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Abstract

This thesis is concerned with an extension of feed-forward networks, Cli�ord networks,

which use multi-dimensional values from Cli�ord algebras as weight and activation

values. Cli�ord algebras are a natural extension of both the complex and quaternion

algebras to many dimensions. An extended back-propagation algorithm is derived and

results are proved which show that Cli�ord networks can approximate any continuous

function. Cli�ord networks are then applied to a real world problem, that of Q

2

PSK

demodulation which is a four dimensional extension of QPSK. Finally an extension

of the real valued Perceptron to the Cli�ord-valued Perceptron is presented and a

generalized convergence theorem is presented together with a discussion of the pattern

recognition power of these new networks.

iii



Acknowledgments

In writing this thesis, many people have helped. First I would like to thank my

supervisor Dr. Dave Bisset and Dr. M. Gell for originally arranging a BT CASE

award without which I would not have been able carry out this work, Gail Bye for

coping with my late monthly reports, and ploughing through pages of often obscure

mathematics just to work out what I am talking about. My interest in Cli�ord

Algebras would not have been started, if it was not for the enthusiasm of Prof Roy

Chisholm in the Mathematics Department at Kent for the subject; also I have had

many useful conversations with Prof Alan Common on Cli�ord algebras. I would also

like to thank the Sta� and Students at the Academy of Science in Prague especially Dr

Vera K _urkov�a and Dr Katka Hlavockova who on visits to Prague were both interesting

and useful to talk to about my work.

I could not have just done research in Neural Networks while writing this thesis

and at Kent there have been many academic and non-academic distractions. The

Theoretical Computer Science group run by Dr Simon Thompson has provided nu-

merous excuses to give talks on subjects I know little about, and consequently I have

learnt much about other aspects of computing. The University's Philosophy society

has been a constant source of enjoyment, in both philosophical discussion, papers

and less philosophical discussion at the Wednesday night meals with visiting speakers

iv



after papers. Many people have had the pleasure of Adrian Weddell's wonderfully

extravagant meals, which always seem to start in conception as only about 5 courses

and always end up with about 8 or 9. I also would like to thank the programmers

who wrote Purify

1

, without which my back-prop simulator would still be outputting

results like this:

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

0 10000 20000 30000 40000 50000 60000

R
oo

t M
ea

n 
S

qu
ar

e

Epoch Count

Finally, but not in the means least, I would like to thank Elinor Williams, for being

the loveliest person in the world and not jumping in the Vltava to escape from me.

1

Pure Software Inc.

v



Contents

Abstract iii

Acknowledgments iv

1 Introduction and Background 2

1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 From Neurons to Networks : : : : : : : : : : : : : : : : : : : : : : : : 3

2 Cli�ord algebras: An Introduction. 8

2.1 A Direct Construction : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.2 From Quadratic Forms to Cli�ord Algebras : : : : : : : : : : : : : : 11

2.3 Some familiar Cli�ord algebras : : : : : : : : : : : : : : : : : : : : : 13

2.3.1 Complex numbers : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.3.2 The Quaternions. : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.3.3 The algebra

2

R : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.3.4 2 by 2 matrices R(2) : : : : : : : : : : : : : : : : : : : : : : : 15

2.4 Some relationships between Cli�ord algebras. : : : : : : : : : : : : : : 16

2.5 Multiplication as a linear transform : : : : : : : : : : : : : : : : : : : 18

3 The Back Propagation algorithm. 19

vi



3.1 Feed-forward Networks : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.2 Choice of Error Metric : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3.3 Gradient Descent : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

3.4 The Single Real Valued Neuron. : : : : : : : : : : : : : : : : : : : : : 23

3.5 BEP for a multi-layer feed-forward network. : : : : : : : : : : : : : : 25

3.6 Cli�ord Back error Propagation : : : : : : : : : : : : : : : : : : : : : 26

3.7 Choice of activation function : : : : : : : : : : : : : : : : : : : : : : 30

3.7.1 Complex activation functions. : : : : : : : : : : : : : : : : : : 32

3.7.2 The Cli�ord case : : : : : : : : : : : : : : : : : : : : : : : : : 33

3.8 Experimental results : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

4 Some Theoretical Results 41

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

4.2 Talking about Approximations: A Crash course in metric space theory 42

4.3 Cli�ord modules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

4.4 The Approximation result : : : : : : : : : : : : : : : : : : : : : : : : 47

4.5 Cli�ords into Reals won't go : : : : : : : : : : : : : : : : : : : : : : : 51

4.6 Function and form in a Cli�ord network : : : : : : : : : : : : : : : : 53

4.7 Function and Form and its implication to weight space : : : : : : : : 57

5 Q

2

PSK 59

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

5.2 Modulation and Demodulation : : : : : : : : : : : : : : : : : : : : : : 59

5.3 Q

2

PSK : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

5.4 Demodulation by maximum likelihood detection : : : : : : : : : : : : 65

5.5 Cli�ord Networks as maximum likelihood detectors : : : : : : : : : : 66

vii



5.6 Comparison with Real valued networks : : : : : : : : : : : : : : : : : 66

5.7 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

6 The Generalized Perceptron and its Properties 72

6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

6.2 The Complex Perceptron : : : : : : : : : : : : : : : : : : : : : : : : : 73

6.3 The Group Structure of the Outputs : : : : : : : : : : : : : : : : : : 74

6.4 Real Hilbert Spaces on Complex Vector Spaces : : : : : : : : : : : : : 74

6.5 The Complex Convergence Theorem : : : : : : : : : : : : : : : : : : 75

6.6 The Cli�ord Case : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

6.7 What are Complex Perceptrons Doing? : : : : : : : : : : : : : : : : : 85

6.8 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

7 Conclusion 91

viii



List of Tables

1 A table of Cli�ord algebras up to dimension 256 : : : : : : : : : : : : 17

2 Table of outputs from a trained 3-2-3 encoder-decoder R

0;2

. : : : : : 35

3 Table of input-output for a trained 4-2-4 encoder-decoder over the

algebra R

0;2

. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

4 Table of input-ouput relationships for a trained 4-2-4 encoder-decoder

the algebra R

1;1

. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

5 Table of input and output of a 3-2-3 encoder over the algebra R

0;3

with

graph of rms error. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

6 Training data: For the modulated signal samped at 4 time intervals : 70

7 Training data continued : : : : : : : : : : : : : : : : : : : : : : : : : 71

ix



List of Figures

1 A Single Perceptron : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2 A Feedforward Network : : : : : : : : : : : : : : : : : : : : : : : : : 6

3 The sigmoid function : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

4 Modeling a point data set by translated bump functions : : : : : : : 22

5 Graph of RMS error for a 3-2-3 encoder-decoder problem over the

algebra R

0;2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

6 Graph of RMS error during training the 4-2-4 encoder-decoder over

the algebra R

0;2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

7 Graph of RMS for 4-2-4 encoder-decoder of the algebra R

1;1

: : : : : 40

8 RMS during training for the encoder-decoder problem over R

0;3

: : : 40

9 Modulating signal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

10 Carrier signal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

11 Amplitude modulation : : : : : : : : : : : : : : : : : : : : : : : : : : 61

12 Frequency modulation : : : : : : : : : : : : : : : : : : : : : : : : : : 61

13 Phase modulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

14 Modulated signal for input 1.0, -1.0 , -1.0 , +1.0 : : : : : : : : : : : : 62

15 QPSK modulation scheme : : : : : : : : : : : : : : : : : : : : : : : : 63

16 Modulated signal for input 1.0, -1.0 , -1.0 , -1.0 , -1.0 , 1.0 , -1.0 , -1.0 64

x



17 QPSK modulation scheme : : : : : : : : : : : : : : : : : : : : : : : : 64

18 Noise tolerance levels : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

19 Comparison between Real and Cli�ord valued networks : : : : : : : : 69

20 Weight multiplication inside a Cli�ord neuron : : : : : : : : : : : : : 69

21 Roots of unity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

22 Net input W �X , actual output of Perceptron �

j

and expected output �

k

79

23 Complex Multiplication : : : : : : : : : : : : : : : : : : : : : : : : : : 86

24 Activation regions for q = 5 : : : : : : : : : : : : : : : : : : : : : : : 87

25 A possible classi�cation : : : : : : : : : : : : : : : : : : : : : : : : : : 88

26 Co-linear points : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

xi



1

Key of Mathematical symbols used in the Text

R The Real numbers

C The Complex numbers

H The Quaternions

N The natural numbers including zero.

R

p;q

A Cli�ord algebra with signature p; q.

R(n) The n by n real square matrices, with analogous notation for complex and

Quaternions square matrices.

e

A

An arbitrary basis element of some Cli�ord algebra. In general summations such

as:

X

A

x

A

e

A

Sum over elements of the basis set of the algebra in question.

Denotes the end of a proof.

P denotes the power set operation

X n Y denotes the set of elements which are in X but are not in Y .



Chapter 1

Introduction and Background

1.1 Introduction

This thesis is mainly concerned with extensions to multi-layer feed-forward networks

and an extension of Rosenblatt's Perceptron.

The thesis takes as its starting point the work of George M.Georgiou

[

Georgiou,

1993; Georgiou and Koutsougeras, 1992

]

where weight and activation values in multi-

layer networks are replaced by complex numbers and hence allow the networks to

represent two dimensional signals in a more compact way. Recently there has been

interest from other authors on the use of complex networks applied to certain problems

which map naturally to the complex domain

[

Hirose, 1992b; Hirose, 1992a; Hirose,

1993

]

and some advantages over traditional networks have been seen, but as yet it is

to early for conclusive results to be obtained.

The present work extends the complex numbers to multi-dimensional Cli�ord

Numbers

[

Crumeyrolle, 1990; Gilbert and Murry, 1991; Chisholm and Common, 1986;

Brackx et al., 1982; Porteous, 1981; Blaine Lawson Jr. and Michelsohn, 1989

]

to

2
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derive a generalized back propagation algorithm

[

Pearson and Bisset, 1992; Pearson

and Bisset, 1994

]

(Chapter 3), proves approximation results analogous to

[

Hornick

et al., 1989

]

(Chapter 4). The multi-layer networks are applied to signal processing

applications (Chapter 5) and �nally a multi-dimensional extension of Rosenblatt's

Perceptron is presented (Chapter 6).

The author's justi�cation for going to higher dimensional algebras is twofold. The

�rst is a mathematician's answer: it is natural to extend the complex numbers to

Cli�ord algebras so why not extend multi-layer feed-forward networks to Cli�ord

valued multi-layer networks and see what happens. Second is an engineering answer,

to see if extending neural networks to multi-dimensional algebras does give a more

compact representation of certain signal spaces and hence a more powerful model.

The rest of this introductory chapter surveys the material from neural networks

required for this thesis (introductory material on Cli�ord algebras is in Chapter 2).

A word of warning about the author's preoccupations about neural networks: there

are many classes of networks not discussed here, such as Hop�eld networks, Boolean

networks, Hebbian learning networks etc. The author, although aware of other types

of networks, is only concerned with feed-forward networks and perceptrons, hence

any historical omission (and bias) in this introduction can be explained by this fact.

1.2 From Neurons to Networks

Neural network research was originally biologically inspired. Part of the driving force

was to �nd simple models of real neurons

[

McCulloch and Pitts, 1943

]

. An arti�cial

neuron or Perceptron (Figure 1) consists of a number of inputs x

1

: : : x

n

weighted by

w

1

: : :w

n

and a single threshold value. The weighted sum of the inputs is added to
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Figure 1: A Single Perceptron

the threshold value:

net =

X

i

w

i

x

i

+ � (1)

and passed through an activation function f(net) to produce an output. In the �rst

approximation neurons can be seen to have an all or nothing response with respect

to the net input, and thus the following activation can be used:

f(net) =

8

>

<

>

:

1 if net > 0

0 if net � 0

(2)

It was discovered that single Perceptrons could perform simple pattern recognition

tasks, and it was later discovered

[

Rosenblatt, 1962

]

, that there existed a learning

algorithm, such that anything that a Perceptron could do was learnable from an

initial random weight set

1

. This result was initially thought to be quite powerful, and

it seemed that single Perceptrons could perform any number of tasks.

Unfortunately it was later shown by Minsky and Papert in

[

Minsky and Papert,

1969

]

that there are non-trivial pattern recognition tasks which single Perceptrons

cannot do. These tasks include the so called \parity problem", that is, for an arbitrary

�nite set of points decide if that set is even or odd in cardinality, or the connectivity

problem, which is to decide if a �gure is connected or not.

1

An extension of this algorithm is explained in Chapter 6
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Minsky and Papert introduced powerful mathematical tools to deduce what prob-

lems are solvable by Perceptrons. Perhaps the most important tool is the Group

Invariance Theorem (

[

Minsky and Papert, 1969

]

page 48) which gives conditions on

the values of the weight set with respect to the group of transforms under which the

patterns recognised remain invariant. Minsky and Papert's book is seen as a rather

negative book by many people, and it was seen be some as a call to shift the emphasis

from biologically inspired arti�cial intelligence research to more symbolic A.I. But the

book has many positive aspects many of which are still not noticed, such as the need

for mathematical tools in neural networks (although the situation is better now than

it was 5 years ago), and the group theoretical view of the pattern set, rather than

concentrating on the supposed vector space properties of the patterns.

2

In the 1988

edition of the book Minsky and Papert look back and assess the signi�cance of the

book in he light of the 80's explosion of interest in neural networks. They still see

the need for a more detailed mathematical analysis to be carried rather than a naive

experimental optimism, a view that inspired the author when starting his research

(but unfortunately this goal was not always achieved). In particular the problem of

scaling in neural networks, that is the relationship between problem size and the rep-

resentation of the problem in a neural network, Minskey and Papert saw still needed

to be addressed. Many of the criticisms from the book still hold seven years after

the second edition, but it should be seen and is a very positive contribution to the

mathematical study of neural networks.

Since it is known that a single Perceptron can not perform all pattern recognition

tasks (

[

Minsky and Papert, 1969

]

), it is natural to ask if multi-layer networks can do

better? A multi-layer network consists of an input layer, with one or more hidden

2

Perhaps the most important lesson that Minsky and Papert's book can teach us, can be summed

up in the slogan: \Pattern sets do not form vector spaces".
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Figure 2: A Feedforward Network

layers and an output layer; each layer contains one or more Perceptron like processing

units, for example Figure 2. The outputs of the previous layer are fed forward to the

inputs of the next layer.

In

[

Werbos, 1974; Parker, 1985; Rumelhart and McClelland, 1986

]

an algorithm

often called Back Error Propagation (BEP) is derived which trains feed-forward net-

works to classify certain pattern classes, but this algorithm only works with activation

functions which are continuous in the �rst derivative. One of the most popular acti-

vation functions is the so called sigmoid function (see Figure 3):

f(net) =

1

1 + e

�net

(3)

which tends to +1 as net tends to +1 and 0 as x tends to �1

3

.

Essentially the BEP algorithm calculates the partial derivatives of an error mea-

sure with respect to the individual weight values and uses these equations to minimize

the error. Because the networks are multi-layered, the chain rule has to be used and

hence when the error is calculated for the output layer, this is fed back to the previous

layers. This algorithm is explained in more detail in Chapter 3.

3

Other popular activation functions include tanh(x); also x=(1 + jxj) can be quite useful.
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Figure 3: The sigmoid function

As was stated earlier the starting point of this thesis is to replace the activation

and weight values of feed-forward networks by complex numbers and then by Cli�ord

algebras, before going on to examine what classes of networks result.



Chapter 2

Cli�ord algebras: An

Introduction.

This chapter is provided to serve as an introduction to Cli�ord algebras. The reader

with knowledge of Cli�ord algebras can safely skip this chapter. Where possible the

notation has been kept consistent with

[

Porteous, 1981

]

. Throughout the thesis R is

used to denote the real numbers, C is used to denote the complex numbers and H is

used to denote the quaternions.

Cli�ord algebras are geometric in nature and are constructed from real (only

real vector spaces are considered in this thesis) or complex vector spaces with a

quadratic form. Rather than constructing Cli�ord algebras from quadratic forms

a more elementary approach is used �rst, where the algebra is given an explicit

representation. This representation will be used throughout the thesis. Section 2.2

shows how Cli�ord algebras arise naturally from quadratic form theory.

8
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2.1 A Direct Construction

A p + q dimensional real vector space will be denoted as R

p+q

(the reason for the

notation p+q will become clear later on). A Cli�ord algebra R

p;q

is two things, a 2

p+q

vector space constructed fromR

p+q

and a set of algebraic rules de�ning multiplication

and addition of vectors (when constructing Cli�ord algebras from quadratic form

theory, these rules come out naturally).

A R

p+q

will have a basis of the form:

e

1

; e

2

; e

3

; : : : e

p+q

From this construct a 2

n=p+q

dimensional vector space with basis elements:

fe

A

= e

(h

1

:::h

r

)

jA = (h

1

; : : : ; h

r

) 2 P(N ); 1 � h

1

< : : : < h

r

� ng:

For example the vector space over R

1;1

would have the basis,

e

;

; e

(1)

; e

(2)

e

(1;2)

For notational convenience when no confusion can arise, e

(h

1

;:::h

r

)

will be denoted as

e

h

1

h

2

:::h

r

and e

;

= e

0

.

An element of the Cli�ord algebra can be written as a formal sum,

x =

X

A

x

A

e

A

(4)

with each x

A

2 R. In what follows a summation with a capital letter near the

begining of the alphabet denotes a sum over the basis elements of a Cli�ord algebra.

Thus an element in R

1;1

can be written as,

x = x

0

e

;

+ x

1

e

1

+ x

2

e

2

+ x

12

e

12

(5)
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It is useful to drop the e

;

when writing out formal sums, because e

;

acts as the unit

of the algebra, hence (5) would be written as:

x = x

0

+ x

1

e

1

+ x

2

e

2

+ x

12

e

12

(6)

Addition of two elements of the algebra is de�ned as for vectors:

x+ y =

X

A

(x

A

+ y

A

)e

A

(7)

Multiplication is slightly more complicated. It is done formally element by element

as in expanding brackets subject to the following algebraic rules,

e

2

i

= 1 ; i = 1; : : : ; p (8)

e

2

i

= �1 ; i = p + 1; : : : ; p + q (9)

e

i

e

j

= �e

j

e

i

; i 6= j (10)

with 1 � h

1

< : : : h

r

� n, e

h

1

� e

h

2

� � � e

h

r

= e

h

1

:::h

r

: This can be expressed more

compactly in the following way,

e

A

e

B

= �

A;B

e

A�B

; (11)

where:

�

A;B

= (�1)

#((A\B)nP )

(�1)

p(A;B)

(12)

P stands for the set 1; : : : p; and #X represents the number of elements in the set X,

p(A;B) =

X

j2B

p

0

(A; j); p

0

(A; j) = #fi 2 Aji > jg; (13)

and the sets A;B and A�B(the set di�erence of A and B) are ordered in the pre-

scribed way.
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Thus for example if in R

1;1

x = 3 + 4e

1

+ e

2

y = e

2

+ 2e

12

xy = (3 + 4e

1

+ e

2

)(e

2

+ 2e

12

)

= 3e

2

+ 6e

12

+ 4e

1

e

2

+ 8e

1

e

12

+ e

2

2

+ 2e

2

e

12

By using the reduction rules e

1

e

12

= e

1

e

1

e

2

= e

2

1

e

2

= e

2

and e

2

e

12

= �e

2

e

21

=

�e

2

2

e

1

= e

1

. So

xy = �1 + 2e

1

+ 11e

2

+ 10e

12

(14)

In general a Cli�ord algebra is associative but non-commutative.

2.2 From Quadratic Forms to Cli�ord Algebras

This section is intended to show that Cli�ord algebras arise naturally as mathematical

structures and in particular how the rules (8 - 10) arise. The reader with no interest

in the mathematical origins of Cli�ord algebras can safely skip this section.

An orthogonal space is a real linear vector space X together with a symmetric

inner product (�j�) from X

2

to R which is linear in each component. That is, the

following equations are satis�ed:

(x; y) = (y; x) For all x and y in X (15)

(�x+ �y; z) = �(x; z) + �(y; z) For all �; � 2 R and all x; y; z 2 X (16)

(x; �y + �z) = �(x; y) + �(x; z) For all �; � 2 R and all x; y; z 2 X (17)

These equations abstract the standard inner product on eucledian vector spaces. A

quadratic form Q on X, can be constructed from an inner product by de�ning:

Q(x) = (xjx) (18)
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The inner product is recoverable from the quadratic form by the following equation:

(xjy) =

Q(x) +Q(y)�Q(x� y)

2

(19)

Thus the quadratic form uniquely determines the inner product and vice versa.

A Cli�ord algebra for a vector space X with respect to a quadratic form Q is a

real associative algebra A, such that for each element x of X, the following is true:

x

2

= �Q(x) (20)

(where x

2

is carried out in the algebra A).

There is a theorem in quadratic form theory due to Sylvester (for a proof see

[

Lam,

1973

]

or

[

Bromwich, 1906

]

) that given a real vector space and a quadratic form, it is

possible by change of basis to represent the quadratic form as:

Q(x) = �x

2

1

� x

2

2

� : : : x

2

p

+ x

2

p+1

+ : : : x

2

p+q

(21)

where p; q is called the signature of the Quadratic form, and p + q is the dimension

of X.

Thus to get the equations (8 - 10), we apply the equation (20) to the basis elements

of X:

e

2

i

= �Q(e

i

) = +1 For 0 < i � q (22)

e

2

i

= �Q(e

i

) = �1 For q < i < p+ q (23)

(24)

The anti-commutative law (equation (10)) can be derived from the following propo-

sition.

Proposition 1 For all x; y 2 X then in A,

(xjy) =

�(xy + yx)

2

(25)
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Proof: From the formula (19):

2(xjy) = Q(x) +Q(y) +Q(x� y) = �x

2

� y

2

+ (x� y)

2

= �xy � yx (26)

In particular for distinct basis elements e

i

and e

j

we have:

(e

i

je

j

) = 0 Because e

i

and e

j

are orthogonal

�2(e

i

je

j

) = e

i

e

j

+ e

j

e

i

From the equation (25)

which implies that:

e

i

e

j

+ e

j

e

i

= 0 (27)

2.3 Some familiar Cli�ord algebras

This section is to show that some Cli�ord algebras are certain familiar algebras in

disguise. The real numbers R are trivially isomorphic to the Cli�ord algebras R

0;0

.

2.3.1 Complex numbers

The complex numbers are isomorphic to the Cli�ord algebra R

0;1

. To see this an

element of R

0;1

is written as the formal sum,

x = x

0

+ x

1

e

1

(28)

with the multiplication rule e

2

1

= �1. This is simply the complex numbers with e

1

representing the imaginary unit i.
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2.3.2 The Quaternions.

The quaternion algebra is generated from the basis elements 1; i; j; k with the rela-

tions,

i

2

= j

2

= k

2

= �1;

ij = k = �ji;

jk � i = �kj;

ki = j = �ik;

The quaternions can be seen as isomorphic to R

0;2

with the following isomor-

phisms,

e

0

 ! 1

e

1

 ! i

e

2

 ! j

e

12

 ! k

Some perhaps less familiar examples include the Dirac algebra R

4;1

and the Pauli

algebra R

3;3

.

2.3.3 The algebra

2

R

The algebra

2

R (often denoted as R�R) is de�ned over ordered pairs (x

1

; x

2

) with

addition and multiplication de�ned as:

(x

1

; x

2

) + (y

1

; y

2

) = (x

1

+ y

1

; x

2

+ y

2

)

(x

1

; x

2

) � (y

1

; y

2

) = (x

1

� y

1

; x

2

� y

2

)
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This algebra is isomorphic to the algebra R

1;0

under the isomorphism � given by:

�(�+ �e

1

) 7! (� + �; �� �)

with

�

�1

(a; b) 7!

a+ b

2

+

a� b

2

e

1

As with all Cli�ord algebra isomorphisms both the following equations have to be

checked, for all x; y:

�(x+ y) = �(x) + �(y) (29)

�(xy) = �(x)�(y) (30)

The �rst is easy to check:

�(x

1

+ x

2

e

1

+ y

1

+ y

2

e

1

) = (x

1

+ y

1

+ x

2

+ y

2

; x

1

+ y

1

� x

2

� y

2

) =

�(x

1

+ x

2

e

1

) + �(y

2

+ y

2

e

1

)

The second equation is more complicated:

�((x

1

+ x

2

e

1

)(y

1

+ y

2

e

1

)) = �(x

1

y

1

+ x

1

y

2

e

1

+ x

2

y

1

e

1

+ x

2

y

2

)

= (x

1

y

1

+ x

2

x

2

+ x

1

y

2

+ x

2

y

1

; x

1

y

1

+ x

2

y

2

� x

1

y

2

� x

2

y

1

) = �(x

1

+ x

2

e

1

) � �(y

2

+ y

2

e

1

)

The algebra R

1;0

is called the algebra of hyperbolic complex numbers and can be used

in relativity calculations in physics.

2.3.4 2 by 2 matrices R(2)

R

1;1

is isomorphic to the set of 2 by 2 real valued matrices. This can seen by the

following identi�cation,

e

1

 !

0

B

@

0 1

1 0

1

C

A

e

2

 !

0

B

@

0 �1

1 0

1

C

A

e

12

 !

0

B

@

1 0

0 �1

1

C

A
e

0

 !

0

B

@

1 0

0 1

1

C

A
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This is a basis for R(2) and de�nes the isomorphism of algebras. This can be gener-

alized to show that R

n;n

�

=

R(2

n

)

�

=

End(R

n

).

2.4 Some relationships between Cli�ord algebras.

The general idea of a Cli�ord network is to be able to process multi-dimensional sig-

nals, with fewer Cli�ord nodes instead of many real valued nodes. For some problems

the choice of which Cli�ord algebra to use might be obvious, but in many cases such

an obvious choice might not present itself. The engineer then has to experiment with

di�erent Cli�ord algebras. This section is a short guide to the relationships between

algebras. Knowing the relationships between each algebra saves the engineer from

needless duplication.

Every Cli�ord algebra is either isomorphic to a matrix algebra of R,C, H or a

direct product of such matrix algebras. Not all Cli�ord algebras are distinct, and

there is the so called periodicity theorem which relates higher dimensional Cli�ord

algebras to low dimensional algebras. This section is a short guide to the relationships

between Cli�ord algebras.

All proofs in this section are omitted and can be found in Chapter 13 of

[

Porteous,

1981

]

. So far the following relationships have been demonstrated:

R

0;0

�

=

R

R

0;1

�

=

C

R

0;2

�

=

H

R

n;n

�

=

R(2

n

)

R

1;1

�

=

2

R

In fact all Cli�ord algebras de�ned over the real numbers can be constructed in some
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Table 1: A table of Cli�ord algebras up to dimension 256

R

p;q

p = 0 1 2 3 4 5 6 7 8

q = 0 R C H

2

H H(2) C(4) R(8)

2

R(8) R(16)

1

2

R R(2) C(2) H(2)

2

H(2) H(4) C(8) R(16)

2

R(16)

2 R(2)

2

R(2) R(4) C(4) H(4)

2

H(4) H(8) C(16) R(32)

3 C(2) R(4)

2

R(4) R(8) C(8) H(8)

2

H(8) H(16) C(32)

4 H(2) C(4) R(8)

2

R(8) R(16) C(16) H(16)

2

H(16) H(32)

5

2

H(2) H(4) C(8) R(16)

2

R(16) R(32) C(32) H(32)

2

H(32)

6 H(4)

2

H(4) H(8) C(16) R(32)

2

R(32) R(64) C(64) H(64)

7 C(8) H(8)

2

H(8) H(16) C(32) R(64)

2

R(64) R(128) C(128)

8 R(16) C(16) H(16)

2

H(16) H(32) C(64) R(128)

2

R(128) R(256)

way from R,C or H. Table 1 extends this information. The reader interested in

the explicit construction of the table should again consult

[

Porteous, 1981

]

or

[

Blaine

Lawson Jr. and Michelsohn, 1989

]

.

The most useful fact (again for a proof see

[

Porteous, 1981

]

) is perhaps,

R

p+1;q

�

=

R

q+1;p

(31)

.

To complete the table to arbitrary algebras it is enough to know that,

R

p;q+8

�

=

R

p;q




R

R(16)

�

=

R

p;q

(16): (32)

where 


R

denotes the real tensor product of two algebras. This is the so called

periodicity theorem a proof can be found in

[

Porteous, 1981

]

or

[

Blaine Lawson Jr.

and Michelsohn, 1989

]
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2.5 Multiplication as a linear transform

If as a vector space the algebra R

p;q

is identi�ed as the vector space R

2

p+q

, then given

an element z it is possible to de�ne a transformation:

�

z

(x) = zx (33)

This is a linear transformation since,

�

z

(�x+ y) = ��

z

(x) + �

z

(y) (34)

(with � real). For the quaternions, if we restrict z to be an element of unit length,

these transforms are in fact rotations; this fact will be useful in Chapter 5.

Cli�ord algebras have rich applications in mathematical physics (see

[

Chisholm

and Common, 1986

]

) and can be used to construct the so called spin-groups used

in gauge theory (see

[

Crumeyrolle, 1990

]

). They also bring together many construc-

tions in quadratic form theory and di�erential geometry (see

[

Blaine Lawson Jr. and

Michelsohn, 1989

]

). The author's main motivation for using Cli�ord algebras is that

they provide a natural extension to both the complex and quaternion numbers and

it seems fruitful to investigate the relevant extensions of neural networks.



Chapter 3

The Back Propagation algorithm.

This chapter deals with back error propagation (BEP) for Multi-Layer Feed-Forward

networks de�ned over Cli�ord algebras. The case for real networks has been presented

in

[

Bryson and Ho, 1969; Werbos, 1974; Parker, 1985; Rumelhart and McClelland,

1986

]

. The complex case has been treated by many people, see for instance

[

Little et

al., 1990; Henseler and Braspenning, 1990; Leung and Haykin, 1991; Benvenuto and

Piazza, 1992

]

. The account here of Cli�ord back propagation is a generalization of

Georgiou and Koutsougeras's work

[

Georgiou and Koutsougeras, 1992

]

. The Cli�ord

case was �rst presented in

[

Pearson and Bisset, 1992; Pearson and Bisset, 1994

]

.

Specialising this to the complex domain yields the algorithm desribed in

[

Georgiou

and Koutsougeras, 1992

]

. Because error metrics are dealt with di�erently from most

accounts, the case for a single real valued neuron is presented; extensions to multi-

layer and Cli�ord valued networks are then more easy to perform.

19
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3.1 Feed-forward Networks

This chapter, in fact most of this thesis, is concerned with feed-forward networks

(often called Multi-Layer-Perceptrons or MLPs). A feed-forward network is built up

from a number of layers each consisting of single neurons. There is no restriction

on the activation functions of the neurons, and each neuron could have a di�erent

activation function

1

, but in the networks considered in this chapter, all neurons will

have the same activation function.

A single neuron (see �gure 1) with, n inputs, a weight set !

1

; : : : !

n

, with threshold

value � and an activation function can be seen to be computing the function:

� (x) = f(

n

X

i=1

!

i

x

i

+ �) (35)

with x = (x

i

)

n

i=1

. This function will in general be referred to as the transfer function

of a neuron. A multi-layer network is made of a number of layers of neurons. Each

layer of k neurons each with n inputs

2

can be seen as computing a function from R

n

to R

k

, by taking the vector of transfer equations of each neuron. Then multi-layer

transfer functions can be calculated by composing the transfer functions for each

layer. In general the value !

ij

will refer to the value of the weight between a node

labeled i and a node labeled j

3

. It does not matter how the neurons are labeled as

long as each has its own unique label.

1

This is not strictly true, as, for the Back Error Propagation algorithm to make sense, the

activation functions must be at least continuous in the �rst derivative, hence networks composed

of neurons with step functions as activation functions giving an all or nothing response, cannot be

trained by Back Error Propagation.

2

If each neuron has a di�erent number of inputs, then de�ne n to be the number of inputs for

the neuron with the largest number of inputs and add extra `imaginary' inputs to the other neurons

permanently weighted at zero

3

Most people denote this by w

ji

, but since this thesis does not make any direct use of matrix

mathematics, this notation is more convenient.
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3.2 Choice of Error Metric

Generally, a feed-forward network is trained on �nite pattern set of size p,fX

i

g

p

i=1

and is expected to produce a certain output Y

i

for each input pattern. In

[

Rumelhart

and McClelland, 1986

]

, the following error measure is de�ned, assuming the network

computes the function 	

!

(! the weight set), the error E is given as:

E =

1

2

p

X

i=0

j	

!

(X

i

)� Y

i

j

2

(36)

where j � j is the Euclidean metric. The metric used here is de�ned as:

E =

1

2

Z

x2X

j	

!

(x)��(x)j

2

(37)

where � is the target function the network is required to learn. (37) can be seen as

a generalization of the metric (36) because the metric (37) can deal with continuous

functions as well as point data sets. A point data set can be seen as a function

and hence can be used in equation (37) by taking the set of patterns (X

i

) � P(R

n

)

and using suitable translated and multiplied `bump' functions, such as Gaussians,

to model the data set. Thus for example in one dimension, given the pattern set

f�0:8;�0:2; 0:6g and the expected output set f1; 2; 2g the following function (see

Figure 4):

�(x) = �(x;�0:8) + 2 � �(x;�0:2) + 2 � �(x; 0:6) (38)

with

�(x; c) = e

�(x�c)

2

=0:01

(39)

could be used in equation (37) to model the pattern set. Unfortunately bump func-

tions are needed to represent point data sets in equation (37) otherwise it will not

be de�ned.. The metric (37) brings the treatment of back-propagation inline with

the approximation theorems treated in the next chapter. Further it emphasises the
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Figure 4: Modeling a point data set by translated bump functions

the minimisation of the error should take into account the whole output of the net-

work, considerations such as this togther with thinking about how points could be

interpolated in a problem independent way leads us to the theory of statistical model

selection for neural networks, a subject which is not treated in this thesis.

3.3 Gradient Descent

Once the error metric E has been de�ned, the problem is then, for a network, to �nd

the weight set that yields the minimum value of E. The most popular optimization

technique used in the neural network community is gradient descent. Gradient descent

can either be seen as using the �rst term of the Taylor expansion of E in the variables

!

i

to approximate a solution to the equation E = 0, or as a dynamic system where:

@E

@t

(40)
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is required to be negative so that E will reduce with time (the variable t), so since:

@E

@t

=

X

i

@E

@!

i

@!

i

@t

(41)

setting:

@!

i

@t

= �

@E

@!

i

(42)

will result in E decreasing in time. This system will obviously need some sort of

approximation on a digital system, and setting:

!

t+�t

i

= !

t

i

� �

@E

@!

t

i

(43)

(where !

t

i

represents the value of !

i

at time t) for su�ciently small values of � will

usually result in a stable system where E converges to a minimal value.

3.4 The Single Real Valued Neuron.

Consider a single real valued neuron with n-inputs and one output. The transfer

function 	 : R

n

!R is de�ned by:

	 = f(x � !) (44)

with x and ! vectors in R

n

being the input and weight vectors respectively.

It is required to calculate the partial derivatives:

@E

@!

i

(45)

where !

i

represents the i'th part of the vector !.

Then,

@E

@!

i

=

1

2

Z

x2X

@

@!

i

j	� �j

2

(46)
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De�ne,

net = x � ! =

X

i

x

i

w

i

(47)

and,

� = j	� �j

2

(48)

Thus,

@E

@!

i

=

Z

x2X

@�

@!

i

Then using the chain rule,

@�

@w

i

=

@�

@net

@net

@w

i

(49)

Since net =

P

x

i

!

i

@net

@!

i

= x

i

(50)

Then again using the chain rule,

@�

@net

=

@�

@	

@	

@net

(51)

@	

@net

= f

0

(net); (52)

@�

@	

=

@

@	

j	� �j

2

(53)

Rewriting j	��j

2

as (	� �)

2

,

@�

@	

= (	� �) (54)

So bringing all this together,

@E

@!

i

=

Z

x2X

((	� �)f

0

(net)x

i

) (55)

Neurons with n input values and a single threshold value calculate the function:

f(! � x+ �) (56)
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and can be seen as neurons with n + 1 inputs with weight vector (!

1

; !

2

; : : : !

n

; �)

with the extra input clamped to 1.

3.5 BEP for a multi-layer feed-forward network.

Consider a multi-layer network with a transfer function,

	 : R

n

!R

m

Each node will be assigned a unique number j and !

ij

represents the weight on the

connection from node i to node j. Again it is required to �nd,

@E

@!

ij

=

1

2

Z

x2X

@

@!

ij

j	� �j

2

De�ne � = j	� �j

2

as before.

The �rst steps are the same as for the previous case,

@�

@!

ij

=

@�

@net

j

@net

j

@!

ij

(57)

@net

j

@!

ij

= o

i

(58)

where o

i

represents the output of the i'th neuron.

@�

@net

j

=

@�

@o

j

@o

j

@net

j

(59)

again,

@o

j

@net

j

= f

0

(net

j

) (60)

If o

j

is an output neuron then,

@�

@o

j

= (	

j

� �

j

) (61)



CHAPTER 3. THE BACK PROPAGATION ALGORITHM. 26

where 	

j

represents the j'th component of 	.

When the unit is hidden a further application of the chain rule is required,

@�

@o

j

=

X

k

@�

@net

k

@net

k

@o

j

=

X

k

@�

@net

k

!

jk

(62)

where k is summing over all the nodes in the next layer in the feed-forward network.

So de�ne for hidden units j,

�

j

= f

0

(net

j

)

X

k

�

k

!

jk

(63)

and for output units j,

�

j

= (	

j

� �

j

)f

0

(net

j

) (64)

Thus,

@E

@!

ij

=

Z

x2X

�

j

o

i

(65)

3.6 Cli�ord Back error Propagation

Some care has to be taken when choosing a norm for a Cli�ord algebra. In what

follows the norm j � j will be used, where,

jxj =

 

X

A

[x]

2

A

!

1

2

(66)

where [x]

A

represents the A'th part of the Cli�ord number x.

A feed-forward Cli�ord network with n inputs and m outputs will have a transfer

function,

	 : (R

p;q

)

n

! (R

p;q

)

m

(67)
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Where (R

p;q

)

n

is the n-dimensional left module over the Cli�ord algebra R

p;q

4

.

Again some sort of error metric has to be de�ned. The basic form is the same,

E =

1

2

Z

x2X

k	� �k

2

(68)

where X is some compact subset of the Cli�ord module (R

p;q

)

n

with the product

topology derived from the norm (66).

It is convenient from the point of view of the derivation of the BEP equations to

de�ne k � k as,

kxk

2

=

k

X

i=1

j(x)

i

j

2

(69)

where (x)

i

is a Cli�ord number representing the i'th part of x in the m-dimensional

Cli�ord module over R

p;q

.

Assume that each node in the network has the same Cli�ord valued activation

function f : R

p;q

! R

p;q

.

The output o

j

of the j'th neuron can be written as,

o

j

= f(net

j

) =

X

A

u

j

A

e

A

(70)

With u

j

A

a function from R

p;q

to R and

net

j

=

X

l

!

lj

o

l

(71)

where l sums over all the inputs to neuron j.

It is important to notice since R

p;q

is in general non-commutative the order of

multiplication in the above equation is important, although it will be shown later (in

Chapter 4) that networks with left weight multiplication are equivalent to networks

with right multiplication.

4

If the reader is not familiar with the concept of a module, it is enough to view these Cli�ord

modules as weaker forms of n dimensional vectors with Cli�ord valued scalars instead of real valued

scalars.
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In the real case E depends on the number of weights in the network. In the

Cli�ord case E depends not only on all the weights but on the components of each

of the weights. Again de�ne � = k	� �k

2

. Then:

@E

@[!

ij

]

A

=

1

2

Z

x2X

@�

@[!

ij

]

A

(72)

Using the chain rule,

@�

@[!

ij

]

A

=

X

B

 

@�

@u

j

B

 

X

C

@u

j

B

@[net

j

]

C

@[net

j

]

C

@[!

ij

]

A

!!

(73)

The partial derivative

@[net

j

]

C

@[!

ij

]

A

(74)

needs a bit of care. Using equation 71:

@[net

j

]

C

@[!

ij

]

A

=

X

l

@[!

lj

x

l

]

C

@[!

ij

]

A

=

@[!

ij

o

i

]

C

@[!

ij

]

A

(75)

Then using the fact that:

!

ij

o

i

=

X

D;E

[!

ij

]

D

[o

i

]

E

e

D

e

E

(76)

@[!

ij

o

i

]

C

@[!

ij

]

A

=

@

�

P

D;E

[!

ij

]

D

[o

i

]

E

�

A;E

�

@[!

ij

]

A

with � de�ned as in (12) and D;E summing over all the elements such that e

D

e

E

=

�e

C

. Since the denominator of the partial derivative only refers to [!

ij

]

A

the partial

derivative will equal:

@[!

ij

o

i

]

C

@[!

ij

]

A

=

@[!

ij

]

A

[o

i

]

E

�

A;E

@[!

ij

]

A

= �

A;E

[o

i

]

E

with e

A

e

E

= �e

C

(77)
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For example in the algebra R

2;0

the table of derivatives would look like,

@[x]

B

@[!

jl

]

A

B = 0 1 2 12

A = 0 [x

jl

]

0

[x

jl

]

1

[x

jl

]

2

[x

jl

]

12

1 [x

jl

]

1

[x

jl

]

0

[x

jl

]

12

[x

jl

]

2

2 [x

jl

]

2

�[x

jl

]

12

[x

jl

]

0

�[x

jl

]

1

12 �[x

jl

]

12

[x

jl

]

2

�[x

jl

]

1

[x

jl

]

0

(78)

The error derivative is now quite easy to calculate. If j is an output neuron then,

@�

@u

j

A

=

@

@u

j

A

k	� �k

@

@u

j

A

jo

j

� �

2

j

j

2

= 2[o

j

� �

j

]

A

If j is not an output unit then the chain rule has to be used again.

@�

@u

j

A

=

X

k

@�

@u

k

A

0

@

X

B;C

@u

k

B

@[net

k

]

C

@[net

k

]

C

@u

j

A

1

A

(79)

with k running over the neurons that receive input from neuron j.

The term

@[net

k

]

C

@[u

j

]

A

is calculated in a similar manner to (77),

@[net

k

]

C

@u

j

A

= �

A;E

[!

jk

]

D

(80)

where �

A;E

e

A

e

E

= e

C

.

The derivatives:

@u

k

B

@[x

k

]

C

play the same rôle as f

0

(net

j

) does in the real-valued case and depends on the acti-

vation function used; this will be discussed in the next section.
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Bringing this all together we have,

@E

@[!

ij

]

A

=

1

2

Z

x2X

X

B

�

B

j

 

X

C

@u

j

B

@[net

j

]

C

�

A;E

[o

k

]

E

!

(81)

with e

A

e

E

= �e

C

and

�

B

j

=

@k	� �k

2

@u

j

B

= 2[o

j

� �

j

]

B

(82)

if j is an output neuron.

If j is not an output unit then the chain rule has to be used again.

�

B

j

=

X

k

�

B

k

0

@

X

B;C

@u

k

B

@[net

k

]

C

�

A;D

[!

jk

]

D

1

A

(83)

with k running over the neurons that receive input from neuron j and e

A

e

D

= e

C

.

3.7 Choice of activation function

So far nothing has been said about the choice of activation functions used in networks.

The most widely used class of activation functions are the so called semi-linear func-

tions. A semi-linear function f(x) is a continuous function that satis�es the following

condition:

lim

x!1

f(x) = 1 lim

x!�1

f(x) = �1 (84)

Typically the second condition is replaced by the condition:

lim

x!�1

f(x) = 0

Typical examples include the sigmoid function:

f(x) =

1

1 + e

�x

(85)
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and the tanh function:

f(x) = tanh(x) (86)

The reason for this choice of functions comes from two observations. First, lin-

ear functions are not satisfactory since: any multi-layer network composed of linear

functions is equivalent to a single layer network; and further, many decision problems

are not linearly separable. The second reason is that traditionally the �rst neural

networks (see for instance McCulloch and Pitts

[

McCulloch and Pitts, 1943

]

) had an

all or nothing response; typically neurons had step valued activation function:

f(x) =

8

>

<

>

:

1 if x > 0

0 otherwise

(87)

These functions do indeed provide multi-layer networks with more power than a single

layer network. Indeed it was shown by Minsky and Papert

[

Minsky and Papert, 1969

]

that single layer networks with step functions cannot solve some non-trivial decision

problems. Also because the step functions are non-linear and are integer valued this

turns training into an integer programming problem, which is known to be NP-hard



CHAPTER 3. THE BACK PROPAGATION ALGORITHM. 32

(see (

[

Garey and Johnson, 1979

]

) (although there might exist individual cases solvable

in polynomial time). Further it limits the networks to functions de�ned on binary

data.

Semi-linear functions provide a compromise between linear functions and step

functions. From the observation that f(�x) for large values of � acts like a step

functions or more correctly the function:

f(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if x > 0

1

2

if x = 0

0 if x < 0

(88)

and for values of � close to zero, f(�x) acts like a linear function. Indeed Sontag

[

Sontag, 1992b

]

has shown that networks composed of sigmoid functions are better

at binary decision problems than networks with only step functions, for exactly the

reasons stated above (that sigmoids can approximate either linear or step valued

activation functions).

Further, it has been shown by many authors (see for instance

[

Cybenko, 1989;

Hornick et al., 1989

]

) that a network with one hidden layer with sigmoid activation

function, is able to approximate any continuous function de�ned on a compact subset

(providing a su�cient number of neurons are present).

3.7.1 Complex activation functions.

It might be naively assumed that the rich �eld of complex analysis is going to provide a

suitable class of activation functions. There exists a complex extension of the sigmoid

function:

f(z) =

1

1 + e

�z
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where e

�z

is the complex exponential function. This function is analytic (in the sense

of complex analysis) but it is not bounded. Any function that is complex analytic

and bounded is necessarily constant by Liouville's theorem (see any standard text on

complex analysis, such as

[

Priestley, 1990

]

, for a proof).

The most important characteristic of a complex activation function is that it

should be bounded and nonlinear in its components, and the partial derivatives should

exist and be continuous. The partial derivatives must also be such that learning

always takes place in the presence of non-zero error. For a fuller discussion see

[

Georgiou and Koutsougeras, 1992

]

.

In

[

Georgiou and Koutsougeras, 1992

]

a simple complex activation is proposed:

f(z) =

z

c+

1

r

jzj

(89)

This activation function has been used successfully in some simple applications,

for instance the complex encoder decoder problem.

3.7.2 The Cli�ord case

The simple activation function proposed above extends to the Cli�ord case. The

partial derivatives are easy to work out (using the notation of the previous section):

@u

A

@[x]

B

=

8

>

>

<

>

>

:

�

r[x]

A

[x]

B

(c+

1

r

jxj)

2

rjxj

if jxj > 0

0 if jxj = 0

(90)

if A 6= B and if A = B then,

@u

A

@[x]

B

=

8

>

<

>

:

r(jxj

2

�[x]

2

A

+crjxj)

jxj(cr+jxj)

2

if jxj 6= 0

1

c

if jxj = 0:

(91)

the norm being the Cli�ord norm de�ned in the previous section.
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The activation function in both the Cli�ord and the complex case can be seen

to be mapping a vector in R

2

n

(the vector space which carries the Cli�ord algebra)

inside the unit sphere keeping the direction constant, but mapping the norm of the

vectors jxj to jxj=(1 + jxj).

3.8 Experimental results

The encoder-decoder problem is often used to test new techniques in back error prop-

agation. While it is not a formal benchmark it is useful to get a feel of how new

algorithms can perform. Essentially for a network to solve the encoder-decoder prob-

lem a training set is presented to the network which forces the hidden units to encode

the training set in some way. For instance in the real case with a 3-2-3 network if

the network is trained on the set of vectors (1; 0; 0) , (0; 1; 0), (0; 0; 1) then then two

hidden units will learn a binary coding of the input signals.

The results presented in this section show how a Cli�ord network is able to solve

this encoder-decoder problem for multidimensional patterns.

Results are given for di�erent algebras and di�erent network con�gurations. In

each case the system successfully encodes and decodes the input patterns providing

a well separated response. It is also interesting to note that the epoch count is

approximately the same as would be expected for a similar problem on a conventional

BEP network (wall clock time is obviously increased due to the extra complexity in the

individual arithmetic operations). This preliminary test shows that Cli�ord networks

are able to learn simple tasks and con�rms the convergent operation of the learning

algorithm.
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Table 2: Table of outputs from a trained 3-2-3 encoder-decoder R

0;2

.

Pattern 0 (1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

Output (0.82741,0.00180,-0.00034,0.00075)

(-0.00896,-0.01346,0.03117,-0.00653)

(-0.02300,0.00890,-0.00371,-0.00493)

Pattern 1 (0.00000,0.00000,0.00000,0.00000)

(1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

Output (0.01103,0.02384,-0.00875,-0.00106)

(0.82393,-0.00412,-0.00112,-0.00050)

(-0.02084,0.00501,-0.00617,0.00553)

Pattern 2 (0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,-1.00000)

Output (0.01646,0.03726,-0.02079,-0.00340)

(-0.01691,-0.02265,0.03517,-0.00731)

(-0.00301,0.00194,-0.00061,-0.82819)
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Table 3: Table of input-output for a trained 4-2-4 encoder-decoder over the algebra

R

0;2

.

Pattern 0 (1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.0 0000,0.00000,0.00000)

Output (0.89258,-0.00044,0.00001,0.00025)

(0.00020,-0.00002,-0.00002,-0.00004)

(0.00018,-0.00004,0.00012,-0.00015)

(-0 .00000,-0.00000,-0.00000,0.00000)

Pattern 1 (0.00000,0.00000,0.00000,0.00000)

(1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.0 0000,0.00000,0.00000)

Output (0.00020,0.00006,-0.00006,-0.00005)

(0.89238,0.00023,0.00064,0.00041)

(0.00018,0.00001,-0.00019,-0.00002)

(-0.0 0000,-0.00000,0.00000,0.00000)

Pattern 2 (0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(1.00000,0.00000,0.00000,0.00000)

(0.00000,0.0 0000,0.00000,0.00000)

Output (0.00019,0.00007,0.00005,0.00001)

(0.00019,-0.00006,-0.00005,-0.00002)

(0.89278,0.00014,0.00065,0.00152)

(0.000 00,0.00000,0.00000,-0.00000)
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Table 4: Table of input-ouput relationships for a trained 4-2-4 encoder-decoder the

algebra R

1;1

.

Pattern 0 (1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.0 0000,0.00000,0.00000)

Output (0.79505,0.00213,-0.03843,0.00260)

(0.60009,0.00017,-0.07628,0.00026)

(-0.51896,-0.00026,0.17408,-0.00081)

(0.0 0000,0.00000,-0.00000,-0.00000)

Pattern 1 (0.00000,0.00000,0.00000,0.00000)

(1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.0 0000,0.00000,0.00000)

Output (0.49496,0.00049,0.28122,-0.00068)

(-0.46598,-0.05589,0.07024,0.00565)

(0.78560,0.00071,-0.15706,0.00044)

(0.00 000,0.00000,-0.00000,0.00000)

Pattern 2 (0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(1.00000,0.00000,0.00000,0.00000)

(0.00000,0.0 0000,0.00000,0.00000)

Output (-0.42091,0.00011,-0.31815,0.00012)

(0.78305,-0.00003,0.13566,-0.00022)

(0.57565,0.00087,0.00391,0.00224)

(-0.0 0000,-0.00000,0.00000,-0.00000)
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Table 5: Table of input and output of a 3-2-3 encoder over the algebra R

0;3

with

graph of rms error.

Pattern 0 (1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)

(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)

(0.00,0.00,0.00,0.00,0.00,0.00,0 .00,0.00)

Output (0.81,-0.00,-0.00,-0.00,0.00,-0.00,0.00,0.00)

(0.00,0.00,0.00,-0.00,-0.00,0.00,0.00,0.00)

(-0.00,0.00,-0.00,-0.00, -0.00,-0.00,0.00,0.00)

Pattern 1 (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)

(1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)

(0.00,0.00,0.00,0.00,0.00,0.00,0 .00,0.00)

Output (0.00,0.00,0.00,0.00,-0.00,0.00,0.00,0.00)

(0.81,0.00,-0.00,0.00,0.00,-0.00,-0.00,-0.00)

(-0.00,-0.00,0.00,-0.00,0 .00,0.00,0.00,0.00)

Pattern 2 (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)

(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)

(0.00,0.00,0.00,0.00,0.00,0.00,0 .00,1.00)

Output (0.00,0.00,-0.00,0.00,0.00,0.00,-0.00,-0.00)

(0.00,-0.00,-0.00,0.00,0.00,0.00,-0.00,-0.00)

(0.00,-0.00,-0.00,0.00, -0.00,0.00,-0.00,0.81)
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Figure 5: Graph of RMS error for a 3-2-3 encoder-decoder problem over the algebra
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Chapter 4

Some Theoretical Results

4.1 Introduction

There are essentially two ways of analyzing feed-forward networks. The �rst views a

feed-forward network as a pattern classi�er and uses statistical techniques to assess

the performance of a network; see

[

MacKay, 1992

]

. The second treats a feed-forward

network as essentially a function approximator, that is, given a network with n inputs

and m outputs and a set of weight values !

ij

the network can be seen to be computing

a function:

�

!

: R

n

! R

m

(92)

In the Cli�ord case the real numbers R are replaced by an arbitrary Cli�ord algebra

R

p;q

. The sort of question then asked is how well can a given class of networks

approximate classes of functions? Various theorems have been proved

[

Cybenko, 1989;

Hornick et al., 1989; Ito, 1991; K _urkov�a, 1991

]

which show that feed-forward networks

with one hidden layer are su�cient to approximate continuous functions. Further

results by Sontag

[

Sontag, 1992a

]

show that in certain problems two hidden layers are

41
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required; this is because the function trying to be approximated is too discontinuous

to be approximated by a single hidden layer network.

This chapter �rst extends Cybenko's

[

Cybenko, 1989

]

proof, that real valued net-

works with a single hidden layer can approximate any bounded continuous function

with compact support, to networks over an arbitrary Euclidean Cli�ord algebra (that

is algebras with signature 0; q). The second part of the chapter looks at how Cli�ord

networks represent functions: �rst it is shown that although Cli�ord networks repre-

sent the same class of functions as real valued networks, they do it in a di�erent way

and secondly it is shown that as for real networks, Cli�ord networks with identical

input output behaviour are identical in structure modulo certain symmetry relations

on the hidden units.

4.2 Talking about Approximations: A Crash course

in metric space theory

Mathematically some care has to be taken with the notion of approximation. What

is required is some function E which given two functions �, gives:

E(�; ) = 0 if and only if � =  (93)

and E(�; ) be close to zero if � is `close' to  . Formalizing these requirements leads

to the notion of a metric space (see

[

Copson, 1988

]

for a good introduction), which is

de�ned as a set X together with a distance metric d : X !R satisfying the following

axioms:

d(x; x) = 0 for all x 2 X (94)

d(x; y) = d(y; x) for all x; y 2 X (95)



CHAPTER 4. SOME THEORETICAL RESULTS 43

d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X (96)

.

Various choices of metrics are available for function spaces, �rst the metric of

uniform convergence:

E(�; ) = supfj�(x)�  (x)j kx 2 Xg (97)

where X is a subset on which both � and  are de�ned, more formallyX � dom(�)\

dom( ). To guarantee this value is de�ned extra conditions either have to be imposed

on X or on � and  . If X is stipulated to be compact (i.e. X is �nite) or extra

conditions must be imposed on the asymptotic behavior of the functions � and  as

both tend to in�nity then in both cases the equation (97) will be well de�ned. In this

thesis only compactness assumptions will be needed. Uniform convergence metrics

are useful where networks are required to perform equally well over the whole of the

input space.

Second there are the L

p

metrics which are much easier to deal with mathematically

and are de�ned as:

�

p;�

(�; ) =

�

Z

j��  j

p

d�

�

1

p

(98)

Again extra conditions have to be stipulated to make the metric always well de�ned;

similar to the conditions for the metric (97) above, see

[

Hornick, 1991

]

for details.

In order to ask the question whether a class of networks can approximate a class

of continuous functions, the concept of density is needed. Given a class of functions

C and a function norm j � j a subset S is said to be dense in C if the closure of S

is the whole of C. What this means in practical terms for neural networks is S is

dense in C if given a function f 2 C and an arbitrary � > 0 there exists a g 2 S

such that jf � gj < �. Many theorems prove that Neural networks are universal



CHAPTER 4. SOME THEORETICAL RESULTS 44

approximators by showing the the function space of Neural networks is dense in an

appropriate function space.

4.3 Cli�ord modules

This section deals with a generalization of vector spaces, the theory of Modules over

rings: speci�cally Cli�ord modules. Various theorems are stated which are gener-

alizations of traditional theorems such as the Hahn-Banach theorem and the Riesz

representation theorem

[

Rudin, 1966; Rudin, 1973

]

; all proofs are omitted, but these

can be found in

[

Brackx et al., 1982

]

.

From now on the convention adopted in

[

Brackx et al., 1982

]

is used, where a

Euclidean Cli�ord algebra is referred as an A algebra. A module is a generalization

of a vector space, where the set of coe�cients come from some ring instead of a �eld,

thus modules have a di�erent geometrical structure from vector spaces.

De�nition 1 A unitary left A-module X

(l)

is an Abelian group X

(l)

;+ and an op-

eration (�; f) ! �f from A �X

(l)

into X

(l)

s.t. for all �; � 2 A and f; g 2 X

(l)

the

following hold:

(� + �)f = �f + �f (99)

(��)f = �(�f) (100)

�(f + g) = �f + �g (101)

e

0

f = f (102)

We have already met an example of a Cli�ord Module in Chapter 3, the space R

n

p;q

.
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De�nition 2 Let X

(l)

be a unitary left A-module, then a function p : X

(l)

! R is

said to be a proper semi-norm if there exists a constant C

0

� 0 s.t. for all � 2 A and

f; g 2 X

(l)

the following conditions are satis�ed:

p(f + g) � p(f) + p(g) (103)

p(�f) � C

0

j�jp(f) (104)

p(�f) = j�jp(f) if � 2 R (105)

If p(f) = 0 then f = 0 (106)

De�nition 3 Given a module X

(l)

the algebraic dual X

�alg

(l)

is de�ned to be the set

of left A-linear functionals from X

(l)

into A.

That is the set of functionals T : X

(l)

! A s.t.

T (�f + g) = �T (f) + T (g) (107)

f; g 2 X

(l)

and � 2 A.

De�nition 4 The set of bounded T functionals with respect to a semi-norm p is

denoted X

�

(l)

� X

�alg

(l)

. Explicitly for all functionals T and for all f 2 X

(l)

:

jT (f)j � Cp(f) (108)

for some real constant C.

The following theorem is a a corollary to a Hahn-Banach type theorem for Cli�ord

modules for details and proof see sections 2.10-2.11 in

[

Brackx et al., 1982

]

.

Theorem 1 Let X

(l)

be a unitary left A-module provided with a semi norm p and let

Y

(l)

be a submodule of X

(l)

. Then Y

(l)

is dense in X

(l)

if and only if for each T 2 X

�

(l)

such that T jY

(l)

= 0

1

we have T = 0 on X

(l)

.

1

T restricted to Y

(l)

equal to zero
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Now a useful class of function spaces is introduced.

De�nition 5 The space C

0

(K;A). Let K be a compact subset of R

r

(r � 1). Then

C

0

(K;A) stands for the unitary bi-A-module of A-valued continuous functions on K.

This can be thought of as a product of classical real valued functions i.e.:

C

0

(K;A) = �

A

C

0

(A;R)e

A

(109)

where A runs over all the basis elements in the Cli�ord algebra in question. A norm

can be de�ned for each f 2 C

0

(K;A):

jjf jj = sup

x2K

jf(x)j (110)

This norm is equivalent to the product norm taken from (109).

De�nition 6 Given an open set 
 � R

n

and a sequence (�

B

)

B

of real valued mea-

sures on 
. Then for any open set in 
 an A valued measure can be de�ned:

�(I) =

X

B

�

B

(I)e

B

(111)

De�nition 7 An A-valued function:

f =

X

A

f

a

e

A

(112)

is said to be �-integrable in 
 if for all A and B ranging over the basis elements of

A each f

A

is �

B

integrable.

De�nition 8 For any �-integrable function f de�ne

2

:

Z




f(x)d� =

X

A;B

e

A

e

B

Z




f

A

(x)d�

B

(113)

2

These are Cli�ord valued integrals and hence are di�erent from the integrals used, in Chapter

3, to de�ne the error metrics
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A Riesz representation type theorem can be obtained.

Theorem 2 Let T be a bounded A valued function in C

0

(l)

(K;A). Then there exists

a unique A valued measure � with support contained in K such that for all f 2

C

0

(l)

(K;A):

T (f) =

Z

K

f(x)d� (114)

For a proof again see

[

Brackx et al., 1982

]

.

4.4 The Approximation result

A feed-forward network with one output neuron and N inputs units and K hidden

units computes a function:

�(x) =

K

X

j=1

�

j

f(

N

X

i=1

y

ij

x

i

+ �

j

) (115)

with f the activation function x

i

the i'th input, y

ij

weight values for the connection

between the input layer and the hidden layer and �

j

the weights from the hidden

layer to the output node.

�(x) can be seen as a function from R

N2

n

(where 2

n

is the dimension of A) to A

and hence a member of C

0

(l)

(R

N2

n

;A). This is why the material of the last section

was relevant. The next de�nition is important. What is shown is that all activation

functions satisfying the de�nition, when used in feed-forward networks, are universal

approximators. Then to complete the proof all that is needed to show is that the

activation functions considered in Chapter 3 satisfy the de�nition.

De�nition 9 An activation function f (considered as a function from R

N2

n

to A)

is said to be discriminating if for any given Cli�ord valued measure � with support
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I

N2

n

if:

Z

I

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) = 0 (116)

for all y

i

; � 2 R

0;n

implies �(x) = 0.

Theorem 3 Let f be any continuous discriminating functions. Then �nite sums of

the form:

�(x) =

K

X

j=1

�

j

f(

N

X

i=1

y

ij

x

i

+ �

j

) (117)

are dense in C

0

(l)

(I

N2

n

;A)

Proof: This proof is essentially a modi�cation of Cybenko's Theorem 1 in

[

Cybenko,

1989

]

using the theory of Cli�ord modules in the last section.

Let S be the function space generated by sums of the form (117). Assume that

the closure of S is not all of C

0

(l)

(I

N2

n

;A); denote the closure of S by R. By the

Hahn-Banach type theorem 1 there is a bounded linear functional T on C

0

(l)

(I

N2

n

;A),

with T 6= 0 but T (R) = T (S) = 0. By Theorem 2 this bounded linear functional is

of the form:

T (h) =

Z

I

N

2

n

h(x)�(x) (118)

for some measure � and h 2 C

0

(l)

(I

k2

n

;A). In particular since f 2 C

0

(l)

(I

k2

n

;A) is in

R, for any y

i

:

T (f) =

Z

k2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) = 0 (119)

Since f is discriminating this implies � = 0 contradicting our assumption hence S

must be dense in C

0

(l)

(I

N2

n

;A).

So to prove that the class of feed-forward networks considered in Chapter 3 are

universal approximators, we have to show that functions of the form:

f(x) =

x

1 + jxj

(120)
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are discriminating.

Theorem 4

f(x) =

x

1 + jxj

(121)

is discriminatory.

Proof: A function f(x) is discriminatory , if:

Z

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) = 0 (122)

for all y

i

implies that �(x) = 0. This is equivalent to saying that:

Z

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) =

X

A;B

e

A

e

B

Z

N2

n

f

A

(

N

X

i=1

y

i

x

i

+ �)d�

B

(x) = 0 (123)

for all y

i

.

De�ne 


A

(x) : I

N2

n

!R to be the limit of:




A

(x) = lim

�!1

f

A

(�x) (124)

(where �x is a Cli�ord multiplication, with � a real number). So

f

A

(�x) =

[�z]

A

1 + j�zj

=

�[z]

A

1 + �jzj

(125)

So




A

(z) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if [z]

A

> 0

0 if [z]

A

= 0

�1 if [z]

A

< 0

(126)

In our case:




A

(

N

X

i=1

y

i

x

i

+ �) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if [

P

N

i=1

y

i

x

i

+ �]

A

> 0

0 if [

P

N

i=1

y

i

x

i

+ �]

A

= 0

�1 if [

P

N

i=1

y

i

x

i

+ �]

A

< 0

(127)
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The sets de�ned by [

P

N

i=1

y

i

x

i

+ �]

A

= 0 are hyper-planes, since [

P

N

i=1

y

i

x

i

+ �]

A

is

just a set of linear equations in the components of x

i

.

The rest of the proof is almost verbatim from Lemma 1 of Cybenko

[

Cybenko,

1989

]

. So let �

A

y;�

� I

2

n

be the hyper-plane de�ned by:

(

xj

"

N

X

i=1

y

i

x

i

+ �

#

A

= 0

)

(128)

and let H

A

y;�

be the half space de�ned by:

fxj[

N

X

i=1

y

i

x

i

+ �]

A

> 0g (129)

Then by the Lebesgue bounded convergence theorem we have:

0 =

Z

I

N2

n

f

A

(�x)d�

B

(x) =

Z

I

N2

n




A

(x)d�

B

(x) = �(H

A

y;�

) (130)

Now if �

B

were always a positive measure the result would be trivial, but since �

B

is an arbitrary measure the result is harder (since positive bits of � might cancel out

negative bits of �

B

).

Fix the y

i

's and de�ne:

F

A

(h) =

Z

I

N2

n

h([

K

X

i=1

y

i

x

i

]

A

) (131)

for some bounded �

B

measurable function h : R ! R. F

A

is a bounded functional

on L

1

(R).

Let h be the indicator function on the interval [�

A

;1), then:

F (h) =

Z

k2

n

h([

K

X

i=1

y

i

x

i

]

A

) = �

B

(�

A

y;�

) + �(H

A

y;�

) (132)

Similarly F (h) = 0. If h is the indicator of any open interval, by linearity F (h) = 0

and hence for any simple function. Since the simple functions are dense in L

1

(R) ,

F = 0.
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In particular given the two functions s(x) = sin(x), c(x) = cos(x) :

F

A

(s(x) + ic(x)) =

Z

I

k2

n

s([

K

X

k=1

y

k

x

k

]

A

) + ic([

K

X

k=1

y

k

x

k

]

A

)d�

B

=

Z

I

k2

n

exp(i[

K

X

k=1

y

k

x

k

]

A

)d�

B

= 0 (133)

for all y

k

. Therefore the Fourier transform of �

B

is zero, hence �

B

must be zero and

hence f is discriminatory.

One important thing to point out with this proof is that the order of weight

multiplication is irrelevant; the whole proof could be repeated with networks where

multiplication was done on the right. Thus it does not matter theoretically which sort

of nets (left or right weight multiplication) is used for a particular problem. Practically

not much is known, but in all the examples the author has tried, the performance of

the net does not seem to be a�ected by the order of weight multiplication.

4.5 Cli�ords into Reals won't go

People are often confused by Cli�ord networks. Once they see that the weight and

activation values are multi-dimensional, they ask: well, what's the di�erence between

a network with x inputs, y hidden neurons and z outputs and a network with x2

n

inputs y2

n

hidden units and z2

n

outputs (where 2

n

is the dimension of the algebra in

question)?

Although real and Cli�ord networks can represent the same class of functions,

there is not a direct and simple mapping between them. To make things simpler the

complex case is concentrated on; these observations scale up to any Cli�ord algebra

without di�culty.
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Consider a single complex neuron with one input and no threshold:

?>=<89:;

OO

f(!z)

z

OO

!

It might be thought that this is translatable into an ordinary real valued network

like this:

R

?>=<89:;

OO

I

?>=<89:;

OO

Or Even R

?>=<89:;

OO

I

?>=<89:;

OO

x

1

OO

!

1

x

2

OO

!

2

x

1

OO

!

1

>>

!

2

}

}

}

}

}

}

}

}

x

2

OO

!

3

``

!

4

A

A

A

A

A

A

A

A

This is not so, for writing out the equations for a single neuron we have:

f(!z) =

!z

1 + j!zj

=

(w

1

+ w

2

i)(z

1

+ z

2

i)

1 + jwzj

=

(!

1

z

1

� !

2

z

2

)

1 + j!zj

+ i

(!

2

z

1

+ !

1

z

2

)

1 + j!zj

(134)

This indicates the second diagram is more appropriate, but each term in equation

(134) has 1+ j!zj, which involves weight values from both neurons and hence implies

that there is some form of cross linkage between neurons:

R

?>=<89:;

OO

I

?>=<89:;

OO

x

1

OO

88

q

q

q

q

q

q

q

q

q

q

q

q

q

x

2

ffM

M

M

M

M

M

M

M

M

M

M

M

M

OO

where the linkage terms are supplying the extra contributing factors to make up the

denominators.

This shows that although Cli�ord networks have the same computational power

as real-valued networks, they compute their results in di�erent ways.
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4.6 Function and form in a Cli�ord network

This section deals with a result which at �rst seems quite surprising. It turns out

that given a feed-forward network with one hidden layer which implements a function

�, modulo certain conditions and transforms of the weight space, that is the only

network which will implement that function �.

The result for a single real valued neuron is rather easy to show. A neuron with no

threshold value, one input weight ! and one output weight � will compute function:

�f(!x) (135)

where f is the activation of the neuron. Given another neuron �

0

f(!

0

x) if f is assumed

to be one to one and odd (for instance f(x) = tanh(x)), and certain non-degeneracy

conditions are assumed (for our purposes neither ! or � are zero) then for �f(!x) and

�

0

f(!

0

x) to have the same i/o behaviour (equivalent output values for each input value

x) only the following weight assignments for the second neuron will yield identical

behaviour:

! = !

0

� = �

0

(136)

! = �!

0

� = ��

0

(137)

(138)

Extending the result to a network with m hidden units:

?>=<89:; ?>=<89:;

: : : : : :

?>=<89:;

1

?>=<89:;

__?

?

?

?

?

?

?

OO

??

~

~

~

~

~

~

~

~

~

77

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

44

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

: : :

ggO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

__@

@

@

@

@

@

@

@

@

OO >>

~

~

~

~

~

~

~

~

~

~

~

77

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

m

?>=<89:;

jjU

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

ggP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

``
@

@

@

@

@

@

@

@

@

OO

??

~

~

~

~

~

~

~

?>=<89:;

??

�

�

�

�

�

�

�

77

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

44

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

?>=<89:;

OO

??

~

~

~

~

~

~

~

~

~

77

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

: : :

__@

@

@

@

@

@

@

@

@

OO

>>

~

~

~

~

~

~

~

~

~

: : :

ggP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

``A

A

A

A

A

A

A

A

A

A

OO

?>=<89:;

jjU

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

ggP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

__@

@

@

@

@

@

@



CHAPTER 4. SOME THEORETICAL RESULTS 54

there is another set of transforms on the weight space as well as the sign interchanges

that will preserve the i/o behaviour the so called exchange transforms. E�ectively an

exchange transform takes two hidden units i and j and exchanges all the input and

output weights of unit i to j and vice versa (this can be visualized by imagining picking

up the two hidden units and swapping them around taking the relevant connections

with them). The result which will be proved in this section for Cli�ord networks shows

that the sign transforms and exchange transforms are the only behaviour preserving

weight transforms. This result was �rst proved for the real case by

[

K _urkov�a and

Kainen, 1994; Albertinie and Sontag, 1993; Sussmann, 1992

]

although

[

Albertinie and

Sontag, 1993

]

is a much more general result for dynamical systems. The proofs in

this section are not much di�erent from

[

Sussmann, 1992

]

, only they are transformed

to the Cli�ord domain instead of being restricted to the real domain.

An extra condition has to be put on the networks to state the result. The networks

have to be irreducible with respect to the following notion of reducibility. A Cli�ord

network with m input nodes and n hidden nodes and one output unit, can be seen

as a function over the Cli�ord domain:

�(x) = c

0

+

n

X

j=1

c

j

y

j

(x) (139)

where y

j

(x) = f(v

j

(x)) (f the activation function studied in Chapter 3) and

v

j

(x) = �

j

+

n

X

i=1

!

ij

x

i

(140)

. where x = (x

1

; x

2

: : : ; x

m

) is the input to the network. A network is said to be

reducible if any of the following conditions hold:

1. One of the c

j

s is zero

2. There exist two j

1

and j

2

s.t. v

j

1

(x) = v

j

2

(x) or v

j

1

(x) = �v

j

2

(x). In this case

the hidden units j

1

and j

2

are said to be sign equivalent.
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3. One of the v

j

s is constant.

Clearly if condition (1) holds, then that hidden node can be deleted without a�ecting

the i/o-behaviour of the network. If condition (2) holds, in the �rst case the node j

2

can be deleted and the output weight of j

1

changed from c

j

1

to c

0

= c

j

1

+ c

j

2

, or in

the second case the output weigh set to c

0

= c

j

1

� c

j

2

; in both cases the input weights

are simply v

j

1

(or v

j

2

). If condition (3) holds, then that node can be deleted and a

suitable adjustment made to c

0

.

A network is called irreducible if it is not reducible by steps (1) to (3) above. A

network is minimal if it is not i/o-equivalent to a network with fewer hidden units.

It will be shown that a network is irreducible if, and only if, it is minimal.

Theorem 5 Given two networks N

1

and N

2

with n

1

and n

2

hidden units, which are

i/o-equivalent and both N

1

and N

2

are irreducible, then n

1

= n

2

and N

1

and N

2

are

related by sign changes and interchanges.

Proof: It is su�cient to show for an arbitrary basis element A if [�

1

]

A

= [�

2

]

A

the

N

1

and N

2

are related by interchanges and sign changes. Since �

1

= �

2

for all x and

the activation function f is one to one, the following will be true:

2

4

c

1

0

+

n

1

X

j=1

c

1

j

f(v

1

j

(x))

3

5

A

=

2

4

c

2

0

+

n

1

X

j=1

c

2

j

f(v

2

j

(x))

3

5

A

(141)

De�ne a new set of labels a

0

: : : a

n

1

: : : a

n

1

+n

2

and linear functional �

1

: : : �

n

1

+n

2

. Let

a

0

= c

1

0

� c

2

0

(142)

a

j

= c

1

j

1 � j � n

1

(143)

a

j

= �c

2

j�n

n

1

+ 1 � j � n

1

+ n

2

(144)
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Also let:

�

j

= v

j

1 � j � n

1

(145)

�

j

= v

j�n

1

n

1

+ 1 � j � n

2

(146)

Then from (141) we have

"

a

0

+

n

1

+n

2

X

i=1

a

j

f(�

j

(x))

#

A

= 0 (147)

for all x and A. If all the a

j

s is zero then the two nets are exactly equivalent. If one

of the a

j

's is non zero then by the linear independence lemma 1 there must exist j

1

and j

2

such that �

j

1

and �

j

2

are sign equivalent. So we have:

1

z }| {

[a

j

1

f(�

j

1

(x)) + a

j

2

f(�

j

2

(x))]

A

+

2

4

a

0

+

X

i2f1:::n

1

+n

2

gnfj

1

;j

2

g

a

j

f(�

j

(x))

3

5

| {z }

2

= 0 (148)

Now both parts 1 and 2 of the above equation will equal zero, and this means that

either:

v

1

j

1

= v

2

j

2

�n

1

c

1

j

1

= c

2

j

2

�n

1

(149)

or,

v

1

j

1

= �v

2

j

2

�n

1

c

1

j

1

= �c

2

j

2

�n

1

(150)

Rewriting (141) removing the units j

1

and j

2

results in another equation that equals

zero; this process can be continued until either both nets are identical or a

0

= c

1

0

= c

2

0

is left which again makes the nets equal. Because this process terminates and uses up

all the nodes then n

1

= n

2

, so the two nets are related by sign changes and interchange

weight transformations only.
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Lemma 1 Let J be a �nite set and let f�

j

g

j2J

be a �nite set of non constant linear

a�ne functions on R

m

p;q

no two of which are sign equivalent. Then the functions of

the form [f(�

j

)]

A

, j 2 J and the constant function 1 are linearly independent.

Proof: Sussmann

[

Sussmann, 1992

]

proves this result for linear functionals on R

n

with activation function f(x) = tanh(x), but it is clear that for the results in

[

K _urkov�a

and Kainen, 1994

]

3

to hold, the linear independence result must be true for any

sigmoid activation function. Now the Cli�ord functional above can be thought of as

a set of functionals on R

n2

p+q

and as remarked in the proof of the approximation

result [x=(1 + jxj)]

A

is a sigmoid like function and so the result must hold.

Corollary 1 An irreducible net is minimal.

Proof: Let N be irreducible, if N were not minimal then it would be i/o-equivalent

to a net with fewer hidden nodes, which is itself irreducible (if it is not, reduce it until

it becomes irreducible). But the original net and the smaller net are both irreducible

and i/o-equivalent hence by the previous theorem they are related by interchanges

and sign changes only, hence they have the same number of hidden units. Hence a

irreducible net is minimal.

4.7 Function and Form and its implication to weight

space

What exactly does the Function and Form result (section 4.6) tell us, and what is its

implication for learning algorithms? Suppose a network was able to learn a required

3

[

K _urkov�a and Kainen, 1994

]

proves a general function and form result for non-minimal real

valued networks, with arbitary sigmoid like functions.
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pattern set or training function with zero error (unrealistic, but a starting point).

Then the Function and Form result tells us that up to exchange transforms the

weight set is unique, assuming the network is minimal (non-minimal networks can be

minimized by pruning using the criteria for minimality from the previous section). So

modulo the exchange transforms there is only one solution to the particular problem

(if there was more than one solution not related by the exchange transforms then this

would contradict the Function and Form result). This tells us that the error surface

has certain symmetries imposed by the exchange transforms and there is only one

essentially unique global minimum

4

.

In the more realistic case where the network only learns with a certain error �

close to zero, the situation is not changed, because that function which the network

has learned is still unique up to transformations of the weight space imposed by the

exchange transforms

5

. This means learning algorithms could be restricted to certain

subsets of the weight space and still ensure learning. The author conjectures (but is

not in a position to prove) that during the BEP algorithm when, in the initial stages of

training, the error measure seems to be at a plateau for a certain number of iterations,

that in weight space the network is simply trying to settle in one isomorphic subset of

the weight space. This is because of the fact that at the origin of the weight space, the

regions will be connected and on the whole networks are started with weight values

close to zero.

4

Actually, if the activation functions are even there will be n! solutions (n the number of hidden

units) and if the activation functions are odd there will be 2n! solutions.

5

Another way of looking at this is to look at topologies on the weight set that are imposed by the

inverse image of the error metric. That is two weights w and w

0

would be close in the new topolgy

if E

w

and E

w

0

are close on the real line. This has the e�ect of identifying essentially equivalent

soloutions (equivalent by exchange transforms), so there would be only one global soloution in this

new space. But if non-minimal networks are considered the topology is more interesting, because

pruning will make weights close, which are not close in euclidean topology.



Chapter 5

Q

2

PSK

5.1 Introduction

This chapter describes how Cli�ord valued networks can be used to demodulate sig-

nals. Hop�eld networks have already been applied to the same modulation scheme

[

Saied and Soliman, 1989

]

, and when the results in Figure 18, are compared with

the results reported in

[

Saied and Soliman, 1989

]

Cli�ord networks perform better.

Cli�ord networks are then compared with real valued feed-forward networks, and it

is found that in this task Cli�ord networks perform worse, and an analysis is then

o�ered as to why this is the case.

5.2 Modulation and Demodulation

In any communication environment where more than one signal has to be transmitted

at any time, or where high power signals are required for long distance transmission,

some form of modulation is required.

59
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Figure 9: Modulating signal

Figure 10: Carrier signal

A modulation scheme takes some information signal f

m

(t) and uses this to mod-

ulate various parameters of a carrier signal:

f

c

(t) = E

c

cos(!

c

t+ �) (151)

There are three basic modulation schemes: amplitude modulation, which varies the

parameter E

c

, frequency modulation which varies !

c

and phase modulation which

varies �. Figures 11, 12, 13 show the e�ects of modulating the signal in Figure 9.

These schemes are designed for analogue signals. When digital signals are mod-

ulated more e�cient schemes can be implemented, such as MSK and BPSK (see

[

Pearson, 1992; Tomasi, 1987

]

for details). This chapter uses neural networks to de-

modulate Quadrature-Quadrature phase modulation (Q

2

PSK ) signals which is an
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Figure 11: Amplitude modulation

Figure 12: Frequency modulation

Figure 13: Phase modulation
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Figure 14: Modulated signal for input 1.0, -1.0 , -1.0 , +1.0

extension to Quadrature phase modulation.

5.3 Q

2

PSK

Quadrature phase modulation (QPSK) is a two dimensional signal modulation scheme.

A binary signal f�

k

g with a

k

2 f�1; 1g is split into two parallel signals, a

1

and a

2

each taking alternate bits of the signal, there will be 2 bits per a cycle in QPSK.

These are multiplied by two orthogonal carrier signals

s

1

(t) = sin(!

c

t) (152)

s

2

(t) = cos(!

c

t) (153)

and summed to produce the modulated signal.

Figure 15 shows the modulation scheme and Figure 14 shows two cycles of a

typical modulated signal. At reception two components y

1

and y

2

can be extracted
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a

k

(t)

a

1

a

2

a

3

a

4

a

5

a

6

a

7

a

8

a

1

(t)

a

2

(t)

s

1

s

2

s(t)

Serial to Parallel

Figure 15: QPSK modulation scheme

from the received signal y(t) by setting:

y

1

(t) = y(t)s

1

(t) (154)

y

2

(t) = y(t)s

2

(t) (155)

The task of the demodulator is to estimate the values of a

1

and a

2

from y

1

and y

2

.

In

[

Saha, 1983; Saha and Birdsall, 1986

]

an extension of QPSK, is proposed Q

2

PSK

, which utilizes four dimensions of the signal space. In

[

Saha, 1983

]

he shows that

a channel with a bandwidth occupancy of 1=T has a four dimensional signal space.

Q

2

PSK takes the original signal a

k

and splits it into four parallel signals; these are

then multiplied by four orthogonal signals:

s

1

(t) = cos(

�t

2T

) cos(2�f

c

t) (156)

s

2

(t) = sin(

�t

2T

) cos(2�f

c

t) (157)

s

3

(t) = cos(

�t

2T

) sin(2�f

c

t) (158)

s

4

(t) = sin(

�t

2T

) sin(2�f

c

t) (159)
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Figure 16: Modulated signal for input 1.0, -1.0 , -1.0 , -1.0 , -1.0 , 1.0 , -1.0 , -1.0

a

k

(t)

a

1

a

2

a

3

a

4

a

5

a

6

a

7

a

8

Serial to Parallel

a

1

(t)

s

1

s(t)

a

2

(t)

a

4

(t)

a

3

(t)

s

3

s

2

s

4

Figure 17: QPSK modulation scheme

and are summed to produce a signal s

qqpsk

.

Figure 17 shows the modulation scheme and Figure 16 shows two cycles of a

typical modulated signal.
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5.4 Demodulation by maximum likelihood detec-

tion

During transmission the signal s(t) will be degraded by noise and be a�ected by the

medium's transmission characteristics. Throughout the work a linear channel model

has been assumed and that the noise has a Gaussian characteristic. On receiving a

signal y(t) four components y

1

; : : : y

4

can be extracted by a similar scheme to QPSK:

y

1

(t) = y(t)s

1

(t) =

X

n

a

1

n

cos

2

(

�t

T

0

) +

�(t)

4

(160)

y

2

(t) = y(t)s

2

(t) =

X

n

a

2

n

cos

2

(

�(t� T )

T

0

) +

�(t)

4

(161)

y

3

(t) = y(t)s

3

(t) =

X

n

a

3

n

sin

2

(

�t

T

0

) +

�(t)

4

(162)

y

4

(t) = y(t)s

4

(t) =

X

n

a

4

n

sin

2

(

�(t� T )

T

0

) +

�(t)

4

(163)

where �(t) is the noise term and T

0

is the basis length of the cos

2

and sin

2

terms.

Again the demodulator has to be able to �nd the most likely values (in a statistical

sense) of a

1

: : : a

4

. Various schemes exist for demodulating modulated signals such

as the modi�ed Viterbi algorithm

[

Ungerboeck, 1966

]

for instance. These schemes

are basically implementations of the maximum likelihood analysis. Unfortunately,

these schemes are tedious to implement and have to be rederived for each di�erent

modulation scheme. This chapter uses neural networks to implement demodulators,

by treating the problem as a pattern recognition problem.
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5.5 Cli�ord Networks as maximum likelihood de-

tectors

The task of a Cli�ord network, given various values of y

1

; : : : y

4

, is to estimate the

most likely values of a

1

; : : : a

4

. This can be seen as a pattern recognition problem,

certain values of y

1

; : : : y

4

are identi�ed by values of a

1

; : : : a

4

. Once trained, the

network should be able to recognize noisy versions of y

1

: : : y

4

.

A Quaternion valued network is used. The inputs are sampled values of y

1

; : : : y

4

over a time interval, the hidden layer contains a number of hidden units, and there

are four output units representing the values of a

1

; : : : a

4

. Table 6 and 7 shows typical

training data.

After training the networks are tested on random 4000 bit length sequences, and

a program determines the maximum amount of noise for which the network can still

decode perfectly the 1000 element sequence. Figure 18 shows the performance of the

network for various numbers of hidden units and input nodes. As might be expected

increasing the number of inputs increases the performance of the network and also

increasing the number of hidden nodes increases the performance.

5.6 Comparison with Real valued networks

The above experiments were tried with real valued networks. For comparison the real

networks had four times the number of hidden units and four times the number of

input units in the Cli�ord networks (because the Cli�ord signals are four dimensional

in this case).

The results are summarized below in Figure 19. As can be seen, the real networks



CHAPTER 5. Q

2

PSK 67

0

5

10

15

20

25

30

4 5 6 7 8 9 10

% noise

Hidden Units

3

3

3

3

3

3

3

+

+

+

+
+

+

+

2

2

2

2

2

2

2

�

�

�

�

�

�
�

Key: 2 Inputs 3, 3 Inputs +, 4 Inputs 3, 5 Inputs �

Figure 18: Noise tolerance levels

perform consistently better than the Cli�ord valued networks. There are two reasons

for this. First, the four signal values are modulated with the four carrier waves and

then they are demodulated in a linear way, which means that there appears to be

no advantage in keeping the four demodulated components together as one Cli�ord

value. Secondly, a di�erent process is going on inside the Cli�ord valued network to

the real valued network: a real valued network during learning is essentially �nding

separating hyper-planes to classify the input data. A Cli�ord network is performing

a very di�erent task. If the quaternions are identi�ed with the vector space R

4

the

operation:

� (x) = !x (164)

can be seen as a linear transformation, since

� (�x+ y) = �� (x) + � (y) for � 2 R (165)

and the set of quaternions of length 1 are the set of rotations inR

4

. If during training a

certain quaternion-valued neuron is required to produce a certain output for a certain
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input, then the training process is �nding a set of weight vectors that will rotate the

input patterns to produce the required output, as in Figure 20. Thus it seems in this

case that once a set of weight vectors is found that will rotate the input to produce

the correct output, if the components of the input patterns are independent then the

networks are less tolerant to noise.

5.7 Conclusion

It seems that for Q

2

PSK demodulation Cli�ord Networks are inappropriate. When

the four components of the Q

2

PSK signal are modulated and then demodulated any

degradation caused from interference during transmission, is linear in each component

(see (160 - 163) ); the author conjectures that this is the reason why real networks

outperform Cli�ord Networks. One of the motivations for studying Cli�ord Networks

is that when related components of multi-dimensional signal are brought together as

a single Cli�ord Number, a more compact solution to the problem should be found

using Cli�ord Networks. In the case of Q

2

PSK it seems that the four components are

not related enough for any bene�t to be seen with Cli�ord Networks. It is however

possible that a more complicated non-linear modulation scheme might yield better

results using Cli�ord Networks.

The question is then, what class of problem will bene�t from the application of

Cli�ord Networks? Cli�ord algebras have many applications in mathematical physics,

such are motion modeling using the quaternions. By applying Cli�ord Networks to

these types of problems which can be analyzed using Cli�ord Algebras (see

[

Chisholm

and Common, 1986

]

) the author hopes that Cli�ord Networks will provide a signi�cant

bene�t.
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Figure 19: Comparison between Real and Cli�ord valued networks

Weight Vector

Input Vector

Input * Weight

Figure 20: Weight multiplication inside a Cli�ord neuron
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Inputs for output pattern -1 -1 -1 -1

(-1, 1, -0, 0) (-0.853553, 0.853553, -0.146447, 0.146447)

(-0.5, 0.5, -0.5, 0.5) (-0.146447, 0.146447, -0.853553, 0.853553)

Inputs for output pattern 1 -1 -1 -1

(1, 1, -0, 0) (0.853553, 0.853553, -0.146447, 0.146447)

(0.5, 0.5, -0.5, 0.5) (0.146447, 0.146447, -0.853553, 0.853553)

Inputs for output pattern -1 1 -1 -1

(-1, -1, -0, 0) (-0.853553, -0.853553, -0.146447, 0.146447)

(-0.5, -0.5, -0.5, 0.5) (-0.146447, -0.146447, -0.853553, 0.853553)

Inputs for output pattern 1 1 -1 -1

(1, -1, -0, 0) (0.853553, -0.853553, -0.146447, 0.146447)

(0.5, -0.5, -0.5, 0.5) (0.146447, -0.146447, -0.853553, 0.853553)

Inputs for output pattern -1 -1 1 -1

(-1, 1, 0, 0) (-0.853553, 0.853553, 0.146447, 0.146447)

(-0.5, 0.5, 0.5, 0.5) (-0.146447, 0.146447, 0.853553, 0.853553)

Inputs for output pattern 1 -1 1 -1

(1, 1, 0, 0) (0.853553, 0.853553, 0.146447, 0.146447)

(0.5, 0.5, 0.5, 0.5) (0.146447, 0.146447, 0.853553, 0.853553)

Inputs for output pattern -1 1 1 -1

(-1, -1, 0, 0) (-0.853553, -0.853553, 0.146447, 0.146447)

(-0.5, -0.5, 0.5, 0.5) (-0.146447, -0.146447, 0.853553, 0.853553)

Input for pattern 1 1 1 -1

(1, -1, 0, 0) (0.853553, -0.853553, 0.146447, 0.146447)

(0.5, -0.5, 0.5, 0.5) (0.146447, -0.146447, 0.853553, 0.853553)

Input for pattern -1 -1 -1 1

(-1, 1, -0, -0) (-0.853553, 0.853553, -0.146447, -0.146447)

(-0.5, 0.5, -0.5, -0.5) (-0.146447, 0.146447, -0.853553, -0.853553)

Input for pattern 1 -1 -1 1

(1, 1, -0, -0) (0.853553, 0.853553, -0.146447, -0.146447)

(0.5, 0.5, -0.5, -0.5) (0.146447, 0.146447, -0.853553, -0.853553)

Table 6: Training data: For the modulated signal samped at 4 time intervals
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Input for pattern -1 1 -1 1

(-1, -1, -0, -0) (-0.853553, -0.853553, -0.146447, -0.146447)

(-0.5, -0.5, -0.5, -0.5) (-0.146447, -0.146447, -0.853553, -0.853553)

Input for pattern 1 1 -1 1

(1, -1, -0, -0) (0.853553, -0.853553, -0.146447, -0.146447)

(0.5, -0.5, -0.5, -0.5) (0.146447, -0.146447, -0.853553, -0.853553)

Input for pattern -1 -1 1 1

(-1, 1, 0, -0) (-0.853553, 0.853553, 0.146447, -0.146447)

(-0.5, 0.5, 0.5, -0.5) (-0.146447, 0.146447, 0.853553, -0.853553)

Inputs for output pattern 1 -1 1 1

(1, 1, 0, -0) (0.853553, 0.853553, 0.146447, -0.146447)

(0.5, 0.5, 0.5, -0.5) (0.146447, 0.146447, 0.853553, -0.853553)

Inputs for output pattern -1 1 1 1

(-1, -1, 0, -0) (-0.853553, -0.853553, 0.146447, -0.146447)

(-0.5, -0.5, 0.5, -0.5) (-0.146447, -0.146447, 0.853553, -0.853553)

Inputs for output pattern 1 1 1 1

(1, -1, 0, -0) (0.853553, -0.853553, 0.146447, -0.146447)

(0.5, -0.5, 0.5, -0.5) (0.146447, -0.146447, 0.853553, -0.853553)

Table 7: Training data continued



Chapter 6

The Generalized Perceptron and

its Properties

6.1 Introduction

This chapter introduces the generalized Cli�ord valued perceptron, which is an exten-

sion of the multi-valued Perceptron in

[

Georgiou, 1993

]

. The basic idea is to extend

the ordinary real valued Perceptron, which has the output values +1 and �1, to a

Perceptron which has output values taken from the unit sphere in various dimensions.

The complex valued Perceptron was �rst discussed in

[

Georgiou, 1993

]

, together with

a proof of the convergence theorem.

A slightly di�erent proof of the convergence theorem is presented in this chapter,

which emphasises, how the inner product on the complex vector space interacts with

the group structure of the output values of the Perceptron. With this new viewpoint

extension to the multi-dimensional Cli�ord case is then possible. The chapter then

ends with a discussion of the classi�cation powers of complex and Cli�ord Perceptrons.

72
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Figure 21: Roots of unity

6.2 The Complex Perceptron

In

[

Georgiou, 1993

]

two Perceptrons are de�ned: the continuous and the multi-

valued Perceptron. In both cases each Perceptron has n inputs (x

1

; : : : ; x

n

) n weights

(w

1

: : :w

n

) and one threshold value w

n+1

. First the weighted sum of the inputs and

the threshold is computed:

net =

n

X

k=0

w

k

x

k

+ w

n+1

(166)

The output of the q-state multi-valued Perceptron is taken from the set:

f�

k

: �

k

= e

2�ik

q

; k = 1 : : : q � 1g (167)

These are the q roots of unity and are distributed around the unit circle as in Figure

21.

The output for a certain weighted input net is the value �

j

such that:

�

j

= j arg(net)� j

2�

q

j <

�

q

(168)

(arg(z) is the complex argument of z). The output is essentially the closest �

j

to the

unit normalized value of net.

The continuous-valued Perceptron just outputs the normalized value net=jnetj.
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6.3 The Group Structure of the Outputs

The outputs of the q-state multi-valued Perceptron and the continuous valued Percep-

tron have a group theoretical structure. Roots of unity can be multiplied to produce

again a root of unity, that is for any �

k

and �

j

the product:

�

k

�

j

= e

2�ik

q

e

2�ij

q

= e

2�i(j+k)

q

= �

k+j

(169)

The inverse of an element �

k

is simply �

�k

. This group under multiplication is

isomorphic to (Z

q

;+) (the integers modulo q under addition). What will become

important in the proof of the convergence theorem is that:

(�

k

)

�1

= �

k

= �

�k

(170)

where z is the complex conjugate of z.

The outputs of the continuous valued Perceptron form the group U(1), since each

output can be represented as the complex number e

i�

, with � real. The product of

two elements e

i�

1

and e

i�

2

is simply e

i(�

1

+�

2

)

and the inverse of an element e

i�

is simply

e

�i�

.

6.4 Real Hilbert Spaces on ComplexVector Spaces

Given the complex numbers C a real Hilbert space structure can be put on them.

That is a real inner product (�j�) satisfying the axioms of a Hilbert space. Given

x; y 2 C de�ne:

(xjy) = <(xy) (171)

w here y is the complex conjugate of y and <(z) is the real part of the complex number

x. In particular the norm of a complex number can be de�ned which corresponds to
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the standard norm on C:

jxj =

q

(xjx) (172)

The Cauchy-Schwartz inequality is then satis�ed:

j(xjy)j � jxjjyj (173)

This construction can be extended from C to C

n+1

, givenX = (x

j

)

n

i=0

and Y = (y

j

)

n

i=0

de�ne the inner product as:

(XjY ) = <(

n

X

j=0

x

j

y

j

) (174)

A norm can be de�ned in the same way:

kxk =

q

(xjx) (175)

Again the Cauchy-Schwartz is satis�ed.

It is possible to put a Complex Hilbert space structure on C

n

as in

[

Georgiou,

1993

]

but the author found it more convenient to work with a Real Hilbert Space

in the proof of the Perceptron Convergence Theorem. What is important for the

Perceptron convergence theorem which follows, is how the inner product structure

interacts with with group structure of the outputs of the Complex Perceptron.

6.5 The Complex Convergence Theorem

In what follows a n element pattern will be represented as an element of C

n+1

as:

X = (x

0

; x

2

; : : : x

n�1

; 1) (176)

A weight and threshold value is represented as:

W = (w

0

; w

2

; : : : w

n�1

; � = w

n

) (177)
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Thus the net input of the network can be calculated as:

net = X �W =

n

X

k=0

x

i

w

i

(178)

where for two complex numbers X and Y , X � Y is the complex inner product

P

n

k=0

x

k

y

k

.

Before stating and proving the convergence theorem, an error measure has to be

de�ned. For a �nite pattern set (X

k

)

m

k=0

and an expected output set (Y

k

)

m

k=0

(which

will later be called a classi�cation of the pattern set) where each Y

k

is a possible

output value of the type of Perceptron in question. The error for a particular pattern

presentation j is de�ned as:

�

j

= Y

j

��(W

j

�X

j

) (179)

where W

j

is the current weight set and � is the output of the Perceptron for the net

input W

j

�X

j

.

Theorem 6 For the Continuous Valued Complex Perceptron, starting from a random

initialized weight W

1

, if each pattern is repeatedly presented to the Perceptron from

a �nite pattern set and there exists a weight vector W

0

which correctly classi�es the

pattern set, then at stage k of the procedure if the weight vector W

k

is modi�ed by:

W

k+1

= W

k

+ �

k

X

k

(180)

then the procedure will terminate in a �nite number of steps yielding a weight vector

which correctly classi�es the pattern set.

Proof: At stage k the weight vector will be:

W

k+1

=W

1

+ �

1

X

1

+ �

2

X

2

+ : : : �

k

X

k

(181)
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Forming the inner product (W

0

jW

k+1

) the above equation gives:

(W

0

jW

k+1

) = (W

0

jW

1

) + (W

0

j�

1

X

1

) + : : : (W

0

j�

k

X

k

) (182)

Without loss of generality it can be assumed that at each stage �

j

is non zero. De�ne:

� = min

1�j�k

(W

0

j�

j

X

j

) (183)

The � can be positive or negative and is essentially the same � as in section 11.2 in

[

Minsky and Papert, 1969

]

. This means that:

(W

0

jW

k+1

) � (W

0

jW

1

) + k� (184)

Another inequality is needed to complete the proof.

kW

j+1

k

2

= (W

j

+ �

j

X

j

jW

j

+ �

j

X

j

) = kW

j

k

2

+ k�

j

X

j

k

2

+ 2(W

j

j�

j

X

j

) (185)

Now lemma 2 implies that (W

j

j�

j

X

j

) is negative, so de�ning:

Q = max

1�j�k

k�

j

X

j

k

2

(186)

gives:

kW

k+1

k

2

� kW

1

k

2

+Qk (187)

From the Cauchy-Schwarz inequality:

(W

0

jW

k+1

)

2

kW

0

k

2

kW

k+1

k

2

� 1 (188)

Now combining the inequality 188 with 187 and 184 the following is obtained:

((W

0

jW

1

) + k�)

2

kW

0

k

2

(kW

1

k

2

+Qk)

� 1 (189)

If k was unbounded the right hand side of the above inequation would grow with

bound contradicting the inequation (189) hence k must be �nite.



CHAPTER 6. THE GENERALIZED PERCEPTRON AND ITS PROPERTIES 78

Lemma 2 For the Continuous Complex Valued Perceptron, if W

j

mis-classi�es X

j

then:

(�

j

X

j

jW

j

) < 0 (190)

Proof: From the de�nition of �:

�

j

= �

k

� �

j

(191)

Where �

k

is the required output for the current pattern and �

j

is the actual output.

The inner product is:

(�

j

X

j

jW

j

) = <(�X

j

W

j

) (192)

The product W

j

X

j

can be rewritten as a�

j

for some positive real constant a. So the

inner product expression becomes:

<(�W

j

X

j

) = <((�

k

� �

j

)(a�

j

) (193)

Since zz = 1 for all complex z, the above equation reduces to:

a(<(�

k

�

j

)� 1) (194)

Because both �

k

and �

j

are unit vectors, each component will have a value less than

or equal to one. In the case where the real components are less than one then (194)

will be negative and hence the lemma proved. Otherwise both real components can

not be equal to one, since this would make e

j

zero and the lemma would not apply,

therefore (194) will negative.

In examining the proof of the convergence theorem the only step that actually

requires the Perceptron to be continuous is Lemma (2). So to prove the convergence

theorem for the discrete q-state multi-valued Perceptron a new lemma is required.
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W �X

�

j

�

k

Figure 22: Net input W �X , actual output of Perceptron �

j

and expected output �

k

Lemma 3 For the q-state multi-valued complex Perceptron (�

j

X

j

jW

j

) is negative

whenever W

j

mis-classi�es X

j

.

Proof: As before �

j

= �

k

� �

j

, but W

j

X

j

is no longer equivalent to a�

j

. Since �

j

is

the actual output, we know that (W

j

X

j

)=kW

j

X

j

k must be within a certain range of

�

j

see Figure 22. In fact:

W

j

X

j

kW

j

X

j

k

= e

i�

�

j

(195)

Where:

j�j �

�

q

(196)

Expanding the inner product gives:

(�

j

X

j

jW

j

) = <((�

k

� �

j

)(ae

i�

�

j

)) = (�

k

je

i�

�

j

)� (e

i�

j1) (197)

The inner product gives the cosine of the angle between two complex numbers con-

sidered as vectors in R

2

. So the above equation becomes:

(�

j

X

j

jW

j

) = cos(2�

(k � j)

q

+ �)� cos(�) (198)
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Since j and k are integers and j�j < �=q the above expression will be negative.

6.6 The Cli�ord Case

It is possible for a Euclidean Cli�ord algebra (an algebra with the signature 0; n)

to de�ne both continuous and multi-valued Perceptrons. Before they can be de�ned

some extra de�nitions are needed; both can be found in Sections 1.8 - 1.10 of

[

Brackx

et al., 1982

]

.

In any Cli�ord algebra it is possible to de�ne two involutions (see

[

Porteous, 1981

]

page 252) which are independent of the basis chosen. The main involution, also called

inversion, is de�ned for any:

x =

X

A

x

A

e

A

(199)

as,

x

�

=

X

A

x

a

(�1)

#(A)

e

A

(200)

(#(A) is the size of the set A). For example given:

x = x

1

e

1

+ x

2

e

12

then,

x

�

= x

2

e

12

� x

1

e

1

The second involution called reversion given by:

x

y

=

X

A

(�1)

(#(A)�1)#(A)

2

x

A

e

A

(201)

which on a particular basis element e

h

1

h

2

:::h

m

gives:

e

h

m

h

m�1

:::h

1

(202)
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Thus for example, if

x = x

1

e

12

+ x

2

e

123

then,

x

y

= �(x

1

e

12

+ x

2

e

123

)

These can be combined to produce the following involution:

x =

X

A

x

A

(e

�

A

)

y

=

X

A

(�1)

#(A)(#(A)+1)

2

x

A

e

A

(203)

This is analogous to complex conjugation. An important property is:

xy = y x (204)

In a Euclidean algebra it is possible to use the above involution to de�ne a real

inner product which gives rise to a Hilbert space structure:

(xjy) = [xy]

0

=

X

A

x

A

y

A

(205)

This inner product has many useful properties including:

(xjy) = (yjx) = (xjy) = (yjx) (206)

It gives rise to a norm:

jxj =

q

(xjx) (207)

also

jxyj � jxjjyj (208)

Also because it forms a real Hilbert space the Cauchy-Schwarz inequality is satis�ed:

(xjy)

2

� jxj

2

jyj

2

(209)

As before the inner product extends from a Euclidean algebra A to the Cli�ord

Module A

n

. It is possible to put a Hilbert Module (see Chapter 15 in

[

Wegge-Olsen,
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1993

]

) structure on A

n

where the inner product has values in the algebra A, but

again it is easier to work with the Real Hilbert Space in the proof of the Convergence

Theorem.

So given a Cli�ord algebra A it is possible to de�ne the Cli�ord sphere as:

S

A

= fx : jxj = 1g (210)

A Cli�ord valued Perceptron is then easy to de�ne. The continuous case is as

before, given the net input:

net = W �X (211)

The output is:

W �X

jW �X j

(212)

The discrete multi-valued case involved picking q

2

n

(2

n

the dimension of the Clif-

ford algebra) points evenly distributed around the Cli�ord sphere. The output for

a particular net input W � X is the closest output vector (in the topology de�ned

by the norm) to the value

W �X

jW �X j

. To implement this various schemes could be used;

probably the most e�cient would be to convert the representation of the net input

from Cartesian coordinates to spherical polar coordinates and �nd the closest discrete

value in each polar coordinate separately.

Unfortunately in general the outputs of the continuous valued Cli�ord and the

Discrete multi-valued Cli�ord Perceptron do not form a group structure. Luckily all

is not lost. In the complex case, what was important was how the group structure

interacted with the inner product. Fortunately as shall be seen in the proofs of the

convergence theorem the output elements do interact with the inner product in a

group-like way.
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Theorem 7 For the Continuous Cli�ord valued Perceptron given a �nite pattern set

(X

i

) with a classi�cation (Y

i

), if there exists a weight vector W

0

which classi�es the

pattern set correctly then the following procedure will converge in a �nite number of

steps:

W

k+1

= W

k

+ �

k

X

k

(213)

Proof: Looking back at the complex case, it is found that the non-commutative

nature of the Cli�ord algebras will not a�ect the proof, because this is absorbed in

the �rst line of the proof (equation (181)). Again what is required is to replace (2)

by the following lemma 4 and the proof will work.

Lemma 4 For the Continuous Cli�ord Valued Perceptron, if W

j

mis-classi�es X

j

then:

(�

j

X

j

jW

j

) < 0 (214)

Proof: From the de�nition of the inner product the above equation can be rewritten

as:

(�

j

X

j

jW

j

) = [�

j

X

j

W

j

]

0

(215)

Using the properties of the involution the above equation becomes:

[�

j

W

j

X

j

]

0

= [(�

k

� �

j

)(a�

j

)]

0

(216)

With �

j

, �

k

and a as before in lemma 181. Expanding the brackets gives:

a((�

k

j�

j

)� (�

j

j�

j

)) (217)
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In the complex case the fact that �

j

�

j

= 1 was used, but because the Cli�ord

elements do not form a group, this fact can not be used. However since j�

j

j = 1, the

equation becomes:

a((�

k

j�

j

)� 1) = a

 

X

A

�

k

A

�

j

A

� 1

!

(218)

But since each component of �

j

and �

k

is less than or equal to 1, for the same reasons

as in Lemma 2, the above equation will always be negative, hence the lemma is

proved.

The following proof will come as no surprise to anybody who has followed this

chapter so far.

Theorem 8 Theorem 7 is valid for the discrete valued Perceptron.

Proof: To prove the theorem for the discrete multi-valued Perceptron again lemma

4 needs to be replaced by a new lemma 5

Lemma 5 For the Discrete Cli�ord Valued Perceptron, if W

j

mis-classi�es X

j

then:

(�

j

X

j

jW

j

) < 0 (219)

Proof: As in the discrete case W

j

�X

j

is not equal to a�

j

, but will be equal to a ~�

j

where ~�

j

is a unit vector and a is a positive constant. So expanding out the inner

product the following is obtained:

(�

j

X

j

jW

j

) = a[(�

k

� �

j

) ~�

j

= (�

k

j ~�

j

)� (�

j

j ~�

j

) (220)

We know that (�

j

j ~�

j

) < �=q, thus for the same reasons as in the complex case the

equation will be negative and hence the lemma proved.
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It seems, if we look at these proofs, that the minimal mathematical structure re-

quired for convergence is a C

�

algebra

1

and a suitable Perceptron activation function.

This area could be explored to �nd a more general Class of Perceptrons and perhaps

there would be a relation between various structure theorems of C

�

-Algebras (such as

K-Theory

[

Wegge-Olsen, 1993

]

) and pattern recognition capabilities of Perceptrons

[

Minsky and Papert, 1969

]

.

6.7 What are Complex Perceptrons Doing?

The Classical Real Valued Perceptron is essentially separating hyper-planes. That

is given a n input Perceptron with weight values w

1

: : : w

n

; � and inputs x

1

: : : x

n

,

the output of the Perceptron is either +1 or �1 depending if w � x + � is greater

than zero or less. So the set of points classi�ed by +1 is separated by the points

that are classi�ed by �1 by a hyper-plane. Then the convergence algorithm for real

Perceptron can be restated as: if the the two classes are linearly separable then the

algorithm will �nd a weight set which separates the two classes

2

.

The complex valued Perceptron is more complicated. For a single input q-valued

Perceptron with no threshold value, the net input to the activation function is simply:

net = wx (222)

(where w is the weight and x the input). Using polar representation of the complex

1

A C

�

algebra is a Banach algebra with an operation � such that:

kxk = kxx

�

k = kx

�

xk (221)

See

[

Sakai, 1971; Wegge-Olsen, 1993

]

for details.

2

But, it can do more, it will converge faster than a simpleminded approach such as Homeostats,

see

[

Minsky and Papert, 1969

]

page 180
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wx

w

x

Figure 23: Complex Multiplication

number (w = jwje

i�

w

, x = jxje

i�

x

) the net input becomes:

net = jwje

i�

w

jxje

i�

x

= jxjjwje

i(�

w

+�

x

)

(223)

So multiplication of two complex numbers results in a product, whose length is the

product of the two multiplicands and argument which is the sum of the arguments

(see Figure 23). When passed through the activation function , the argument �

x

+ �

w

is set to the closest value in the output set

3

.

For a given weight w, activation regions in the input space can be de�ned as

the sets of points which produce di�erent outputs �

1

: : : �

q�1

. Figure 24 shows typ-

ical activation regions. Formally the activation region with respect to a weight set

w

1

: : :w

n+1

, for an output value �

j

is de�ned as the set of points in the input space

such that:

h(

X

i

w

i

x

i

) = �

j

(224)

3

This means that the modulus of both the weight and input vectors is unimportant; only the

direction is signi�cant.
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Figure 24: Activation regions for q = 5

where h is the output of the continuous or multi-valued Perceptron. This de�nition

could be adapted to any class of neural networks, but in general, because of the non-

linear nature of the networks, the regions would be too complicated to calculate or

reason about.

The e�ect of changing w simply rotates the activation regions around the axis and

adding a threshold translates the axis in the complex plane.

So when training a single input complex network, the learning procedure is �nding

a weight value which will rotate the input around to produce the required output.

The question now to ask is, what classi�cations are possible? Given a q-state

neuron and a n element pattern set, is it possible for the neuron to represent all

possible classi�cations.

4

For certain sets of points, it is possible to represent a large

number of classi�cations. For example in Figure 25, by rotating the axis (changing

the weight value) di�erent classi�cations can be achieved by moving the activation

4

A generalized VC dimension could be de�ned, as the largest possible arbitrary set for which

n

C

q

classi�cations are possible (q = the order of the output group) , but the author conjectures this will

equal the ordinary VC dimension of the neuron.
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Figure 25: A possible classi�cation

p

2

p

4

p

1

p

3

Figure 26: Co-linear points

regions.

But if for instance the points are colinear as Figure 26 then fewer classi�cations

are possible. This implies that not all classi�cations are possible (even in Figure 25

the classi�cation fp

1

; p

2

g ! �

0

, p

3

! �

1

and p

4

! �

3

is not in general achievable by

rotation of the axis).

The reason for this lack of 
exibility is that the activation regions are coupled

together, so just moving one activation region independently of the others is not

possible.

For the multiple input q-state Perceptron the activation regions are more compli-

cated. Consider the two input case, with net input to the activation function:

net = w

1

x

1

+ w

2

x

2

(225)
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For a �xed w

2

and x

2

the activation regions will be the same as in Figure 24. The

e�ect of varying both x

2

and w

1

results in activation regions in C

2

, and in higher

dimensions, making a multi-dimensional open `pyramid'. Again the Classi�cation is

limited, because the activation regions cannot be manipulated independently.

The higher dimensional Cli�ord case has similar activation regions, but the single

input neuron no longer takes sectors out of the unit circle, but out of the unit hyper-

sphere.

6.8 Conclusion

A new class of neurons has been de�ned in this chapter, together with a learning

algorithm which is guaranteed to converge for all learnable patterns. An analysis

of the class of patterns learnable by a single generalized perceptron is given, and

as with the real valued case, there are restrictions on the class of patterns learn-

able. The work of Hirose in

[

Hirose, 1992b

]

points to the possibility of a generalized

multi-dimensional Hop�eld type network, where the multi-dimensional nature of the

computing unit would give a di�erent attractor structure and possibly higher pattern

storage capabilities.

The other value of Generalized Perceptrons is that, in the limit, the neurons

considered in the previous chapters act like Generalized Perceptrons. Consider the

activation function previously de�ned:

f(x) =

x

1 + jxj

(226)

This maps a Cli�ord number considered as a vector in a 2

p+q

dimensional space into

the unit sphere preserving the orientation of the vector. Adding a real parameter �
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to the above equation,

f(�x) =

�x

1 + j�jjxj

(227)

and letting � tend to +1 an activation function resembling the Continuous Gener-

alized Perceptron is obtained. In the same way if � tends to +1 in the function:

�(�x) =

1

1 + exp(��x)

(228)

used in many real valued feed-forward networks yields an activation function re-

sembling the traditional Perceptron activation function. This chapter has de�ned a

generalization of the Real Valued Perceptron and proved a general convergence result,

which sheds new light on the real valued case, by the interaction between the inner

product structure of the weight and pattern space and the group structure of the

output of the neuron.



Chapter 7

Conclusion

This thesis has presented an extension to Complex Valued Networks

[

Georgiou and

Koutsougeras, 1992

]

and Complex Valued Perceptrons

[

Georgiou, 1993

]

. It has been

shown that it is possible to derive and implement training algorithms and networks

that can be used on non trivial problems. The extension to Complex Perceptrons

has been analyzed together with a proof of the convergence of the learning algorithm.

This proof (in the complex case) is a di�erent proof to the one found in

[

Georgiou,

1993

]

and even when restricted to the real case, throws new light on the Perceptron

Convergence theorem, because of the emphasis on the group theoretical structure of

the outputs of the neuron and in particular, how the group structure interacts with

the inner product on the input space.

A version of the BEP algorithm has been successfully derived (Chapter 3) and

shown to converge on test problems. The number of learning epochs for a multi-

dimensional problem has been shown to be the same order as for the equivalent real

valued problem, which seems to indicate that during learning comparable encoding

strategies are being used for the hidden units.

91
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The theorems proved in Chapter 4 show that Cli�ord-valued networks can rep-

resent non-trivial classes of functions. The �nal importance of Cli�ord networks is

still unclear, although they can represent the same classes of functions as real valued

networks, they will do it di�erently

1

. The author still believes despite the poor results

in Chapter 5 that the more compact representation of multi-dimensional signals, will,

in the end give real gains and that the identi�cation of appropriate problems is a

critical issue in the application of Cli�ord Networks. An avenue of exploration which

could be investigated on the theoretical side would be look at pruning of weights

in Cli�ord networks. It is reasonable to assume that if Cli�ord networks represent

multi-dimensional signals in a more compact way, then pruning would be more e�ec-

tive in the Cli�ord case over the real case, because pruning a single Cli�ord weight is

equivalent to pruning 2

n

real weights.

The development of the Cli�ord valued Perceptron in Chapter 6 points to exten-

sions of Complex valued Hop�eld type networks in

[

Hirose, 1992b

]

.

To show Cli�ord networks do give gains over real valued networks means that

new problem domains need to be found where there is a real advantage in using

more compact representations of multi-dimensional signals. This is highlighted by

the reason for the poor results in Chapter 5 in that it is because the four components

of the signal were too independent, that the Cli�ord Network failed to outperform

the Real valued Network.

The author believes that a natural extension of the real and complex numbers

should give an advantage when using them in neural networks. If anything this thesis

has shown that such an extension is possible and that it is a fruitful area of research.

1

If we were only interested in the class of functions a network could represent then why not use

polynomial approximation theory instead?
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