
Machine Learning
Lecture 6

Cross Validation and Feature Encoding

Justin Pearson1, Madhushanka Padmal2

2024

1http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html
2madhushanka.padmal@angstrom.uu.se

1 / 37

http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html
madhushanka.padmal@angstrom.uu.se

Over Fitting vs Under Fitting

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

3.0

3.2

3.4

3.6

3.8

4.0

Blue line is under fitting the data, or the model is biased towards solutions
that will not explain the data.
Orange line is over-fitting the data, or the model has a high variance. It is
trying to model the irregularities in the data.

2 / 37

Intution behind high bias

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

3.0

3.2

3.4

3.6

3.8

4.0

The basic intuition behind high bias is that the model is not sensitive
enough to the training data set in use.

If there’s a slight change in the training data, the model will not
change significantly.

Hence high bias . . .
3 / 37

Intution behind high variance

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2.8

3.0

3.2

3.4

3.6

3.8

4.0

The basic intuition behind high variance is that the predicted model is
too sensitive to the training data set in use.

If there’s a slight change in the training data, the model will change
significantly.

Hence high variance . . .
4 / 37

Case with Classification Models

Figure: Under fitting, Just right and Over fitting in classification models

5 / 37

Training and Validation Data

What is the goal of machine learning?

To predict future values of unknown data.

If you are doing statistics, then you could start making assumptions about
your data and start proving theorems.
Machine learning is a often a bit different, you cannot always make
sensible assumptions about the distribution of your data.

6 / 37

Training and Validation Data

Ideally we would like to train our algorithm on all the available data
and then evaluate the performance of the model on the future
unknown data.

Since we cannot really do this we have to fake it, by splitting our data
into two parts: training and test data.

The function

s k l e a r n . mo d e l s e l e c t i o n . t r a i n t e s t s p l i t

is maybe one most important functions that you will use.

7 / 37

Training and Validation Data

There are lots of reasons to split, but it avoids over-fitting. It avoids
learning how to exactly predict how well you learned your training set.

When you report how well your learning algorithm does, you should
report the score on validation set and not the training set.

You can compare several learning algorithms and compare their
validation errors.

Statistically it is all about reducing variance.

8 / 37

Training and Validation

You might use different error metrics for the training and validation
set. With logistic regression you would train the model by minimising

J(θ) =
1

m

m∑
i=1

−y log(σ(hθ(x)))− (1− y) log(1− σ(hθ(x)))

But you might evaluate the model using accuracy, precision, recall or
the F-score from the confusion matrix.

9 / 37

Bias vs Variance

To do this properly you have to do statistics. The following definitions are
not really water tight and are intended to give you some intuition.

Model Bias A model has high bias if the error/loss/cost function is high
on the training data. It makes bad prediction on the training
data.

Model Variance A model has high variance if the error/loss/cost function
is high on the test data compared with the training data.

10 / 37

Overfitting vs Bias again

If you have a series of models that get more and more complex, then how
do you know when you are over fitting?

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2.8

3.0

3.2

3.4

3.6

3.8

4.0

11 / 37

Bias variance trade off

Model Complexity

Total Error
Er

ro
r

O
pt

im
um

 M
od

el
 C

om
pl

ex
it
y

Bias²

Variance

You want to find the sweet spot. Without advanced statistics or
something like Bayesian based approaches it can be quite hard.

12 / 37

Overfitting vs Bias

Assuming that you have split the model into training and validation sets
then you can look at training and validations errors as your models get
more complicated. Andrew Ng calls this the elbow method.

0 5 10 15 20 25
Complexity

0.01

0.02

0.03

0.04

0.05

0.06

0.07 training error
validation error

13 / 37

Overfitting vs Bias

If the test set error and the training set error is very high then you are
probably under-fitting.

When the training error gets smaller and smaller, but your test set
error starts increasing you are probably over-fitting.

14 / 37

Overfitting vs Bias

There are lots of problems with this approach including:

It is not always easy to judge the complexity of your model on a neat
straight line.

What if you picked the wrong division of your data into training and
test sets?

15 / 37

Two Goals

Model Selection: estimating the performance of different models in order
to chose the best one.

Model assessment: Having chosen a final model, estimate its prediction
error on new data.

If we are doing model selection then there is a problem that we might
overfit on the validation set.

16 / 37

Hyper parameters and Models

The terminology is a bit unclear but

Hyper-parameters These are parameters to the learning algorithm that do
not depend on the data. They are often continuous values
such as the regularisation parameter, but not always.
Sometimes people refer to the choice of kernel as a hyper
parameter.

In a Bayesian framework it is possible to reason about the value of
hyper parameters, but it can get quite complicated.

The main problem with hyper parameters is that it is hard to use the
data to optimise the values of the hyper-parameters.

17 / 37

Non-linear search spaces and other learning parameters

With for example k-means clustering (see the next lecture), the final
result you get also depends on the random initial starting points that
you pick.

There might be other learning parameters that affect how well you
converge on a solution.

The architecture of your neural network is very important.

18 / 37

Regularisation – Again

Regularisation is an attempt to stop learning too complex hypotheses.
With linear regression and non-logistic regression we modified the cost
function J

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y (i))2 + λ

n∑
i=1

θ2i

or

J(θ) =
1

m

m∑
i=1

−y log(σ(hθ(x)))− (1− y) log(1− σ(hθ(x))) + λ

n∑
i=1

θ2i

Increasing λ forces the optimisation to consider models with small weights.
The λ term is something that you do not learn from the data.

19 / 37

Impact of λ on the model

When minimizing the cost function, λ > 0 and it will penalize every
feature weight in the model.

λ = ∼ 1000 λ = optimal λ = ∼ 0

20 / 37

More features and Kernels

Yet more hyper parameters.

Support Vector machines without kernels, linear regression and
logistic regression can only learn linear hypotheses.

Embedding your problem via a kernel function into a higher
dimensional space to make the problem more linear is one way of
making something learnable. For SVMs you have a lot of choice of
different kernels and parameters.

For linear and logistic regression you can try to invent non-linear
features.

21 / 37

Hyper-parameters - Train — Validation — Test

If we have enough data then we can split out data into three parts:

Training This is what we use to train our different algorithms. Typical
split 50%.

Validation This is what we use to choose our model and
hyper-parameters. We pick the model with the best
validation score. Typical split 25%.

Test This is the data that you keep back until you have picked a
model. You use this to predict how well you model will do on
real data. Typical split 25%.

This avoids overfitting in the model selection. If you are comparing models
then you use the validation set to pick the best model, but report the error
score on the test set to give an indication on how well the model will
generalise.

22 / 37

k-fold cross validation

What if we don’t have enough data to split into three parts. Then we can
use k-fold validation.

Split your data randomly into k equal size parts.

For each part, hold one back as a test set and train on the k − 1
remaining parts, evaluate on the part you held back.

Report the average evaluation and use this to set your
hyper-parameters or to select the best model.

This effectively generates more training test splits out of your data. The
random selection gives you statistically similar splits.

23 / 37

k-fold cross validation

If k = 5, then you have 5 parts T1, . . . ,T5 you would run 5 training runs

Train on T1,T2,T3,T4 evaluate on T5.

Train on T1,T2,T3,T5 evaluate on T4.

Train on T1,T2,T4,T5 evaluate on T3.

Train on T1,T3,T4,T5 evaluate on T2.

Train on T2,T3,T4,T5 evaluate on T1.

Good values of k are 5 or 10. Obviously the larger k is the more time it
takes to run the experiments.

24 / 37

A Fold3

Sheep near a dry stone sheepfold, one of the oldest types of livestock
enclosure.

3
https://commons.wikimedia.org/wiki/File:Sheep_Fold.jpg

25 / 37

https://commons.wikimedia.org/wiki/File:Sheep_Fold.jpg

k-fold cross validation

What do you do after k-fold cross validation.

Cross validation only returns a value that is a prediction of how well
the model will do on more data.

Assuming that you sample of the data is randomly drawn (not biased)
then there are good statistical reasons why the k-fold valuation is a
good idea.

26 / 37

k-fold cross validation

Once you have decided which model or set of parameters to use, you
then train a new model over the whole data set and use that for
prediction.

For example you could test if SVMs and Logistic regression on the
same data-set and use k-fold cross validation to decide which model
would perform best. Once you know this, you can then retrain on the
whole data-set and use this model in production.

27 / 37

Estimating Hyper parameters — Grid Search4

Very simple idea choose some step size and divide you continuous
parameters into a grid. Go through all the combinations and return the
parameters that minimise the training error.

With a split into training and validation sets you can find close to optimal
values for your hyper-parameters. Of course you will need to combine this
with cross-validation to get something meaningful if you are comparing
different models.

4
https://de.wikipedia.org/wiki/Datei:Hyperparameter_Optimization_using_Grid_Search.svg

28 / 37

https://de.wikipedia.org/wiki/Datei:Hyperparameter_Optimization_using_Grid_Search.svg

Summary of methods to avoid overfitting

Add more training data.

Regularisation.

Feature selection. — regularisation will penalize features that are not
useful

Picking hyper-parameters via cross validation or
training/validation/test split.

With some learning methods, stopping the training early is often a good
way of avoiding over fitting.

Often, just thinking about what your model is doing is a good way.

29 / 37

Some feature engineering — One-Hot Encoding

Remember Categorical data is data that can take on a number of discrete
values. For example if your data contains the type of car somebody drives:

Audi

Volvo

Saab

You could pick some coding where you just assign a natural number to the
each type of car

Audi = 0

Volvo = 1

Saab = 2

30 / 37

Categorical Data

Car Year Sale

Audi 2000 No
Volvo 2001 Yes
Saab 2002 Yes
Saab 2003 Yes
Volvo 2000 No
Saab 2001 Yes
Audi 2002 No
Volvo 2003 Yes

31 / 37

One-Hot Encoding

But what is special about the values 0,1 and 2? If you where trying
to do some sort of regression then learning a weight that made sense.

If xc is your variable for your car type, then what sense does

hθ(xc , . . .) = θcxc + . . .

even make?

32 / 37

One-Hot Encoding

Instead we use binary 0/1 variables to represent the categorical variables.
In our example we would have three variables

xa equals 1 if the car is an Audi and 0 otherwise

xv equals 1 if the car is an Volvo and 0 otherwise

xs equals 1 if the car is an Saab and 0 otherwise

Note that Scikit Learn has functions to do this automatically for you.

33 / 37

One-Hot Encoding

With our binary variables our models are easier to learn

hθ(xa, xv , xs , . . .) = θaxa + θvxv + θxs

34 / 37

One-Hot Encoding

Car Year Sale

Audi 2000 No
Volvo 2001 Yes
Saab 2002 Yes
Saab 2003 Yes
Volvo 2000 No
Saab 2001 Yes
Audi 2002 No
Volvo 2003 Yes

⇒

Audi Volvo Saab Year Sale

1 0 0 2000 0
0 1 0 2001 1
0 0 1 2002 0
0 0 1 2003 1
0 1 0 2000 0
0 0 1 2001 1
1 0 0 2002 0
0 1 0 2003 1

35 / 37

Label Encoding

Car Year Sale

Audi 2000 No
Volvo 2001 Yes
Saab 2002 Yes
Saab 2003 Yes
Volvo 2000 No
Saab 2001 Yes
Audi 2002 No
Volvo 2003 Yes

⇒

Car Year Sale

0 2000 0
1 2001 1
2 2002 1
2 2003 1
1 2000 0
2 2001 1
0 2002 0
1 2003 1

where 0 = Audi, 1 = Volvo, 2 = Saab and 0 = No, 1 = Yes

36 / 37

Target Encoding

Car Year Sale

Audi 2000 No
Volvo 2001 Yes
Saab 2002 Yes
Saab 2003 Yes
Volvo 2000 No
Saab 2001 Yes
Audi 2002 No
Volvo 2003 Yes

⇒

Car Year Sale

0 2000 0
0.67 2001 1
1 2002 1
1 2003 1
0.67 2000 0
1 2001 1
0 2002 0
0.67 2003 1

Bayesian target Encoding (Overfitting . . .)

K-Fold target Encoding

37 / 37

