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Plan :

Decision trees.

Short introduction to Information Theory.

Complexity results on constructing decision trees.

Constructing Decision trees using information theory. (ID3 algorithm)

Pointers to other ways of constructing trees.

The focus will be on decision trees for classification. We will look at regression in a later
lecture.

2 / 39



Decision Trees

Suppose we are trying to classify the if a person survived the Titanic. We might learn the
following tree :

Sex

age > 9 Survived

Died Siblings < 2

Died Survived

Male Female

Yes No

Yes No
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Decision Trees

A decision tree is a rooted directed acylic graph. The leaf nodes represent classes or values.
For the moment all of our classifications will be categorical.
An assignment of variables gives a path in the tree. The resulting classification is the value in
the leaf node.
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Decision Tree Example

Given a male aged 6 with 0 siblings, then he would have died.

Sex

age > 9 Survived

Died Siblings < 2

Died Survived

Male Female

Yes No

Yes No
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Advantages of Decision Trees

We can represent non-linear functions

Small trees are easy to understand and give us an explanation of why a classification was
made.

Explainable AI: Why did the machine learning refuse me a bank loan? This is an important
ethical, and one day maybe a legal requirement for certain types of machine learning models.
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Decision Trees

The big question:

Given some data how do we learn a decision tree?

Issues:

How do we avoid overfitting?

How do we learn small trees?

We want the ordering of the nodes to some how represent the importance of the features.
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Decision Trees — Boolean Values

Even for the Boolean case the order you consider the features gives different size and shape
trees.
Unless I’ve made a mistake the this tree and the tree on the next slide represent the same
function.

P

T Q

F R

F T

T F

T F

T F
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Decision Trees — Boolean Values

R

Q Q

P F

T F

P P

T F

F

T

Red edges represent true branches.
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Decision Trees — Boolean Values — Some facts

For Boolean functions you can get exponential blow up in the size for different orders.

It is NP-hard to find an ordering that gives the smallest tree.

Implications for machine learning: We have to use heuristics to find small trees. We will look
at one approach using information theory.
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Revision?

Definitions of logarithms:
log2 x = y ⇔ 2y = x

Thus log2 4 = 2 since 22 = 4, and log2 1 = 0 since 20 = 1.
Don’t forget:

logb x =
log x

log b
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Measuring Information

In computer science we often measure capacity on a logarithmic scale.
For example:

2K is twice the size of 1K, even though the number of states (possible combinations of 0s
and 1s) grows exponentially: 22048 vs 21024.

Measuring information has something to do with probability.
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Information Theory

Information was invented by Claude Shannon in the context of communication theory.

If I tell you that it is cold in winter time, this is a low information message. It is not
unexpected.2

If I tell you that it is 25C on January 1st in Uppsala, this is an unexpected message, so it
contains a lot of information.

2This is a very British way of saying: “It is expected”.
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Measuring Information

Given some discrete probability distribution over a set of events, denoted p1 . . . , pn. Then the
information is defined to be

H(X ) = −
n∑

i=1

pi log2(pi ) =
n∑

i=1

pi log2(
1

pi
)

This is related to entropy in statistical mechanics. As computer scientists we take logs to the
base 2, and so we measure information in bits.
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Properties of H and I

Given an event that occurs with probability p we want a I (p) that measures the information of
that event. We want I to have certain properties

I (p) is monotonically decreasing in p. The higher the probability of the event, the less
information.

I (p) ≥ 0.

I (1) = 0. An even with probability 1 has no information.

if p and q are independent events then we want I (pq) = I (p) + I (q).

Given these properties the only mathematically sensible choice is

I (p) = log(
1

p
) = −log(p)
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Properties of H and I

I (p) = − log(p)

Remember log2 1 = 0, so if you have an event if probability 1 then log(1/1) = 0. So an
expected event has no information.

As p gets smaller and smaller log2(1/p) gets bigger. Unexpected events have more
information.
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Another view of H

H is the expected value or average value of I (p).

Let X be a random variable. If X takes the values X1, . . . ,Xn with probability p1, . . . , pn
then the expected value of X is

E(X ) =
n∑

i=1

pixi

Then we can write H(X ) as
H(X ) = E(I (X ))

where I (xi ) is the information gained when event x happens that is

I (xi ) = log2(
1

pi
)
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Flipping a fair coin

Given a coin with an equal probability of being heads or tails then we can calculate the entropy.

H(
1

2
,
1

2
) = −1

2
log(

1

2
)−−1

2
log(

1

2
) = −(log

1

2
)

Using properties of logarithms we have that (remember that we are doing logarithms in base 2.

−(log
1

2
) = −(log1− log2) = −(0− 1) = 1

You get some information (1 bit) from observing the result of the coin toss.
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Unfair coin with probability p

H(p, 1− p) = −p log p − (1− p) log(1− p)

If you plot the graph you get

0 0.5 1
0

0.5

1

Pr(X = 1)

H
(X

)

So if you have a biased coin you get less information when you are told the result of the coin
flip.
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Towards decision trees

Given a sample with attributes we will try to estimate H.
For example, suppose we have 47 people, 23 have a car, and 24 do not have a car. Then the
entropy will be

−23

47
log2

23

47
− 24

47
log2

24

27
≈ 0.9997

20 / 39



Towards Decision Trees — Running Example

Consider the following data set (taken from Wikipedia)

Class Mut1 Mut2 Mut3 Mut4

C 1 1 1 0
C 1 1 0 1
C 1 0 1 1
C 0 1 1 0
NC 0 0 0 0
NC 0 1 0 0
NC 1 1 0 0

The entropy of the data set is

− 4

7
log2

4

7︸ ︷︷ ︸
C

−

NC︷ ︸︸ ︷
3

7
log2

3

7
≈ 0.985
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Towards decision trees

Suppose we have a sample where each data item has a number of attributes A1, . . .An. For
the moment assume that the attributes are binary.
We can form the sets XT

i all the samples that have attribute i , and X F
i all the samples that

do not have attribute i .
At the top of the tree we want to split on the attribute that gives us the most information gain.
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Conditional Entropy

If you look up the formula for conditional entropy the formula can look rather complicated.
Conditional entropy is nothing more the entropy of some conditional event.

H(X |Y = a) = −
∑
x∈X

P(x |Y = a) log2 P(x |Y = a)

You can use the fact that P(X |Y ) = P(X ,Y )
P(X ) or think about what you are trying to calculate.
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Conditional Entropy – Example

Consider the following observations measured over 100 days.

Cloudy (c) Not Cloudy (c)

Raining (r) 24/100 1/100
Not Raining (r) 25/100 50/100

Suppose that it is raining. What are the two probabilities P(c |r) and P(c |r)
P(c |r) look at the raining row in the table, there are 25 observed days and 24 cloudy days
so we get 24/25.

P(c |r) is simply 1/25.

So

H(Y |X = r) = − 24

25
log2

24

25︸ ︷︷ ︸
Cloudy

−

NotCloudy︷ ︸︸ ︷
1

25
log2

1

25
≈ 0.24
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Information Gain

Assume that the attribute X takes the values a1 and a2.

H(Y )

H(Y | X = a1) H(Y | X = a2)

P(X = a1) P(X = a2)

Pick an attribute X that maximises

H(Y )−

P(X = a1)H(Y | X = a1) + P(X = a2)H(Y | X = a2)︸ ︷︷ ︸
average information when split
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Information Gain

Assume X takes the values r1, . . . , rn. Then the information gain on splitting the sample on
the attribute X is

H(Y )−
n∑

i=1

P(X = ri )H(Y |X = ri )

If you are trying to estimate this from data, then let |X = r | denote the size subset of the
sample where the feature X has the value r and so the information gain is:

H(Y )−
n∑

i=1

|X = ri |
|Y |

H(Y |X = ri )
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Information Gain

Looking at the value :

G = H(Y )−
n∑

i=1

P(X = ri )H(Y |X = ri )

If G is small then
n∑

i=1

P(X = ri )H(Y |X = ri )

is about the same size as H(Y ), then splitting on that attribute is not a good idea.
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Information Gain

Looking at the value :

G = H(Y )−
n∑

i=1

P(X = ri )H(Y |X = ri )

If G is large this means that
n∑

i=1

P(X = ri )H(Y |X = ri )

is small relative to H(Y ), then splitting on that attribute is a good idea.
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Running Example

Let’s split on the parameter Mut1, that has two values 0 and 1. So we get two sets.
First Mut1 equals 0

Class Mut1 Mut2 Mut3 Mu4

C 0 1 1 0
NC 0 0 0 0
NC 0 1 0 0

Second Mut1 equals 1

Class Mut1 Mut2 Mut3 Mu4

C 1 1 1 0
C 1 1 0 1
C 1 0 1 1
NC 1 1 0 0
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Running Example — Relative Entropy

For Mut1 equals 0

Class Mut1 Mut2 Mut3 Mu4

C 0 1 1 0
NC 0 0 0 0
NC 0 1 0 0

The entropy H(Y | Mut1 = 0) is

− 1

3
log2(

1

3
)︸ ︷︷ ︸

C

−

NC︷ ︸︸ ︷
2

3
log

2

3
≈ 0.918
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Running Example — Relative Entropy

For Mut1 equals 1

Class Mut1 Mut2 Mut3 Mu4

C 1 1 1 0
C 1 1 0 1
C 1 0 1 1
NC 1 1 0 0

The entropy H(Y | Mut1 = 1) is

− 3

4
log2(

3

4
)︸ ︷︷ ︸

C

−

NC︷ ︸︸ ︷
1

4
log

1

4
≈ 0.811
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Running example — Information gain

To calculate the information gain if you split on the attribute Mut1. You need

The entropy at the root H(Y ) = 0.985.

The conditional entropy of the two splits H(Y | Mut1 = 0) = 0.918 and
H(Y | Mut1 = 1) = 0.811.

Then the weighted sum gives you

H(Y )−
(
|Mut1 = 0|

7
H(Y | Mut1 = 0) +

|Mut1 = 1|
7

H(Y | Mut1 = 1)

)
which equals

H(Y )− (
3

7
0.918 +

4

7
0.811) ≈ 0.128
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Running Example

If you do the calculation for all the attributes then it is better to split on Mut3.

Mut1 0.128
Mut2 0.006
Mut3 0.521
Mut4 0.292
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Running Example — Split with Mut3

Class Mut1 Mut2 Mut3 Mut4

C 1 1 0 1
NC 0 0 0 0
NC 0 1 0 0
NC 1 1 0 0

Class Mut1 Mut2 Mut3 Mut4

C 1 1 1 0
C 1 0 1 1
C 0 1 1 0

Notice when Mut3 = 1 then we know which class we are in.
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Running Example – Split on Mut3 = 0

Class Mut1 Mut2 Mut3 Mut4

C 1 1 0 1
NC 0 0 0 0
NC 0 1 0 0
NC 1 1 0 0

If you do the information calculation again then the best thing to split on is Mut4.
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Final Decision Tree

Mut3

Mut4 C

NC C

0 1

0 1
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Decision trees other directions

You can use decision trees for regression, we will look at it in a later lecture.

There are other measures instead of Entropy such as the Gini coefficient and the miss
classification ratio. Obviously complicated, but Gini is faster to compute, while entopry
can give you better results.
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Advantages/Disadvantages of Decision trees

Easy to understand what the algorithm has learned.

Can learn very non-linear boundaries.

Does not require that much preprocessing

Not many parameters to tune.
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Advantages/Disadvantages of Decision trees

Prone to overfitting

Small changes in the data can mean that you learn very different trees.

Computationally more expensive than other methods.

Later we’ll look at Ensemble methods, but to avoid overfitting you can try to learn smaller
trees and not use all the features in your data set.
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