Checklist before Submitting

In order to protect yourself against an unnecessary loss of points, use the following checklist
before submitting:

0

0

O O 0O O

Crosscheck your report against the assignment instructions.

Crosscheck against the technical writing and IATEX advice below. The English Style Guide
of UUathttps://mp.uu.se/en/web/info/stod/kommunikation—-riktlinjer/
sprak/eng-skrivregler|and the technical-writing Checklist & Style Manual of the
Optimisation group at http://optimisation.research.it.uu.se/checkList.
pdf offer many further pieces of advice. Common errors in English usage are discussed at
https://brians.wsu.edu/common—-errors. In particular, common errors in Eng-
lish usage by native Swedish speakers are listed at http://www.crisluengo.net/
index.php/english-language.

Spellcheck all documents, including the comments in the source code.
Proofread, if not grammar-check, your report at least once per teammate.
Crosscheck your source code against the coding convention.

Submit your pdf report and your source code files in studium.

Remember that when submitting you implicitly certify (a) that your report and all its
uploaded attachments were produced solely by your team, except where explicitly stated
otherwise and clearly referenced, (b) that each teammate can individually explain any
part starting from the moment of submitting your report, and (c) that your report and
attachments are not freely accessible on a public repository.

https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
http://optimisation.research.it.uu.se/checkList.pdf
http://optimisation.research.it.uu.se/checkList.pdf
https://brians.wsu.edu/common-errors
http://www.crisluengo.net/index.php/english-language
http://www.crisluengo.net/index.php/english-language

Python Coding convention

Function Specification

Every function must fulfil its specification:

e the function must contain a function header with the type hints of the arguments and
results,

e the function must contain a comment with the pre-condition on the arguments, by
referring to their names; write ” (none)” instead of writing nothing if there is no pre-
condition,

e the function must contain a comment with the post-condition on the arguments and
results, by referring to all their names; an empty or ” (none)” post-condition only makes
sense if every result of the function is correct, and

e optionally the function may contain illuminating examples and counter-examples of
argument-result pairs.

Recursion Invariant

Additionally, every recursive function must be commented with the recursion variant: a
quantity that provably strictly decreases at every recursion according to some well-founded order
towards some constant lower bound, thereby establishing finite execution of the recursion.
Loops

You may comment your loops with:

e the loop variant: a quantity that provably strictly decreases at every iteration according
to some well-founded order towards some constant lower bound, thereby establishing finite
execution of the loop, and

e the invariant: a statement that is provably true at the start of every iteration [?, pp. 18—

20].

Data Structures
Every new data structure you implement must be commented with:
e the representation convention: an explanation of how to interpret the contents

e the representation invariant: a statement that is true before and after every modific-
ation.

Algorithms & Data Structures II (course 1DL231)
Uppsala University — Autumn 2019
Report for Assignment n by Team t

Clara CLAVER Whiz KIDD

14th November 2023

This document shows the ingredients of a good assignment report for this course. The IXTEX
source code of this document illustrates almost everything you need to know about IXTEX in
order to typeset a professional-looking assignment report (for this course). Use it as a starting
point for imitation and delete everything irrelevant. The usage of IXTEX is optional, but highly
recommended, for reasons that will soon become clear to those who have never used it before;
any learning time is outside the budget of this course, but will hugely pay off, if not in this
course then in the next course(s) you take and when writing a thesis or other scientific report.

Part 1
Insertion Sort

INSERTION—SOR’IE] “is an efficient algorithm for sorting a small number of elements. Insertion
sort works the way many people sort a hand of playing cards. We start with an empty left
hand and the cards face down on the table. We then remove one card at a time from the table
and insert it into the correct position in the left hand. To find the correct position for a card,
we compare it with each of the cards already in the hand, from right to left, as illustrated
in Figure 77. At all times, the cards held in the left hand are sorted, and these cards were
originally the top cards of the pile on the table.” (Quoted from page 17 of CLRS3 [?].)

In the sequel of part 77, assume that the problem tasks in the assignment were as follows
(actual assignment statements in this course may have other tasks):

A. Tmplement INSERTION-SORT as a Python function insertion_sort(A), where the elements
to be sorted are provided in an integer array A indexed from 0 to n—1. The sorting is to be
done in place, returning A in non-decreasing order, that is: A[0] < A[1] <--- < A[n —1].
For brevity, you can refer to a sequence in non-decreasing order as a sorted sequence.

B. Compute the best, average, and worst-case time complexities of INSERTION-SORT.

A Specification and Program

A specification of sorting and our Python implementation of INSERTION-SORT are given in
Listing ??, where n is referred to as len(A).

“Your report need not contain an explanation, like in this paragraph, of the problem to be solved: you can
start with the task answers, assuming the reader has read the problem statement in the assignment.

Figure 1: Sorting a hand of cards using insertion sort. ((©) nobody, 2010)

B Complexity Analysis

The program in Listing ??7 has two nested loops, so we analyse it starting from the inner loop,
in lines 77 to 7?7, whose purpose is to insert A[j] into the sorted sequence A[0..j — 1], assuming
j > 0, yielding the sorted sequence A[0..j]. Let Tins(j) denote the running time of this inner
loop:

O(1) if Alj—1] < A[j] (best case)
Tins(4) = ¢ 0O(j) if A [%1} <A[j]<A [’%1} (if j > 1) (average case)
O(j) if Afj] < A[0] (worst case)

assuming that every comparison takes constant time and every assignment takes constant time.
We can now analyse the outer loop, and hence the whole algorithm. Let n denote len(A)
and let T'(n) denote the running time of insertion sort(A). We get the following recurrence:

T — {€0) if n < 2
e T(n—1) + Tins(n) ifn>2

Using recurrence (?7?), we get the following time complexity results:

e T(n) = ©(n) in the best case, where the array is already non-decreasingly ordered before
the sorting, so that Tins(n) = O(1) at every iteration of the outer loop, because A[j] is
always kept by the inner loop behind the sorted sequence A[0..j — 1]. This result follows
from Theorem 7?7 below, for the constants a = 1 and b = 2.

e T(n) = 0O(n?) in the average case, defined here as follows: on average over the iterations
of the outer loop, the inner loop inserts A[j] into the middle of the sorted sequence
AJ0..7 — 1], so that Tins(n) = O(n) on average at every iteration of the outer loop. This
can be proven by induction: (insert your proof here).

e T(n) = ©(n?) in the worst case, where the array is non-increasingly ordered before the
execution of the algorithm, so that Tins(n) = O(n) at every iteration of the outer loop,
because A[j] is always inserted by the inner loop at the beginning of the sorted sequence
AJ0..7 — 1]. This result has the same proof as in the average case above.

In conclusion, INSERTION-SORT takes O (n2) time for an array of n elements.

4

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

def insertion_sort (A: List[int]) —-> None:
mmww

Pre: (none)
Post: A is a non-decreasingly ordered permutation of its original elements
Ex: A =[5, 7, 3, 12, 1, 7, 2, 8, 13]

insertion_sort (A)
A is now [1, 2, 3, 5, 7, 7, 8, 12, 13]

for j in range(l, len(A)):
Invariant: A[0..j-1] is a sorted permutation of its original elements
Variant: len(A) - j
key = A[]]
i=9-1
while 1 >= 0 and A[i] > key:
Invariant: A[i+2..7] has the original elements of A[i+1..7J-1]
Variant: 1
A[i+1] = A[i]
i=1i-1
Ali + 1] = key
Listing 1: Python implementation of the INSERTION-SORT algorithm on page 18 of CLRS3 [?].
1 Compare for example line 7?7 with line 5 of that algorithm: arrays are indexed from 1 in
CLRS3 but from 0 in Python. Note also that a range ¢. . u, as used in the mathematical notation
of the comments, is denoted by the range £ : © + 1 in Python; you can use the Python notation
in comments and the running text, as long as you comply with the Python semantics.

Theorem 1. The following recurrence, for some constants a and b:

T(n) = O(1) ifn<b
a-Tn—1)+6(1) ifn>b

has ©(n) as closed form for a =1, and O(a™) as closed form for a > 1.

Proof. By induction (left as an exercise to the reader in the AD1 course). O

Part 2
Weighted Interval Scheduling

“Suppose we have a set S = {aj,a2,...,a,} of n proposed activities that wish to
use a resource, such as a lecture hall, which can serve only one activity at a time.
Each activity a; has a start time s; and a finish time f; , where 0 < s; < f; < oo. If
selected, activity a; takes place during the half-open time interval [s;, f;). Activities
a; and a; are compatible if the intervals [s;, f;) and [s;, f;) do not overlap. That is,
a; and a; are compatible if s; > f; or s; > f;. In the activity-selection problem, we
wish to select a maximum-size subset of mutually compatible activities.”

(Quoted from page 415 of CLRS3 [?].)

The weighted interval scheduling problem is an extension to the activity-selection problem
where activity a; has the weight w; and where an optimal solution is to be found. An optimal
solution to the weighted interval problem is a subset, O C {ai,a2,...,a,}, where the total
weights over the selected activities, Y {w; | a; € O}, is maximised.

Additionally, the activities are sorted in non-decreasing order of finish times: f; < fo <

.-+ < fn and the help function p(i) gives the largest index j < i such that activity ¢ and j are
compatible:

arg max(s; > f;) ifdjel..i—1:5>f
0 otherwise

In the sequel of part 7?7, assume that the problem tasks in the assignment were as follows
(actual assignment statements in this course may have other tasks):

A. Give a recursive equation for a parameterised quantity after stating its meaning in terms of
all its parameters. Use the equation to justify that the problem has the optimal substruc-
ture property and overlapping subproblems, so that dynamic programming is applicable
to it.

B. Motivate your choice between bottom-up iteration (for which you must argue for the
chosen nesting and iteration order of the loops) and top-down recursion for the Weighted
Interval Scheduling Problem.

A Recursive equation

The weighted interval scheduling problem can be represented by the following recursive function:

0 ife=0

OPT() = {max { OPT(i —1),w; + OPT(p(i)) } ifi >0

Given an instance of the Weighted Interval Scheduling problem with an optimal solution O,
O C J. The last activity, ay, either belongs to O, a,, € O, or it does not, a,, ¢ O. If a,, belongs
to O, then all intervals not compatible with ay, {a; | i € p(n) +1..n — 1}, do not belong to O.

Additionally, if a, belongs to O, then O must include an optimal solution, O;) (n)’ to the
subproblem {a; | i€ 1..p(n)}. If O;(n) is not optimal, then O;D could be modified into a
solution that is optimal and where all activities are intrinsically compatible with a,,.

If a,, does not belong in O, then O is an optimal solution to the subproblem {a; | i € 1..n — 1}.
The reasoning is analogous: assume that a, ¢ O; so if O is not an optimal solution to the sub-
problem of activities {a; | a; € 1..n — 1}, then O could be modified into a solution that is.

Deciding if a, is to belong in O thus require an optimal solution to the subproblems
{a;|i€1..7}, with j taking the value between 1 and n, j € 1..n, proving that Weighted
Interval scheduling has optimal substructure.

Given the index ¢ of an activity a;, the recursive equation ?? returns the weight 0 for index 0,
denoting an empty set of activities, and otherwise the optimal solution to the two subproblems:
when activity a; does not belong to the optimal subproblem for the activities {a; | k € 1..7 — 1},
or the optimal solution to the subproblem with activities {ay, | k € 1..p(7)} plus the additional
weight w;.

There are some problem instances that have overlapping subproblems. For example; given
the activities {a1,a2,...,an}, p(i) = k, and k > 1, then the subproblem {a1,as, ..., a;} will be
calculated at least two times, once when finding the optimal solution for the problem OPT(n)
and once for the subproblem OPT(k + 1).

B Bottom-Up Iteration and Top-Down Recursion

Given the reasoning and the recursive function in task 7?7, the optimal solution to each sub-
problem S;, with 1 <4 < n and S; = {a1,...,a;}, will be found, giving bottom-up iteration
and top-down recursion the same time complexity. We have chosen the bottom-up iterative
approach. Our program uses a single loop where all activities are iterated over in increasing
order of their indices, where activity a; has index 1.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

More BKTEX and Technical Writing Advice

Unnumbered itemisation (only to be used when the order of the items does not Inatter)ﬂ

e Unnumbered displayed formula:
E=m-c

e Numbered displayed formula, which is cross-referenced somewhere:

E=m-c

e Formula — the same as formula (??) — spanning more than one line:

Numbered itemisation (only to be used when the order of the items does matter):
1. First do this.
2. Then do that.
3. If we are not finished, then go back to Step 77, else stop.

Tables and elementary mathematics are typeset as given in Table ?7; see/ftp://ftp.ams.
org/pub/tex/doc/amsmath/short-math—guide.pdf|for many more details.

Use \mathit{...} in mathematical mode for each multiple-letter identifier in order to
avoid typesetting the identifier like the product of single-letter ones. For example, note the
typographic difference between the identifier WL, obtained through $\mathit {WL}$, and the
product W L, where there is a small space between the W and the L, obtained through $SWLS.

Do not use programming-language-style lower-ASCII notation (such as ! for negation, &&
for conjunction, || for disjunction, and the equality sign = for assignment) in algorithms or
formulas (but rather use — or not, A or & or and, V or or, and < or :=, respectively), as this
testifies to a very strong confusion of concepts.

Figures can be imported with \includegraphics or drawn inside the IATEX source code
using the highly declarative notation of the tikz package: see Figure 7?7 for sample drawings.
It is perfectly acceptable in this course to include scans or photos of drawings that were carefully
done by hand.

If you are not sure whether you will stick to your current choice of notation or terminology,
then introduce a new (possibly parametric) command. For example, upon

\newcommand{\Cardinality}[1] {\left\lvert#l\right\rvert}

the formula \Cardinality{S} typesets the cardinality of set S as |S| with autosized ver-
tical bars and proper spacing, but upon changing the definition of that parametric command
to

\newcommand{\Cardinality} [1]{\# #1}

2Use footnotes very sparingly, and note that footnote pointers are never preceded by a space and always glued
immediately behind the punctuation, if there is any.

ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf

Figure 2: A binary search tree (on the left), a binary min-heap (in the middle), and a binomial
tree of rank 3 (on the right).

and recompiling, the formula \Cardinality{S} typesets the cardinality of set S as #5.
You can thus obtain an arbitrary number of changes in the document with a constant-time
change in its source code, rather than having to perform a linear-time find-and-replace operation
within the source code, which is painstaking and error-prone. The source code of this document
has some useful predefined commands about mathematics and algorithms.

Use commands on positioning (such as \hspace, \vspace, and \noindent) and appear-
ance (such as \small for reducing the font size, and \textit for italics) very sparingly, and
ideally only in (parametric) commands, as the very idea of mark-up languages such as IWTEX
is to let the class designer (usually a trained professional typesetter) decide on where things
appear and how they look. For example, \emph (for emphasis) compiles (outside italicised
environments, such as theorem) into italics under the article class used for this document,
but it may compile into boldface under some other class.

If you do not (need to) worry about how things look,
then you can fully focus on what you are trying to express!

Note that no absolute numbers are used in the IXTEX source code for any of the references
inside this document. For ease of maintenance, \1label is used for giving a label to something
that is automatically numbered (such as an algorithm, equation, figure, footnote, item, line,
part, section, subsection, or table), and \ref is used for referring to a label. An item in
the bibliography file is referred to by \cite instead. Upon changing the text, it suffices to
recompile, once or twice, and possibly to run BibTeX again, in order to update all references
consistently.

Always write Table~\ref{tab:maths} instead of Table \ref{tab:maths}, by
using the non-breaking space (which is typeset as the tilde ~) instead of the normal space,
because this avoids that a cross-reference is spread across a line break, as for example in “Table
7?77, which is considered poor typesetting.

The rules of English for how many spaces to use before and after various symbols are given
in Table ??7. Beware that they may be very different from the rules in your native language.

number of spaces after

0 1

number of spaces before

0 / - i YY" %

LC{e

— (n-dash) — (m-dash)

Table 1: Spacing rules of English

Topic ETEX code Appearance
Greek letter Θ, Ω, ϵ 0,0,¢
multiplication $m \cdot n$ m-n
division $\frac{m}{n}, m \div n$ %,m%n

rounding down
rounding up
binary modulus
unary modulus
root
exponentiation, superscript
subscript
overline

base 2 logarithm
base b logarithm
binomial

sum

numeric comparison
non-numeric comparison
extremum

function

sequence, tuple

set

set membership

set comprehension

set operation

set comparison

logic quantifier

logic connective

logic

miscellaneous

dots

dots (context-sensitive)
parentheses (autosizing)

identifier of > 1 character
hyphen, n-dash, m-dash, minus

S\left\1lfloor n \right\rfloors$
S\left\lceil n \right\rceil$
Sm \bmod n$

$m \equiv n \mod \ell$
$\sgrt{n},\sqrt [3]{n}$
Sn”{i}$

Sn_{i}$

\overline{n}

$\1g n$

$\log_b n$

S\binom{n}{k}$

\[\sum_{i=1}"n 1i\]

$\leq/</:/\neq/>/\geq$
$\prec, \nprec, \preceq, \succeqgs$
$\min, \max, +\infty, \bot, \top$
$f\colon A\to B, \circ, \mapsto$
$\langle a,b,c \rangle$

S\{a,b,c\}, \emptyset, \mathbb{N}$

$\in, \not\in$

$\{i \mid 1 \leqg i \leqg n\}$
$\cup, \cap, \setminus, \times$S
S\subset, \subseteq, \not\supset$
S\forall,\exists, \nexists$
$\land, \lor, \neg, \Rightarrow$
S\models, \equiv, \vdash$

$\&, \#, \approx, \sim, \ells

S\1ldots, \cdots, \vdots, \ddots$
$1,\dots,n; 1l+\dots+n$

S\left (m” {n"k}\right), (m"{n"k})s$

S\mathit{identifier}s$
_7__7___a$_$

[n]
[n]
m mod n
m=n mod ¢

v, /n
ni

1
n
lgn
log, n
()
n
> i
i=1
<<= F> 2
<, A3z
min, max, +o00, L, T
fi:A— B,o,—

identifier

Y 9 Y

Table 2: The typesetting of elementary mathematics. Note very carefully when italics are used
by INTEX and when not, as well as all the horizontal and vertical spacing performed by IATEX.

10

