
Requirements, Traceability and Formal

Software Development or a Further Analysis of

Requirements Traceability

�

Justin K. Pearson

Computer Science Department

Royal Holloway

University of London

Egham

Surrey TW20 0EX

e mail: justin@dcs.rhbnc.ac.uk

Tel. +44 (0) 1784 443426

Fax. +44 (0) 1784 443420

October 1, 1996

Abstract

This paper is concerned with the interaction between formal soft-

ware development and the issue of requirements traceability. The

paper o�ers an analysis of the requirements traceability problem (see

[1]) which takes into account software development using formal meth-

ods. Starting from the observation that formal software development

is not an infallible method of producing error free and `correct' code

(see [2]); sources of error identi�ed as in [3] are used to motivate a new

analysis of the requirements traceability problem. Traceability is di-

vided into: Pre-Requirements Speci�cation, Pre-Formal Requirements

Speci�cation and Post-Formal Requirements traceability, a �ner dis-

tinction than is made by Gotel and Finkelstein in [1]. This distinction

is motivated by the problems associated with the process of formal-

izing a prose requirements speci�cation document together with an

�

The work described here forms part of the DATUM project (grant GR/H8994, project

number IED4/19314) in the UK Safety Critical Systems Research programme supported

by the EPSRC and DTI.

1



analysis of potential sources of errors in formal software development

identi�ed in [3].

1 Introduction

The formal methods community has for a long time recognized that it is

naive to assume that given a formal speci�cation, a fully working and correct

program will appear solely by the use of formal methods. Perhaps the earliest

example is the paper [2] concerning the way incorrect programs can be derived

from incorrect or incomplete speci�cations. The observations in [2] arose

from an exercise given to students, where the authors speci�ed that a sorting

program should be produced from a formal speci�cation, but the speci�cation

omitted to include that the �nal sorted list must be a permutation of the

original only that it is an ordered list. Consequentially any list would have

been be a valid output of the program. While speci�cation errors like this

are easy to trap in small examples managing such `obvious' conditions which

are all to easy to omit in formal speci�cations can be hard on a large scale.

Requirements traceability (RT) is the ability to trace user requirements

through the development process, from the requirements elicitation stage

through to the �nal software product. The work of Finkelstein and Go-

tel in [4, 5] gives analysis of requirements traceability starting with em-

pirical research through interviews, discussion and focus groups with prac-

titioners in industry. It was found although people felt the need for re-

quirement traceability they felt that there was a problem with what ex-

actly constituted requirements traceability. The diagnosis o�ered by Finkel-

stein and Gotel was that there are two phases of requirements traceability,

Pre-Requirements speci�cation (Pre-RS) and Post-requirements speci�cation

(Post-RS)traceability (to be de�ned below) and that the essential problem

lay in the Pre-requirements speci�cation phase.

This paper builds on the analysis of [4, 5] and o�ers a further re�nement of

RT, when formal methods are used in development, into Pre-RS, Pre-Formal

requirements speci�cation and Post-Formal requirements speci�cation.

While this work does not have the empirical backing of [4, 5] it o�ers a

theoretical contribution based on the analysis of fallibility of formal methods

as in [3] of what sort of data and problems constitute RT for formal software

development.

This paper is structured into �ve further sections: section 2 is a short

background to formal methods, section 3 and 4 gives an introduction to Gotel

and Finkelstein's work on requirements traceability, section 5 is the main

body of the paper which re�nes the classi�cation of Requirements traceability

2



to take into account formal methods, last there is a conclusion.

2 Formal Methods

As with Barroca and McDermid [6] the term `formal methods' is used here to

refer to methods which have a sound basis in mathematics. Which in terms of

software development means that programs, environments and speci�cations

are, or in principle, treated as mathematical entities. The treatment as math-

ematical entities allows transformations to be carried out which preserve the

behavior and meaning of programs. Programs can be checked against speci-

�cations and can be shown to meet or fail to meet speci�cations. Examples

of such methods include B [7] or VDM [8]. A distinction can be made be-

tween formal methods and rigorous methods. With rigorous methods, while

still having a sound basis in mathematics, the degree of rigour in the proof

steps is limited to the degree of rigour normally used in standard mathemat-

ical practise, while the degree of rigour in formal methods is much higher

than would be normally expected in mathematics. An example, highlighting

the di�erence between rigorous and formal mathematics, is the formalization

of Landau's [9] analysis text book in the AUTOMATH

1

system of N.G. de

Bruijn [10] (see [11]). Landau's text book was already of a much higher de-

gree of rigour than would normally be expected in standard mathematical

texts, but when the book was formalized in AUTOMATH, its length was in-

creased ten fold. A historical example, the Principia Mathematica of Russell

and Whitehead [12], which attempted to formalize the whole of mathemat-

ics, in terms of �rst order logic, this work took over 500 pages to assert

that 1 + 1 = 2. Also because of the length and complexity of the proofs,

Principia Mathematica is full of mistakes. Worse still many of the theorems

purported to be proved are actually false.

2

Judging from the Principia ex-

perience fully formal techniques are only practicable when there is adequate

machine assistance.

Thus the use of rigorous methods, such as advocated by the VDM com-

munity (see [8]), is appealing, or is said to be appealing, because of lower

development costs but mistakes can be made, e.g. steps in proofs such as

\it is obvious that P" can be wrong and often are. For a detailed discussion

of a rigorous proof of a Byzantine agreement protocol, that was formalized

1

AUTOMATH is a system for implementing formal systems based on type theory.

2

This was related to me by a college who knew a set theorist who was looking for

exercises to set his class. When the set theorist looked through the later volumes of the

Principia (which deals with higher cardinals) he found to his surprise many of the theorems

false.

3



in the machine assisted formal system PVS and the subsequent errors found

in formalization see [13]. The comments in this paper apply equally well

to rigorous and formal methods. Because machine assistance is not feasible

for rigorous proofs the possibility of error is greater. Therefore in rigorous

development the use of RT is potentially more useful in uncovering errors,

but more care would be needed in deciding exactly what constituted RT data

because of the possibility of easly missed logical errors in development.

This paper assumes some familiarity with how formal methods might

be applied, but no detailed knowledge is required of any particular formal

method or technique (for an introduction see [3] or [14]).

3 Requirements Engineering

This section is intended only as a short introduction to Requirements Engi-

neering (for a more detailed introduction see [15, 16]). A signi�cant propor-

tion of software development is usually done for other parties. To be able

to write such software the developer must �nd out what the customer wants

the program to do. The process of �nding out what the customer wants is

called Requirements Engineering. There are two important problems, which

manifest themselves early on: the customer might not know what he or she

wants, or the developer understands poorly what the customer wants due to

poor domain knowledge.

The initial phase of requirements engineering is to elicit from the customer

a set of requirements that the �nished program has to satisfy and to produce

a requirements speci�cation (RS) document. This process involves feedback

and many versions of the RS document are generally produced until an agreed

�nal version is produced.

In a large number of cases the RS-document will be in natural language

prose, possibly interpolated with pseudo-code to explain the operations and

requirements of di�cult sections

3

. In some cases it is desirable, or perhaps

it is forced by contractual reasons, to have a RS-document expressed in a

formal notation (such as Z [19], or VDM [8]). Such a document from now

on will be referred so as a Formal Requirements Speci�cation document (a

FRS-document). The process of obtaining a formal requirements document

3

In some requirements capture methods such as CORE [17] there is no provision for

the recording of complicated functional requirements between data items. Often these

functional requirements are speci�ed in high level languages, which can force data repre-

sentation at an early stage in the requirements, which is on the whole undesirable. The

use of Z as in the SAZ method, which integrates formal methods in to a large software

development context, [18] would improve matters.

4



from a prose requirements document is here referred to as the process of

Formal Requirements Engineering.

It is to be emphasized that, at least in the author's opinion, the process

of producing formal speci�cations should be in two stages. First a prose

requirement speci�cation document should be produced and then this doc-

ument should be formalized. This formalization will produce a separate set

of inconsistencies and queries to be resolved with the customer. See [20, 21]

for examples.

For documented examples of producing FRS-documents (in this case Z

speci�cations) see the book [22]. One of the largest examples in the book,

is the formalization of parts of IBM's CICS transaction processing system.

CICS is a system that has been under continuous development since 1969.

In the early 80's it was decided that there would be some gain for mainte-

nance and further development if the speci�cations of certain modules were

formalized. Because there were existing working pieces of software and user

manuals specifying the required behavior, this was a prime example of the

process of Formal Requirements Engineering on a large scale.

The formal speci�cation was obtained initially, by a process of feedback

between experts in the Z notation and experts in the CICS system. Because

the process of formalization forces the developer to think more clearly about

the speci�cation, inconsistencies were found in the original RS-speci�cation

(in this case the prose RS-speci�cation was the user manuals and as an

arbitrator there was the actual running code), which were either errors in

the manual or bugs in the code. IBM originally had no intention to apply

formalized re�nement on the speci�cations but it was felt that the gain that

would be achieved from just formalizing the speci�cations would be enough

to warrant the investment in formal methods. The formal speci�cations were

also validated by experienced users of formal methods, who commented on

the style and content of the speci�cations. The reviewers were then asked to

point out any inconsistencies with the original manual that they found. Many

of these inconsistencies were due to the inexperience of the people writing the

speci�cations, but some were real inconsistencies in the system. This process

of feedback led to further re�nements and revisions of the speci�cations. For

a more detailed discussion, see Section IV of [22].

4 Requirements Traceability

The following de�nition is presented in [1]:

Requirements traceability refers to the ability to describe and

follow the life of a requirement, in both the forward and back-

5



wards direction (i.e. from its origins, through its development

and speci�cation, to its subsequent deployment and use, and

through periods of on-going re�nement and iteration in any of

these phases).

After much empirical data gathering and analysis Gotel and Finkelstein

[1, 5] re�ned RT into Pre-Requirements traceability and Post-Requirements

traceability, again from [1]:

Pre-requirements speci�cation (pre-RS) traceability, which

is concerned with those aspects of a requirement's life prior to its

inclusion in the RS (requirement production)

Post-requirements speci�cation (post-RS) traceability, which

is concerned with those aspects of a requirement's life that result

from its inclusion in the RS (requirement deployment).

This re�nement of RT was made in response to a general feeling that

there was a RT problem, Gotel and Finkelstein identi�ed the problem to be

in the Pre-RS stage. They felt that Post-RS traceability issues were relativity

tractable and were being addressed already.

This paper acknowledges that there still is a problem with Pre-RS trace-

ability in traditional software development. While in formal software engi-

neering, not only is there a Pre-RS traceability problem, there are a di�erent

set of requirement traceability issues in the Post-RS phrase due to the nature

of formal methods. This will be elucidated in section 5.

Central to understanding the issue of traceability in formal software de-

velopment is a re�ning of the Pre-RS and Post-RS traceability de�nitions

from [1], to take into account the production of a formal requirements spec-

i�cation document. Thus, there will be three stages of traceability, Pre-RS,

Pre-Formal-RS and Post-Formal-RS, The last two can be trivially de�ned,

but are included for emphasis:

Pre-Formal-Requirements-Speci�cation (Pre-FRS) trace-

ability, which is concerned with those aspects of a requirements

life, prior to its formalization in a Formal Requirements Speci�-

cation, and in particular how it is formalized. This is a separate

stage from Pre-RS traceability

Post-Formal Requirements-Speci�cation (Post-FRS) trace-

ability, which is concerned with the aspects of a requirements

life that result from its inclusion in the Formal-requirements-

speci�cation.

6



Prose Requirements

Specification

Formal 

Requirements

Specifiacation

Program Saftery_Crtical(Input,Output)

Begin

Rnd

Pre-RS traceability Pre-FRS traceability Post-FRS traceability

Figure 1: Pre and Post formal requirements speci�cation

Figure 1 shows a pictorial representation of the situation.

As before the Pre-RS stage is gathering from the the customer to pro-

duce a RS-document. In the Pre-FRS stage the prose document is formalized

and turned into a FRS-document. Again this stage should involve consul-

tation with the customer to re�ne, understand the user requirements and

to uncover any possible inconsistencies. Finally in the Post-FRS stage the

FRS-document is used to re�ne or guide development of code. The analy-

sis o�ered here, in the terminology of [1] is information driven: traceability

is de�ned in terms of what information is to be made traceable, with spe-

cial reference to the di�erences between Formal Software Engineering and

traditional Software Engineering.

5 Use and Abuse of Formal Methods and Re-

quirements Traceability

There are many sources of potential error in formal software development.

For example in a fully formal development an obvious source is that if proofs

are done by hand, mistakes can be made, typically because such proofs are

normally long and tedious. Many other sources of error can be identi�ed.

Recent papers that address the issue of possible errors in software develop-

ment include [23, 24, 25, 3]. I will concentrate on the sources of uncertainty

identi�ed in [3], and try to show how attention to such sources leads to a

�ner analysis of RT.

[3] identi�es several classes of uncertainty in the use of formal methods:

human ability, physical model, consistency of theories, tool quality and avail-

ability, process maturity, management pressure, and notation quality. The

7



following subsections summarize and expand Section 5 of [3] with a view as

to how various sources of error contribute to the analysis of requirements

traceability.

The issue of management pressure to produce deliverable software in

shorter time scales, hence forcing corners to be cut while using formal meth-

ods (which can require longer time scales than in traditional software devel-

opment), will not be discussed here. It is enough to say that a requirement

for the successful use of formal methods is that a conducive management

culture exists (and of course a conducive development culture). Of course,

there is an `extreme' view that software failures are really management fail-

ures [26]. Indeed one of the reasons cited for the success of the CICS example

in [22] is that there was management backing for the use of formal methods.

There are also wider management issues in the implementation of RT. This

paper does not attempt to address these management issues in any depth.

It simply o�ers a starting point with an analysis of RT for formal software

development. One management issue that would have to be addressed in-

clude the management of RT data over distributed environments. But many

(if not most) of the management issues are not primarily problems with for-

mal software development and would have to be addressed in any project

employing RT.

[3] talks about the problem of software process maturity with respect

to the use of formal methods. Most individual formal methods at present

do not cover the complete spectrum of the software development process.

Integration with other techniques is often haphazard, (for an exception see

[18]). If e�ective management of the software development process is not

exercised with attention to the needs of formal methods then the quality of

the �nal software can not be guaranteed. This paper is not going to address

the wider management issues, but the issue of traceability of requirements

is an attempt to enable the developer to understand how the quality and

maturity of a particular formal method and associated tools a�ects the whole

development process.

5.1 Human Ability

Software Engineering involves, at least to some degree, human beings, who

are for the most part fallible. [3] rightly observes that the use of formal meth-

ods typically, at present, involves more human e�ort than traditional software

engineering. Typically that is because formal methods force such a detailed

level of analysis, so that many assumptions which would go unchallenged

in traditional development have to be addressed. A further problem is that

many software engineers are untrained in the sort of discrete mathematics

8



needed for the e�ective use of formal methods. Therefore, the understanding

of human ability is important in assessing the role of traceability in both

formal and non-formal software development.

4

[3] identi�es two sets of uncertainties related to human ability, knowledge

and communication. Knowledge includes three aspects:

(i) Lack of knowledge in the problem domain: the observation that the

development process is more e�cient when the programmer or system

analysts understands the application domain.

(ii) Lack of knowledge in the development domain: the developer might not

have solid knowledge of system development principles, nor have solid

knowledge of formal techniques. Errors can result, there is no guarantee

that formal methods will be applied correctly or e�ectively.

The lack of attention even to basic software engineering practice can

have disastrous consequences, for example in the case of Therac-25,

a safety critical application for administering radiation treatment to

cancer victims, where there was no use of any software engineering

principles, with a resulting loss of lives (see [29]).

(iii) Management might not have the knowledge to control the process of

formal software development. This is part of a wider problem, that the

process of producing software using formal methods is still not as well

understood as traditional software engineering processes.

[3] divides communication, again into three aspects:

(i) Communication between the user and the developer may not be accu-

rate, leading them to misunderstand each other during the acquisition

of requirements. A problem directly related to formal software devel-

opment, is that the user might not understand the formal speci�cation

produced.

(ii) Communication between individual developers on the project; in many

situations there is more than one way to re�ne a speci�cation, and de-

velopers may misunderstand the requirements and proceed on di�erent

re�nement paths. As an example, suppose that the speci�cation does

not constrain the representation of a data type used, but does require

that the �nal piece of code to be completely deterministic. A developer

4

More recent studies [27, 28] have been carried out on the psychological classi�cation

of design errors, which in
uence the issue of traceability not only for formal software

development, but also for traditional software engineering.

9



misunderstanding the user requirement for deterministic code might re-

�ne the data structures to a representation requiring dynamic memory

allocation. The resulting code would be in general non-deterministic.

This could be a perfectly formally correct re�nement, but inappropri-

ate for the user requirements (see section 3 of [14] for a discussion of

re�nement in formal software development methods).

(iii) Lack of Knowledge in the management domain. For example commu-

nication between developers and management, can result in needless

errors being introduced.

Not all of the problems above are restricted to formal software development.

Most importantly the communication aspects between the developer and the

user in the requirements acquisition stage, is one of the aspects treated in [1]

in their analysis of the Pre-RS traceability problem.

Both knowledge and communication based uncertainties a�ect Pre-FRS

and Post-FRS traceability. First, with knowledge based uncertainties, lack

of knowledge in the problem domain will a�ect Pre-FRS traceability require-

ments. The ideal (but unattainable) situation is that when the formal re-

quirements speci�cation document has been obtained development can take

place without further interaction with the customer, of course in a world of

changing requirements, this is not possible. Lack of knowledge in the prob-

lem domain on the designers part can result in inappropriate aspects being

included in the Formal-RS document. To take a simple example, consider

a system which is essentially a non-time critical batch processing system,

formalizing real time constraints would detract from the intended required

behavior of the system and complicate the speci�cation unnecessarily. Lack

of knowledge on the customer's part, where the customer does not under-

stand the Formal-RS document fully, would again result in inappropriate as-

pects being included in a formal-RS document because the customer would

not understand all the nuances of the speci�cation produced. The use of

independent consultants would be useful here, so as to review the formal

speci�cation produced. A Pre-FRS traceability regime would enable aspects

of the Formal-RS document that were later found out to be inadequate or

simply wrong, to be traced back to the informal user requirements and hence

a better understanding of the software produced would be possible, which

would make corrections and maintenance easier.

Knowledge based uncertainties a�ect Post-FRS traceability, mainly in

the domain of lack of knowledge of the techniques involved. Inappropriate

re�nement can result in a useless program for the task at hand. If individ-

ual re�nements are recorded and the reason why such re�nements are done,

audits can better assess the quality and reliability of the resulting software.

10



Communication based uncertainties will manifest themselves in any soft-

ware project which has more than one person involved. The re�nement

example above is a communication based uncertainty that can be reduced by

using Post-FRS. Recording the reasons why and how individual re�nements

re
ect customer requirements is an important Post-FRS traceability require-

ment which can help uncover communication errors between developers.

Misunderstanding between the customer and the developer, due to inad-

equate communication in the Formal-RS document production stage, is an

important problem to be solved. The understanding of how requirements

evolve from informal to formal requirements can be improved by tracing the

evolution of informal to formal requirements. Indeed the whole process of

formalization is still not well understood. More research is required and the

use of traceability data will be important input into the question of how

requirements get formalized.

In summary lack of knowledge results in inappropriate aspects being in-

cluded in the FRS-document. Pre-FRS traceability allows formal require-

ments to be audited and traced back to informal user requirements. Com-

munication based uncertainties manifest themselves both before and after

the production of the FRS-document. Problems of communication between

the developers and the customers create similar traceability requirements

as in knowledge based uncertainties. Problems of communication between

developers on a project, create problems which could occur in any type de-

velopment. But in formal development, if each developer has a di�erent un-

derstanding of the Abstract system model (see below) then more adequate

communication of concepts would be needed than in traditional development.

The use of both Pre and Post FRS traceability allow communication based

errors to be traced and understood.

5.2 Abstract System Model

In any software system, some model of the environment must be made, be

it a banking system, an aircraft control system or a multi-tasking operating

system. Various models can be made, and various approximations to reality

used (see commandment II of [25]). The use of formal methods does not guar-

antee that the model of the software environment is any better than without

the use of formal methods. But by expressing the attributes of environments

formally, the designer is forced to think about things that might otherwise

be missed and in many cases will produce a better model. Or sometimes

produces a model of the environment where certain other software develop-

ment methodologies fail to produce a model of the environment which goes

outside expected interactions with the software. But the process of formal

11



modeling has problems as well, sometimes the formal modeling process can

impinge on reality and enforce unacceptable abstractions, see the discussion

of [30] below.

Outside the problems with human error in modeling the environment,

which has been discussed above under Pre-FRS traceability, further aspects

of Pre-FRS traceability have to be taken into account. Modeling the soft-

ware environment in a certain way is a design decision, e.g. the modeling of

timing constraints or ignoring timing constraints a�ects the design consider-

ations of the �nished piece of code. A more concrete example would be the

formalization of a requirement for continuous delivery of service. Depending

on the method and style used some formalizations would already force cer-

tain design decisions. In the paper `Symbol Security Condition Considered

Harmful' [30] an analysis of the role of formal methods in security systems

is given. Examples of formally veri�ed systems which have gone wrong are

presented (see below). But further, the paper o�ers an analysis of speci�ca-

tion problems for secure systems. To understand the points made in [30], the

process of modeling can be visualized as in �gure 2. Schaefer produces many

examples which can be seen as breakdowns of the top arrow in �gure 2 (mod-

eling assumptions). Schaefer believes that, if insu�cient attention is played

to the semantic nature of formal manipulations and the veri�cation game

becomes simply a symbol pushing game then the veri�cations produced can

be next to useless. For example the use of �ctional speci�cation conveniences

such lumping together hardware registers or adding adding extra reference

conditions to simplify proofs of systems. While sometimes these maybe valid

moves, their blind and unchecked use can lead to the introduction of security


aws in formally veri�ed systems. See [30] again for formally veri�ed systems

which were later found to contain security 
aws

5

. Another problem, alluded

to in [30], in the security community is the use of o� the self models. The

use of formal methods was mandated very early (1970's) on for secure sys-

tems. At the time there was not much experience of formal speci�cation and

veri�cation. Bell and La Padula introduced a model [31] of security access

in �le-type systems. While this model covered a large number of cases, its

popularity caused some designers to simply take the model and attempt to

�t it to the situation at hand. Consequently it was applied to inappropri-

ate systems. For example while it is generic for �le systems when applied

to database systems it already forces some design considerations which are

unnecessary. The use of Pre-FRS would allow mistakes like this to be found,

5

Perhaps it should be stressed that Schaefer message for formally veri�ed systems is

not all negative, he believes that their use is bene�cial, but more understanding of their

limitations, quirks and pitfalls are required.

12



and further if applied properly it would force speci�ers to think about why

things are done in certain ways.

User requirements need to be traced through to the formal-requirements

speci�cation document, with a view to understanding how the user require-

ments are re
ected by the modeling technique, and di�erentiating them from

modeling decisions that are just a matter of style.

The

Real
World

Code

Semantic

The Code’s

Universe

Formal System

Modeling
Assumptions

Verification

or Refinment

Soundness of

Formal System

interaction with the

World

Figure 2: The Process of Abstraction

5.3 Consistency of Theories (and Methods)

If the formal theory used in implementing formal software development is

not consistent, then the quality of the �nal piece of code is not guaranteed

6

.

It is surprising how easy it is to construct proofs based on inconsistent as-

sumptions which appear not to be consistent. In [30] a case is quoted of a

data access control system AUTODIN II [32] which was supposedly formally

6

For any formal system a contradiction can be used to prove anything, thus if 0 = 1 is

introduced as an axiom then every possible statement is true in the formal system.

13



veri�ed, later the speci�cation was found to be inconsistent. Essentially a

pre-condition to a state transition stated that a component of the state in-

variant should have two contradictory values.

More worrying, it is surprising how many implemented proof systems are,

or were, inconsistent. This means it is not su�cient a piece of software has

been proved correct by mathematical methods with or without tools. What

needs to be said is how it was proved correct. This need not be a list of every

proof step, but at least enough to reconstruct the relevant proofs, possibly

relative to the software tool support used. With the AUTODIN II example

above, many of the proofs would go through, but those relying on the con-

tradictory state transition would be false. Traceability in the Pre-FRS stage

would allow reasons to be uncovered as to why the contradictory state transi-

tion was introduced and Post-FRS traceability would enable one to uncover

the e�ect of the contradictory state on the correctness of the veri�cation.

Further, proofs are done for a reason and how the proofs a�ects the user

requirements needs to be recovered, e.g this process has been guaranteed to

terminate in less than 10 seconds of cpu time, because the user requirements

speci�ed that a result had to be produced in a `reasonable' amount of time.

5.4 Tool Quality and Availability

Because in a formal veri�cation every theorem must be proved and every step

justi�ed, there are many proof obligations that have to be satis�ed. Doing

this by hand is a tedious and error prone task. One of the major criteria that

many industrial users of formal methods require is that the formal method

in question has adequate automated tool support.

Tools for formal methods support will themselves typically be large pieces

of software, and will in general contain software errors. Thus, one cannot

completely rely on the output of an automated theorem prover as an infal-

lible certi�cate of reliability. Also some tools such as the B-Toolkit

7

o�er

automated proof environments with a user driven proof tool for when the

automated proof tool is unable to prove the goals. Unfortunately, at least in

the early versions, the user directed proofs were so non-standard it was easy

to introduce logical inconsistencies in the proofs

8

. Such proofs produced by

the tool would have to be audited and the use of RT would help the audit

trail. But tools are being improved and certain tools will be perceived to

be more reliable than others. Aspects of the post-FRS traceability regime

must include how the rôle of tool support implements user requirements. For

7

Trade mark B-core U.K.

8

Thankfully later versions are improved.

14



example, a particular tool might be used to prove that the CSP speci�ca-

tion of the system satis�es certain security properties, because there is the

requirement X in the RS-Document.

Furthermore, since for a particular formal development procedure there

might not exists tools to cover the entire spectrum of software development

activities, the choice of method (Z, VDM CSP, etc.) will be a�ected, depend-

ing on the user requirements. This is a Pre-FRS requirements traceability

problem, i.e. how the user requirements are re
ected in the choice of formal

methods used relative to the available tool support.

5.5 Notation Quality

Di�erent notations have di�erent strengths. Modeling real-time behavior

with a model based approach such as Z or VDM, would be possible, but

di�cult (see commandment I of [25] for a fuller discussion). Further, changing

the representation of a problem can make it easier to understand and solve.

As with the traceability requirements for the choice of abstract system model,

a Pre-FRS traceability issue has to be addressed, i.e. how does the choice of

notation re
ects the user requirements?

6 Summary and Conclusion

This paper has investigated various possibilities for error in formal software

development, and has begun to show how the rôle of traceability is not to re-

move errors, but to allow these errors to be found and corrected more quickly

when discovered and hence to lead to a better quality environment for the

production of high reliability software. Further traceability in general allows

the developer to cope with and understand the demands of changing user

requirements during the project. However there is little empirical evidence

that the use of quality oriented techniques in software development will lead

to more reliable software. Gotel and Finkelstein [4] discuss why quality meth-

ods have not led to the dramatic improvement in software quality that might

have been expected. In their opinion it is because of a lack of understanding

of the Pre-RS stage of development and they believe that Pre-RS traceability

is fundamental to improving the quality of software. As a corollary to this,

if the analysis o�ered here of traceability in formal software development is

in anyway correct, there should be an improvement in the quality formally

developed software.

One of the criticisms often given with respect to quality procedures is that

they generate too much paper work. Making the quality process as painless

15



as possible and as paperless as possible is an important goal to be pursued

for the success of any quality development procedures. Gotel and Finkelstein

[1] divide the available tool support into four areas: General purpose trace-

ability tools, such as hypertext editors, word processors or databases; special

purpose tools, such as tools designed for requirements engineering such as

RTM of Marconi, which provide some support for requirements traceabil-

ity; workbenches i.e. integrated tool support to cover many aspects of the

development cycle; and software environments, which are integrated envi-

ronments typically centred around a database model designed to cover the

whole of the development process. To the author's knowledge none of the

special purpose requirements tools available is speci�cally addressed to the

use of formal methods. Further, because the use of formal methods does not

cover the whole of the software development life cycle, it seems that integra-

tion of available tools in workbenches and environments is desirable. Gotel

and Finkelstein [4] discuss the relation between modeling the artifacts used

in the requirements engineering process (such as programs, pieces of paper,

faxes etc.) and databases of personnel and groups involved in the design

process. Gotel and Finkelstein examine the semantic nature of the relations

between requirements, artifacts and people, and propose that a more de-

tailed semantic relation is needed than the statement \X contributed to Y".

Further research is needed on how the nature of the uncertainties in formal

software development identi�ed above a�ect the semantic data that needs

to be recorded. The use of languages such as SGML, which annotate the

semantic nature of documents, has already been applied to Z (see Annex D

of [33]). This could be expanded to produce a standard interchange format

for traceability requirements data and in itself requires further research, as

well as how such data can be integrated in a relational database. This whole

framework would to be codi�ed in an open structure so that tool builders

can easily hook into a standard traceability environment.

This paper has given a further analysis of RT, re�ning the work of Gotel

and Finkelstein [4, 5]. The analysis has been driven by potential sources of

error in formal software development as identi�ed in [3]. This analysis is

merely a start it is intended to be both a contribution to the formal soft-

ware development community and to requirements traceability. The use of

traceability in formal software development will hopefully contribute to the

validation and management of large projects. On the traceability side it has

been shown has the special nature of a certain software process can contribute

to the analysis of RT. A similar programme could be carried out for other

software methodologies, such as object oriented technologies. Such a pro-

gramme would contribute to the general understanding of how the software

process e�ects requirements traceability.

16



7 Acknowledgments

The author wishes to thank many people who have read early versions of

the paper. Including Norman Fenton, Steve Schneider, Dieter Gollmann and

Gordon Rugg.

References

[1] Orlena C.Z. Gotel and Anthony C.W. Finkelstein. An analysis of the

requirements traceability problem. In Proceedings of the IEEE Inter-

national Conference on Requirements Engineering (ICRE '94), pages

94{101, Colorado Springs, Colorado, April 1994.

[2] S. Gerhart and Yelowitz L. Observations of fallibility in applications of

modern programming methodologies. IEEE Transactions in Software

Engineering, SE-2(3):195{207, 1976.

[3] Shaoying Liu, Victoria Stavridou, and Bruno Dutertre. Formal methods

and dependability assessment. In Proceedings of Compass 94, Wasington

DC, June 1994.

[4] Orlena C.Z. Gotel and Anthony C.W. Finkelstein. Modelling the contri-

bution structure underlying requirements. In Proceedings of the First In-

ternational Workshop on Requirements Engineering: Foudation of Soft-

ware Quality (REFSQ '94), pages 71{81, Utrecht, The Netherlands,

June 1994.

[5] Orlena Cara Zena Gotel. Contribution Structures for Requirements

Traceability. PhD thesis, University of London, Imperial College, 1995.

[6] L.M. Barroca and J.A. McDermid. Formal methods: Use and relevance

for the development of saftey-critical systems. The Computer Journal,

35(6):579{599, 1992.

[7] Kevin Lano. The B Language and Method: A Guide to Practical Formal

Development. FACIT. Springer Verlag, May 1996.

[8] C. Jones. Systematic Software Development using VDM. Prentice-Hall

International, Englewood Cli�s, New Jersey, 1986.

[9] Edmund Landau. Grundlagen der Analysis. Akademische Verlagsge-

sellschaft, Leipzig, Germany, 1930. English translation Foundations of

Analysis, Chelsea Publishing Company, 1951.

17



[10] N.G. de Bruijn. The mathematical language AUTOMATH, its usage,

and some of its extensions. In M. Laudet, editor, Proceedings of the Sym-

posium on Automatic Demonstration, pages 29{61, Versailles, France,

December 1968. Springer-Verlag LNM 125.

[11] L.S. van Benthem Jutting. Checking Landau's \Grundlagen" in the

AUTOMATH System. PhD thesis, Eindhoven University of Technology,

1977.

[12] B. Russell and A.N. Whitehead. Principia mathematica. Cambridge

University Press, 1910-13.

[13] J. Rushby and P. Lincoln. A formally veri�ed algorithm for interac-

tive consistency under a hybrid fault model. Technical Report CSL-93-

02, SRI International Computer Science Laboratory, March 1993. Also

available as NASA Contractor Report 4527, July 1993.

[14] Doanld Sannela. A survey of formal software development methods. In

A. McGettrick and R. Thayer, editors, Software Engineering: A Euro-

pean Prospective, pages 281{297. IEEE Computer Society Press, 1993.

[15] Roger S Pressman. Software engineering : a practitioner's approach.

New York : McGraw-Hill, 1987.

[16] Hubert F. Hofman. Requirements engineering. Technical report, Institut

f�ur Informatik der Universit�at Z�urich, M�arz 93.

[17] Anthony Finkelstein and Je� Kramer. TARA: Tool assisted requiree-

ments analysis. In P Loucopoulos and R. Zicari, editors, Conceptual

Modelling, Databases and CASE: an intergrated view of information sys-

tems development, pages 413{432. John Wiley, 1991.

[18] Fiona Polack and Keith C. Mander. Software quality assurance using

the SAZ method. In J. Bowen and J.A. Hall, editors, Z User Meeting

Cambridge, pages 231{249. Springer Verlag, 1994.

[19] J.M. Spivey. The Z notation : a reference manual. Prentice-Hall Inter-

national Series in computer science. Prentice Hall, 1989.

[20] J.S. Fitzgerald, T.M. Brookes, M.A. Green, and P.G. Larsen. Formal

and informal speci�cations of a secure system component: First results

in a comparative study. In Maurice Naftalin, Tim Denvir, and Miquel

Bertran, editors, FME'94: Industrial Bene�t of Formal Methods, volume

873 of Lecutre Notes in Comuter Science, pages 35{45. Springer-Verleg,

1994.

18



[21] Joshua D. Guttman and Dale M. Johnson. Three applications of formal

methods at MITRE. In Maurice Naftalin, Tim Denvir, and Miquel

Bertran, editors, FME'94: Industrial Bene�t of Formal Methods, volume

873 of Lecutre Notes in Comuter Science, pages 35{45. Springer-Verleg,

1994.

[22] I. Hayes. Speci�cation Case Studies. Series in Computer Science. Pren-

tice Hall, second edition, 1993.

[23] J.A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11{19,

September 1990.

[24] J Bowen and M Hinchey. Seven more myths of formal methods. Tech-

nical Report 357, University of Cambridge Computer Labratory, 1995.

To appear in IEEE Software.

[25] J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods.

Technical Report 350, University of Cambridge, 1994.

[26] A. Wingrove. Software failures are management failures. In B. Little-

wood, editor, Software Reliability, Achievments and Assessment, pages

56{68. Blackwell Scienti�c Publications, 1989.

[27] Alistair Sutcli�e and Gordon Rugg. A taxonomy of error types for failure

analysis and risk assessment. 1994.

[28] Alistair Sutcli�e, Gordon Rugg, and Peter Ayton. Pitfalls in the de-

sign process: Assessing the potential for experts' errors. Draft to be

submmitted to J.High Integrity Systems (1994).

[29] N.G. Leveson and C.S. Turner. An investigation of the THERAC-25

accidents. Computer, 26(7):18{41, 1993.

[30] Marvin Schaefer. Symbol security condition considered harmful. In

1989 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, pages 20{

46. IEEE, 1989.

[31] D.E. Bell and L.J. La Padula. Secure computer systems. Technical

Report 2547, The MITRE Corporation, May-Dec 1973 1973. vol I-III.

[32] S. Bergman. A system description of AUTODIN ii. Technical report,

MITRE Corporation, Bedford, Mass, May 1978.

[33] Z Standards Review Committe. Z base standard, version 1.0. Technical

report, PRG Group Oxford, 1992.

19


