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Abstract

Recent work has shown that in some cases the phase information of synaptic signal is

important in the learning and representation capabilities of networks. Modelling such

information with complex valued activation signals is possible, and indeed complex back-

propagation algorithms have been derived [3]. Cli�ord algebras give a way to generalise

complex numbers to many dimensions. This paper presents a back propagation for feed-

forward networks with Cli�ord activation values.

1 De�nition of a Cli�ord Algebra.

Cli�ord algebras have been rediscovered many times see [4] for examples and applications.

Part of the success of Cli�ord algebras is due to the geometric character of the de�nition.

In this paper the geometric content of the algebra will not be relevant. Although in

individual applications a Cli�ord net could be used to process geometric information.
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denote the real n-dimensional vector space. We shall denote the Universal
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To give the vector space an algebraic structure the following multiplication rules are used:
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This can be expressed more compactly in the following way,
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where S stands for the set 1; : : : s; p(A;B) =
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� symmetric di�erence and the sets A;B and A�B are ordered in the prescribed way.



In this paper Cli�ord numbers are denoted as,
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with x

A

a real number e

A

a formal symbol. In general A,B and C will be used to range

over sets of the form given in (1).

Also the notation [x]

A

will denote the A'th part of the Cli�ord number x, for example

if x = 1 + 2e
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+ 10e
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2 in the algebra C
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For a notational convinence, [x]
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etc.

2 Cli�ord Back Propagation

A Cli�ord network is de�ned in a similar way to a conventional feed forward network. The

only di�erence being all weights and activation values are Cli�ord numbers from some

particular Cli�ord algebra.

An activation function f(x) de�ned on a Cli�ord algebra can be written as,

f(x) =

X

A

u

A

e

A

: (6)

Where each u

A

are mappings from the Cli�ord algebra to the real numbers.

Thus the output o

j

of the j'th neuron can be written as,
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with,
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It is important to notice that since the algebra is non commuative the order of multipli-

cation in the above equation is important.

The error measure E of the net is de�ned in a similar way to the conventional case,
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Where d

k

is the desired output of neuron k, o

k

is the actual output of neuron k, and [x]

i

represents the i'th part of the Cli�ord number x.

To minimise the error function E it is necessary to minimise E with respect to each

element of each weight vector. To take into account the functional dependencies the

following equations is derived (W
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is the i'th component of the weight W
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)
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The partial derivatives
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where, C, is a set satisfying the following condition A�C = B and
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; (12)

with the function p de�ned as above. As an example in the algebra C
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,
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The error derivative
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is now easy to calculate. If j is an output neuron then,
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If the neuron is not an output unit the chain rule must be used. The net input to

neuron k is therefore,
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can be calculated as before, and will be simler in form to (11).
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With k running over the neurons that receive input from neuron j.

3 Choice of Activation function.

As has been observed in [3], in the complex domain analytic functions are not suitable

activation functions. In the Cli�ord domain the situation is even worse, because there is

no suitable notion of an analytic function. Further because a Cli�ord algebra is not in

general a division algebra, it is not possible to de�ne higher dimensional analogues of the

sigmoid function.

The function,
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where c and r are real positive constants, and jxj is the norm,
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will be a sutiable activation function f(x) and will have all the suitable properties, as

stated in [3] in the Cli�ord domain as it does in the complex domain.

The partial derivatives as follows, for A = B,
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If A 6= B then,
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4 Applications

If phase information is important in biological systems then complex domain networks are

of signi�cance. Although Cli�ord networks have no direct biological basis, they provide

the ability to represent multidimensional signals in a coherent way. The Authors are

currently engaged in experimentalwork with Cli�ord networks and results will be reported

in further publications.
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