Algorithms and Data Structures II (1DL231)
Uppsala University — Autumn 2022
Assignment 1

Based on assignments by Pierre Flener,
but revised by Frej Knutar Lewander and Justin Pearson

— Deadline: 13:00 on Friday 17 November 2023 —

It is strongly recommended to read the Submission Instructions and Grading Rules at the end
of this document even before attempting to solve the following problems. It is also strongly
recommended to prepare and attend the help sessions.

For this assignment you will need the two Python skeleton files weightlifting.py and augmenting.py

Problem 1: The Weightlifting Problem

Given a list P of n weights of weightlifting plates at a gym, as well as a preferred total weight
w for a weightlifter, the weightlifting problem is to determine whether there exists a list P’ of
elements in P whose sum is exactly w, since we neither want to put on too little weight nor to
overburden the weightlifter. For example, if P = [7,9, 8] and w = 15, then the list P’ = [8,7] is
a solution, but there is no solution for w = 14.

A.

Give a recursive equation for a parameterised quantity after stating its meaning in terms
of all its parameters (do not rename the problem parameters P and w). Complete the
following sub-tasks:

(a) Give the base case(s) of the recursive equation.

(b) Give the recursive case(s) of the recursive equation.

(¢) Use the equation to justify that the weightlifting problem has the optimal substruc-
ture property and overlapping subproblems, so that dynamic programming is applic-
able to it.

. Using the recursive equation as a guide, implement a recursive programming algorithm

without memoisation for weightlifting problem as a Python function
weightlifting_recursive(P, w, p),

that returns True if and only if there exists a list P’ with integer sum w > 0 containing
elements from P. Note that the implemented algorithm does not have to be efficient
and should not use memoisation to cache results from overlapping subproblems. Your
implemented function must pass all corresponding unit tests in the skeleton code file.

Implement an efficient top-down dynamic programming algorithm for the weightlifting
problem as a python function

weightlifting_top_down (P, w, dp_matrix)

that returns True if and only if there exists a list P’ with integer sum w > 0 containing
elements from P, where dp_matriz is a matrix of size n X w where initially each element
takes value None. Note that the implemented algorithm has to be efficient and must use
memoisation by storing results from subproblems in dp_matriz.

You must use the provided data structure and function signatures when implementing
memoisation or caching. Your implemented function must pass all corresponding unit
tests in the skeleton code file.

. Consider the algorithms in Tasks [B] to[C] Without having to prove the time complexities

of the algorithms, complete the following sub-tasks:

(a) Which algorithm has the best worst-case time complexity? Justify your answer.

(b) Which algorithm has the best best-case time complexity? Justify your answer.

Using the recursive equation as a guide, implement a bottom-up dynamic (iterative) pro-
gramming algorithm for the weightlifting problem as a Python function

weightlifting _bottom_up (P, w, dp_matriz),

that returns True if and only if there exists a list P’ with integer sum w > 0 containing
elements from P. Note that the implemented algorithm has to be efficient and must
use memoisation by storing results from subproblems in dp_matriz. Your implemented
function must pass all corresponding unit tests in the skeleton code file.

F. Using the algorithm implemented in Task[E] implement an extended algorithm as a Python
function
weightlifting_list(P, w, dp_matriz)

that returns such a list P’ if one exists, otherwise an empty list. Your implemented
function must pass all corresponding unit tests in the skeleton code file.

G. We can modify the weightlifting problem such that the greatest total weight @ of weight-
lifting plates that does not exceed the preferred total weight of the weightlifter, w < w, is
to be returned. Given the algorithm in Task [E] formulate how the greatest total weight @
can be obtained. (You do not need to provide an implemented algorithm for this task.)

If you pass only Tasks [A| to |§| (and their sub-tasks), then your score is up to 3 points for
the Problem. If you pass only Tasks [A| to [F] (and their sub-tasks), then your score is up to 4
points for the Problem. If you pass Tasks [A| to |G| (and their sub-tasks), then your score is up
to 5 points for the Problem.

Problem 2: Augmenting Path Detection in Network Graphs

You will meet flow networks later in the course, but to do this assignment all you need to do is
understand the definition of a flow network and the definition of an augmented path. All the
information is given here in the assignment and you do not need to consult the textbook or
other material. At the moment, do not worry about why flow networks and augmented paths
are useful, but simply treat the problem as an exercise in designing algorithms for labelled
directed graphs.

A flow network is a connected directed graph G = (V| F) with a source s, a sink ¢, a
nonnegative capacity c(u,v) on each edge, and a non-negative flow f(u,v) on each edge. An
augmenting path P of GG is a duplicate-free list of edges from s to ¢:

P =[(s,n1),(n1,n2), -, (Nmn—1,7m), (N, t)] ,

such that the flow is less than the capacity for each edge:

V(u,v) € P: f(u,v) < c(u,v)

Perform the following tasks:

A. Design and implement an efficient algorithm, such as depth-first search, as a Python
function
augmenting (G, s, t)

for a flow network G = (V, E) with source s and sink ¢ that returns True if and only if
there exists an augmenting path from the source s to the sink ¢ in G. Two points will be
deducted from your score if your algorithm deletes vertices or edges; in that case, deletions
must be made on a copy of G in order to comply with the style of graph algorithms in
CLRS3. Also note that (see 26.1 of CLRS3) that for a network graph G = (V, E) the
source, s, has no incoming edges; the sink, ¢, has no outgoing edges; if the edge (u,v)
exists in F, then no edge (v,u) exists in E; and that self-loops (edges from a vertex to
itself) are forbidden. Your implemented function must pass all corresponding unit tests
in the skeleton code file.

B. Extend your algorithm from Task [A] in order to return also an augmenting path, if one
exists. Implement your extended algorithm as the Python function

augmenting_extended(G, s, t).

Your implemented function must pass all corresponding unit tests in the skeleton code
file.

C. Argue that the time complexity of your extended algorithm is O (|E|).

If you pass only Task[A] then your score is up to 3 points for the Problem. If you pass only
Tasks [A] and [B] then your score is up to 4 points for the Problem. If you pass Tasks [4] to [C]
then your score is up to 5 points for the Problem.

Submission Instructions

e Identify yourself inside the report and all code.

e State the problem number and task identifier for each answer in the report.

Take Part 1 of the demo report at http://user.it.uu.se/~justin/Hugo/courses/ad2/
demorep| as a strict guideline for document structure and as an indication of its expected
quality of content.

Comment each function according to the AD2 coding convention at http://user.it.uu.
se/~justin/Hugo/courses/ad2/codeconv.

Test each function against all the provided unit tests.

Write clear task answers, source code, and comments: write with the precision that you
would expect from a textbook.

Justify all task answers, except where explicitly not required.

State in the report all assumptions you make that are not in this document. Every
legally re-used help function of Python can be assumed to have the complexity given
in the textbook, even if an analysis of its source code would reveal that it has a worse
complexity.

Thoroughly proofread, spellcheck, and grammar-check the report.

Match ezactly the uppercase, lowercase, and layout conventions of any filenames and I/0
texts imposed by the tasks, as we will process submitted source code automatically.

Do not rename any of the provided skeleton codes, for the same reason.

Import the commented Python source-code files also into the report: for brevity, it is
allowed to import only the lines between the copyright notice and the unit tests.

Produce the report as a single file in PDF format; all other formats will be rejected.

Remember that when submitting you implicitly certify (a) that your report and all its up-
loaded attachments were produced solely by you, except where explicitly stated otherwise
and clearly referenced, (b) that you can explain any part starting from the moment of
submitting your report, and (c) that your report and attachments are not freely accessible
on a public repository.

Submit the solution files (one report and up to two Python source-code files) without
folder structure and without compression via Studium

Grading Rules

For each problem: if (for all of the following statements)

e there are no runtime errors when running the code under Python 3 on a Linux computer

of the IT department, and

e the code passes all of the provided unit tests and all of our grading tests,

then your report will be graded for the problem (continue reading). Otherwise, the final score
is automatically 0 points for the problem, and the report will not be graded for the problem.
Furthermore, if (for all of the following statements)

e the requested source code exists in a file with exactly the name of the corresponding

skeleton code (except for any characters introduced by studium);

http://user.it.uu.se/~justin/Hugo/courses/ad2/demorep
http://user.it.uu.se/~justin/Hugo/courses/ad2/demorep
http://user.it.uu.se/~justin/Hugo/courses/ad2/codeconv
http://user.it.uu.se/~justin/Hugo/courses/ad2/codeconv

e the code imports only the libraries imported by the skeleton code;

e the code has the comments prescribed by the AD2 coding convention for all the functions;
and

e the source code features a serious attempt at algorithm analysis,

Then no points will be deducted from the final score for the problem. Otherwise, points will be
deducted from the final score of the problem, at the discretion of the assistant.

Considering there are three help sessions for each assignment, you must earn at least 3 points
(of 10) on each assignment until the end of its grading session, including at least 1 point (of 5)
on each problem and at least 15 points (of 30) over all three assignments, in order to pass the
Assignments part (2 credits) of the course.

