
Machine Learning
Lecture 7

Unsupervised Learning with a bit of Supervised Learning
Clustering and nearest neighbour classifiers.

Justin Pearson1

mailto:it-1dl034@lists.uu.se

1https://justinkennethpearson.github.io/teaching/courses/intro_ml/ (with some slides from
Maŕıa Andréına Francisco Rodŕıguez and Jonathan Alvarsson)
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Today’s Plan

One supervised and a few unsupervised algorithms.

Revisions and odds and Ends

k-nearest neighbours

Hierarchical Clustering

k-means clustering

DBSCAN another clustering method.

Some general remarks about clustering.

It is important not to get k-nearest neighbours and k-means clustering mixed up.
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Supervised Learning

The paradigm so far

Our data set consists of data

(x (1), y (1)), . . . , (x (i), y (i)), . . . , (x (m), y (m))

Where x (i) is the data and y (i) is a label. Data is in general multi-dimensional and can
consist of many variables.
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Supervised Learning

The paradigm so far

Our data set consists of data

(x (1), y (1)), . . . , (x (i), y (i)), . . . , (x (m), y (m))

Data can

Categorical — Data comes from a discrete set of labels. For example you might have
’Passenger class’ , ’first’, ’second’ or ’third’
Everything else, sometimes called continuous, or numeric. Even though you cannot have 0.5
of a person, if you are doing population counts it is easier to treat the data as continuous.
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Supervised Learning

Two paradigms

Classification Your labels y (i) are categorical data: “Cat”, “Dog”, “Hippo”.

Regression Your value y (i) is (possibly) multi-dimensional non-categorical data.

Don’t forget one-hot encoding for categorical data.
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Supervised Learning — Multi class Classification

In general it is hard to train a multi-class classifier. Training a classifier that outputs “Dog”,
“Hippo”, “Cat” from an image is quite hard.
Two strategies:

One-vs-Rest Train individual classifiers “Dog” vs “Not Dog”, “Hippo” vs “Not Hippo”, “Cat”
vs “Not Cat” Pick the classifier with the best confidence.

One-vs-One Given n classes train n(n − 1)/2 binary classifiers: “Dog” vs “Hippo”, “Dog” vs
“Cat”, “Hippo” vs “Cat”. Given an unknown image let each classifier run and
pick the class that gets the most votes.
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k-nearest neighbour classifier

Very simple classifier.

Memory based, no model is learned you just have to remember the training data.

To classify a point, look at the k-closest points look at their classes and take a vote.

No need to do One-vs-Rest or One-vs-One.
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k-nearest neighbour classifier

Example two classes and k=1
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k-nearest neighbour classifier

Example two classes and k=2
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k-nearest neighbour classifier

Example two classes and k=5
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k-nearest neighbour classifier

Example two classes and k=10

15 10 5 0 5 10 15
15
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Nieghbours = 10

Why does it seem that points are miss-classified? How can this happen with the algorithm.
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Other Metrics

All that we need for k-nearest neighbours is some function d(x , y) that gives you the distance
between two points x and y . As long as your function obeys the following axioms:

∀x .d(x , x) = 0

∀x , y .d(x , y) = d(y , x)

∀x , y , z .d(x , y) + d(y , z) ≤ d(x , z)

The k-nearest neighbour algorithm will work.
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k-nearest neighbour classifier

Picking the metric lets you decide what you mean for two points to be close together.

k-nearest neighbour makes no assumptions on the shape of the data. In a sense you can learn
almost anything

It is often a good first algorithm to try.
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Other Metrics

For example you could use the edit (Levenshtein) distance metric that tells you the minimum
number of insertions, deletions and substitutions to get from one string to another. For
example d(kitten, sitting) = 3 by

kitten → sitten → sittin → sitting
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Transformation Invariant Metrics3

If you wanted to recognise numbers that can be rotated then you would want the distance
between the following images to be zero.

One way would be to build a special metric2, another idea is to add rotations (and other
transformations) to your training data. With k-nearest neighbour you can run into memory
problems, but with other learning algorithms this might not be too much of a problem.

2https://ieeexplore.ieee.org/document/576916 Memory-based character recognition using a
transformation invariant metric

3Image from Wikimedia
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Problems with k-NN

As the size of the data set grows, and the more dimensions of the input data the
computational complexity explodes. This is sometimes referred to as the curse of
dimensionality.

With reasonable clever data structures and algorithms you can speed things up.

Even with these problems, k-NN can be a very effective classifier.
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k-nearest neighbours for regression

You can also use it for regression (predicting a value).

You data is something like a collection of points (x⃗i , yi ), where x⃗i is a vector and yi is the value.

Given a new point x⃗ , look at the k-nearest neighbours

(x⃗1, y1), . . . (x⃗k , yk)

Then predict the mean 1
k (y1 + · · ·+ yk). Variations include, predicting the median value.

You can use this to fill in missing values.
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Advantages of k-NN

Easy to implement.

Adapts easily to new data.

Few hyper parameters.

Apart from the metric it does not make any assumptions about the model.
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Disadvantages of k-NN

Does not scale well. You have to store all the data.

Curse of dimensionality. Does not perform well with high-dimensional data.

Prone to overfitting.

19 / 79



This slide is intentionally left blank. Although it is not clear if I succeeded.
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The problem of labels

Good labels are hard to come by. Sometimes you will need a human to classify the data,
and there is a limit to how much data you can get.

Often data is mislabelled.4

There are ethical concerns5 the labelling data.

There are even ethical considerations with how labels are applied. Labels reflect cultural
biases.

4Errors in the classic MNIST dataset https://cleanlab.ai/blog/label-errors-image-datasets/
5https://theconversation.com/

long-hours-and-low-wages-the-human-labour-powering-ais-development-217038
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Unsupervised learning

Simply put: how do we learn on data without labels? There are lots of motivations.

Lack of good labels6.

Even with labels, there might be other patterns in the data that are not captured by the
labels.

Historical motivation, a big part of human learning is unsupervised. What can learn about
biology and cognition from un-supervised learning algorithms. For example look at
Hebbian Learning.

Recommender systems. How does Amazon tell you which book to buy? Or how does
Netflix tell you which film to watch? There are some specialised algorithms, but a lot of it
is machine learning.

Data mining. I have this data, what does it tell me?

6https://www.theregister.co.uk/2020/02/17/self_driving_car_dataset/ Please check your data: A
self-driving car dataset failed to label hundreds of pedestrians, thousands of vehicles.

22 / 79

https://www.theregister.co.uk/2020/02/17/self_driving_car_dataset/


Clustering7

General idea. Take the input data and group it into clusters of similar data points.

Each cluster becomes a class.

7Picture taken from https://commons.wikimedia.org/wiki/File:Cluster-2.svg
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Clustering

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross
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Applications of clustering

Market segmentation, divide your customers into similar groups.

Image segmentation

In Astronomy, clustering similar observations.

Clustering gene expression data from micro arrays.

Clustering texts with various word2vec models.

You could even use it as a preprocessing step for a learning algorithm. Find the clusters and
use that as an inferred parameter.
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Clustering

Questions

How do we decide how similar items are?

How do we determine how many cluster there should be?

What is the computational complexity of clustering?
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Clustering Algorithms

Finding the best clustering of a data set is computationally hard, and you do not always know
what the best clustering of your data set should be.
We will look at 3 algorithms that take a data set and produce a clustering:

Hierarchical clustering

K-Means

Density-based spatial clustering of applications with noise (DBSCAN)
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How do we decide how close things are?

Use a metric (see the earlier slides), most often Euclidean distance.

Sometimes your data has a natural metric because you data is vectors of numbers.

With the Amazon, or Spotify example you can do things like measure how many
customers have bought/listened to the same thing.
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Hierarchical Clustering

Basic idea:

Start with the same number of clusters as you have data points.

At each stage cluster together close together cluster.

Stop when you have enough clusters or everything is clustered together.

You get a tree out of the data that gives you information on clustering. You can use this to
work the number of clusters that you should use.
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Example

a

b

c

d

e
f

Raw Data

a b c d e

bc de

def

bcdef

abcdef

f

A possible hierarchy
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Clustering Clusters

Given your metric it is easy to cluster together single points. Two points are clustered if
they are close together. For example b and c or d and e in the previous example.

Given two clusters say {b, c} and {d , e} how do you decide to cluster them?
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Linkage Criterion

Single linkage: Minimum distance between one element from each cluster
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Figure 11.16: Intercluster distance for (a) single linkage, (b) complete linkage,
and (c) average linkage. The cluster distance in each case is d24, d15, and
(d13 +d14 +d15 +d23 +d24 +d25)/6, respectively.

to different distances. The Mahalanobis distance between two vectors
from the same distribution with the covariance matrix ß is defined
accoriding to

dM(x1,x2)=
q

(x1 °x2)Tß°1(x1 °x2).

The distance functions listed above have the property that distances
are symmetric, i.e. d(x1,x2)= d(x2,x1). This need not be the case. For
example, in sequence alignment (see 8) it is common to use asymmetric
distance functions.

11.5.2.1 Hierarchical clustering

In statistics, hierarchical clustering is a method of cluster analysis
which seeks to build a hierarchy of clusters. Strategies for hierarchical
clustering fall into two types:

• Agglomerative: Each observation starts in its own cluster, and pairs of
clusters are merged as one moves up the hierarchy.

• Divisive: All observations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.

Complete linkage: Maximum distance between one element from each cluster
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to different distances. The Mahalanobis distance between two vectors
from the same distribution with the covariance matrix ß is defined
accoriding to

dM(x1,x2)=
q

(x1 °x2)Tß°1(x1 °x2).

The distance functions listed above have the property that distances
are symmetric, i.e. d(x1,x2)= d(x2,x1). This need not be the case. For
example, in sequence alignment (see 8) it is common to use asymmetric
distance functions.

11.5.2.1 Hierarchical clustering

In statistics, hierarchical clustering is a method of cluster analysis
which seeks to build a hierarchy of clusters. Strategies for hierarchical
clustering fall into two types:

• Agglomerative: Each observation starts in its own cluster, and pairs of
clusters are merged as one moves up the hierarchy.

• Divisive: All observations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.

Average linkage: Average distance between each possible pair made up of one element
from each cluster
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to different distances. The Mahalanobis distance between two vectors
from the same distribution with the covariance matrix ß is defined
accoriding to

dM(x1,x2)=
q

(x1 °x2)Tß°1(x1 °x2).

The distance functions listed above have the property that distances
are symmetric, i.e. d(x1,x2)= d(x2,x1). This need not be the case. For
example, in sequence alignment (see 8) it is common to use asymmetric
distance functions.

11.5.2.1 Hierarchical clustering

In statistics, hierarchical clustering is a method of cluster analysis
which seeks to build a hierarchy of clusters. Strategies for hierarchical
clustering fall into two types:

• Agglomerative: Each observation starts in its own cluster, and pairs of
clusters are merged as one moves up the hierarchy.

• Divisive: All observations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.
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Linkage Criteria

There are lots of different criteria, each having their own advantages and disadvantages. Some
common ones are:

Maximum or complete linkage clustering: max{d(a, b) :a ∈ A, b ∈ B}
Minimum of single-linkage clustering: min{d(a, b) :a ∈ A, b ∈ B}
Average Linkage clustering:

1

|A× B|
∑

a∈A,b∈B
d(a, b)

Where d(a, b) is the distance between two points, and A and B are the clusters. Cluster
together the points with the smallest linkage between them.
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Hierarchical Clustering

The algorithm is not deterministic. Two clusters could be the same distance apart. You
have to make a choice. As you move up the tree, it does not happen so much.

You have to decide when to stop. Obviously clustering everything into a single point is
not a good idea.

It is not always clear what the best metric to choose for clustering.
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Agglomerative Hierarchical Clustering

1 Assign each observation to an individual cluster

2 Choose a distance measure

3 Choose a linkage criterion

4 Compute the distance between each pair of clusters

5 Find the two most similar (closer) clusters and merge them

6 Repeat steps 4 and 5 until there is just one cluster left
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Where to Cut?

Figure taken from An Introduction to Statistical Learning, page 392. 48 / 79



Advantages of Using Hierarchical Clustering

� No apriori information about the number of clusters required

� Easy to implement and gives best result in some cases

� Clusters don’t have a specific shape
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Problems with Hierarchical Clustering

When using hierarchical clustering, keep in mind that:

� It can never undo (split) what was done previously

� It can be sensitive to noise and outliers

� Sometimes it is difficult to identify the correct number of clusters by the dendrogram

� It is fast, but it is slower than K -means (higher time complexity)
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k-means clustering

Given vectors x1, . . . , xn define the average as

µ =
1

N

n∑
i=1

xi

This is also called the centroid or the barycentre.
You can prove that the point µ minimises the sum of the squared euclidean distances between
itself and all the points in the set.
That is, it minimises

n∑
i=1

||xi − µ||2
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Centroid

(0, 0)

(8, 4)

(3, 3)

(6, 2)
M

1

4
((0 + 3 + 6 + 8, 0 + 3 + 2 + 4)) = (17/4, 9/4) = (4.25, 2.25)
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k-means clustering

Given a set of points x1, . . . , xn find a partition of the n-points into k sets S = S1, . . . ,Sk that
minimises the objective

k∑
i=1

∑
x∈Si

||x − µi ||2

Where

µi =
1

|Si |
∑
x∈Si

x

So we want to find k centres µ1, . . . , µk that minimises the spread or max distance in each
cluster.
This is a declarative description of what we want, not an algorithm to find the clusters.
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k-means clustering — Complexity

NP-hard even for two clusters.

This means that you could in theory code up a SAT or a graph colouring problem as a
clustering problem.
This also means that none of the heuristic algorithms are guaranteed to find the best
clustering.
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k-means clustering — Greedy Algorithm

Initialise µ1, . . . , µk with random values.
Repeat the following two steps until convergence:

Clustering For each data point xi assign its cluster to be th point µj that it is closest to.

Recompute µ For each cluster j recompute the cluster recompute µj to be

1

|Sj |
∑
x∈Sj

x

Note that the sets S1, . . . ,Sj can change as the algorithm runs.
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1 dimensional example

Random assignment k1 = 2 and k2 = 3.

0 1 5 6k1 k2

Points 0 and 1 are closest to k1 and points 5 and 6 are closest to k2.
New means k1 = (0 + 1)/2 and k2 = (5 + 6)/2 = 5.5
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Clustering Example

0 1 5 6k1 k2

Again 0 and 1 are closets to k1 and 5 and 6 are closets to k2. So we stop as k1 and k2 don’t
change.
Note that the algorithm is a type of gradient descent.
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Example
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Example
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Example
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Example
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Example
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What is the correct value of k?

2 0 2 4 6 8 10

2

0

2

4

6

8

10

12

How many clusters 1,2 or 3?
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What is the correct value of k?

You can look at how objective changes

k∑
i=1

∑
x∈Si

||x − µi ||2

With different numbers of clusters, and stop increasing the number of clusters when you don’t
get any more big drops in the objective (the elbow method).
Often the number of clusters is application dependent and depends on what you doing with
your clustering algorithm. There might be an application dependent method of evaluating the
number of clusters.
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K -means clustering — Local Minima

K -means clustering is minimizing
∑k

i=1

∑
x∈Si ||x − µi ||2 by making local moves. Each

time you change the clusters this value goes down.

Logistic and linear regression when solved by gradient descent have only one global
minimum.

For a lot of clustering problems there is going to be more than one local minima. Partly
because the problem is NP-complete, but there are other reasons as well.

You don’t know if you have hit a local minima or the global one. One common technique is to
restart algorithm with different random means.
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Limitations of K-means Clustering

Clusters can only be blobs. You could not learn clusters for a data set like this:

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

y

0
1

You have decide what value of k you should pick.
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DBSCAN

K -means clustering cannot deal with nested non-convex blobs.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

y

0
1

In clusters the data points are more dense, and clusters are separated by regions of low
intensity.
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DBSCAN

Intuitive idea:

For each point, try to estimate if it is in a high density region, on the border of a region
or an outlier.

Pick an unclassified point in a high density region, then use a flood fill algorithm and add
the neighbours to the same cluster.
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DBSCAN — Estimating the density

Classify points into

Core points Points in high density regions

Reachable points Points less than a certain distance from each other. You can reach non core
points.

Outliers or noise points Points that cannot be reached from core points.
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DBSCAN — Estimating the density

Pick some radius ϵ and draw a sphere around each point in the data set. Pick some value m
(often called minPts or minSamples).

Core point: A point is a core point if there are at least m points with a distance of ϵ of it.

Reachable: A point q is reachable from a core point p if d(p, q) < ϵ.

Outliers or noise points Points that cannot be reached from core points.

Note that you can reach a non core point from a core point.
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A C

B

N

The red points are core points, the yellow points are reachable non-core points and the blue
point is an outlier.
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DBSCAN works with Nonlinear Regions
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Why are there so many clustering Algorithms

Scikit-learn has 11 different clustering algorithms not counting the various levers and knobs
you can set for each algorithm.

Are we just too stupid to come up with the best clustering algorithm?

Even simple k-means clustering is NP-hard, so we should expect that all efficient
algorithms are some sort of approximation to the best result that sometimes work well.8

In fact it is mathematically impossible to come up with a perfect clustering algorithm.9

This is what makes machine learning fun. You have to get familiar with the strengths and
weaknesses of the different algorithms.

8This is why you should learn some complexity theory.
9
“An impossibility Theorem for Clustering”. Jon Kleinberg

https://proceedings.neurips.cc/paper/2002/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html
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Impossibility of Perfect Clustering10

Three properties:

Scale invariance: If we have a dataset and multiply all the distances between points by a
constant factor, then we should get the same clusters.

10Picture taken from https://alexhwilliams.info/itsneuronalblog/2015/10/01/clustering2/
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Impossibility of Perfect Clustering11

Three properties:

Consistency: If you move the clusters apart and stretch or contract the individual clusters
the you should get the same clustering.

11Picture taken from https://alexhwilliams.info/itsneuronalblog/2015/10/01/clustering2/
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Impossibility of Perfect Clustering12

Three properties:

Richness: The clustering function should theoretically be able to produce any arbitrary
partition/clustering of datapoints (in the absence of knowing the pairwise distance
between any two points) A bit hard to explain without too much mathematics. But
certain natural clustering should be possible.

12Picture taken from https://alexhwilliams.info/itsneuronalblog/2015/10/01/clustering2/
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Impossibility of Perfect Clustering

It is impossible to have a clustering algorithm that is Rich, Scale invariant and Consistent. At
best you can have two properties at the same time.
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Clustering Overview and things to think about

Lots of parameters and distance measures to pick.

Clustering high dimensional data is quite hard, picking the correct value of ϵ can be
difficult and your intuitions about 2 and 3 dimensions does not always help in high
dimension. There is a lot more space in high-dimensional space (what ever that might
mean).

There are lots more clustering algorithms that you can try, some are better adapted to
different types of data.

Clustering is a hard computational problem, so all the known algorithms are fast
algorithms that don’t always give the perfect answer or in some cases the will run slow.
Most people prefer fast.

Mathematically there is no perfect clustering algorithm. It is a bit hard to understand the
implications of this, but it is one reason that there are a lot of different algorithms out
there.
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