
Algorithms and Data Structures II (1DL231)

Uppsala University — Autumn 2022

Assignment 2

Based on assignments by Pierre Flener,
but revised by Frej Knutar Lewander and Justin Pearson

— Deadline: 15:00 on Friday 1st December 2023 —

It is strongly recommended to read the Submission Instructions and Grading Rules at the end
of this document even before attempting to solve the following problems. It is also strongly
recommended to prepare and attend the help sessions.

For this assignment you will need the two Python skeleton files difference.py and recompute mst.py

Problem 1: Search-String Replacement

A useful feature for a search engine is to suggest a replacement string when a search string
given by the user is not known to the search engine. In order to suggest and rank replacement
strings, the search engine must have some measure of the minimum difference between the
given search string and a possible replacement string. For example, over the alphabet A =
{A, . . . ,Z}, let the user’s search string be s = DINAMCK and let a suggested replacement
string be r = DYNAMIC. The minimum difference of strings s and r is the minimum cost of
changes transforming s into r, where a change is either altering a character in s in order to get
the corresponding character in r, or skipping a character in s or r. A positioning of two strings
is a way of matching them up by writing them in columns, using a dash (–) to indicate that a
character is skipped. For example:

D I N A M – C K
D Y N A M I C –

The difference of a positioning is then the sum of the resemblance costs of the character pairs
in each column of the positioning, as given by a resemblance matrix R. For an alphabet A, we
have that R is an (|A|+1)× (|A|+1) matrix, as it must include the dash in addition to the |A|
characters of the alphabet. For example, the positioning above has a difference of:

R[D,D] +R[I,Y] +R[N,N] +R[A,A] +R[M,M] +R[–,I] +R[C,C] +R[K,–]

For example, if R[x, y] = 1 for all x, y ∈ A∪{–} with x ̸= y and if R[x, x] = 0 for all x ∈ A∪{–},
then the difference of a positioning is the number of changes; another resemblance matrix could
store the Manhattan distances on a QWERTY keyboard between characters of the alphabet
(see the skeleton code).

Given two strings s and r of possibly different lengths over an alphabet A that does not
contain the dash character, and given an (|A|+1)× (|A|+1) resemblance matrix R of integers,
which cannot be assumed to be symmetric, perform the following tasks:

A. Give a recursive equation for a parameterised quantity after stating its meaning in terms
of all its parameters (do not rename the problem parameters s, r, A, and R). Complete
the following sub-tasks:

(a) Give the base case(s) of the recursive equation.

(b) Give the recursive case(s) of the recursive equation.

(c) Use the equation to justify that the problem of computing the minimum difference
of s and r relative R has optimal substructure and overlapping subproblems, so that
dynamic programming is applicable to it.

B. Implement an efficient dynamic programming algorithm for this problem as a Python
function min difference(s, r,R), assuming that the last row and last column of R pertain
to the dash character.

Write a short description of which dynamic approach you chose (bottom-up recursive
or top-down iterative) you used and how your code implements it. Your implemented
function must pass all corresponding unit tests in the skeleton code file.

C. Extend your algorithm from Task B to return also a positioning for the minimum differ-
ence. Implement the extended algorithm as a Python functionmin difference align(s, r,R).
Your implemented function must pass all corresponding unit tests in the skeleton code
file.

D. Argue that the time complexity of your extended algorithm is O (|s| · |r|).

If you pass only Tasks A to B (and their sub-tasks), then your score is up to 3 points for
the Problem. If you pass only Tasks A to C (and their sub-tasks), then your score is up to 4
points for the Problem. If you pass Tasks A to D (and their sub-tasks), then your score is up
to 5 points for the Problem.

We are not implying that search engines actually use such a dynamic programming al-
gorithm for suggesting search-string replacements.

Problem 2: Recomputing a Minimum Spanning Tree

Given a connected, weighted, undirected graph G = (V,E) with non-negative edge weights, as
well as a minimum(-weight) spanning tree T = (V,E′) of G, with E′ ⊆ E, consider the problem
of incrementally updating T if the weight of a particular edge e ∈ E is updated from w(e)
to ŵ(e). There are four cases:

1. e /∈ E′ and ŵ(e) > w(e)

2. e /∈ E′ and ŵ(e) < w(e)

3. e ∈ E′ and ŵ(e) < w(e)

4. e ∈ E′ and ŵ(e) > w(e)

Perform the following tasks:

A. For each of the four cases: describe in plain English with mathematical notation an
efficient algorithm for updating the minimum spanning tree, and argue that the algorithm
is correct and has a time complexity of O (1) or O (|V |) or O (|E|).

B. Choose two of the four cases. for each chosen case, say case i ∈ 1 . . 4, implement your
algorithm as a Python function update MST i(G,T, e, w) for w = ŵ(e). For each of your
implemented functions, if the edge er was removed from T and the edge ea was added
to T , then the function should return the tuple (er, ea), otherwise it should return the
tuple (None,None).

C. For another case that was not chosen in Task B, say case j ∈ 1 . . 4, implement your
algorithm as a Python function update MST j(G,T, e, w) for w = ŵ(e). If the edge er
was removed from T and the edge ea was added to T , then your implemented function
should return the tuple (er, ea), otherwise it should return the tuple (None,None).

D. Briefly describe a real-world situation where (a variation) of Recomputing a Minimum
Spanning Tree can occur.

If you pass only Tasks A to B, then your score is up to 3 points for the Problem. If you
pass only Tasks A to C, then your score is up to 4 points for the Problem. If you pass Tasks A
to D, then your score is up to 5 points for the Problem.

Submission Instructions

• Identify yourself inside the report and all code.

• State the problem number and task identifier for each answer in the report.

• Take Part 1 of the demo report at http://user.it.uu.se/~justin/Hugo/courses/ad2/
demorep as a strict guideline for document structure and as an indication of its expected
quality of content.

• Comment each function according to the AD2 coding convention at http://user.it.uu.
se/~justin/Hugo/courses/ad2/codeconv.

• Test each function against all the provided unit tests.

• Write clear task answers, source code, and comments: write with the precision that you
would expect from a textbook.

• Justify all task answers, except where explicitly not required.

• State in the report all assumptions you make that are not in this document. Every
legally re-used help function of Python can be assumed to have the complexity given
in the textbook, even if an analysis of its source code would reveal that it has a worse
complexity.

• Thoroughly proofread, spellcheck, and grammar-check the report.

• Match exactly the uppercase, lowercase, and layout conventions of any filenames and I/O
texts imposed by the tasks, as we will process submitted source code automatically.

• Do not rename any of the provided skeleton codes, for the same reason.

• Import the commented Python source-code files also into the report: for brevity, it is
allowed to import only the lines between the copyright notice and the unit tests.

• Produce the report as a single file in PDF format; all other formats will be rejected.

• Remember that when submitting you implicitly certify (a) that your report and all its up-
loaded attachments were produced solely by you, except where explicitly stated otherwise
and clearly referenced, (b) that you can explain any part starting from the moment of
submitting your report, and (c) that your report and attachments are not freely accessible
on a public repository.

• Submit the solution files (one report and up to two Python source-code files) without
folder structure and without compression via Studium

Grading Rules

For each problem: if (for all of the following statements)

• there are no runtime errors when running the code under Python 3 on a Linux computer
of the IT department, and

• the code passes all of the provided unit tests and all of our grading tests,

then your report will be graded for the problem (continue reading). Otherwise, the final score
is automatically 0 points for the problem, and the report will not be graded for the problem.
Furthermore, if (for all of the following statements)

• the requested source code exists in a file with exactly the name of the corresponding
skeleton code (except for any characters introduced by studium);

http://user.it.uu.se/~justin/Hugo/courses/ad2/demorep
http://user.it.uu.se/~justin/Hugo/courses/ad2/demorep
http://user.it.uu.se/~justin/Hugo/courses/ad2/codeconv
http://user.it.uu.se/~justin/Hugo/courses/ad2/codeconv

• the code imports only the libraries imported by the skeleton code;

• the code has the comments prescribed by the AD2 coding convention for all the functions;
and

• the source code features a serious attempt at algorithm analysis,

Then no points will be deducted from the final score for the problem. Otherwise, points will be
deducted from the final score of the problem, at the discretion of the assistant.

Considering there are three help sessions for each assignment, you must earn at least 3 points
(of 10) on each assignment until the end of its grading session, including at least 1 point (of 5)
on each problem and at least 15 points (of 30) over all three assignments, in order to pass the
Assignments part (2 credits) of the course.

