width in many

cases [13].

It has been shown [1] that the width of any graph can be characterised

in terms of a generalised form of tree-structure, known as a k-tree, which is

de�ned as follows. First note that a k-clique in a graph is a set of k vertices,

such that there is an edge containing each pair.

De�nition 3.21 ([1]) A k-tree is de�ned recursively as follows:

� A k-clique is a k-tree.

� Any graph obtained by adding an extra vertex to an existing k-tree, and

edges from this vertex to all the vertices of some existing k-clique, is a

k-tree.

A graph has width less than or equal to k if and only if it is a subgraph of

a k-tree [1]. In particular, a graph has width 1 if and only if it is a tree,

as de�ned in Section 3.2. Hence, the results in this section can be seen as

a generalisation of the results for trees, above (see [21]). In fact, for binary

problems whose associated graph is a tree, Theorem 3.20 shows that all that is

required to ensure backtrack-free search is strong 2-consistency. (For binary

problems, the algorithm described in Section 3.2 essentially �nds a minimal

width ordering (in reverse!) and then enforces a weak form of 2-consistency.)

25

4 Tractability due to restricted constraints

4.1 Closure, clones and complexity

The characterisations of tractable constraint satisfaction problems that we

have discussed so far have been in terms of the structure of the associated

hypergraph. We now investigate properties of the constraint relations which

are su�cient to ensure tractability, regardless of the associated hypergraph.

It turns out that the relevant properties of relations are algebraic closure

properties, which are de�ned as follows.

De�nition 4.1 Given a k-ary relation R and a function � : D

n

! D, we

say that R is closed under �, if for all collections of tuples,

hd

1

1

; d

1

2

; : : : ; d

1

k

i 2 R

hd

2

1

; d

2

2

; : : : ; d

2

k

i 2 R

.

.

.

hd

n

1

; d

n

2

; : : : ; d

n

k

i 2 R

the tuple

h�(d

1

1

; d

2

1

; : : : d

n

1

); �(d

1

2

; : : : ; d

n

2

); : : : ; �(d

1

k

; : : : d

n

k

)i

also belongs to R.

Example 4.2 The relation

R

2

= fh4; 5i; h4; 6i; h5; 4i; h5; 5i; h5; 6i; h6; 4i; h6; 5i; h6; 6ig

which was introduced in Example 2.3 is closed under the binary operation

max, which returns the maximum value of its two arguments. For example,

max(h4; 5i; h6; 4i) = hmax(4; 6);max(5; 4)i = h6; 5i 2 R

2

:

On the other hand, the relation

R

1

= fh1; 5i; h2; 4i; h3; 3i; h4; 2i; h5; 1ig;

also introduced in Example 2.3, is not closed under this operation. For

example,

max(h1; 5i; h5; 1i) = hmax(1; 5);max(5; 1)i = h5; 5i 62 R

2

:

2

26

We note that when a relation is closed under an operation, then any projec-

tion of that relation is also closed under that operation. Furthermore, the

join of any two relations closed under an operation is also closed under that

operation [27].

Throughout this section we shall assume that � is a set of relations over

a �nite set D with at least two elements.

Notation 4.3

� The class of all constraint satisfaction problems in which the constraint

relations are members of � will be denoted C

�

.

� The set of all functions � : D

n

! D, for arbitrary values of k, under

which every member of � is closed, will be denoted Fun(�).

The following result was recently established by Jeavons [25].

Theorem 4.4 ([25]) The complexity of C

�

is determined by Fun(�).

For any set of relations �, the set of functions Fun(�) has certain algebraic

properties which mean that this set is a clone [9, 39]. There are very general

algebraic results about clones [39, 37] which show that the possibilities for

Fun(�) are therefore limited in certain ways, as the next result indicates.

Theorem 4.5 ([28]) For any set of relations, �, over a �nite set D, the set

Fun(�) must contain at least one of the following six types of functions:

1. A constant function;

2. An idempotent binary function, that is, a function �, of arity 2 such

that �(d; d) = d, for all d 2 D;

3. Amajority function, that is, a function �, of arity 3 such that �(d; d; d

0

) =

�(d; d

0

; d) = �(d

0

; d; d) = d, for all d; d

0

2 D;

4. An a�ne function, that is, a function � ,of arity 3 such that �(d

1

; d

2

; d

3

) =

d

1

� d

2

+ d

3

, for all d

1

; d

2

; d

3

2 D, where + is a binary operation on D

that gives D an Abelian group structure;

5. A semiprojection, that is, a function � of arity n > 3, such that

�(d

1

; : : : ; d

n

) = d

i

for some i, for all d

1

; : : : ; d

n

2 D with jfd

1

; d

2

; : : : ; d

n

gj <

n;

6. An essentially unary function, that is, a function � of arity n such that

�(d

1

; : : : ; d

n

) = f(d

i

) for some i and some non-constant unary function

f , for all d

1

; : : : ; d

n

2 D.

27

By examining each of these possibilities in turn, it is possible to obtain an

almost complete classi�cation of the complexity of C

�

, for any given set of

relations �.

In the following sections we shall examine each part of Theorem 4.5 in a

little more detail, to illustrate the various kinds of tractable problems which

have been identi�ed using these techniques, and the algorithms which solve

these problems e�ciently.

4.2 Constant functions

The �rst case we examine is rather trivial, but introduces the
avour of the

rest of the results.

Theorem 4.6 ([28]) If the set Fun(�) contains a constant operation, then

C

�

is tractable, and can be solved in constant space.

Proof: Suppose Fun(�) contains the constant function �, which always

returns the value d. Let P be any constraint satisfaction problem in C

�

. If

any of the constraint relations used in P are empty, then the problem has no

solution. Otherwise, because each of these relations is closed under �, each

constraint relation contains a tuple hd; d; : : : ; di. Assigning d to each variable

will therefore be a solution.

4.3 Majority functions and near-unanimity functions

It was �rst shown in [27] that if a set of relations, �, is closed under a

majority function, then C

�

is tractable. We shall here prove a slightly more

general result, which concerns the class of functions known as near-unanimity

functions.

De�nition 4.7 ([3]) A near-unanimity function of arity n is a function �

such that, for all x

1

; : : : x

n

where at least n� 1 of the x

i

are equal to x

�(x

1

; : : : x

n

) = x

(Note that a majority function is a near-unanimity function of arity 3.)

There is a remarkably close connection between near-unanimity functions

and consistency properties, as the next result indicates.

Theorem 4.8 For any set of relations �, the following are equivalent:

� Every relation in � is closed under a near-unanimity function of arity

n,

28

� Every constraint satisfaction problem in C

�

that is strong n-consistent

is globally consistent.

Proof: This result follows from a classical result of universal algebra con-

cerning near-unanimity functions, obtained by Baker and Pixley [3]. This

result states that every algebra in a variety contains a near-unanimity func-

tion of arity n amongst its term operations if and only if all subalgebras of

product algebras in that variety are uniquely determined by their (n�1)-ary

projections [3].

Now let � be a �xed set of relations over D, and let P be any constraint

satisfaction problem in C

�

. To apply the above result, we note that the set

Sol(P) may be seen as a subalgebra of a direct product of algebras of the

form (D;Fun(�)). In fact, by Theorem 10 of [8], every possible subalgebra

can be obtained as the projection of Sol(P), for some P.

Hence, by the result of Baker and Pixley, Sol(P) is determined by its

(n� 1)-ary projections, which means that if P is strong n-consistent, then it

is globally consistent. Conversely, if this property holds for every P in C

�

,

then Fun(�) must contain a near-unanimity function.

We can use this result to show that when � is closed under a near-unanimity

function, then the whole of C

�

is tractable.

Corollary 4.9 If � is closed under a near-unanimity function, then the class

of problems C

�

is tractable.

Proof: As we remarked earlier, any problem can be made strong n-consistent,

for any �xed n, in polynomial time [10]. The new constraints introduced

by this process can be obtained from the original constraints by some se-

quence of join and projection operations, so they are all closed under the

near-unanimity function. Now applying Theorem 4.8 to the set of constraint

relations in the strong n-consistent problem gives the result.

We also remark that Theorem 4.8 indicates that if the constraint relations

in any problem are all closed under some near-unanimity function of arity n,

then any level of consistency can be achieved without increasing the arity of

the constraints beyond n� 1.

A similar result to Theorem 4.8 is given in [17], although the connection

with consistency is not made explicit. (The full version of [17] also gives

an interesting characterisation of closure under near-unanimity functions in

terms of the language Datalog, which is widely-used to specify relations.)

29

4.4 A�ne functions

If the relations in � are closed under an a�ne function, thenC

�

is tractable [28,

17]. To establish this result in the general case requires sophisticated group-

theoretic techniques, which are beyond the scope of this report. (The proof

relies on showing that any relation closed under an a�ne function is a coset

of a product group of an Abelian group with universe D.)

In the special case when the domain contains a prime number of elements

the situation is much simpler. In this case, any relation which is closed under

an a�ne function must be of the following form [27]:

f(x

1

; x

2

; : : : ; x

r

) 2 Z

r

p

j

r

X

i=1

a

i

x

i

�

=

ag for some a; a

1

; a

2

; : : : ; a

r

2 Z

p

:

Thus, any constraint satisfaction problem over a prime domain size d, with

constraint relations that are closed under an a�ne operation, corresponds to

a set of simultaneous linear equations over the integers modulo d. Such a set

of equations can be solved in polynomial time using a standard technique of

linear algebra, such as Gaussian elimination.

4.5 Idempotent binary functions

When � is closed under a binary idempotent function, �, it is possible for

C

�

to be either tractable, or NP-complete, depending on the precise nature

of the function �.

At present, no criterion is known which will distinguish between these two

possibilities in the general case. However, in two special cases it is possible

to be more speci�c about the complexity of C

�

.

4.5.1 ACI functions

Binary functions may be any combination of the following:

� idempotent (i.e. �(d; d) = d, for all d 2 D);

� commutative (i.e. �(d

1

; d

2

) = �(d

2

; d

1

), for all d

1

; d

2

2 D);

� associative (i.e. �(d

1

; �(d

2

; d

3

)) = �(�(d

1

; d

2

); d

3

), for all d

1

; d

2

; d

3

2

D).

A binary idempotent function which is both associative and commutative is

known as an ACI function. The complexity of constraint satisfaction prob-

lems in which the constraint relations are closed under ACI functions was

�rst investigated in [30].

30

Theorem 4.10 ([27, 28]) If � is closed under a binary idempotent function

which is associative and commutative, then C

�

is tractable.

Example 4.11 The constraint programming language CHIP[45] incorpo-

rates constraint solving techniques for certain arithmetical constraints. In

particular, it includes e�cient algorithms for constraints over the natural

numbers of the following forms:

� domain constraints, which are unary constraints which restrict the val-

ues of individual variables to some �nite set ; and

� arithmetic constraints, which have one of the following 4 forms:

{ aX 6= b,

{ aX = bY + c,

{ aX � bY + c,

{ aX � bY + c,

where upper case letters represent variables, lower case letters represent

positive constants, and a is non-zero.

All of these constraints are closed under the ACI function max, which yields

the arithmetic maximum of its two arguments, and hence are tractable by

the result above. Further, the following constraints (listed in[30]) are also

closed under this ACI function, and could therefore be added to the CHIP

system without compromising the e�ciency of the system.

� a

1

X

1

+ a

2

X

2

+ : : : a

r

X

r

� bY + c,

� aX

1

X

2

: : :X

r

� bY + c,

� (a

1

X

1

� b

1

) _ (a

2

X

2

� b

2

) : : : _ (a

r

X

r

� b

r

) _ (aY � b),

2

To clarify the structure of relations which are closed under an ACI function,

we �rst describe the close connection between ACI functions and orderings

of the domain. Given an ACI function, �, on a set D, we can de�ne a partial

order, v, on D by setting:

d

1

v d

2

 ! t(d

1

; d

2

) = d

2

In this partial ordering the least upper bound of d

1

and d

2

is given by

�(d

1

; d

2

).

31

Because any ACI function is � calculates a least upper bound, or max-

imum, of its arguments, relative to this ordering, constraints in which the

constraint relation is closed under an ACI function were called max-closed

constraints in [30]

8

. One possible algorithm for solving problems in which the

constraint relations are closed under an ACI function works as follows [30].

First, establish what is called pairwise consistency, by repeatedly forming the

join of every pair of constraints and projecting the result onto the original

scopes, until there are no further changes in the constraints. Now, for each

variable v, set

D(v) =

\

f�

fvg

R

i

(S

i

) j v 2 S

i

g

Each variable v now has an associated domain of values D(v), such that

d 2 D(v) if and only if the projection of every constraint onto v contains

d. These sets D(v) are still closed under the same ACI function (because

they are obtained from the original constraints by a sequence of join and

projection operations). If any set D(v) is empty, then the problem has no

solution. If all D(v) are non-empty, then assigning the least upper bound of

the set D(v) to the variable v gives a solution to the problem.

4.5.2 Rectangular band functions

A rectangular band function [33] is an associative, idempotent, binary func-

tion �, such that �(d

1

; �(d

2

; d

3

)) = �(d

1

; d

3

) for all d

1

; d

2

; d

3

2 D.

We will now show that closure under a rectangular band function is not

a su�cient condition for tractability. We do this by giving an example

9

of

an NP-complete problem class in which the constraint relations are all closed

under a rectangular band function.

Example 4.12 Let S and T be sets, with S = fs

1

; s

2

; : : : ; s

k

g, letD = S�T ,

and consider the following binary relation over D:

R = fhhs; ti; hs

0

; t

0

ii 2 (S � T)

2

j (s 6= s

0

)g

Note that this relation is closed under the rectangular band function, �

0

, on

S � T , de�ned by �

0

(hs; ti; hs

0

; t

0

i) = hs; t

0

i.

We will now show that C

fRg

is NP-complete, by showing that the k-

Colorability problem [22], can be reduced to C

fRg

in polynomial time.

Let P be an instance of the k-Colorability problem, speci�ed by a

graph (V;E), where E = fe

1

; e

2

; : : : ; e

n

g. Now consider the problem P

0

=

8

Actually, in [30] the order v was required to be a total order, but the results are still

valid when the order is a partial order, as shown in [27]

9

This example was suggested by Marc Gyssens.

32

(V;D;R(e

1

); R(e

2

); : : : ; R(e

n

)), in which the constraint scopes correspond to

the edges of E, and the constraint relation in each constraint is the relation

R de�ned above. Any solution to P

0

can be transformed into a solution to

P by mapping values of the form hs

i

; t

j

i to i. Conversely, any solution to P

can be transformed into a solution of P

0

by simply assigning hs

i

; ti to v if

v = i, for some t 2 T . These transforms can be carried out in polynomial

time, so the result follows. 2

It is known from general algebraic results [33] that for any rectangular band

function � : D

2

! D, the algebra (D; �) is isomorphic to the algebra (S �

T; �

0

) for some sets S and T , where �

0

(hs; ti; hs

0

; t

0

i) = hs; t

0

i, as in the

example above. Hence, by Theorem 4.4, C

�

is NP-complete for any � which

is only closed under a rectangular band function, but a proof of this requires

more theoretical machinery than is presented here (see [25]).

4.6 Semiprojections

We will now show that closure under a semiprojection is not a su�cient con-

dition for tractability. To do this we give an example of an NP-complete

problem class in which the constraint relations are closed under all semipro-

jections.

Example 4.13 Consider the set, �

3

, of relations over f0; 1; 2g, de�ned as

follows.

�

3

= ff0; 1g

3

� ftg j t 2 f0; 1g

3

g

The set �

3

contains 2

3

relations, where each relation contains all 3-tuples

over f0; 1g except for one.

Now consider any constraint satisfaction problem P in C

�

3

. We shall

show that each constraint in P can be seen as expressing a Boolean dis-

junction. For example, a constraint with scope hv

1

; v

2

; v

3

i, and relation

ff0; 1g n h1; 0; 1ig allows any combination of the values 0 and 1 for v

1

; v

2

; v

3

except for v

1

= 1; v

2

= 0; v

3

= 1. This can be expressed by the Boolean

formula :(v

1

^:v

2

^v

3

) = v

1

_v

2

_:v

3

. Conversely, any Boolean disjunction

involving 3 distinct variables is satis�ed by any combination of Boolean val-

ues for those variables except one, so it can be expressed with a relation from

�

3

. Hence, there is a polynomial time reduction from the 3-Satisfiability

problem [36], which is NP-complete, to C

�

3

. This establishes that C

�

3

is

NP-complete.

However, every relation in �

3

only involves 2 distinct values, 0 and 1, so

it is easy to show that it is closed under every semiprojection on the domain

of P, which was actually set to be f0; 1; 2g. 2

33

Theorem 4.4 can be used to show that C

�

is NP-complete for any � which

is only closed under semiprojections, but a proof of this requires more theo-

retical machinery than is presented here (see [25]).

4.7 Essentially unary functions

We will now show that closure under an essentially unary function is not

a su�cient condition for tractability. To do this we give an example of an

NP-complete problem class in which the constraint relations are closed under

all essentially unary functions.

Example 4.14 Consider the relation, N over f0; 1g, de�ned as follows:

N = fh0; 0; 1i; h0; 1; 0i; h1; 0; 0i; h1; 1; 0i; h1; 0; 1i; h0; 1; 1ig:

The class of constraint satisfaction problems C

fNg

is equivalent to the Not-

All-Equal satisfiability problem [38, 22], which is NP-complete.

However, N is closed under every essentially unary function on f0; 1g

(the only non-constant unary functions on this set are the identity function,

and the function which exchanges the two values, and both of these leave N

unchanged). 2

Theorem 4.4 can be used to show that C

�

is NP-complete for any � which

is only closed under essentially unary functions, but a proof of this requires

more theoretical machinery than is presented here (see [25]).

4.8 Summary of results for closure functions

The results about closure functions and tractability presented above are sum-

marised in the following theorem.

Theorem 4.15 ([28])

� If Fun(�) contains a constant function, then C

�

is tractable.

� If Fun(�) contains a function, �, of arity 2 that is associative, commu-

tative, and idempotent, then C

�

is tractable.

� If Fun(�) contains a majority function, then C

�

is tractable.

� If Fun(�) contains an a�ne function, then C

�

is tractable.

� If Fun(�) contains only semiprojections, then C

�

is NP-complete.

34

� If Fun(�) contains only essentially unary operations, then C

�

is NP-

complete.

This powerful result means that in order to determine whether C

�

is a

tractable class of problems, we simply need to calculate the closure func-

tions of �. These closure functions are themselves precisely the solutions

to certain constraint satisfaction problems in C

�

, which are called indicator

problems [29, 28]. (There is one indicator problem for each arity of closure

function.) For more discussion and examples of the use of indicator problems

to establish tractability, see [29].

4.9 Other restricted constraint types

In the preceding sections, we have examined each of the possible forms of

closure function identi�ed in Theorem 4.5. It follows from Theorem 4.4 that

we have therefore covered every possible way in which placing restrictions on

the constraint relations alone can ensure tractability.

On the other hand, if we impose other conditions on the problems as well,

then it is possible to obtain tractable classes of problems which do not fall

into any of the categories discussed earlier. One example of a result of this

type was obtained by van Beek [42], and later extended by van Beek and

Dechter [44]. It concerns a class of relations known as row-convex relations.

De�nition 4.16 A binary relation, R, over an ordered set D is row-convex

if, for all d; d

1

; d

2

; d

3

2 D such that d

1

< d

2

< d

3

the following implication

holds:

hd; d

1

i 2 R and hd; d

3

i 2 R) hd; d

2

i 2 R

(Note that if D only contains 2 elements, then the condition is satis�ed

vacuously, so any constraint over a 2-valued domain is row-convex.)

Theorem 4.17 ([42, 44]) If � is a set of binary relations such that every

relation in � is row-convex, then any strong 3-consistent problem in C

�

is

globally consistent.

(Extensions of this result to non-binary constraints are given in [44].)

If P is a constraint satisfaction problem in C

�

which is not strong 3-

consistent, then it can be modi�ed to make it strong 3-consistent, as described

earlier, but doing so may introduce new constraints which are not row-convex.

(In fact, Theorem 4.8 indicates that a collection of row-convex constraint

relations will always give rise to relations which are not row-convex, on some

problems, unless they are all closed under some majority function.)

35

Even if the constraints in a problem are not row-convex for one particular

domain ordering, it is sometimes possible to �nd another ordering such that

they are. It is shown in [44] that if such a re-ordering exists, then it can be

calculated in polynomial time.

5 Tractability due to local properties

In this section, we consider results which relate local properties of a constraint

satisfaction problem to global properties, such as the existence of a solution,

or the possibility of backtrack-free search.

First, we examine the result given by Dechter in [11], which relates the

arity of the constraints, the size of the domain, and the level of consistency

that is required to ensure global consistency.

Theorem 5.1 ([11]) Let P be a constraint satisfaction problem with domain

size d, and let r be the length of the largest scope in P.

If P is strong d(r � 1) + 1 consistent, then it is globally consistent.

It is clear that any problem which is globally consistent may be solved ef-

�ciently by a backtrack-free search. Furthermore, it was stated above that

any problem can be made k-consistent for any �xed value of k in polynomial

time. In view of Theorem 5.1, it might therefore seem that it would be su�-

cient to achieve d(r�1)+1 consistency, and then solve the resulting problem

in a backtrack-free way. Hence, at �rst sight, this result appears to imply

that all constraint satisfaction problems can be solved e�ciently!

Unfortunately, this is not the case, because achieving (d(r � 1) + 1)-

consistency will, in general, introduce higher arity constraints into the prob-

lem, which increases the value of r, and hence requires an even higher level

of consistency. However, in certain special cases it is possible to achieve the

required level of consistency without increasing the value of r (see, for ex-

ample, Section 4.3) . In these cases, Theorem 5.1 is su�cient to establish

tractability.

In general, Theorem 5.1 provides a surprising link between a local property

and a global property. It says, in e�ect, that if all subproblems up to a certain

size are easily solved, then the whole problem is easily solved.

Another result of this kind may be obtained by an application of a well-

known result in combinatorial theory, which is usually referred to as the

Lovasz Local Lemma [15].

Theorem 5.2 Let P be a constraint satisfaction problem in which each vari-

able occurs in at most t constraint scopes, the length of the largest constraint

36

scope is r, and the proportion of assignments allowed by each constraint re-

lation is at least p.

If

p > 1 �

1

e(r(t� 1) + 1)

;

then P has a solution. (The constant e in the inequality is the base of natural

logarithms, 2:718 : : :.)

Proof: The Lovasz Local Lemma [15] states that for any collection of

events E

1

; E

2

; : : : ; E

n

, which each have probability at most p

0

, if each E

i

is

independent of all but at most s of the others, and p

0

(s + 1) < 1=e, then

with positive probability none of the E

i

occurs.

Let R

1

(S

1

); R

2

(S

2

); : : : ; R

n

(S

n

) be the constraints of P, and choose some

random assignment of values to all the variables. Let E

i

be the event that

constraint R

i

(S

i

) is not satis�ed by this assignment, so E

i

has probability

at most 1 � p. Since this constraint overlaps at most r(t � 1) others, E

i

is

independent of all but at most r(t � 1) other events. Applying the Lovasz

Local Lemma, we conclude that, if (1 � p)(r(t � 1) + 1) < 1=e, then with

positive probability none of the E

i

occurs, and hence P has at least one

solution. Rearranging this inequality gives the result.

This result guarantees the existence of a solution when certain local condi-

tions are satis�ed. However, it is a non-constructive result, which gives no

information on how a solution may be found.

6 Conclusions and Future Directions

In this report we have reviewed the current state of knowledge about the

computational complexity of constraint satisfaction problems.

We have shown that tractability can arise in a wide variety of ways:

� from the overall structure of a problem;

� from properties of the constraint relations; or

� from properties of subproblems of bounded size.

Strong theoretical results are known for each of these aspects, as described

above.

At present, however, little is known about how these di�erent problem

features interact to a�ect the complexity of constraint satisfaction problems.

For example, it is possible to construct classes of problems in which the

37

problem structure alone does not ensure tractability, and nor does the nature

of the constraint relations alone, but the combination of these properties does

ensure tractability, as the following example indicates.

Example 6.1 Consider the class of binary constraint satisfaction problems

which have n variables and m values, and which require that each variable

is assigned a di�erent value from each other variable. (These problems are

sometimes referred to as `pigeon-hole' problems)

10

.

This class of problems is tractable because a solution can be found, or

discovered to be impossible, by simply assigning a new value to each variable

in turn, for as long as there are new values available.

However, we note two interesting features of this class of problems:

� Since there is a constraint between each pair of variables, the graph

associated with each problem in this class is a complete graph on n

variables.

This class of graphs is not su�ciently restricted to ensure tractability

regardless of the constraints, since any binary constraint problem is

equivalent to a problem which is associated with a complete graph. We

can construct this equivalent problem simply by adding a constraint on

each unconstrained pair of variables which allows any pair of values.

� Since the constraints require variables to take di�erent values, the only

constraint relation used is the binary disequality relation on m values.

This relation does not, in general, ensure tractability, since it can be

used to construct arbitrary instances of the Graph Colorability

problem, which is well-known to be NP-complete [36].

2

In many cases of practical interest, such as the frequency assignment

problem, it seems from experimental evidence that many of the problems

arising in practice can be solved very e�ciently, using simple heuristic algo-

rithms [14]. However, it is currently di�cult to identify properties of these

problems which ensure tractability, so each case must be investigated ex-

perimentally, without any guarantee of success. By further developing the

theory of tractability described in this report, it may be possible to identify

some combination of properties concerning the structure of such problems,

10

This class of problems is not completely trivial. When n is greater than m there are

clearly no solutions, but many constraint programming languages are unable to discover

this fact (without additional guidance) in a reasonable amount of time, even for moderate

values of n and m (say, 15-20).

38

the nature of the constraints, and other special features, which is su�cient

to guarantee tractability. Identifying such properties might also lead to the

design of optimal algorithms for problems with these features. This question

is currently being investigated.

Acknowledgements

This research was supported by EPSRC research grant GR/L09936.

References

[1] S. Arnborg. E�cient algorithms for combinatorial problems on graphs

with bounded decomposability. BIT, 25:2{23, 1985.

[2] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of �nd-

ing an embedding in k-trees. SIAM journal of Algebraic and Discrete

Methods, 8:277{284, 1987.

[3] K.A. Baker and A.F. Pixley. Polynomial interpolation and the chinese

remainder theorem. Mathematische Zeitschrift, 143:165{174, 1975.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability

of acyclic database schemes. Journal of the ACM, 30:479{513, 1983.

[5] Claude Berge. Graphs and Hypergraphs. North Holland, 1973.

[6] A.L. Brearley, G. Mitra, and H.P. Wiliams. Analysis of mathematical

programming problems prior to applying the simplex method. Mathe-

matical Programming, 8:54{83, 1975.

[7] E.F. Codd. A relational model of data for large shared databanks. Com-

munications of the ACM, 13(6):377{387, 1970.

[8] D.A. Cohen, M. Gyssens, and P.G. Jeavons. Derivation of constraints

and database relations. In Proceedings 2nd International Conference on

Constraint Programming|CP'96 (Boston, August 1996), volume 1118

of Lecture Notes in Computer Science, pages 134{148. Springer-Verlag,

1996.

[9] P.M. Cohn. Universal Algebra. Harper & Row, 1965.

[10] M.C. Cooper. An optimal k-consistency algorithm. Arti�cial Intelli-

gence, 41:89{95, 1989.

39

[11] R. Dechter. From local to global consistency. Arti�cial Intelligence,

55(1):87{107, 1992.

[12] R. Dechter and J. Pearl. Network-based heuristics for constraint satis-

faction problems. Arti�cial Intelligence, 34(1):1{38, 1988.

[13] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti-

�cial Intelligence, 38:353{366, 1989.

[14] Nick Dunkin and Stuart Allen. Frequency assignment problems: Repre-

sentations and solutions. Technical Report CSD-TR-97-14, Department

of Computer Science, Royal Holloway, University of London, Egham,

Surrey, UK, 1997.

[15] P. Erd�os and L. Lovasz. Problems and results on 3-chromatic hyper-

graphs and some related questions. In A. Hajnal et al., editors, In�nite

and Finite Sets, volume 11 of Colloq. Math. Soc. Janos Bolyai, pages

609{627. North-Holland, 1975.

[16] R. Fagin. Degrees of acyclicity for hypergraphs and relational database

schemes. Journal of the ACM, 30:514{550, 1983.

[17] T. Feder and M.Y. Vardi. Monotone monadic SNP and constraint sat-

isfaction. In Proceedings of 25th ACM Symposium on the Theory of

Computing (STOC), pages 612{622, 1993.

[18] E.C. Freuder. Synthesizing constraint expressions. Communications of

the ACM, 21:958{966, 1978.

[19] E.C. Freuder. A su�cient condition for backtrack-free search. Journal

of the ACM, 29(1):24{32, 1982.

[20] E.C. Freuder. A su�cient condition for backtrack-bounded search. Jour-

nal of the ACM, 32:755{761, 1985.

[21] E.C. Freuder. Exploiting structure in constraint satisfaction problems.

In M. Mayoh, E. Tyugum, and J. Penjam, editors, Constraint Program-

ming, volume 131 of NATO ASI Series. Springer-Verlag, 1993.

[22] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco, CA., 1979.

[23] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint

satisfaction problems using database techniques. Arti�cial Intelligence,

66(1):57{89, 1994.

40

[24] M. Gysssens and J. Paradaens. A decomposition methodology for cyclic

databases. In Advances in Database Theory, volume 2, pages 85{122.

Plenum Press, New York, NY, 1984.

[25] P.G. Jeavons. On the algebraic structure of combinatorial problems.

Technical Report CSD-TR-95-15, Computer Science Department, Royal

Holloway, University of London, Egham , Surrey , UK, 1995. to appear

in Theoretical Computer Science.

[26] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A structural decomposition

for hypergraphs. Contemporary Mathematics, 178:161{177, 1994.

[27] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A unifying framework

for tractable constraints. In Proceedings 1st International Conference

on Constraint Programming|CP'95 (Cassis, France, September 1995),

volume 976 of Lecture Notes in Computer Science, pages 276{291.

Springer-Verlag, 1995.

[28] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of con-

straints. Technical Report CSD-TR-96-15, Computer Science Depart-

ment, Royal Holloway, University of London, Egham, Surrey, UK, 1996.

to appear in Journal of the ACM.

[29] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A test for tractability. In

Proceedings 2nd International Conference on Constraint Programming|

CP'96 (Boston, August 1996), volume 1118 of Lecture Notes in Com-

puter Science, pages 267{281. Springer-Verlag, 1996.

[30] P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered do-

mains. Arti�cial Intelligence, 79(2):327{339, 1995.

[31] G. Kondrak and P. van Beek. A theoretical evaluation of selected back-

tracking algorithms. Arti�cial Intelligence, 89:365{387, 1997.

[32] A.K. Mackworth. Constraint satisfaction. In S.C. Shapiro, editor, En-

cyclopedia of Arti�cial Intelligence, volume 1, pages 285{293. Wiley In-

terscience, 1992.

[33] R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices and

Varieties, volume I. Wadsworth and Brooks, California, 1987.

[34] U. Montanari. Networks of constraints: fundamental properties and

applications to picture processing. Information Sciences, 7:95{132, 1974.

41

[35] U. Montanari and F. Rossi. Constraint relaxation may be perfect. Ar-

ti�cial Intelligence, 48:143{170, 1991.

[36] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[37] I.G. Rosenberg. Minimal clones I: the �ve types. In Lectures in Universal

Algebra (Proc. Conf. Szeged 1983), volume 43 of Colloq. Math. Soc.

Janos Bolyai, pages 405{427. North-Holland, 1986.

[38] T.J. Schaefer. The complexity of satis�ability problems. In Proceedings

10th ACM Symposium on Theory of Computing (STOC), pages 216{226,

1978.

[39] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de

Mathematiques Superieures. University of Montreal, 1986.

[40] E. Tsang. Foundations of Constraint Satisfaction. Academic Press,

London, 1993.

[41] Je�rey D. Ullman. Database and Knowledge-Base Systems, volume 1 &

2. Computer Science Press, 1988.

[42] P. van Beek. On the minimality and decomposability of row-convex

constraint networks. In Proceedings AAAI-92 (San Jose, CA), pages

447{452, 1992.

[43] P. van Beek. Reasoning about qualitative temporal information. Arti�-

cial Intelligence, 58:297{326, 1992.

[44] P. van Beek and R. Dechter. On the minimality and decomposability of

row-convex constraint networks. Journal of the ACM, 42:543{561, 1995.

[45] P. van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency

algorithm and its specializations. Arti�cial Intelligence, 57:291{321,

1992.

42

